
Neural network as a programmable block cipher

Piotr Kotlarz1, Zbigniew Kotulski2

1 Kazimierz Wielki University, Bydgoszcz,
piotrk@ukw.edu.pl

2 Institute of Fundamental Technological Research, PAS
and Institute of Telecommunications, WUT

zkotulsk@ippt.gov.pl

Abstract. A model of Boolean neural network is proposed as a substitute of a
bock cipher. Such a network has functionality of the block cipher and one
additional advantage: it can change its cryptographic properties without
reprogramming, by training the network with a new training set. The
constriction of the network is presented with an analysis of the applied binary
transformations. Also three methods of training the network (what corresponds
to the re-keying of a block cipher) are presented. Their security and
effectiveness are analyzed and compared.

1. Introduction

In popular cryptographic communication protocols, like SSL, IPSec, SCP, etc., the
designers provide several encryption algorithms, with an option of extending their list.
Among the reasons of such a solution one could give the permanent progress of
cryptanalytic attacks that can compromise a cipher. The possibility of changing the
cipher makes that even if some algorithm is broken, the whole protocol remains valid.
For example, development of linear and differential cryptanalysis shaken DES
security, protocols with additional cryptosystems (e.g. 3DES, AES) implemented
preserved their functionality for secure communication.

The DES case shows that the problem of breaking protocols due to breaking
component cryptographic algorithms is crucial in a case of the expected long life of
communication devices with the security protocols built-in. The designers and
producers of the information infrastructure must take this problem into account.

For several years one can find in the literature results concerning application of
programmable logic arrays for implementation of cryptographic algorithms. This fact
is especially important for hardware implementations of cryptosystems. Any change
in hardware is very complicated, so application of programmable (and, therefore,
reconfigurable) element in the hardware seems to be a remedy in a case when we
must modernize an algorithm. Such solutions already exist, e.g., in the paper [1] a
cryptographic accelerator realizing IDEA block cipher is presented. A proposal of
application of the processor RipeRench for cryptographic algorithms is given in [2].
Further, the authors realize algorithms CRYPTON [3] and RC6 [4] using the
reconfigurable RipeRench. Another implementation of CRYPTON in reconfigurable

Chapter 2

logical chips is presented in [5]. More information about application of the
programmable devices to ciphers implementation and, more general, signal
processing, can be found in [6].

In spite of the application of the programmable logical chips could be a solution of
the problem of updating cryptographic algorithms built-in the network security
components, in this paper we propose an alternative solution. In our opinion (based on
earlier studies) the proposed solution of application of neural networks as universal
updatable encryption algorithms could be a good alternative. After an appropriate
design of such a network the implementing a new block cipher in the network and,
then, the training process with adequate training sets should do periodic update of the
algorithm.

In papers we [7-9] we proposed an idea of realization of the elementary operations
of block ciphers (permutations and non-linear substitutions, S-boxes) by neural
networks. We considered problems of efficiency of training of such networks and
possibility of composing complete block ciphers of the elementary component neural
networks. Now it is time to study the security of functioning of such neural network-
based cryptosystems at each phase of its life: training and regular work as a cipher.
Let us concentrate on the training process. We assume that the encrypting neural
network is installed at a remote server (servers). At the client side we have the owner
of the system, who can modify (from his location) the properties of the network and
chose the transformation performed by it. For the sake of clarity, we consider now the
neural network that realizes some permutation. So, the changes of the cryptosystem
are the changes of permutation performed by the neural network. In spite of such a
solution is not a general encrypting neural network; we can build the cipher as a
composition of traditional S-boxes and permutations realized by neural networks. The
included neural networks play a role of the switching elements in the cipher that make
possible to change the cryptographic properties.

