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ABSTRACT

Pseudorandom number generators (PNG) are
frequently used in many areas of contemporary
technic like engineering applications as well as
modern communication systems. In recent years a
new approach to construct save cryptosystems
based on application of the theory of both
continuous and discrete chaotic dynamical systems
is developed. Within the continuous theory
methods of synchronization of chaotic systems and
idea of controlling chaos are applied.

In this paper we present some models of
pseudorandom number generators construction of
which is based on discrete chaotic dynamical
systems. The principal feature of chaos is that
simple deterministic nonlinear systems can
generate trajectories which appear to be
"random". The randomness is a consequence of
extreme sensitivity of the trajectories to small
changes of initial conditions. This means in fact
that it is not possible to reconstruct them without
knowledge precise initial conditions. The basic
idea of construction of chaotic pseudorandom
number generators (CPNG) strongly explores this
property since the bits generated are associated in
some  appropriate way with a behaviour of the
trajectories. To assure a good statistical
properties (which decide about the quality of a
generator) of CPNG we shall assume that the
dynamical systems used are also ergodic or
preferably mixing. This allow us to make use of the

well developed theory of dynamical systems to
prove the required statistical properties.

Finally, since chaotic systems often appear in
realistic physical situations we propose some
physical realisations of CPNG.

INTRODUCTION

Pseudorandom numbers with "good" properties
are frequently used for a variety of engineering
applications as well as in modern communication
systems. Quality in this case may be defined by
how well the given device or algorithm for
producing the random or pseudorandom numbers
imitates an ideal source of uniformly distributed
and independent random numbers. Many
cryptographic schemes and protocols require a
source of random or pseudorandom numbers. The
quality of this source is crucial for the security of
the scheme or protocol.

Traditionally, extensive statistical testing was
used to assess or estimate this quality. (Possession
of a good pseudorandom bit generator (PBG) is
sufficient to construct a good pseudorandom
number generator and it is often easier to work
with bit generators.) Test suites developed for this
purpose may be found in [Knuth81], [Beker82],
[FIPS94]. For example, FIPS 140-1 specifies the
following 4 tests on sequences of 20000 bits:
1. the monobit test - the number of one bits in the
sequence must lie between specified limits,
2. the poker test - the histogram of values of non-
overlapping four bit segments must be resemble to
the uniform distribution; in this and the previous
test the chi-square test is used,
3. the runs test - the number of runs (the test is
carried out for runs of zeros and runs of ones) of
length 1, 2, 3, 4 and 5 as well as the number of
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runs which are longer than 5 must each lie
between specified limits,
4. the long run test - in the tested sequence there
must be no run of length equal to or greater than
34 bits.

Additional tests used in cryptography include
spectral tests, entropy tests and tests of linear,
maximal order or sequence complexity profiles
[Schne96].

In the case of pseudorandom number generators
some a priori conditions for their acceptance were
formulated by Golomb [Golo67]. His three
postulates concern properties of periodic
pseudorandom bit generators and refer to
quantities calculated over one complete period of
the generator. They are as follows:
1. the number of zero bits should differ from the
number of one bits by at most one,
2. among all the runs half should be of length 1, a
quarter should be of length 2, an eighth should be
of length 3 and so on (as long as the number of
runs so indicated exceeds one); for each of these
lengths there should be equally many runs of zero
bits and runs of one bits
3. the autocorrelation function is two-valued: when
the offset is 0 or is a multiple of the period, the
value of the autocorrelation function is equal to the
period of the generator; otherwise this value is
equal to a certain constant integer.

In the case of some classes of algorithmic
pseudorandom number generators a further level
of assurance has been obtained by a theoretical
analysis of the algorithms. Linear feedback shift
registers (LFSR) are a well-known example.
Another example is the class of generators whose
security has been linked to hard computational
problems in number theory (for example the Blum-
Blum-Shub generator). However, in the latter case,
the theoretical results are asymptotic in nature and
it is difficult to find any published numerical
verification of the quality of these generators with
fixed security parameters. In addition, the results
rely on unproved (although widely believed)
hypotheses about the computational complexity of
the underlying problems. In this paper we attempt
to develop a theoretical foundation for a class of
generators based on chaotic and ergodic
transformations.

