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Abstract. In the paper we present some methods of constructing cryptosystems utilising chaotic
dynamical systems that has been extensively developed last years. We start with a brief review of
algorithms based on both the theory of continuous and discrete systems. Then we show our approach
where the essence of chaos (that is the sensitivity of the trajectories of discrete chaotic dynamical
systems to the small changes of initial conditions) is exploited for secure communication.
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1. Introduction
Cryptography is as old as the need of sending confidential messages for long

distances and protecting stored data. It usually uses modern branches of sciences,

especially new mathematical results, and applies the recent technological achieve-

ments. We can even say that cryptography stimulates progress in these fields. Now,

in time of computer global communication and mobile telephony there is a neces-

sity of creating new, both fast and secure algorithms of encryption and decryption.

In this paper we indicate a possibility of application of dynamical systems (con-

tinuous as well as discrete) for the purpose of secure communication.
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As a starting point, we locate the place of the dynamical systems construction

among other cryptographical algorithms. The cryptosystems can be classified with

respect to the three following aspects:

1. Classification with respect to the structure of encryption algorithm.

1a. Stream ciphers, where all the binary representation of the message

is being encrypted bit after bit with application of a stream of random

(pseudorandom) bits;

1b. Block ciphers, where the binary representation of the message is

divided into finite length blocks and being encrypted block after block with

application of a bijective function depending of some parameter (the secret

key);

2. Classification with respect to the method of distribution of the secret key.

Here we have:

2a. Private secret key cryptosystems;

2b. Public key cryptosystems;

3. Classification with respect to the methods of constructing the algorithm.

3a. Traditional methods using (see [16]):

- number theory;

- algebra;

- algebraic geometry (recently: elliptic curves over finite fields

[5]);

- combinatorics;

- research for the systems with large complexity;

- development of hardware and software.

3b. Methods utilising chaos

- continuous dynamical systems;

- discrete dynamical systems;
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2. Applications of chaos in secure communication
Last years a new approach of constructing cryptosystems based on application

of the theory of both continuous and discrete chaotic dynamical systems has been

developed. In frames of continuous theory the methods of synchronisation of cha-

otic systems [4] and the idea of controlling chaos [4] [12] are applied. The discrete

systems methods concentrate on iterations and inverse iterations of chaotic maps

and possibilities of intelligent way of introducing keys.

The earliest applications of chaotic systems in cryptography were proposed by

Pecora and Caroll in 1990 [15] as a possible application of the synchronisation of

chaotic dynamical systems. This idea has been developed by Kocarev et al. [6] and

Parlitz et al. [13], where they presented an experimental test system based on an

chaotic electronic circuits. The first paper employed an analog signals while the

second one used binary information model. The overview of the methods con-

nected with encrypting messages with the modulation of trajectories of continuous

dynamical systems can be found in [5].

Application of discrete chaotic dynamical systems to cryptography was first

analysed by Habutsu et al. [3] and then developed by Kotulski and Szczepañski [8].

Continuous chaotic dynamical systems
Now we present briefly an idea of continuous chaotic cryptosystems. In these

systems the message is being encrypted with the use of a continuous, chaotic dy-

namical system. Such a system is described by a system of non-linear ordinary

differential equations and its qualitative behaviour (like chaos, ergodicity, etc.)

depends on the values of internal parameters. If the system is chaotic, its trajecto-

ries are extremely sensitive to small changes of the initial conditions. The encryp-

tion procedure is based on the modulation of the system trajectories.

The first method of secure communication uses the procedures of so called

synchronisation of chaotic trajectories. In this method the original message I t( )
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(time-varying series of pulses) is masked by adding it to some larger chaotic signal

n t( ) . The receiver obtains n t I t( ) ( )+ . The decryption is extracting the information

from the obtained trajectory, that is the elimination of the chaotic noise. This is

possible when the chaotic signal in the transmitter and receiver can be synchro-

nised. As it is seen, in this approach the chaotic trajectory plays a role of the secret

key. (This is an analogue of stream bit ciphers.) Practically, the receiver must know

the internal parameters of the dynamical system generating the chaotic trajectory

and the trajectory’s initial condition.

