
79

ON SECRET SHARING SCHEMES WITH EXTENDED CAPABILITIES

Kamil Kulesza, Zbigniew Kotulski
Institute of Fundamental Technological Research

Polish Academy of Sciences
ul.Świętokrzyska 21, 00-049 Warsaw, Poland

Email: kkulesza, zkotulsk@ippt.gov.pl

ABSTRACT

Secret sharing allows split control over the secret.
Secret parts known as secret shares are distributed
to different shareholders (locations). Secret can be
recovered upon combination of sufficient number
of shares. Research into theoretical foundations,
development of widespread applications, as well
as, new attacks resulted in great need for extra
features of existing schemes.
We describe extended capabilities for secret
sharing schemes. List of discussed issues contains
(but is not limited to): multiple and different size
sets of shareholders, schemes activation, multi-
secret schemes, cheating detection, secret shares
renewal/maintaince, missing shares recovery.
Next, research results into extended capabilities
for Karin-Green-Hellman scheme are presented.
We concentrate on Proactive Secret Sharing (PSS)
and Publicly Verifiable Secret Sharing (PVSS).
Results are in the form of collections of algorithm
in pseudocode, that can be easily implemented.
Finally, we discuss trade-offs between secret
security and extended capabilities.

Keywords: cryptography, secret sharing, data
security, extended capabilities

1. INTRODUCTION

Everybody knows situations, where permission
to trigger certain action requires approval of
several selected persons. Equally important is
that any other set of people cannot trigger the
action. Just to bring few instances:
1. Bank transactions. When customer wants to
draw lump sum from the account, his order has
countersigned by 2 out of 3 authorized bank
employees. Order validated by such procedure
can be further processed.
2. Corporate governance. In order to issue
valid decision in the name of the Board of

Directors, threshold number of members of the
Board has to approve decision.
3. Military. Crucial operations, for instance
launch of ballistic missile, can be executed only
when initialization code is entered. Secret
sharing allows split control over such code,
resulting in split control over initiation of
crucial operations.
Secret sharing allows splitting a secret into

different pieces, called shares, which are given
to the participants. The secret is usually shared
and distributed to the participants by the
dealer. Only certain group (authorized set of
participants) can recover the secret. Secret
Sharing Schemes (SSS) were independently
invented by George Blakley [1] and Adi Shamir
[2]. Many schemes have been presented since,
for instance, Asmuth and Bloom [3], Brickell
[4], Karin-Greene-Hellman (KGH method) [5].
Majority of given above schemes are so-called
()n,t threshold schemes, that any t (but not
less) participants out of total number of n
participants can recover the secret. Later some
of the schemes were generalized to arbitrary
collections of authorized sets of participants,
known as general access structure. We will
describe it in greater detail in the next section.
Formal foundation of secret sharing was

formulated using the information theory. Two
important concepts were defined: ideal and
perfect schemes. Informally speaking, scheme
is ideal if each share has the same length as the
secret. Ideal property can be thought as
measure of efficiency of secret sharing scheme.
We consider schemes to be perfect, if any non-
authorized set of participants, cannot deduce
extra information about the secret from their
shares, compared to people not having shares
at all. One can think about perfectness property
as measure of security of secret distribution.
Interested reader can consult, for instance [6]

80

for more formal definitions.
Research into theory resulted in better

understanding of secret sharing, while growing
number of practical applications required
greater flexibility and functionality. This lead to
development of secret sharing schemes with
extended capabilities that are the topic of this
paper. It consists of 6 sections with the
following outline:
1. Introduction. You are reading it now.
2. State of art. It provides overview of secret
sharing schemes with extended capabilities and
detailed description of KGH scheme.
3. Preliminaries. Useful properties extensively
used further in the text, are derived.
4. Proactive Secret Sharing (PSS). Algorithms
to implement PSS are described and discussed.
5. Publicly Verifiable Secret Sharing (PVSS).
Again algorithms to implement PVSS are
described and discussed.
6. Remarks. Concluding remarks are stated.
At the end of introduction, we make some
comments on procedures and algorithms
presented in this paper. Every routine is
described in three consecutive steps:
a. Informal description. It states the purpose

of routine, describes what is being done and
specifies output (when needed). Such
description should be enough to
comprehend the paper and get main idea
behind presented methods.

b. Routines written in pseudocode, resembling
high level programming language (say,
C++). Level of detail is much higher than in
the description part. Reading through
pseudocode might be tedious, but rewarding
in the sense that allows appreciate proposed
routines in full extend. In C++ fashion we
use // sign for comments, while in
pseudocode.

c. Discussion (if needed). Methods and results
are formally justified.