2. Neural network realizing elementary permutations

The concept of application of the neural network realizing permutations for
cryptographic algorithms was proposed and presented in details in the paper [7]. For
the purposes of this presentation we give here the outline of this method. Generally,
the idea of application of a neural network as a universal cryptographic algorithm is
based on constructing any complicated structure transforming block of bits onto
blocks of bits as a combination of small blocks (neural networks) realizing elementary
permutations (and, if needed, substitutions). In Fig. 1 are presented two examples of
the networks realizing permutations that will be used in this paper. In each case, the
left picture presents symbolically the transformation of bits, which is the permutation
while the right one is the scheme of neural network realizing this permutation.

Computer Security and Safety

x1 y1
x2 y2

y1y2y3

x1x2x3

∑

1
1W

1
2W

∑
2

1W

2
2W

1X 2X

1Y

2Y

∑

1
1W

1
2W

1Y
1

3W

∑
1Y

∑

3
1W

3
2W

1Y
3

3W

2
1W

2
2W
2

3W

1X 2X 3X
Fig. 1. Sample neural network blocks realizing elementary permutations

3. Modification of permutation realized by a neural network

Assume that we have the neural network that is trained to realize some transformation
of the block of bits of a fixed length into the block of bits of the same length, playing
a role of block cipher. The problem considered in this paper is: how to change the
neural network to make it realizing some other block cipher (or the block cipher with
different cryptographic properties). We assume that the structure of neural network
remain constant during the lifetime of the system. The changing permutation is made
by appropriate changes of the weight coefficients of neurons in the network. Thus, the
replacement of one algorithm (old cryptosystem) by another (the new one) is by a
certain training process, with the earlier designed training set. For this purpose we
propose the supervised training method. For the user the network is considered as a
black box located at a distant server. Thus, there is a need of preparing a method of
remote modifying the algorithm realized by the neural network. Since we assumed
that the security protocol applying our cryptographic algorithm works in the client-
server architecture, we assign the role of client to system’s administrator. Playing his
role, he should be able to modify the algorithm at the remote server, performing some
well-defined training process. This process can be made in two ways. One possibility
is to train the network at the server using the adequate training set. In this case the
training data must be transmitted from client to server. Another possibility is to train
an identical copy of the neural network at the client side. Now, the resultant weights
must be transmitted to the server and substituted at the network site.

The two proposed methods of training should be extensively analyzed with respect
to efficiency and required bandwidth occupation at data transmission, quality of
training process, necessary resources at the client and server side and the security and
reliability of the obtained cryptographic algorithm. Training at a server side. As we

Chapter 2

mentioned above, one of the possible ways of changing cryptographic algorithm
realized by the neural network is performing the training process at the server (S). To
do this we must transmit to the server the appropriate training data, which was earlier
prepared at the client (C) side, to put into action the training program. In Fig. 2 is
presented the architecture of the C-S system responsible for the training data
exchange and the training procedure. The party S can work in two modes: the training
mode (T1) and the operation mode (T2). In T1, operating just after the training data is
supplied, the training process is performed and, as a result, the cryptographic
algorithm realized by the neural network is changed. In T2 the neural network works
as a black box realizing the cryptographic algorithm, in our case a block encryption.
To complete the notation used in the picture, the open channel denotes some insecure
communication channel, e.g., Internet. By cryptogram we understand the secured
information being exchanged between the parties C and S of the communication
protocol.