The second construction of cryptosystem uses the methods of controlling chaos

[11], [12]. Now the message is included in a specific way into the chaotic trajec-

tory. The sender fixes the initial values of the internal parameters of the system

equation and chooses the initial condition of the trajectory. The parameters and the

initial condition must be such that the trajectory is chaotic. The chosen initial val-

ues of the internal parameters play a role of the secret key. The message must be

transformed to the series of changes of the internal parameter (e.g. the initial value

of the parameter plus-minus a small perturbation). Then the trajectory of the sys-

tem is generated in such a way, that the internal parameter is modulated in constant

time spacing according to the binary representation of the message. The receiver

obtains the modulated trajectory (containing the encrypted message) and he knows

the secret key (the initial value of the internal parameter). To decrypt the message

he uses the same dynamical system and generates his own trajectory. Starting from

the known initial condition and the initial value of the parameter he restores the

original trajectory changing the value of the internal parameter using the control-

ling chaos method. This way he is able to register the jumps of the parameter and,

what it follows, to decrypt the message. The security of the system is based on the

property of strong sensitivity of the system to tiny perturbations of the parameter

(the butterfly effect).
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Let us remark that the construction of cryptosystem based on synchronisation

of chaotic trajectories corresponds to external exciting of a dynamical system by

some signal (message) while cryptosystems using controlling chaos method can be

considered as a systems with internal (parametric) excitations.

Discrete chaotic dynamical systems
Another promising possibility is the application of discrete dynamical systems.

This idea was suggested by T.Habutsu et al. [3]. The authors assumed some pa-

rameter of the „tent map” to be a secret key. Then the message (initial condition)

was transformed by several inverse iterations of the map. This method works for

the systems for which the map properties are strongly sensitive to small changes of

the internal parameter playing the role of secret key. Trying to generalise this ap-

proach we face to the problem of finding if this property really takes places for

certain dynamical systems. (Some weak points of this algorithm in the case of the

tent map were presented in [2]). Therefore it is worthily to construct a crypto-

graphic algorithm using the essence of chaos, i.e. exponential  divergence of tra-

jectories for different initial conditions.

Our idea is to introduce the secret key into the initial condition of the discrete

chaotic system. In the papers [8], [9], [10] we proposed another method of con-

structing cryptosystems utilising discrete chaotic dynamical systems. During itera-

tion, an initial condition of  the chaotic dynamical system is being transformed in a

very non-regular way. Therefore the encryption and decryption procedure is based

on multiple n-th inverse iteration and n-th iteration of a certain two-dimensional

chaotic system. We assume that one part of the initial condition is the message, the

other one is the secret key. To ensure a complicated structure of trajectories of the

dynamical system proposed as the algorithm, we postulate that except of being

chaotic, the system should be ergodic or, preferably, mixing. These properties

make that our cryptosystem is robust against any reasonable statistical attack and

ensure the standard quality of the cryptosystem. The approach presented made it
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possible to construct cryptosystems and verify their safety by the methods of the

theory of abstract dynamical systems. Thus, we have a very strong tool available.

We introduce two classes of chaotic dynamical systems which we apply for

preparation of cryptographic algorithms. The first class has its source in investiga-

tions of very rarefied gases, so called reflection law models [1], [17], [18]. In this

case we assume that the key is introduced into the reflection law and the message is

considered as the initial position of the particle. The second class is constructed in

an abstract way. The map used for the encryption and decryption is some postu-

lated function.

A brief overview of applications of chaos in secure communications is an-

nounced in the following table:

Continuous Dynamical Systems
Encryption of a message with modu-

lation of trajectories

Decryption of a ciphertext by syn-

chronisation of two systems or recon-

struction of the changes of internal pa-

rameters

Tools applied:

- synchronisation of two chaotic sys-

tems

- controlling chaos

T.Caroll, L.Chua, L.Doerner,

K.Eckert, C.Grebogi, K.Halle, S.Hayes,

B.Huebinger, L.Kocarev, W.Martienssen,

E.Ott, U.Parlitz, L.Pecora, J.York

Discrete Dynamical Systems
Encryption of a plaintext with n-

th inverse iteration of a map

Decryption of a ciphertext with n-

th iteration of the map

Tools applied:

- chaos

- ergodic theory

Two approaches:

- including the secret key into in-

ternal parameter of the map

T.Habutsu, Y,Nishio, I.Sasase,

S.Mori EUROCRYPT’91

- including the secret key into ini-

tial conditions
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Book:

T.Kapitaniak, Controlling Chaos

Z.Kotulski, J.Szczepański

K.Górski, A.Paszkiewicz,

A.Zugaj

3. Description of DCC method

Now we formulate the method of application of chaotic dynamical systems for

secure communication more precisely. For completeness let us remind the funda-

mental definition.