2. STATE OF ART

At the beginning of this section we describe
Karin-Green-Hellman (KGH) secret sharing
scheme that is extensively used for the rest of
the paper. In the second part we provide
overview of secret sharing schemes with
extended capabilities.

KGH description
In KGH the secret is a vector of η numbers

{ }ηη s,...,s,sS 21= . Any modulus k is chosen,

such that)s,...,s,smax(k 21 η> . All t

participants are given shares that are η -

dimensional vectors t,...,2,1j,S)j(=η with

elements in Zk. To retrieve the secret, they have
to add the vectors component-wise in Zk. For

2k = , KGH method works like ⊕ (XOR) on
η -bits numbers, much in the same way like
Vernam one-time pad. If t participants are
needed to recover the secret, adding 1t − (or
less) shares reveal no information about secret
itself, hence KGH is perfect, see [6].

Extended capabilities
Extended capabilities arise from a need for
greater flexibility and functionality of the secret
sharing scheme. We describe two directions of
development:
- various authorized sets of participants,
- added features (extended capabilities in

classical sense).
Various authorized sets of participants
1. General access structure. First secret
sharing schemes were ()n,t threshold schemes,
with nt ≤ . In practice, it is often needed that
only certain specified subsets of the
participants should be able to recover the
secret. Hence, it is not surprising that next
stage in development of secret shares came
with introduction of general access.
The access structure describes all the
authorized subsets. To design the access
structure with required capabilities, the
cumulative array construction can be used, for
details see, for example [6]. Combining
cumulative arrays with KGH method, one
obtains implementation of general secret
sharing scheme (see, e.g., [6]). Although KGH
is ideal for)t,t(threshold scheme, it is not
always true for an arbitrary access structure.
Design of access structures is difficult,
interesting results in this field are given in [7].
2. Anonymous secret sharing schemes. In such
schemes secret is reconstructed using
"blackbox", that separates secret share from its
holder. Hence, secret is recovered without
knowing neither identities of participants, nor

81

shares to participants assignment (e.g. [9]).
Added features
Some schemes have added functions that were
first called "extended capabilities".
1. Proactive Secret Sharing (PSS). PSS is used
for long-lived and sensitive secrets, see [10].
Often nature of the secret does not allow
changing it (for instance proprietary trade
secrets or legal documents). PSS allows
periodically renewing secret shares, leaving the
same secret. Method for recovery of missing or
corrupted shares should be also available. In
addition enrollment/disenrollment of secret
participants should be supported. We propose
PSS for KGH scheme in the section 4.
2. Verifiable Secret Sharing (VSS) and Publicly
Verifiable Secret Sharing (PVSS). VSS allows
detecting cheating by secret participants and/or
the secret dealer (e.g. [11], [12]). Verification
capability is especially important, if secret
consistency is crucial (for instance
cryptographic master keys).
Cheating can result not only in obstruction of
the protocol (for instance by recovering invalid
secret), but also may allow dishonest parties to
recover secret on their own, see [13].
Verification process requires presence of
trusted third party or can be performed directly
between parties of the protocol. When it takes
place in public or uses publicly available data,
we have Publicly Verifiable Secret Sharing, for
instance see [14]. We propose PVSS for KGH
scheme in the section 5.
3. Automatic Secret Generation and Sharing
(ASGS). There are situation, when secret is
generated just before sharing. One of them
might be "identification mode" of operation for
secret sharing. In this situation, participants
that are capable to recover the secret, identify
themselves as authorized set of participants.
The content of the secret is secondary to that
capability, and often is generated on the spot.
Automatic secret generation addresses issue of
generation and distribution of such secret.
Often secret is generated in the distributed
form and remains unknown till the time it is
recovered for the first time.
Usually, the dealer has to know the secret in

order to share it. This gives dealer advantage
over ordinary secret participants. There are
situations where such advantage can lead to

abuse. Automatic sharing allows secret owner
to eliminate the dealer and share the secret
automatically. The resulting secret shares are
random. It may have added feature, that even
secret owner knows neither secret shares, nor
their distribution. The later decreases chances
of owner interfering with the shared secret.
An instance of ASGS is given in [15] and [16].
4. Pre-positioned secret sharing schemes.
Such schemes allow the dealer to keep control
over secret recovery process (e.g. its time). In
[8] pre-positioned secret sharing schemes are
described as that: „All necessary secret
information is put in place excepting a single
(constant) share which must later be
communicated, e.g., by broadcast, to activate
the scheme.”
5. Multi-secret threshold schemes. Menezes,
van Oorschot and Vanstone in [8] wrote:" In
these secret sharing schemes different secrets
are associated with different authorized
subsets".

