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Abstract - In the paper the phenomenon of Anderson localization is described in context
of wave propagation in randomly stratified media. It is shown, how the localization is
generated both in stationary and non stationary cases.

1. THE ANDERSON MODEL OF LOCALIZATION

In many periodic physical systems it is possible transport of some disturbances, e.g.
mechanical waves and vibrations in structures, electromagnetic waves in stratified plasma,
e.t.c. Since in such systems it is assumed no damping, the disturbance can propagate
unlimited. However, it was observed  that when the perfect periodicity of the system is
randomly perturbed, the possibility of the propagation disappears and the effects of initial
disturbance remain within some bounded region of space. In contradiction to dispersion
phenomenon, the initially propagating object does not change its character during localization,
for example the energy of acoustic wave is not transformed into heat.

The phenomenon of localization has been studied for the first time by  P.W.Anderson
[1]. He considered the model of quantum particles (electrons) transport in a crystal lattice. In
the case when the lattice is perfectly periodic the particle is diffunding unlimited,
independently of its energetic state (all the states of the particle are extended; they are Bloch
states). This means, that the probability that the particle reaches any site in the lattice is
independent of the site and the eigenstates are distributed over all the lattice. In the case of the
randomly disordered lattices, the localized states of the particles can appear. This means that
for some states, after infinitely long time, the particles can be found in a finite surrounding of
the starting point with non-zero probability. In other words, the mean square distance travelled
by the particle up to time t is bounded uniformly in time. In such a case the energy eigenstates
(wave functions) are exponentially bounded behind limited surrounding of some site in the
lattice.

The fact, if the particle state is extended or localized depends on the order of
randomness of the lattice. For weakly disordered lattices there are possible both extended and
localized states. In such lattices the transport of particles is possible, but is less intensive than
in perfectly periodic lattices; moreover, inside the random lattice there are more particles than
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in analogous volume of the perfectly periodic one. For strongly disordered lattices all the
particle states are localized and no (global) transport is possible.

The localization phenomenon is very well physically motivated. However, it is also in
the area of interest of mathematicians [2]. There were many mathematical theories and tools
applied to describe and analyse the localization models. Some of them are the random
potential theory [3], random Shrödinger [4], [5] and self-adjoint [6] operators, Lyapunov
exponents [7], limit theorems for non-commuting products [8], [9] and others. More
information about the mathematical methods concerned with the Anderson localization can be
found the references cited in [2-7].

2. EXAMPLES OF THE LOCALIZATION IN OTHER PHYSICAL SYSTEMS

The paper of Anderson initiated a new area of investigation in mathematical physics
and applied mathematics - studies on the localization phenomenon. In the literature there is a
large number of papers where the authors identified the effects analogous to Anderson
localization both in artificially imagined mechanical systems and in the models of really
existing physical phenomena. In this section we give several examples of various randomly
disturbed periodic systems where the localization has been observed. Especially one
dimensional models are easy to deduce the localization. In such a case even very small
deviation from the ideal periodicity makes that the propagation is localized. For this reason
the most of the papers deal with one-dimensional models, where the propagation is easy to
describe (for example, by means of the transfer matrix method [10] or Green function [11]). In
higher dimensional models the localization requires stronger stochastic inhomogeneity of the
periodic medium [12].

The paper of Anderson dealt with the diffusive transport model. In later papers there
were considered other processes of transport or heat conduction [13]. There were applied
more advanced and rigorous mathematical tools for the analysis of the phenomenon. In crystal
lattices it was also observed the localization of vibrations of the atoms [14]. Very similar but
more illustrative is the example of coupled pendula [15], [16]. In this model it is assumed that
infinitely many pendula of random, independent natural frequencies of oscillations are
arranged on a chain. The neighbours in the chain are coupled by springs so that it is possible
propagation of vibrations of the pendula. However, in such a structure due to the randomness
of natural vibration frequencies, the vibrations are localized.

The examples of more complicated models where the localization occurs are the
domino billiard [17] or the waveguide with random boundaries [18].

The localization phenomenon was also observed in the models of periodic engineering
structures with random disturbances of the periodicity. The examples can be mono-coupled
engineering structures like shear buildings, long continuous beam on simple supports [19] or
beam on hinge supports with additional torsional spring at each support [20].

A very wide class of physical processes is connected with the wave propagation in
stochastically perturbed periodic media. Also in such models the localization phenomenon
was observed, both in idealized stratified media and scalar waves [21] and in models of more
complicated processes, like localization of hydrodynamical shallow surface waves due to
scattering with a random bottom [22] or localization of electromagnetic waves in a plasma
with a fluctuating density [23].