A discrete dynamical system [14] is the couple ( )X ,ϕ , where X is the state

space with some structure, (for our purpose: an interval or Cartesian product of two

intervals) and ϕ  is a transformation from X to X, called the generator of the semi-

group of iterations.

The idea of Discrete Chaotic Cryptography

Plaintext  is some number ( )P ∈ 0 1,  ;
Secret key  is some parameter k;

Encryption  is the n-fold iteration of the inverse map ϕ−1  with the initial
value P according to some (secret) rule of choices of the successive pre-images of

ϕ−1 ;
Ciphertext  C  is a result of  the encryption:

( ) ( )C n P P= − = − − −









ϕ ϕ ϕ ϕ1 1 1... ;

Decryption  is calculation of the image of C under the  n-th iteration of the map
ϕ :

( ) ( )( )( )P n C C= =ϕ ϕ ϕ ϕ... .

The secret key k can be introduced to the algorithm in the following way:
into the initial condition [9];  P Pk:= ;
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into internal parameters of  ϕ  [3];  ϕ ϕ:= k .

To make the encryption procedure very complicated we assume the chaos
property of  dynamical systems used.

Chaos is the property of sensitive dependence of trajectories from the initial
conditions. More precisely, the non-linear system is chaotic if it has positive Ly-
apunov exponents on some domain.

As an example consider a one dimensional dynamical system ( )I,ϕ , where ϕ

is C1 . If at a point x I∈ , λ x > 0  (Lyapunov exponent)  then

( ) ( )

∀ε > ∃ ∃ ∋ ∀ ≤ ≤ ∀ ∈

−
− < − <

+
−

















0 1 2 1 2 1 2 2 1 2

1 2 1 2 1 2

    1n n Un n x n n n z z Un n

e x n
z z n z n z e x n

z z

, , , , , ,

.
λ ε

ϕ ϕ
λ ε

where  Un n1 2,  is some neighbourhood of  x I∈ . The above expression means that

the initial distance z z1 2−  between two arbitrary points z1 , z2  (which are ele-

ments of the neighbourhood Un n1 2,  of  point x) after n iterations will increase at

least e x nλ ε−







 times.

Let us illustrate the idea of  including the secret key into the initial condition

by an elementary one-dimensional example.

An illustrative example
Let γ  be a one-dimensional chaotic map with positive Lyapunov exponent λ :

[ ] [ ]γ      : , ,0 1 0 1→

and ( )P ∈ 0 1,   be the message to encrypt. Fix a natural number n (number of itera-
tions) and choose the secret key ( )k ∈ 0 1,  .

Let C  be some selected pre-image of  P under the map γn ,

C n P= −γ ( ) ,
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( ) ( )γ γ γn C n n P P= −



 = .

Then, we calculate C , the ciphertext of  P as

( )C C k= +   mod 1 .

Decryption is the inverse operation to γ− n , that is

( )P n C k= −γ .

A non-legal user tries to approximate the key k assuming some value of the se-

cret key, say k1 such that k k− < −
1 10 20 . Then he calculates the value of plain-

text ( )P n C k1 1= −γ . For n = 30 , λ ε− ≈1558.  (what is a reasonable value for

many dynamical systems), due to chaos we have:

( ) ( ) ( )P P n C k n C k en k k− = − − − ≥ − − ≈1 1 1 0 5γ γ λ ε . .

This shows how the chaos property preserves the system against the brute

force attack (where the algorithm is tested with all possible secret keys).

However, cryptoanalysts use more sophisticated attacks to break cryptosys-

tems. To make the cryptosystem based on the chaos property more robust against

statistical cryptoanalitycal attacks, we postulate other important properties of the

applied dynamical system, like ergodicity and mixing property. For cryptographic

purposes we shall use dynamical systems with invariant measure equivalent to

Lebesgue measure.

Ergodic properties - notation

We say that the measure µ  is  invariant, if and only if it satisfies

( ) ( ) ( )∀ ∈ = −



A X A Aσ µ µ ϕ,     : .1
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We postulate that µ  is equivalent to the Lebesgue measure, i.e.:

( ) ( ) ( )∀ ∈ = ∫A X A g x dx
A

σ µ,   ,

with its density function

( )0 1 2< ≤ ≤g g x g ,

where g1  is close to g2 .

We say that ( )X ,ϕ  is ergodic if and only if it has only trivial invariant sets,
i.e., if ( )ϕ B B⊂  then ( )µ B = 0  or ( )µ µB X= ( ) .