After this little survey it can be though that
extended capabilities are quite well described.
Nevertheless, still there is a room for
refinement and more extensions. For example:
extended capabilities over general access
structure give rise to many new problems.
Often using extension yields some price to pay,
for instance, usually verification capabilities
result in situation, where scheme losses
perfectness property. Its security is based on
some computationally difficult problems like
discreet logarithm (e.g., see [14]), hence
resulting in theoretically weaker security class
of secret sharing scheme.
Because requirements for various extended
capabilities are often contrary to each other,
building secret sharing schemes with combined
extended capabilities is a very challenging
problem.

3. PRELIMINARIES

In order to formally present procedures and
algorithms, one needs to introduce notation.
We describe two devices and their functions.
First comes random number generator; its
output strings have good statistical properties
(e.g., see [17]). Next, comes the accumulator,
which is a dumb, automatic device that

82

memory cannot be accessed otherwise than by
predefined functions. Its embedded capabilities
are described below. In further considerations

im denotes l-bit vector. Given set A , its

cardinality (no. of elements) is denoted by A .

RAND yields im obtained from a random

number generator.
ACC denotes the value of l -bit memory
register. Register’s functions are:
ACC.reset sets all bits in the memory register
to 0,
ACC.read yields ACC,
ACC.store(x) yields xACCACC ⊕=
(performs bitwise XOR of ACC with the input
binary vector x, result is stored to ACC).
Accumulator consists of l -bit memory
register together with defined above functions.
It has also some storage capacity separate from
memory register. Accumulator can execute
functions and operations as described in
procedures.
Secure communication channel. In this paper
we assume that all the communication between
protocol parties is done in the way that only
communicating parties know the message
plaintext. Whenever we use command like
“send”, we presume that no third party can
know the message contents. There is extensive
literature on this subject, interested reader can,
for instance, consult [8].
Encapsulation. Entities and devices taking
part in the protocol can exchange information
with others, only via interface. Inner state of
the entity (e.g., contents of memory registers)
is hidden (encapsulated) and remains unknown
for external observers.
Let's denote:
S as the whole secret

iP as ith participant

is as secret share assigned to the participant iP

Basic property: Let n,...,2,1i,mi = , such that

0mi

n

1i

�

=⊕
=

, (1)

form the set M . For any partition of M into
two disjoined subsets 1C , 2C , that is such that

∅=∩=∪ 2121 CC,MCC , holds:

i
Cm

i
Cm

mm
2i1i

⊕⊕
∈∈

= . �

(2)

Now we present the procedure that
generates the set of binary vectors M .
Procedure description:
GenerateM creates the set of n binary vectors

im , satisfying condition (1). The Accumulator

carries out procedure.
Procedure 1: GenerateM(n)
Accumulator:

ACC.reset;
for 1i = to 1n − do

RAND:mi =
ACC.store (im)

save im

end //for
read.ACCmn =

save nm

return { }n21 m...mmM =
end // GenerateM
Discussion: We claim that the generated set M
satisfies condition (1). First, statistically
independent random vectors 1n,...,2,1i,mi −=

are generated, while i

1n

1i
n mm ⊕

−

=
= , so

0mmmmm i

1n

1i
i

1n

1i
ni

1n

1i
i

n

1i

�

=�
�

�
�
�

�⊕�
�

�
�
�

�=⊕�
�

�
�
�

�= ⊕⊕⊕⊕
−

=

−

=

−

==

�

4. PROACTIVE SECRET SHARING

We propose efficient proactive secret sharing
for KGH scheme. It allows to:
a. periodically renew secret shares without
changing the secret,
b. enroll/disenroll participants
c. recover missing/corrupted secret shares
Let us start from the first capability.
RenewShares allows renewing secret shares in

the way such that the renewed shares combine
to the same secret as original ones.
Algorithm description:
RenewShares uses GenerateM to obtain set of
n binary vectors that next are pairwise XORed
with existing shares by the secret participants.