C
S

„Black
box”,

Teaching
application

Open chanel

Learning sets

Ciphertext

T1

T2

Plaintext

Fig. 2. Training at the server S side

Since this paper we concentrate on the security of the process of dynamical changes
of the cryptographic algorithm inserted in the neural network, for the sake of clarity of
presentation we restrict our consideration to a binary transformation of the block of 16
bits onto the block of 16 bits. More precisely, the transformation realizes a
permutation of the block of 16 bits. The scheme of the permutation is presented in
Fig. 3. For the construction of the complete 16-bit permutation we used blocks of
elementary neural networks that realize 2-bit and 3-bit permutations. The details of
such blocks and their properties were discussed in details in the paper [7]. Let us
remark that using analogous blocks it is possible to build also non-linear substitutions,
which can be used for building S-boxes, the supplementary component elements of
many present-day block ciphers. The examples of such structures are also presented in
the papers [7], [8], and [9]. However, now we concentrate on permutations. The
detailed description of the 16-bit permutation build of some number of elementary
neural network blocks is presented in the diagram below. In Fig. 3 a network built of
two layers of blocks of smaller neural networks is presented. Each of the layers
realizes different permutation, what is symbolically denoted as 31,σσ . The additional
permutation 2σ reflects the connections between the outputs of one layer of the
blocks and the inputs of the blocks of the other layer. In the right hand side of the Fig.
3 the permutation realized by the network is presented.

Computer Security and Safety

x1
x2

x3x4x5

x
x
x

x
x
x

x
x
x

x

x

6
7
8

9
10
11

12
13
14

15

16

y1
y2

y3y4y5

y6y7y8

y9y10y11

y12y13y14

y15
y16

2σ 3σ1σ

A
B

C

E

A
B

D

E

F

E

G

H

() == 321 σσσσ oo

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

15139141671112106532814
16151413121110987654321

15139141671112106532814
15131114167101298541623

15131114167101298541623
15161213149101178643521

15161213149101178643521
16151413121110987654321

o

oo

o

Fig. 3. Neural network realizing a permutation

To summarize the diagram, the permutation realized by the resultant neural network is
a composition of three 16-bit permutations, realized by individual layers, what is
expressed by Eq. 1.

()321 σσσσ oo= (1)

In the above scheme, the permutations σ1, σ2 are these, which are being changed
during the training procedure, while the permutation σ2 remains unchangeable. In the
methodology, which is implemented and verified at the moment we propose the
training procedure independent for each of the permutations σ1 and σ3. Thus, we need
two training sets for the two permutations. In further studies we plan to propose an
effective procedure of training the three-layer network with a single training set. Such
a procedure would be more convenient and more confidential, because it would not
need knowledge of the internal structure of the neural network by the training
procedure. The preparation of a security protocol with the neural network-supported
encryption algorithm runs in several steps. First, the network is implemented at the
server; its structure is presented in Fig.3. Next, random values of weights are inserted
to it. Finally, using some training set (earlier prepared at the client side, individually
for each requires permutation, and transmitted to the server) the training program at
the server side performs the training of the network. In this paper we present some
selected sample fragments of the training sets for the permutations σ1 , σ3. In Fig. 4
are presented fragments of the training sets for several chosen sample elementary
modules, but not the complete training set. One, having the full knowledge about the
complete neural network and the content of the training sets for individual blocks, can
reconstruct the training set for the complete network. How to construct general
training sets, can be found in our earlier papers [7, 8]. However, making the methods
effective needs additional studies.