The ergodicity implies that the state space cannot be nontrivially divided into
several parts. Therefore if some trajectory starts from any point x it never localises
in a smaller region. It means that the plain-text space which can correspond to a
given cipher cannot be restricted to a "smaller" subspace (smaller then X). Thus, for
the cipher-text C the corresponding plain-text P (during brute attack) must be
searched for over all the state space X.

The system is mixing if  the following condition is satisfied (we assume that
( )µ X =1):

( )
( )

( )
( )lim

n

n A B

B
A
X→∞

− ∩




=

µ ϕ

µ
µ
µ

 .

This property means that the part of B that after n iterations of  ϕ  will be con-
tained in A is asymptotically proportional to the rate of A in X with respect to the
measure µ . Thus for any cipher-text C all the possible plain-texts P (during brute
attack) are µ -equiprobable.

For more details about foundations of ergodic theory see [14].

Discrete Chaotic Cryptography - implementation 1
The idea of sensitive dependence on initial conditions (chaos) and ergodicity

has its source in the theory of gases (n-particles models, Lorentz gas, Brownian
motion). Therefore in the first cryptosystem we apply two-dimensional reflection
law models [1], [17], [18]. This can be considered as an idealised model of a parti-
cle’s movement in some environment (bounded domain). In the theory of gases
two properties play a fundamental role: ergodicity that is the convergence of the
average value over trajectory to the ensemble mean value and mixing, which guar-
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antees the convergence from local non-equilibrium to equilibrium state. Analysing
the behaviour of individual particles, assuming ergodicity or mixing, we go from
any initial conditions of the particles to some macroscopic equilibrium state, where
the particles are practically non-discriminable. Thus, using the reflecting system for
encryption, we expect that the position of our particle, describing at its initial state
the message being encrypted, after several reflections will take some non-
predictable position and will not be statistically distinguishable from any other
possible position, making the algorithm cryptographically secure.

In our cryptosystem, we take the initial condition of the first co-ordinate of the
system (which describes the position of the particle on the boundary at the moment
of reflection) as the plain-text and the initial condition of the second co-ordinate
(representing the angle of reflection according to some reflection law) as the secret
key. Both co-ordinates are iterated; the second, independently of the first (due to
specific choice of the model), in a chaotic way; the first with some dependence on
the second co-ordinate at each step. Under certain assumptions on the dynamical
system, taking two initial conditions, we have an exponential divergence of their
trajectories, depending on the distance of  the initial conditions of both trajectories.

To precise our model we consider the motion of a free particle in a square. De-
scribing it we use the co-ordinate system ( )xn vn, , where xn  is the position of the

particle at the boundary of the square at the moment of the n-th reflection and vn
is the angle from the tangent to the boundary at xn  to the direction of velocity of

the particle after the reflection.
At the boundary the particle undergoes a reflection law:

TD:( , ) ( , )0 0π π→ ,       T vinc vrefD ( ) =

where vinc  is the angle of incidence and vref  is the angle of reflection.

The movement of the particle is described by the following two-dimensional
map

[ ) ( ) [ ) ( )FT L L
D

        : , , , ,0 0 0 0×  → ×π π ,

( ) ( )FT xn vn xn vnD
, ,= + +1 1 .

Taking into account the geometry of the square, we come to the explicit for-
mula:
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( )FT P k S P k T k
D

D( , ) ( , ), ( )= .

In this model we take the initial value v0  as a secret key:

k v≡ 0  .

We see that the evolution of the second co-ordinate describes the evolution of
the secret key.

To obtain the appropriate properties of the extended system FTD
 we put some

conditions on the reflection law TD .

Conditions on the reflection law

1. ( ) ( )TD: , ,0 0  π π→ ;
2. The interval ( )0,  π  can be divided into finite (or infinite countable) number

of  intervals ∆ ∆1 2, ,  ....  such that

( ) ( )T i iD ∆ = =0 1 2, , , ,.....       π ;

3. At each ∆i  the map TD  is of  class C2  and monotonic;

4. For some natural s and every i the following relationship is satisfied

( )inf inf
( )

∆ ∆i k i

dT s k
dk

D

∈
= > δ 1 ,

where T s
D
( )  is the s-th iteration of the map TD ;

5. 

( )

( )
sup sup

,∆ ∆i k k i

d T k

d k

d T k

d k

D

D1 2

2

2

2

1

1

2

2

∈ 











= < ∞ 

 

 

 

 

ρ .