83

Each of the secret participants stores result of
operation as the renewed share.
Algorithm 1: RenewShares(n)

Dealer:
GenerateM(n):

for 1i = to n
send im to iP

Participant iP :

iii ms:s ⊕=
save is

end// for
end//RenewShares
Discussion:
1. We claim that RenewShares produces
random secret shares, due to the fact that all of
them result from XOR of random vector
provided by GenerateM and secret share.
2. All renewed secret shares combine to S .
Just observe:

()

S0sms

mss

i

n

1i
i

n

1i
i

n

1i

ii

n

1i
i

n

1i

=⊕=⊕=

⊕=

⊕⊕⊕

⊕⊕

===

==

�

3. Multiple repetitions of the algorithm do not
reveal any additional information, hence
it can be used for periodical renewal of the
shares.�
EnrollParticipants allows creating new
authorized set of participants by adding new
participants. Already existing secret shares are
modified in the way that all participants from
new authorized set are needed in order to
recover the secret.
Algorithm description:
EnrollParticipants uses GenerateM to obtain a
set of hn + binary vectors, where h denotes
the number of participants to be added.
First n vectors are pairwise XORed with
existing shares by the secret participants. Each
new participant is assigned one of remaining
binary vectors.
All the secret participants store result of
operation as their secret share.
Algorithm 2: EnrollParticipants(h)

Dealer:
GenerateM(hn +):

for 1i = to n
send im to iP

Participant iP :

iii ms:s ⊕=
save is

end// for
for 1ni += to hn +

send im to iP

Participant iP :

ii m:s =
save is

end// for
end//EnrollParticipants
Discussion:
1. We claim that EnrollParticipants produces
random secret shares. Some of them are
random vectors generated by GenerateM,
while the others result from XOR of random
vectors and existing secret shares.
2. All renewed secret shares combine to S .
Just observe:

()

S0sms

mmss

i

n

1i
i

hn

1i
i

n

1i

i

hn

1ni
ii

n

1i
i

hn

1i

=⊕=⊕

=⊕⊕=

⊕⊕⊕

⊕⊕⊕

=

+

==

+

+==

+

=

�

�

DisenrollParticipants allows removing
participants from the authorized set and
creating new smaller set. Already existing
secret shares are modified in the way that only
participants from new authorized set are
needed to recover the secret.
Algorithm description:
DisenrollParticipants takes the list of
participants to be removed (() (){ }d

l
d

1 P,...,PP =)

as the parameter. First, dealer has to obtain and
combine all secret shares from P . Combined
shares are stored in the Accumulator. Next, she
uses GenerateM to obtain set of hn − binary
vectors, where h denotes the number of
participants to be removed. First generated
vector is XORed with the combined shares of
removed participants (the Accumulator
contents).
All binary vectors generated, including
modified one are pairwise XORed with the
existing shares by the secret participants. Each
of the secret participants stores the result of
operation as his new secret share.

84

Algorithm 3: DisenrollParticipants(P)
Dealer:

ACC.reset
for 1i = to h

contacts ()d
iP

Participant ()d
iP : sends Dealer ()d

is

ACC.store(()d
is)

end// for

GenerateM(hn −)
read.ACCm:m 11 ⊕= // 1m XOR all ()d

is

remaining secret participants are assigned
new indexes { }hn,...,1i −∈ to form ()n

is

for 1i = to hn −
send im to iP

Participant iP :
() ()

i
n

i
n

i ms:s ⊕=
save ()n

is

end// for
end//DisenrollParticipants
Discussion:
1. We claim that DisenrollParticipants
produces random secret shares, same reasoning
like in the Algorithm 1 applies.
2. All renewed secret shares combine to S .
Just, observe that once participants are

removed: () �
�

�
�
�

� ⊗= ⊕
=

1
d

i

h

1i
1 mss we obtain:

() () ()

S0sms

smss

i

n

1i
i

hn

1i
i

n

1i

n
i

hn

2i
1

d
i

h

1i

n
i

hn

1i

=⊕=⊕

=⊕�
�

�
�
�

� ⊗=

⊕⊕⊕

⊕⊕⊕

=

−

==

−

==

−

=

�

3. We require cooperation from secret
participants that are to be removed. When
there is no such cooperation, they shares need
to be recovered. The next algorithm addresses
this problem.�
When secret shares are lost or corrupted,