Chapter 2

x1
x2

A
y1

y2
1111
0101
1010
0000
2121 yyxx

x1 y1
x2 y2

B

1111
1001
0110
0000
2121 yyxx

y1y2y3F
x1x2x3

111111
010001
101110
000000
321321 yyyxxx

Fig. 4. Selected sample blocks of the network with the fragmentary training sets

As we remarked, the training set must be delivered to the server to the program
training the network. The transmission of this set is through an insecure
communication channel. Asking about the security of the algorithm update procedure,
we must assume that an adversary can have the content of the training set. If the
complete training set is transmitted, the adversary has the complete information about
the permutation (cryptographic algorithm). He simply obtains this information by
some analysis, because the training set corresponds to a unique permutation. The
essential information for the adversary is the topological structure of the network.
Certainly, we could assume that this structure is secret, but such a solution seems to
be inefficient. First, it contradicts the presently valid rule of knowledge the algorithm
(the secret algorithm cannot be analysed and its security is never sufficiently sure).
Moreover, the adversary can always train a similar network (e.g., with the same
number of inputs and outputs) and obtain very similar algorithm, what together with
other cryptanalytic techniques would completely break the cipher. So, the remedy
could be transmission not the complete training set, but only some partial information,
which together with some trapdoor information would make possible the
reconstruction of the complete training set at the server side and performing the
training procedure. In Fig. 3 the elementary blocks of neural network are denoted as
A, B, F. Using these notations (reflecting the network internal structure) we can
transmit the fragmentary training sets for each blocks, as it is presented in Fig. 4.
Using these components one can construct, at the server side, the complete training
set for the whole neural network realizing the cryptographic algorithm. Such a
solution gives some security for the algorithm update process provided the internal
structure of the complete network (its topology) remains secret.

The problem of security of the algorithm update process at the server side is strictly
connected the efficiency of such a training process. First, the server must be equipped
with the training software, which must be secure during learning the network and
during the storage in inter-learning period. Then, the process of training is server
resources- and time-consuming, what is especially important in a case of large
number of servers located over the network and serviced by the training systems.
Finally, the servers are often located in an un-trusted environment, so such attacks, as

Computer Security and Safety

sniffing/spoofing and analysis of electronic discharge are possible. For this reasons,
one should look for alternative solutions of dynamic changing encryption algorithms
built-in the remote network security devices equipped with neural networks. Training
at a client side. A natural alternative for training neural network at the server side is
training the identical copy of the network at the client side and transmission of the
obtained result to the server. As we know, the neural network is completely defined
(in the model we apply for encryption) by the architecture of the functional blocks
(being certain neural networks), the structure of neurons inside the blocks and the
weights of these neurons. Thus, information sufficient to change the algorithm is
contained in the weights (we assume that the structure of neural network remains
unchangeable in the server). The result of the training is vector of weights and this
vector must be transmitted form client to server to update the cryptographic
algorithm.

C
S

„Black
box”

Network sets

T1

T 2

Open chanel

Ciphertext
Teaching
application

Plaintext

Fig. 5. Training at the client C side

The communication scheme for training the neural network at the client side is
presented in Fig. 5. Now the server S again works in two modes. Mode T1 is the
update of the weights in the neural network blocks, what corresponds to inserting a
new cryptographic algorithm into the server’s “black box”. Mode T2 is the operation
mode, where a plaintext inputs the “black box” and the corresponding ciphertext
outputs it. Certainly, the “black box” performs also the inverse operation.

The presented solution is especially effective (less server time consuming, smaller
volume of information transmitted) in the case of updating several servers. Also the
neural network update program at the server side is less complicated. It works without
the observer’s supervision, what is required in the case of the neural network training
at the server side. It is possible the automatic update of the weights with some self-
check algorithm afterwards.

The neural network weights update can be performed in two ways. In the following
two sections of the papers we show the outline how the two methods can be
performed. Transmission of updated weights. In Fig. 5 we present the transmission
of parameters of a neural network. In this case the parameters are new values of
weights. The basic assumption to make such a procedure effective is that both parties
of the protocol, client C and server S are equipped with the neural networks with
identical internal architecture. After the training stage, the weights of neurons
obtained at the client side are transmitted to the server. The server is switched to the
mode T1 and the weights are introduced into the neural network, overwriting the
previous values. Then, the server is switched to the mode T2 and starts realizing a
new encryption algorithm. For the neural network presented in Fig. 3 we have 64
weights and such a number of coefficients must be sent through the communication
channel, see Eq. 2.

Chapter 2

[]641...www = (2)

The information sent must contain the assignment of the weights to neurons. Since
some functionally identical blocks in the network architecture repeat (as it is seen in
Fig. 3), the weights for identical blocks can be sent only once. Next, they must be
substituted as many times as needed. This property reduces the amount of information
transmitted during the update process. Eq. 3 presents the sample weight vectors for
the defined blocks A, B,..., H of the neural network presented in Fig. 3.