In this paper we wish to present, how the random stratification of the medium
generates localization in stationary (harmonic waves) and non-stationary (wave pulses) cases.
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3. WAVES IN RANDOMLY STRATIFIED MEDIUM AND THE LOCALIZATION

Consider planar harmonic wave propagating perpendicularly to the interfaces of strata
in stratified medium. In such a case the problem can be considered as one-dimensional and
conveniently described with application of the transfer matrix formalism (see [24]). This
means that transition of the wave through each layer can be completely described by some
matrix, called transfer matrix, with elements depending on the character of the wave (elastic,
electromagnetic, e.t.c.), properties (material parameters) of the layer and its thickness.
Transition through several neighbouring layers is then described by the product of
corresponding transfer matrices.

Assume that the space where the wave propagates is homogeneous for x<0; for x>0 it
is periodically stratified. The possibility of harmonic wave propagation in such a medium (that
is for certain fixed material parameters of the materials of the strata) depends on the wave
frequency (see [25]). For some frequencies wave propagation is impossible (the frequency is
within stop bands), for other frequencies it is possible (the frequency is within pass bands).
When the propagation is possible, the wave field u x( )  in the periodically stratified half-space
is so-called Floquet (or Bloch) wave. It has the following form :

u x v x e
v x v x a

i x( ) ( )
( ) ( )

=
= +

λ

,                                                             (1)

where v(x) is a periodic function with period a, corresponding to the thickness of the periodic
strata in the stratified medium and λ is the Floquet wave number, calculated from the
eigenproblem on the individual periodic strata (usually with the use of the matrix being the
transition matrix through the strata).

Different situation appears when the stratification of the medium is random. We
assume now, that the transition matrices through the layers in the stratified medium are
independent and identically distributed random matrices. In such a case generation of the
Floquet type wave is impossible. To study the wave process let us consider at the beginning
the slab built of  N layers of finite thickness, each with the transition matrix T(j,γ), j=1,2,...,N,
surrounded by the homogeneous material. If we assume some incident harmonic wave coming
from minus infinity, then in the homogeneous environment of the stratified slab we obtain the
reflected wave and the transmitted wave. The equation for their amplitudes can be written
with the use of transfer matrices in the following way [26]:
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where A is the amplitude of the incident wave and B and C  are the amplitudes of the reflected
and transmitted waves and γ is a random element. In formula (2) matrix M−1 describes the
reflection and transmission of  the waves at the interface of the environment and the first layer
of the slab, matrix M fin  describes the transmission of the wave from the last layer of the slab

to the environment and the product of the transition matrices  T( , )j
j

N

γ
=

∏
1

  is responsible for the

effect of the randomly stratified medium on the wave. In each layer of the slab the left-going
and the right-going harmonic waves are generated. To study the wave propagation in the
randomly stratified half-space we must take the limit N → ∞  in equation (2). In the analysis
of this problem the following theorem of Furstenberg [8] can be useful: under certain
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conditions (satisfied by the transition matrices in our wave propagation problem) the product
of the random m m×  matrices T( , )j γ  satisfies:

N j
j

N

N
−

=
→∞∏  → 1

1

log ( , )T uγ α   ,                                                (3)

where   .  is the norm in Rm , α is some positive constant and u is an arbitrary vector in Rm.
(The number α is the maximal Lyapunov exponent of the product of the matrices). Applying
the formula (3) to our wave equation (2) we can observe, that if the number of layers in the
medium (and, what it follows, the thickness of the randomly stratified slab) tends to infinity,
then the amplitudes of the incident and reflected waves can remain bounded only if the
amplitude of the transmitted wave tends to 0 exponentially; in the limit the amplitude C
should vanish. This means that the randomly stratified half-space totally reflects the harmonic
wave - in the stationary case the energy coming to the surface of the random medium is equal
to the reflected energy. However,  the reflection procedure takes place not only on the
interface of the homogeneous half-space  and the first strata, but also on the interfaces of the
strata within the stratified half-space; the intensity of the reflection decreases along the
distance from the surface of the stratified half-space. In such a case we have the localization of
the wave, interpreted in two ways. Firstly, the wave cannot propagate in the randomly
stratified medium and is stopped  (localized) by it. Secondly, in the area next to the interface
of the media permanently exist the waves (left- and right-going) and, what it follows, the
localized energy of the waves (see Fig.1). Looking for the analogy with the Anderson model
of the electron transport in the crystal lattice we can say, that this situation corresponds to the
case of all states being localized (no transport - no propagation).

The localization phenomenon can be also observed in the process of wave pulse
transition through the elements of structures (bars) of finite length (see [27]). In contradiction
to the case of the randomly stratified half-space, where the incident harmonic wave is
completely reflected, the wave pulse partially reflects from the bar and partially transmits
through it. The problem is non-stationary and, what it follows, more complicated to describe
than stationary harmonic one. However, using the Fourier transform method we can solve it.