RecoverShares is used to obtain value of
missing shares. In case of KGH scheme, this
has to be performed comparing remaining valid
shares with the secret. The difference (XOR)
yields value of the missing shares.
One possible approach would be to have a

trusted entity (for instance the dealer), which
maintains the secret. The other is to use
distributed computations. Second one seams to
be more secure, because nobody knows the
secret. But there is the price to pay; we need
second authorized set of participants to
perform the comparison.
Let's denote the original authorized set of
participants as () () () (){ }1

h
1

2
1

1
1 P,...,P,PP = and

corresponding set of shares assigned the
participants as { })1(

h
)1(

2
)1(

1
)1(s,...,s,sU = . In this

set only n out of total h shares are available
(remaining shares are missing), hence it can be
written as { })1(

h
)1(
1n

)1(
n

)1(
2

)1(
1

)1(s,...,s,s,...,s,sU += .

The second authorized set of participants
() () () (){ }2

g
2

2
2

1
2 P,...,P,PP = is needed for the

recovery. Corresponding set of shares assigned
to the participants can be written as

{ })2(
g

)2(
2

)2(
1

)2(s,...,s,sU = .

For both sets of shares it holds,
)2(

i
Ui

)1(
i

Ui

sSs
)2()1(

⊕⊕
∈∈

== . It should be

emphasized that ()2U has to be complete in
order to recover valid missing shares.
Algorithm description:
RecoverShares uses Accumulator to combine

all available secret shares from ()1U and ()2U .
One round: a share from ()1U is sent to the
Accumulator, next a share from ()2U is sent.
Operation is repeated until there are no shares
in both sets. Accumulator contains combined
value of missing shares. Algorithm returns this
value.

Algorithm 4: RecoverShares(() ()21 U,U)
ACC.reset
If ()gn ≥ then n:counter =
else g:counter =

for 1i = to counter
Participant ()1

iP :

if ()in ≥ send ()1
is to Accumulator

else send () 0s 1
i

�

= to Accumulator

Accumulator: ACC.store(()1
is)

Participant ()2
iP :

if ()ig ≥ send ()2
is to Accumulator

else send () 0s 2
i

�

= to Accumulator

85

Accumulator: ACC.store(()2
is)

end// for
Dealer:

RecoverShares:= ACC.read
end//RecoverShares
Discussion:
1. Method of sending shares ()1

is / ()2
is to the

Accumulator enforce security upon the secret.
At no point in time, value of the secret cannot
be recover using Accumulator contents.
2. We claim, that once all available secret
shares are sent to the Accumulator, it contains
value of missing shares. This can be
demonstrated from)2(

i
Ui

)1(
i

Ui

sSs
)2()1(

⊕⊕
∈∈

==

that yields 0ss)2(
i

Ui

)1(
i

Ui)2()1(

�

=��
�

�
��
�

�⊕��
�

�
��
�

� ⊕⊕
∈∈

.

Take ()1U that is partitioned into two subsets
()1
aU and ()1

bU , such that () () ()111 UUU ba =∪ ,
() () ∅=∩ 11

ba UU .

If
() ()

0sss)2(
i

Ui

)1(
i

Ui

)1(
i

Ui)2(1
b

1
a

�

=��
�

�
��
�

�⊕
�
�

�

�

�
�

�

�
⊕ ⊕⊕⊕

∈∈∈

, then

() ()

)1(
i

Ui

)2(
i

Ui

)1(
i

Ui

sss
1

b
)2(1

a

⊕⊕⊕
∈∈∈

=��
�

�
��
�

�⊕��
�

�

�
�

�

�
.

3. Algorithm RecoverShares can be used as an
extension for DisenrollParticipants, when
participants that are to be removed do not
cooperate.�
RecoverShares allows us to recover missing

shares, that for the sake of further discussion
are denoted as LostShares. In order to restore
the scheme functionality, one would attempt to
assign these shares to the participants that lost
them. LostShares comes in the combined form,
that is as the difference (XOR) between
combination of available shares and the secret.
If more then one share is missing, individual
shares have to be computed and distributed.
On the other hand, taking into account that

some of the shares from authorized set were
corrupted, it is good practice to renew all the
shares. Recover&Renew allows recovering
missing shares and assigning to every
participant from the authorized set renewed
secret share.