[] [] [] [],...,...,...,... 61614141 BDDCCCBBBAAA wwWwwWwwWwwW ====

[] [] [] []61616161 ...,...,...,... HHHGGGFFFEEE wwWwwWwwWwwW ====

(3)

Consider now the security of the weights updating process. Assume at the beginning
that the transmission of the weights is by an open communication channel (that is, an
adversary knows the weights). Trying to answer the question, what information about
the cryptographic algorithm is contained in the weights we must say, that even if the
weights together with the architecture of the neural network completely describe the
cryptographic algorithm, then the weights alone give no information about it. For a
successful attack an adversary should know the structure of blocks, their internal
connections and assignment of weights to particular neurons. Thus, the algorithm
remains secure provided the adversary does not know the neural network (our “black
box”) architecture, even if the weights are transmitted by an open communication
channel. The last sentence, in fact, contradicts the widely used rule of the public
knowledge of applied cryptographic algorithm (see Chapter 3.1). In the following
sections we propose two methods how to solve this problem.

Before we go further, let us remark, that the proposed solution of application of the
neural network for implementation of cryptographic algorithms slightly differs form
analogous application of the programmable logical circuits. To update the algorithm,
in the first case we can send only a sequence of numbers (the weights), while in the
second one we need the complete code of the cipher. Transmission of differences of
weights. Assume now that we wish to protect the transmitted weights against
interception by an adversary. The method proposed in this section does not apply
cryptography for increasing security of the update procedure. The adversary, to attack
successfully the weights values should permanently trace traffic between client and
server to collect all transmitted updates of weights. This effect can be obtained, if
instead of the complete set of new weights W’ we will transmit to the server their
differences R to the previous values of weights W. The updating program at the
server, knowing the old weights W and differences R can easily restore the new
weights W’, what symbolically is presented in Eq. 4. Here we present only the
updating procedure for two weights; the others are completely analogous.

'WWR ±= , [] [],...,...,,,..., 4411
'

4411
'

RBRBBRARAA WWWWWWWWWW ±±=±±= (4)

In the proposed method, the effective updating the neural network is possible under
two conditions. First, both networks: at the client side and at the server side must be
initiated with the same values of weights. Then, the updating must be synchronous,
what means that no weight update can be neglected at the server side. This forces the
server to permanent following signals about the weights updates (remembering

Computer Security and Safety

present state of weights and the prompt receiving the differences of weights by the
network updating program). If we additionally assume that the initial state of the
neural network is a secret (the adversary cannot restore the initial values of weights),
then both the internal structure of the neural network and the updates of weights (the
transmitted differences of weights) need not be confidential to keep confidentiality of
the communication protected by the neural network.

4. A unified solution for a permutation update

The methods presented in Chapter 3 assumed that the updating data (the training set,
the weights, or the differences of weights) was transmitted by an open communication
channel. However, we can assume a possibility of using a secure (encrypted) channel
for transmission of the critical updating data. Fig. 6 presents this situation.

C
S

„Black
box”

T1

T2

Safety channel

Network sets

Open chanel
Ciphertext

Plaintext

Teaching
application

Fig. 6. Data transmission through the secure communication channel

The amount of the required data is relatively small (especially in the case of weights),
so we can use asymmetric cryptography to deliver the data in a secure way. This
method should not introduce a significant delay in operating the system. An
alternative could be application of some popular secure tunnelling method, e.g., SSL.

The data exchange scheme presented in Fig. 6 shows that the secure channel is
used only in the updating T1 mode. After the update the “black box” is switched to
the operating T2 mode and the server starts regular work, which is the cryptographic
algorithm implemented in the neural network starts encryption communication.

To conclude, if the pair client-server has no secure communication channel (the
asymmetric secure communication is to absorbing for the parties and the parties do
not have a symmetric secure channel), then can be used the simplest solution. After
calculating the new weights the operator of the communication protocol can update
the weights manually, moving the required data in some mobile device.