Since last few decades, a new phenomenon
called chaos [Lin84] in nonlinear systems has been
discovered and intensively investigated. The
principal feature of chaos is that simple
deterministic systems arising in many areas can
generate trajectories which appear to be random.
The essential property of such systems is extreme
sensitivity of the trajectories to small changes to

initial conditions [Lin84]. Such properties seem to
be relevant for exploring during construction of
cryptographic algorithms. Therefore the theory of
chaotic dynamical systems is recently extensively
applied for construction of cryptographic systems
(both block ciphers [Habu91] and stream ciphers
[Kohda97]). The earliest applications of chaotic
systems were based on encrypting messages by
modulating the trajectories of continuous
dynamical systems. These methods are strongly
connected with the concept of synchronization of
two chaotic systems [Parl92], [Peco90] and
controlling chaos [Kapi96], [Ott90]. Another idea
is to make use of discrete dynamical systems to
construct secure cryptosystems [Kotul97],
[Kotul99]. It was developed in the case of block
ciphers and makes use of multiple iterations and
inverse iterations of chaotic maps.

In the next section, for the sake of
completeness, we recall the basic concepts of the
discrete dynamical systems theory.

DISCRETE DYNAMICAL SYSTEMS

We define the discrete dynamical system as a
couple ( )S F, , where S is the state space (usually
a topological metric space) and F S S: →  is a
measurable map being a generator of the
semigroup of iterations. The trajectory of an initial

state s0  is the set { }sn n=

∞

0
 of elements of S

obtained by iteration
( )s F s nn n+ = =1 0 1 2           , , , ,... (1)

The definition of chaos is closely related to the
concept of Lyapunov exponents. Let s S∈ , v be
an element of the tangent space at s and

( )( )DF s vn  is the Frechet derivative of the n-th
iteration of F  at s in the direction v. Then the
Lyapunov exponent is the limit

( )( )λ s v n

n

n
DF s v, lim ln≡

→∞

1 ,  (2)

where  is the norm in the tangent space at point
s. The Lyapunov exponents exist under some
general conditions concerning smoothness of F
[Guck83]. The number of different Lyapunov
exponents at  s is at most equal to the dimension of
the tangent space.

We say that the dynamical system is chaotic in
some region if for almost all points (with respect
to some invariant measure, equivalent to Lebesgue
measure) in this region it has positive Lyapunov
exponents.
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Chaos in a dynamical system makes the
trajectories very unstable; starting from two very
close initial conditions, after some iterations, we
come to quite different final states (trajectories
diverge exponentially). More precisely, for a one
dimensional dynamical system ( )R,ψ , where ψ

is C1 , if at some point x R∈ , λ x > 0  (in one
dimension the direction v is determined by the
space itself) then

( ) ( ) ( ) ( )

∀ε > ∃ ∃ ∋ ∀ ≤ ≤ ∀ ∈

− < − < −− +

0 1 2 1 2 2

1 2 1 2 1 2

1 2 1 2
, , , , ,

.

, , ,    1n n U x n n n z z U

e z z z z e z z

n n n n

n n n nx xλ ε λ εψ ψ

(3)
In the above, Un n1 2,  is some neighbourhood of  x.

Expression (3) means that the initial distance
z z1 2−  between two arbitrary points z1 , z2

(which are elements of the neighbourhood Un n1 2,

of  point x) after n iterations will increase at least
( )e x nλ ε−  times. The essential point for

cryptographic purposes is to select the natural
numbers n1  and n2  (to guarantee the numerical
accuracy of calculations) and then determine
Kn n1 2, , the set of points x considered as the secret
key space, satisfying property (3) with the above
natural numbers .