Algorithm description:
Recover&Renew uses algorithm RecoverShares
to obtain LostShares. It also uses GenerateM
to obtain set of h binary vectors, where h
denotes the number of participants in the
authorized set. First generated vector is
XORed with LostShares. All binary vectors
generated, including modified one, are sent to
the secret participants. If the secret participant
has a valid secret share, this share is XORed
with received vector to obtain a renewed secret
share. Otherwise the renewed secret share is
equal to the received vector.
Algorithm 5: Recover&Renew

Dealer:
GenerateM(h)

erSharescovRe:LostShares =
LostSharesm:m 11 ⊕=

for 1i = to h
send im to ()1

iP

Participant ()1
iP :

if has ()1
iP has valid ()1

is

then () ()
i

1
i

1
i ms:s ⊕=

else ()
i

1
i m:s =

save ()1
is

end// for
end// Recover&Renew
Discussion:
1. We claim that Recover&Renew produces
random secret shares, same reasoning like in
the Algorithm 2 applies.
2. All renewed secret shares combine to S .
Applying the same notation, like in the
discussion for algorithm RecoverShares one
may write:

()

)1(

1

: i
Ui

sLostShares
b

⊕
∈

= , while the valid shares

are all)1(
is such that ()1

aUi ∈ . Algorithm

produces
() ��

�

�
��
�

�
⊕⊕= ⊕

∈
1

)1()1(
1

)1(
1

1
: msss i

Ui b

.

XOR of all remaining shares gives:

()
�
�

�
�
�

�⊕�
�

�

�

�
�

�

�
= ⊕⊕⊕

=∈=
i

h

2i

)1(
i

Ui

)1(
i

h

2i

mss
1

a

.

Finally applying () () ()11
b

1
a UUU =∪ , yields

()
Smsss i

h

1i

)1(
i

Ui
i

h

2i
1

1

=�
�

�
�
�

�⊕��
�

�
��
�

�=�
�

�
�
�

�⊕ ⊕⊕⊕
=∈=

.�

86

5. PUBLICLY VERIFIABLE SECRET
SHARING (PVSS)

We propose efficient PVSS for KGH scheme
that allows checking whether shares of the
secret are correctly distributed and protects
against cheating dealer. Method provides
verification, without compromising the secret.
Using it, secret participants in various
authorized sets, can verify whether upon
combining they will recover the same value of
the secret S .
PVSS is collection of algorithms that provide
method for public verification of secret shares.
Scheme works for the secret sharing schemes

with two or more authorized sets of
participants. We present the case with two
authorized sets of participants.
First, dealer has to share the secret into two
sets { })1(

h
)1(

2
)1(

1
)1(s,...,s,sU = ,

{ })2(
g

)2(
2

)2(
1

)2(s,...,s,sU = , such that
)2(

i
Ui

)1(
i

Ui

sSs
)2()1(

⊕⊕
∈∈

== , for instance see [16].

Once the secret is shared into two authorized
sets, DistributeShares&Keys can be used.
Algorithm description:
DistributeShares&Keys uses RAND to obtain

random encryption keys for the secret shares.
For every secret share, the key value is sent to
the corresponding secret participant. The value
of the secret share encrypted using derived
encryption key is made public. Procedure is
performed for both authorized sets of
participants (() ()21 U,U).

Algorithm 6: DistributeShares&Keys
ACC.reset

for 1i = to h
() RAND:k 1
i =

send ()1
ik to ()1

iP

// participant ()1
iP obtains his key

() () ()1
i

1
i

1
i ksc ⊕=

publish ()1
ic

end// for
for 1i = to g

() RAND:k 2
i =

send ()2
ik to ()2

iP

// participant ()2
iP obtains his key

() () ()2
i

2
i

2
i ksc ⊕=

publish ()2
ic

end// for
end// DistributeShares&Keys
Discussion:
1.When algorithm is completed, the following
hold:
a. The encrypted value of secret shares ()1

ic ,
()2
ic are publicly available for all secret shares

from () ()21 U,U ,

b. The secret key ()1
ik / ()2

ik is known only to the

participant concerned.
2. Participants from the authorized set are able
to recover the secret. For instance, consider
participants from ()1U , encrypted shares are
formed as follows

()

()

()

()

()

()

()

()

()
�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

⊕

�
�
�
�
�

�

�

�
�
�
�
�

�

�

1
h

1
2

1
1

1
h

1
2

1
1

1
h

1
2

1
1

c

:

c

c

k

:

k

k

s

:

s

s

When it comes to secret recovery, the
following situation has place:

()

()

()

()

()

()

()

()

()
�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

⊕

�
�
�
�
�

�

�

�
�
�
�
�

�

�

1
h

1
2

1
1

1
h

1
2

1
1

1
h

1
2

1
1

s

:

s

s

k

:

k

k

c

:

c

c

so the secret shares can

be computed, allowing combining the secret
Ss)1(

i
Ui)1(

=⊕
∈

.