5. Summary

In this paper we considered possible difficulties and threats during the process of
updating cryptographic algorithm working at a remote server. We postulated the
secure process of modifying the cipher. For the sake of clarity, we restricted our
considerations to the neural networks realizing permutations. However, using
methods of representing S-boxes in neural networks, proposed in [7], we could first

Chapter 2

represent any substitution-permutation block cipher as a neural network and then
extend the update method to such a cipher.

We showed that the transmission of the training set by an open channel is not a
good solution. An adversary who obtains the training set can reconstruct the
cryptographic algorithm realized by the neural network. Updating the weights of
neurons of the neural network is much more secure solution. The supplementary
application of asymmetric cryptography solves the problem security of the operation
on the level of security equivalent to security of the asymmetric algorithm applied in
the protocol. However, not always such a method can be applied, because the
asymmetric cryptography requires relatively strong computational abilities of the
server and significantly complicate the cryptographic algorithm updating procedure.

The results presented in this paper are mostly of demonstrative character. They
show that it is possible a secure mechanism of dynamic updating the cryptographic
algorithms realized by appropriately designed neural networks. However, to study
practical effectiveness and exploitation efficiency of such algorithms, one must define
the procedure for the complete cipher, containing both linear (permutations) and
nonlinear (S-box) blocks and perform its practical Internet tests.

To summarise, lest us remark that our proposal is in some sense more general than
so-called neural cryptography, which utilizes neural networks for a secret key
agreement through a public communication channel (see [10]). The proposed solution
, in spite it is still not perfect, agrees a complete cryptographic algorithm.

References

[1] E. Mosanya, Ch. Teuscher, H.F. Restrepo, P. Galley, E. Sanchez, CryptoBooster:
A Reconfigurable and Modular Cryptographic Coprocessor, in: Cryptographic Hardware
and Embedded Systems: Proc. CHES'99, LNCS 1717, Springer Berlin 1999.

[2] R. Taylor, S. Goldstein, A High-Performance Flexible Architecture for Cryptography,
Proceedings of the Workshop on Cryptographic Hardware and Embedded Systems,
Worcester August 1999.

[3] C.H. Lim, CRYPTON: A New 128-bit Block Cipher, Proceedings of the First Advanced
Encryption Standard Candidate Conference, Ventura, California, NIST, 1998.

[4] L.R. Knudsen, Correlations in RC6, Department of Informatics, University of Bergen,
N-5020 Bergen:, July 29, 1999.

[5] W. Laskowski, Programmable logical circuits as tools supporting cryptographic data
protection, Przegląd Telekomunikacyjny, Vol. LXXIV, no. 3/2001. (In Polish)

[6] T. Łuba, K. Jasiński, B. Zwierzchowski, Programmable logical circuits processing signals
and information – digital circuit engineering in multimedia and cryptography, Przegląd
Telekomunikacyjny Vol. LXXVI no. 8–9/2003. (In Polish)

[7] P. Kotlarz, Z. Kotulski, Application of neural networks for implementation of cryptographic
functions, in: Multimedia in Business and Education, ISBN83-9182218-7-0

[8] P.Kotlarz, Z.Kotulski, On application of neural networks for S-boxes design, in:
P. S. Szczepaniak, J.Kacprzyk, A. Niewiadomski, ed. Advances in Web Intelligence, AWIC
2005, LNCS 3528, pp. 243-248, Springer, Berlin 2005.

[9] P. Kotlarz, Z. Kotulski, Artificial intelligence methods in the present-day cryptography,
Proceedings of Ploug’05, Zakopane 2005. (In Polish)

[10] I. Kanter, W. Kinzel, E. Kanter, Secure exchange of information by synchronization of
neural networks, Europhys., Lett. 57, 141 2002.