To introduce the concept of ergodicity we
assume that for the dynamical system ( )S F,  there
exists an F -invariant measure µ , ( )µ S < ∞ , that
is, a measure which satisfies

( ) ( ) ( )( )∀ ∈ = −A S A F Aσ µ µ,     1 . (4)

In the above, ( )σ S  is the σ−algebra of measurable
subsets of  S.

In our considerations, when constructing a
cryptographic algorithm, we introduce dynamical
systems for which some invariant measure µ
exists and is equivalent to the Lebesgue measure
with its density function ( )0 1 2< ≤ ≤g g s g  (where

( ) ( ) ( )∀ ∈ = ∫A S A g s ds
A

σ µ,    and g1 , g2  are

positive constants). If g1  is close to g2  then the
measure µ  is close to the uniform distribution,
which is important in cryptography. This postulate
requires the appropriate choice of the map F .

We say that a dynamical system ( )S F,  is
ergodic [Corn82] if and only if it has only trivial
invariant sets, i.e., if and only if  either ( )µ B = 0
or ( )µ S B\ = 0 , whenever B is a measurable,

invariant under F , subset of the space S (the
invariance of B means that ( )F B B⊂ ).

Ergodicity implies that the space S cannot be
divided into invariant nontrivial (with respect to
the measure µ ) disjoint parts. Therefore, if some
trajectory starts from any point s S0 ∈ , it never
localises in a smaller region, and knowing the final
state of the system we can never identify the
region (smaller than S) where the trajectory
started.

The next important characteristic of trajectories
(stronger than ergodicity) is the mixing property.
A dynamical system is called mixing [Corn82] if
the following condition is satisfied:

( )( ) ( ) ( )lim
n

nF A B A B
→∞

− ∩ =µ µ µ , (5)

for every two sets ( )A B S, ∈σ . In the above

( )F An−  is the pre-image of the set A under the n-
th iteration of  F . If we additionally assume that
the measure µ  is probabilistic that is, ( )µ S =1,
then formula (5) can be written down in an
equivalent form:

( )( )
( )

( )
( )lim

n

nF A B

B
A
S→∞

− ∩
=

µ

µ
µ
µ

 . (6)

We see that the part of B that after n iterations of
F  will be contained in A is asymptotically
proportional to the volume (in the sense of the
measure µ ) of  A in  S .

The formulae (5) and (6) give the asymptotic
condition for the spreading of the set B over the
whole space S when iterating. It is also important
to specify the speed of such phenomenon. In the
case of K-systems [Corn82] the convergence is
exponential

( )( ) ( ) ( )µ µ µF A B A B en pn− −∩ − ≤ , (7)

for all  n satisfying: n n0 ≤  ( n0  - some natural
number) and some fixed  p>0 depending on F .

The mixing property means that the trajectories
of the system have a property of  stochasticity. If
we assume the measure µ  to be a probabilistic one
then the iterations of F  make each set A
(asymptotically) statistically independent from B.
In other words, if we start our trajectory at some
point s S0 ∈  then after sufficiently many iterations
we can reach any region of the space S with the
same probability. This means that for any final
state sn  and sufficiently large n, any initial state
s0  is µ -equiprobable.
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The properties of dynamical systems like chaos,
ergodicity and mixing make these systems
„random” - studying finite dimensional
distributions in the state space we cannot
distinguish whether the system is chaotic or
stochastic. Therefore the chaotic dynamical system
seems to be a good candidate for a source of
random numbers (bits).

CONSTRUCTION OF THE CHAOTIC
GENERATOR

In this section we present application of
discrete dynamical systems for construction of
chaotic pseudorandom bit generators (CPBG). To
assure required statistical properties of generated
sequences we shall assume that except of being
chaotic the systems are ergodic or even mixing.