Under the above conditions the map TD  is mixing and chaotic [7]. Proceeding
the inverse iterations and also closing the procedure with adequate maps (composi-
tion of non-linear map with an interval exchange transformation) we obtain that
chaos (mixing, ergodicity) is transferred to the extended system FTD

.

The next example of DDC system is constructed in some abstract way.
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Discrete Chaotic Cryptography - implementation 2.
In the following cryptosystem we propose the algorithm using some abstract

dynamical system. In the system the part decrypting a given ciphertext can be con-
sidered, in some sense, as a multiplicative perturbation of the chaotic dynamical
system transforming the secret key.

More precisely, we construct a two-dimensional dynamical system ( )X ,Φ
where X is the Cartesian product of two unit intervals and Φ  is the map:

[ ] [ ] [ ] [ ]Φ :       0 1 0 1 0 1 0 1, , , ,× → × ,

of the following form

( ) ( ) ( ) ( )[ ]Φ k C k C k k, , ,= φ χ φ .

We interpret the first argument of Φ  as the secret key and the second argu-
ment as the cipher-text. We assume that [ ] [ ]φ: , ,01 01→  is a chaotic and mixing
map and χ  is a transformation satisfying some special conditions [9]. To complete
the model we apply in the encryption procedure a concentrating map proceeding
the inverse iterations and also close the procedure with adequate spreading map.
Under the above assumptions, in this system we have transferring of chaos (and
also ergodicity and mixing property) from the subsystem φ  to the whole system
Φ . Thus we obtain the secure tool for encrypting the messages. The details of the
model can be found in [9].

4. Prospects and perspectives
In the paper we present a general method of constructing cryptosystems with

application of discrete chaotic dynamical systems by utilisation of the essence of
chaos (i.e. the sensitivity of the trajectories to small changes of initial conditions).
Our approach made it possible to construct cryptosystems and verify their safety by
methods of the theory of abstract dynamical systems [14]. Since the theory is well
developed and still extensively investigated, we have a very strong tool available.

A general theory of discrete chaotic cryptosystems is a kind of theoretical
model. In practice, preparing concrete computer implementations, one should take
into account the usual computational conditions. Since numbers in numerical com-
putations have finite representation, one must assume a size of computed values
(key, plaintext, ciphertext) such that both the iterations and inverse iterations can
be performed uniquely and such that one can obtain the required number of signifi-
cant digits of plaintext in the decryption process. This property depends on the
dynamical model, the algorithm applied for calculation of required maps and com-
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puter used in concrete implementation. Let us remark that the proposed algorithm
is very fast in comparison to other known block ciphers. It requires only n itera-
tions of some relatively simple maps, where the number n must be some compro-
mise between safety of the method and accuracy of the computer arithmetic. Usu-
ally 20 100≤ ≤n  [10].

It is an obvious fact that hardware improvement will continue inexorably. Us-
ing more modern equipment we can deal with longer computer words and, what it
follows, work on a richer state space. This makes the numerical model closer to
theoretical chaotic one, which, by theory, is completely secure. Finally, it is im-
portant to realise that hardware improvement make cryptosystems more secure, not
less. This is because a hardware improvement that allows an attacker to use a num-
ber of two digits longer than before will at the same time allow a legitimate user to
use a key dozens of digits longer than before; a user can choose a new key a dozen
digits longer than the old one without any performance slowdown. Thus although
the hardware improvement does help the attacker, it helps the legitimate user much
more.

Some results of this paper have been presented at the conference NEEDS’97,
Crete [9].
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Z.KOTULSKI, J.SZCZEPAŃSKI

Zastosowanie dyskretnych chaotycznych układów dynamicznych w kryptografii. Metoda DCC

Praca poświęcona jest omówieniu metod intensywnie rozwijanych w ostatnich latach, dotyczących
konstruowania kryptosystemów wykorzystujących teorię chaotycznych układów dynamicznych. W
zwięzły sposób przedstawiono w niej najnowsze algorytmy tego typu oparte zarówno na ciągłych jak
też na dyskretnych układach dynamicznych. Następnie zaprezentowano własne podejście do tego
zagadnienia, w którym podstawą algorytmu jest teoria dyskretnych układów chaotycznych. Jego
istotą jest silne uwzględnienie w algorytmie najważniejszej własności trajektorii chaotycznych, to
znaczy ich wykładniczej wrażliwości na małe zmiany warunków początkowych.