Consider the bar built of several segment, each with the (finite) length and constant
material parameters being random variables (see Fig.2), surrounded by a homogeneous
medium. In the segments the longitudinal wave pulse can be described by the following partial
differential equation:

    ∂
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where f  is the force, v is the particle's velocity, Z is the characteristic impedance of the
segment of the bar and the variables t and τ represent time and the travel time through the bar
(see [28]). Fourier transformation of  equation (4) with respect to variable t, elimination of the
velocity v and application of the transition matrix method to the whole segmented bar let us to
write the wave equation in the matrix form analogous to equation (2):
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where F F Finc ref tr,    and   are the Fourier transforms of, respectively, the incident, reflected and
transmitted pulses, ω is the Fourier transform spectral parameter and  T( , )ω τZ j  ,  j  is the
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transition matrix through j-th segment of  the bar, depending on the parameter ω,
characteristic impedance Z j   and the wave travel time through the segment τ j   (see [27]):

  T( , )
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Matrices  M−1
0( )  ω,Z and  M fin Z( ) ω, 0   describe the transition of the wave pulse from the

environment to the bar and from the bar to the environment. As it is seen from the formula
(5), the product of random transition matrices describe the complicated reflection and
transmission process that takes place when some incident (force) pulse reaches the front of the
bar. As it is known, the wave pulse at each interface of segments partially reflects and partially
transmits (see Fig. 2); also the reflected pulses reflect and transmit, so the final picture of
reflected and transmitted pulses becomes very complicated. From the trace of the pulses we
can observe that the initial pulse, crossing the interfaces of the segments, reflects so many
times that it practically disappears. On the other hand some later pulse is being formatted due
to summing up a number of multiple reflected pulses. Finally, when the number of segments
in the bar is going to infinity (but with limited total length of the bar) some new transmitted
pulse is created. This  transmitted pulse is similar to some pulse that would go through a
homogeneous bar, but coming later. This procedure of infinitely many reflections and
transmissions of the pulses at the interfaces of the segments generates the effect of localization
of the wave - analogous to the Anderson localization in the case of a moderate inhomogeneity
of the crystal lattice: the transmission is saved but it is slower than in a homogeneous case.
Moreover, inside the randomly segmented bar more wave energy is concentrated during the
process than in some analogous  homogeneous bar.

Using the formulae (5) and (6) we can describe the localization phenomenon
quantitatively. As an example of  application consider the bar built periodically of N couples
of segments, where in the couple one segment is made of material 1 and another - of material
2. The impedances and lengths (or, what is equivalent, the travel times) of the repeating
elements are independent, identically distributed (i.i.d.) random variables. This makes that the
transition matrices through the couples of segments are also i.i.d. random matrices. Consider
the case where the number of segments in the bar N tends to infinity but the total transition
time through the bar (and through each of the materials in the bar), remains constant. Then,
applying the limit theorem by Berger [29] we obtain from (5) the limiting formula which
proves to be identical to the equation for the wave amplitudes of some homogeneous bar with
effective parameters (impedance and travel time). For example, the expression for the
effective travel time τ eff   is

          [ ][ ]}{}{)}()({)}()({ 22112211 ZEZEZEZEeff ττγτγγτγτ ++=  ,                     (7)

where Z ii i( ) ( ) , ,γ τ γ  and   ,  = 1 2 are, respectively, the characteristic impedance of material 1
and 2 and total travel time through the segments made of material 1 and 2.

Consider finally the numerical example of the bar built of two materials: one of them
with impedance Z1 2=  and another with impedance Z2 4= , surrounded with an environment
of impedance Z0 1= . We assume that both materials have such a share within the bar that the
average travel time through each of the materials is equal to 1 (the sum of the expected values
of the travel times through all the segments is 1). We assume that the force wave pulse of
unite duration and unite amplitude reaches the bar at time 0. Figure 3 shows the amplitude of
the pulse transmitted through the bar built of 150 couples of segments with random lengths. It
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can be observed the concentration of pulses creating the big pulse analogous to one obtained
for a homogeneous bar. It is also visible that such a pulse needs more time to pass the bar than
it could be deduced from simple addition of the travel times through the component materials
(such a sum would be equal to 2). Indeed, applying formula (7) we obtain that for our material
parameters the effective travel time through the randomly segmented bar is equal to 2.1213. In
this way we have been able to express the localization effect not only qualitatively (finding the
great amount of reflections and transmissions of the pulses), but also quantitatively,
calculating the increase of the effective travel time through the randomly segmented bar.
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Figure captions

Fig.1  The amplitudes of the right and left going harmonic waves decrease
exponentially along the depth of the randomly stratified half-space.

Fig.2  Evolution in time of the front of the wave pulse in the randomly
segmented elastic bar.

Fig.3  The sample path of the amplitude of the reflected pulse for the bar built
of 150 couples of segments with random lengths.