 The basic idea of construction is following. Let
us assume that we have some dynamical system
F S S: → , where S  is a state space of the system.
By µ  we denote normalized invariant measure of
the system. The central point of construction is to
divide the state space in some appropriate way into
two disjoint parts S0 , S1  such that

( ) ( )µ µS S0 1 1 2= = . As a seed we shall consider
an initial point s S S∈ ⊆' , where S '  is the set of
acceptable seeds (usually ( )µ S ' =1). To obtain a
pseudorandom sequence of bits we start observing
the evolution of the system governed by F
starting from s , i.e. the sequence s F sn

n: ( )=  of
iterations of the map F . The n-th bit bn  of
generated sequence is equal to "0" if F s Sn( ) ∈ 0

and to "1" otherwise. This way we obtain the
infinite sequence of bits G s( ) . Thus, we obtain
the map:

{ }G S
i

: ' ,→
=

∞

∏ 0 1
1

, (8)

such that
{ } { }G s b s b s b si i( ) ( ) ( ), ( ),..., ,...= ==1 2 1 2 ,  (9)

where { }0 1
1

,
i=

∞

∏  is the Cartesian product of the

infinite number of the two-elements set { }0 1, .

PROPERTIES OF CPBG

We start by giving the theorem which
guarantees that if we have two different seeds in
the generator; then with probability one we obtain

two different sequences of bits. Under the notation
introduced in (8-9) we have the following:

Theorem 1

For each s S∈ '  the following holds true:
{ }( )( )µ G b si

− =1 0( ) . (10)

Proof.
Introduce the notation: b b si i= ( )  for a certain

fixed point s S∈ ' . Define the sets:

( )A F Sb b1 1

1= − ,

( ) ( )A F S F Sb b b b1 2 1 2

1 2= ∩− − ,

( ) ( ) ( )A F S F S F Sb b b b b b1 2 3 1 2 3

1 2 3= ∩ ∩− − −

and, generally,

( ) ( ) ( )A F S F S F Sb b b b b
n

bn n1 2 1 2

1 2
... ...= ∩ ∩ ∩− − − . (11)

Let us remark that for each z S∈ '
z A b z b s i nb b b i in

∈ ⇔ = =
1 2

1 2... ( ) ( ), , ,...,  for  .
This follows form the fact that for i n=1 2, ,...,

( ) ( ) ( ) ( )F S F S F S F Sb b
n

b
i

bn i

− − − −∩ ∩ ∩ ⊆1 2
1 2

... , (12)

and, consequently:
( ) ( ) ( )(

( )) ( )( )
F z F F S F S

F S F F S S S

i i
b b

n
b

i i
b b b sn i i i

∈ ∩ ∩

∩ ⊆ = ≡

− −

− −

1 2
1 2

...

... .( )

(13)

Moreover, we know that

( ) ( ) ( )( )
( ) ( )( )

µ

µ

F S F S F S

F S F S

b b
n

b

b
n

b

n

n

− − −

− −

∩ ∩ ∩ ≤

≤ ∩

1 2

1

1 2

1

...

.
 (14)

Now we apply the mixing property (5) to the two
sets

( )F Sb
−1

1
 and Sbn

, (15)

(the set Sbn
 is equal to S0  or S1 ). For a given,

sufficiently small ε > 0  we choose n1  such that

( ) ( )( ) ( )( ) ( )µ µ µ εF S F S F S Sb
n

b b bn n

− − −∩ ≤ +1 1
1

1

1 1 1
. (16)

Since the measure µ  is invariant, from (14) and
(16) we obtain:

( ) ( ) ( )( )
( ) ( )

µ

µ µ ε

F S F S F S

S S

b b
n

b

b b

n

n

− − −∩ ∩ ∩ ≤

≤ +

1 2
1 2

1

1

1 1

...

.
(17)

Applying the mixing property to the sets
S S Sbn2 0 1=   or  

for a certain n n2 1> and

( ) ( ) ( )F S F S F Sb b
n

bn

− − −∩ ∩ ∩1 2
1 2

1

1
...

we have that if n2  is sufficiently large then
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( ) ( ) ( ) ( )( )µ F S F S F S F Sb b
n

b
n

bn n

− − − −∩ ∩ ∩ ∩ ∩ ≤1 2
1 2

1

1

2

2
... ...