When the keys and the encrypted shares are
distributed, the secret participants can verify
validity of their shares (or check dealer's
honesty). The first step is made with the
algorithm RecoverXORedKeys.
Algorithm description:

RecoverXORedKeys uses Accumulator to
combine all secret keys ()1

ik / ()2
ik . One round: a

key from ()1U is sent to the Accumulator, next
a key from ()2U is sent. Operation is repeated
until all the keys are in the Accumulator.

Algorithm 7: RecoverXORedKeys(() ()21 U,U)
ACC.reset

If ()mn ≥ then n:counter =

87

else m:counter =
for 1i = to counter

Participant ()1
iP :

if ()in ≥ send ()1
is to Accumulator

else 0si

�

= to Accumulator

Accumulator:
ACC.store(()1

is)

Participant ()2
iP :

if ()im ≥ send ()2
is to Accumulator

else 0si

�

= to Accumulator

Accumulator:
ACC.store(()2

is)

end// for
RecoverXORedKeys := ACC.read

end// RecoverXORedKeys
Discussion:
1. Method of sending keys to the Accumulator
enforce security upon value of combined keys
from one set. At no point in time, value of the
combined keys cannot be recovered using
Accumulator contents.�
Having a way to recover the key, we are ready

for algorithm Verify.

Algorithm 8: Verify(() ()21 U,U)
1. Publicly XOR all encrypted secret shares,

store result in XOREncryptedShares
2. Run RecoverXORedKeys, store result in

XORedKeys
3. If (XORedKeys== XOREncryptedShares)

verification POSITIVE
else verification NEGATIVE

end// Verify
Discussion:
1. We claim that if dealer is honest
XORedKeys= XOREncryptedShares. Note
that:

() () =��
�

�
��
�

� ⊕⊕��
�

�
��
�

� ⊕

=��
�

�
��
�

�⊕��
�

�
��
�

�

⊕⊕

⊕⊕

∈∈

∈∈

)2(
i

)2(
i

Ui

)1(
i

)1(
i

Ui

)2(
i

Ui

)1(
i

Ui

sksk

cc

)2()1(

)2()1(

��
�

�
��
�

�⊕��
�

�
��
�

�=⊕

⊕��
�

�
��
�

�⊕��
�

�
��
�

�=��
�

�
��
�

�

⊕��
�

�
��
�

�⊕��
�

�
��
�

�⊕��
�

�
��
�

�

⊕⊕

⊕⊕⊕

⊕⊕⊕

∈∈

∈∈∈

∈∈∈

)2(
i

Ui

)1(
i

Ui

)2(
i

Ui

)1(
i

Ui

)2(
i

Ui

)1(
i

Ui

)2(
i

Ui

)1(
i

Ui

kkSS

kks

skk

)2()1(

)2()1()2(

)1()2()1(

The relation presented above is symmetric in
the sense that it does not differentiate between
keys and encrypted shares. If dealer attempts to
cheat (no matter whether in keys and/or
encrypted shares), the equality will not hold. It
is satisfied only when both authorized sets of
participants receive the same value of the
secret.
2.Because no information is revealed about

)1(
i

Ui

k
)1(

⊕
∈

/)2(
i

Ui

k
)2(

⊕
∈

(only they XORed value is

provided), hence verification is secure.�
Algorithm Verify is the final result of this
section. PVSS, described so far, works for two
authorized sets of the secret participants.
However, method can be adapted to work for
more authorized sets of participants. In such a
case, the secret keys in DistributeShares&Keys
have to be derived for all participants.
Verify can be used in the same form, checking
shares validity pairwise. This will require
multiple repetitions of the algorithm.
Other possibility arises when number of
authorized sets is even. In such a case
algorithm Verify can be modified, that all
authorized set are checked in one round. All

secrets S will XOR to 0
�

, because there will
be even number of S -es and other properties
of algorithm will remain valid.
PVSS can be extended further to detect

cheating participants. Major problem is not
only to detect, that cheating took place, but
also to design protocol in the way that
dishonest party will not profit from his actions.
We outline two possibilities:

a. Using two authorized sets of participants.
Verification method is similar to the one used
to check the dealer's honesty. The two sets
recover secret separately using two
Accumulators. The contents of the
Accumulators is combined in one Accumulator,

only when it results in 0
�

, second Accumulator
makes its contents available,

88

b. Using one-way/hash function to protect the
secret. A value of such a function is computed
using shares sent to participant (e.g., all shares
pass via Accumulator, that computes function)
and made publicly available. When the secret is
recovered Accumulator is used to compute the
function. The computed value is compared
with one that is publicly available; if they match
Accumulator makes its contents available.