( ) ( ) ( ) ( )( )µ F S F S F S F Sb b
n

b
n

bn n

− − − −∩ ∩ ∩ ∩ ≤1 2
1 2

1

1

2

2
...

( ) ( ) ( )( ) ( )( )µ µ εF S F S F S F Sb b
n

b
n

bn n

− − − −∩ ∩ ∩ + ≤1 2
1 2

1

1

2

2
...

( )( ) ( )( ) ( )( )µ µ ε µ εF S F S F Sb
n

b
n

bn n

− − −+



 +1

1
1

1

2

2
.  (18)

Using the invariance property of the measure µ
we obtain from (18) the following inequality:

( ) ( ) ( ) ( )( )µ

ε ε

F S F S F S F Sb b
n

b
n

bn n

− − − −∩ ∩ ∩ ∩ ∩ ≤

+





+

1 2
1 2

1

1

2

2

1
2

1
2

1
2

... ...

.

(19)

Generally, using the complete induction property,
we find a sequence { }n n nk1 2, ,...,  for any k  such
that

( )
( ) ( ) ( )(
( ) ( ))

µ

µ

A

F S F S F S

F S F S

b b b b b

b b
n

b

n
b

n
b

n n nk

n

n
k

nk

1 2 1 2

1 2
1

1

2

2

1 2

... ... ... :

... ....

..

=

∩ ∩ ∩ ∩

∩ ∩ ∩ ≤

− − −

− −

( ) ( )( ) ( ) ( )µ µ ε µ ε µ ε εS S S Sb b b bn n nk1 1 2
+ +



 +



 + ≤...

1
2

1
2

1
2

1
2

+





+





+






 +ε ε ε ε... .  (20)

Since ε  can be taken arbitrarily small, we deduce
from (20) that

( )µ Ab b b b b kn n nk1 2 1 2
0... ... ... →∞ →  , (21)

what concludes the Theorem 1.

In practice, making use of the chaotic property,
i.e. strong sensitivity of the map F  to small
changes of the initial conditions (the seed) we
have that for some appropriate partitions any two
different seeds lead to completely different
sequences, what is very important in applications.

To pass a statistical test the sequence generated
must have certain properties controlled by the test.
In the case of CPBG these properties are
guaranteed by theorems concerning dynamical
systems of ergodic and mixing type. As an
example how the theory of dynamical system
works we give several applications of it.

By ergodicity we obtain that the expected
number of "0" in the generated sequence is equal
to the expected number of "1". To be more precise,
we can use the Birkhoff-Khinchin Ergodic
Theorem [Corn82], which for our system can be
written as:

( ) ( )lim ( )
n S

i
S

Si

n

n
F s d S

→∞ =

−

= =∫∑1
0 0

0

1

0χ χ µ µ , (22)

where χS0
 is the indicator function of the set S0 .

Since by our assumption ( )µ S0 1 2=  we obtain
that in the pseudorandom sequence determined by
the seed s  the average number of "0" tends to
1 2 . (Moreover, since superposition of the same
ergodic map is also ergodic we have that any
subsequence ( )bkn n=1 2, ,...  has the above property,

too.)
The mixing property, defined by the condition

(5), means that any measurable set A S⊂  will be
during iterations µ -uniformly distributed over the
whole state space S . We use this property to
prove the theorem which determines that the bits
generated by CPBG are asymptotically
independent.

Theorem 2

For a given mixing dynamical system ( )S F, ,
there is a natural number k such that, for each
s S∈ ' , the bits bi , bi k+  are (asymptotically)
independent for i =1 2, ,... .

Proof.
Introduce the notation: H Fk

n k n: ( )= . For each
k n, , ,...= 1 2  we define random variables Yk

n  in the
following way:

( ) ( )Y s H s F sk
n

S k
n

S
k n

( ): ( ) ( )= = 



χ χ

0 0
, (23)

acting on the probabilistic space { }S S' , ( ' ),σ µ ,
where σ( ' )S  is the σ - field of the measurable sets
of the space S '  and µ  is the F-invariant measure.
These random variables describe the bits generated
by the CPBG based on the dynamical system
( )S F, .

For every n =1 2, ,...  consider the σ - fields
corresponding to the random variables Yk

n  and
Yk

n+1 . They are, respectively:

( ) ( ){ }σk
n nk nkS F S F S= ∅ − −, ' , ' , '0 1 (24)

and
( ) ( ){ }σk

n n k n kS F S F S+ − + − += ∅1 1)
0

1)
1, ', ' , '( (  (25)

We have:

( )µ α βF S F Sn k nk− + −∩ =( ( ' ) ( ' )1)

( )( )µ α βF F S F Sk nk nk− − −∩ ≈( ' ) ( ' )

( ) ( )µ µα βF S F Snk nk− −( ' ) ( ' ) , (26)

where α β, = 0 1 or .
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The last relation follows from the mixing
property (5) and it is more precise the parameter k
is larger. The relation (26) is in fact the definition
of independence of the random variables Yk

n  and
Yk

n+1 , what gives the conclusion of Theorem 2.
Then, taking for construction of CPBG the

modified dynamical system ( ) ( )S H S Fk
k' , : ' ,1 =  for

sufficiently large k, we obtain sequences of
statistically independent random bits.

PHYSICAL MODELS OF CPBG

Chaotic, ergodic and mixing dynamical systems
are realized by many real-life systems (e.g.
electronic circuits, fluid dynamics models,
economic phenomena and financial markets,
population growth models, etc.). It could be
promising to construct physical systems realizing
our cryptographic algorithms. In this section we
give a certain example: the application of non-
classical reflection law models, originating from
the kinetic theory of dilute gases, being the source
of the concept of chaos and ergodicity.

The theory of non-classical reflection laws
found its place in the literature [Babo84],
[Howe85], [Ichi89], [Szcz91], [Szcz95], [Szcz98],
[Szcz99]. The models describe the motion of a free
particle in a bounded domain. Reflection law
models are an intermediate case between the
deterministic systems first considered by Schnute
and Shinbrot [Schnu73], and the systems with
random reflection laws [Gold85].

Non-classical reflection laws are used in
modelling physical phenomena in solids as well. A
certain interesting physical process governed by a
non-classical reflection law was observed and
investigated by Andreyev [Andr64]. He studied the
motion of an electron in the neighbourhood of the
boundary separating normal and superconducting
phases. It was found that the electron, reflected
from the superconducting phase, changes the sign
of all three components of the velocity (the „anti-
reflection” law), what is essentially different from
the classical reflection, where only the sign of the
orthogonal component is changed. An interesting
step in description of the mesoscopic scale
physical systems in solids [Altsh91], where the
theory of the Andreyev reflection law is developed
(approaching practical construction of such
systems), is the recent paper of Nazarov [Naza98]
devoted to the novel circuit theory of
superconductivity.

To establish a reflection law model, describing
the motion of a free particle in a bounded area, one

must select a domain with a certain shape of the
boundary and define the reflection law. (We
consider two-dimensional domains.) Usually, the
boundary is assumed to be a closed, sufficiently
regular surface. The reflection laws describe in a
macroscopic way the behaviour of the velocity of a
freely moving particle during its contact with the
boundary of the domain. The reflection law is a
one-dimensional, easy to construct dynamical
system possessing the required properties
[Kosj72]. It can be written symbolically as:
v T vref x inc: ( )= , (27)
where vinc  is the incoming velocity of the particle
at the boundary point x, and vref  is the velocity of
the particle after the reflection.

In our model the chaos property of the
reflection law is transferred to the dynamical
system describing the motion of a particle.
(Problems of transferring some imposed properties
of dynamical system to its extension appear in
various situations and are extensively
investigated.) Thus, the security of the
cryptosystem based on unpredictability of the
location of a moving particle is assured by its
chaotic behavior [Beck90], [Kotul99].