6. REMARKS

1. Security discussion. Security for both PSS
and PVSS is based on KGH security (see [5]),
combined with encapsulation and use of secure
communication channels. Shares are random,
hence any shares encryption or update does not
violate the perfectness property.
We consider method secure, although strict

proof of security is not presented.
2. Proposed schemes allow avoiding traditional
trade-off between security and verification
possibilities. This comes mainly thanks to
properties of KGH scheme. It may require
some redundancy (e.g. two authorized sets of
participants for secret recovery or verification),
but schemes still remain perfect and, if access
structure permits, ideal.
3. Combining extended capabilities. Proposed
PSS and PVSS allow building KGH based
scheme combining both capabilities. It requires
sequential execution of both protocols. First
shares assigned to participants are verified
using PVSS and later maintained by PSS.

AKNOWLEDGMENT

The paper was partially supported by State
Committee for Scientific Research, grant no.
8 T11D 020 19.

BIBLIOGRAPHY

[1] G.R Blakley, "Safeguarding cryptographic
keys", Proceedings AFIPS 1979 National
Computer Conference, 1979, pp. 313-317.

[2] A. Shamir, "How to share a secret",
Communication of the ACM 22, 1979, pp. 612-
613.

[3] C. Asmuth and J. Bloom, "A modular approach
to key safeguarding", IEEE Transactions on
Information Theory IT-29, 1983, pp. 208-211

[4] E.F. Brickell, "Some ideal secret sharing
schemes", Journal of Combinatorial Mathematics
and Combinatorial Computing 6, 1989, pp. 105-
113.

[5] E.D. Karnin, J.W. Greene, and M.E. Hellman,
"On secret sharing systems", IEEE Transactions
on Information Theory IT-29, 1983, pp. 35-41.

[6] J. Pieprzyk, "An introduction to cryptography",
draft from the Internet, 1995.

[7] D.R. Stinson, "Cryptography, Theory and
Practice", CRC Press, Boca Raton 1995.

[8] A.J. Menezes, P. van Oorschot and S.C.
Vanstone, "Handbook of Applied
Cryptography", CRC Press, Boca Raton, 1997.

[9] C. Blundo, D.R. Stinson, "Anonymous secret
sharing schemes", Discrete Applied Mathematics
77, 1997, pp. 13-28.

[10] A. Herzberg, S. Jarecki, H. Krawczyk, and M.
Yung, "Proactive Secret Sharing Or: How to
Cope With Perpetual Leakage", Lecture notes in
Computer Science, 1996,pp. 339-352 (Advances
in Cryptology – CRYPTO’95)

[11] T.P. Pedersen, "Non-Interactive and
Information-Theoretic Secure Verifiable Secret
Sharing", Lecture notes in Computer Science,
1992, pp. 129-140 (Advances in Cryptology –
CRYPTO’91)

[12] C. Dwork, "On Verification in Secret
Sharing", Lecture notes in Computer Science,
1992, pp. 114-128 (Advances in Cryptology –
CRYPTO’91)

[13] M. Tompa, H. Woll, "How to share a secret
with cheaters", Journal of Cryptology, 1 (1988),
pp. 133-138.

[14] M. Stadler, "Publicly verifiable secret
sharing", Lecture notes in Computer Science,
1997,190-199 (Advances in Cryptology –
EUROCRYPT’96)

[15] K. Kulesza, Z. Kotulski, "On automatic secret
generation and sharing: part I". Proceedings of
ACS2002, Szczecin.

[16] K. Kulesza, Z. Kotulski, "On automatic secret
generation and sharing: part II". Proceedings of
ACS2002, Szczecin

[17] Z. Kotulski, "Random number generators:
algorithms, testing, applications", (Polish) Mat.
Stosow. No. 2(43), 2001, pp. 32-66.