In order to get the simplest form of equations of
particle motion, we use the co-ordinate system
( )x vn n, , introduced by Birkhoff, where xn

denotes the position of the particle on the
boundary at the moment of the n-th reflection, and
vn  is the angle between the velocity of the particle
after the reflection and the tangent to the boundary
at xn  [Szcz91]. In the case of a fixed plane
domain we obtain a two-dimensional discrete
dynamical system FT (.,. )  whose properties are
dependent functionally on the reflection law Tx (.) .
Thus, FT (.,. )  acts from the product of two
intervals onto the same product:

[ ) ( ) [ ) ( )F L LT : , , , ,0 0 0 0× → ×π π  (28)
and can be written in the following form:
( )x v F x vn n T n n+ + =1 1, ( , ) . (29)
The symbol L in (28) denotes the length of the
boundary of the domain.

Now we adopt our reflection law model to the
general scheme of the chaotic random bits
generator. First, the state space S  is the Cartesian
product of two intervals:

[ ) ( )S L= ×0 0, ,π . (30)
The most important decision in this

construction is the choice of the sets S0 , S1 .
Observing histograms of the moving particle we
identify the invariant measure µ  of this dynamical
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system. In further considerations we normalise this
measure to 1. It is known that such a measure is
close to the Lebesgue measure on S, but is not
exactly equal to it. To have the opportunity to use
ergodic theory we choose the sets S0 , S1  in such a
way that

( ) ( )µ µS S0 1
1
2

= = . (31)

In our investigations we assumed

S x v S x L
0 2

= ∈ <







( , ) , . (32)

We start observation of the evolution of the
particle starting from an initial state ( )x v0 0, ,
playing the role of the seed. We generate a
sequence of bits by taking the n-th bit equal to „0”
if the state of the particle is at the moment of the n-
th reflection in the set S0 , that is ( )x v Sn n, ∈ 0 , and
„1” otherwise.

In practice, users of a stream cryptosystem need
a large number of sequences. We can generate
them by changing the initial conditions of the
particle (the seed). Using the mixing property
(provided by transferring phenomenon) of the
reflection law models we proved that the bits
generated are statistically independent. Moreover,
by chaos we obtained, that two sequences
corresponding to two different seeds are different
and cannot overlap over long subsequences of bits.

Although the correctness of the results is
guaranteed by the general theory, the results are
asymptotic and practical application of the
theoretical construction presented above should be
statistically verified.

FINAL REMARKS

In the paper we presented the construction of
generator of pseudorandom sequences based on
the theory of dynamical systems. We showed that
statistical properties of sequences generated by
them are sufficiently good for cryptographic
purposes.

Generating bits according to some algorithm
one requires complete repeatability (which is a
necessary condition of correct decryption in the
stream cipher methods). In practical
implementations the numbers used in calculations
are expressed with some accuracy. Therefore,
when the state F sn( )  is close to the boundary of
separation of sets S0  and S1 , then the numerical
error can make that "0" generated in one computer
become "1" in another (or vice versa). The idea
how to prevent this inconvenience was presented

in [Bollt97]. The authors suggest to introduce a
forbidden gap of small size at the partition zone
and then neglect all trajectories which go through
this gap which is possible for some maps because
of an explicit characterization of the forbidden
trajectories. They give also arguments (computing
the topological entropy and analysing successive
approximations of the grammar of the symbolic
dynamics by means of a sequence of transition
matrices) that for sufficiently small gap the loss of
the trajectories generating the sequences is only
incremental and, what it follows, such a procedure
does not deteriorate the statistical properties of the
sequences. From the other side, to avoid the
problems connected with inaccuracy of numerical
computations, we propose to consider physical
realisations of CPBG. However despite avoiding
the problem of computational error we face
another one - accuracy of measurements.
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