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Generalized Shapiro-Loginov formula and moment stability
of a string equation with random telegraphic parameter

Z. KOTULSKI (WARSZAWA)

IN THIS PAPER the results concerning the moments of stochastic linear differential
equations with the multiplicative parameter in the form of a stochastic telegraph process
(Shapiro-Loginov formula) are generalized to the case of Hilbert-space-valued evolution
equations. The obtained results are then applied to the investigation of the moment
stability of some string equation with stochastic parametric excitation. The results
obtained for exact and modal approaches are compared showing the possibility of the
simplified analysis as well as differences. Additionally, the system with the appropriate
white-noise excitation is considered, and, with the aid of an “equivalent” white-noise

process the conditions of an approximation of the telegraphic stochastic process are
studied.

W pracy uogdlniono wyniki dotyczace momentow rozwigzania liniowego stochastycz-
nego rownania rozniczkowego z multiplikatywnym parametrem w postaci stochastycz-
nego procesu telegraficznego (wzor Szapiro-Loginowa), na przypadek rownania ewolu-
cyjnego o wartoSciach w przestrzeni Hilberta. Uzyskane rezultaty zastosowano nastgp-
nic do badania momentowej stabilnosci roOwnania struny ze szczegolnym stochastycz-
nym wymuszeniem parametrycznym. Porownujac wyunitki otrzymane przy zastosowaniu
metody nieskonczenie-wymiarowej i w przyblizeniu modalnym, pokazano mozhiwos¢
uproszczonej analizy zagadnienia i roznice w wynikach. Ponadto rozwazono uklad
z odpowiednim (,réwnowaznym”) wymuszeniem biatoszumowym 1 zbadano mozliwosc
aproksymacji procesu telegraficznego bialym szumem.

B pabore 006001leHbI PE3Y.IbTATbI, KACaKOLIMECS MOMEHTOB PCLICHHS JIMHEHHOT O
croxacTuieckoro auddepeHiigaibHOro ypaBHEHUs ¢ MY,IbT HILTUKAT HBHbIM TMAPAMET -
POM B BUAE CTOXacruyeckoro tejerpaduoro npouecca (popmyaa IHlanupo—Jloruno-
Ba), HA CJy4ail 3BOSIIOLMOHHOrO YPABHEHUS CO 3HAYEHUSIMU B IHJILOEPTOBOM IPO-
ctpaHcT Be. [Tos1yyeHHble pe3y 1bTaT bl IPMMEHEHBI 3aTEM 151 MCC1E10BAHU ST MOMEHT -
HOH CTaOHJILHOCTH YPABHEHU S CTPYHbI C OCODEHHBLIM CT OXaCT HYECKHUM MaPaMET PUYEC-
KM BbIHYX/aeHueM. CpaBHUBAsL PE3Y.ILT AT bl, MO 1Y4EHHBIC PH NMPUMCHCHUH DeCKOHEU-
HOPA3MEPHOrO0 METO/@ M B MOAAILHOM MNPHOJIMKEHUH, IMOKa3aHa BO3MOXHOCTD

yIPOLEHHOr O aHa-1M3a npob.1eMbl H YKa3aHbl PA3HHULLI B PE3Y.1bTATAX. Kpome 3Toro
PACCMOT PEHA CHCT EMA C COOT BETCTBYIOIIMM (,,0KBHBA ICHT HbIM ') BLIHYXACHHUEM THIIA

6e;1000 11YyMa M MCCIEA0BAHA BO3MOXHOCT b AMMPOKCMMAIMK Te 1erpaQHOro nponecca
O€e/1IbIM LLIYMOM.

1. Introduction

AMONG SEVERAL definitions of stochastic stability (cf. [5, 13]), the concept of
moment stability is very intuitive. We say that a solution of a stochastic
equation 1s stabie in the sense of k-th mecan if its k-th moment 1S stabie.
There are some cases wnere the moment stabilitv of an equation is relatvely
~asv for investigetion. We ha ¢ ic do with such & situation when exact equs-
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stochastic differential equations with a multiplicative stochastic coefficient
(parametric excitation), the example could be the stochastic lLangevin equa-
tions (sce [14]). For this kind of equations the momeni equations have been
dertved in the literature. In papers 17 the ordimary differential equations with
white-noise cocfficients have teen treated. Chow in papers | 3, 41 has dealt with
a partial diferential cquations of the parabolic type with a function-valued
white-noise. Finally, i papers [9, 107 the moment cquations for general
cvoiution equations with a Hilbert-space  valued white-noise have becn
derived. Such equations include, as particular cases, both ordinary and partial
differential equations.

Another example of the stochastic linear differential equation, for which
the exact moment equations can be written in closed lorm, 1s the one
where the multiplicative parameter has the form of a stochastic telegraph
process (cf. [7]). For this example the moment equations have been derived
in [12] and [11] for the ordinary and the partial differential equations,
respectively.

tn this paper we generalize the results concerning the moments of the
stochastic equations with the multiplicative telegraphic parameter to the casc
of Hilbert-space-valued evolution equations. Then we consider the example of
a string equation and investigate the mean and mean-squarce stability of its
solution using both exact partial differential equations for the moments of its
modes. The obtained results are then compared. Finally, we introduce the
moment equations for the string with the “equivalent” white-noise process
instead of the telegraph one in order to find corresponding stability conditions.

(The literature concerning the stability of stochastic equations with discrete
parametric excitations is cited in Ref. [117).

2. Generalized Shapiro—Loginov formula

Consider the stochastic evolution equation of the form

TUD _ V) + PanBUCY), €O, yer

UO,y) = U_eX,

(2.1)

where (I',#,%?) is a complete probabilistic space, I" is the set of clementary
events, # 1s the o-algebra of its measurable subsets and 2 is the prob-
abilistic measure, U(t) is an X-valued stochastic process, X 1s a separable,
real Hilbert space, &/ and # are linear, possibly unbounded operators
(gencrators of strongly continuous semigroups of linear operators) acting

from D(AND(#) <X into X, and P(t,y) is a stochastic telegraph process
defined as (cf. [7]):
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(2.2) P(t,y) = a(— )", P(0,y) = ¢, P%(ty) = a?,

W

where a is a constant and N{t 1 a homogencous Poisson process with
ntensity v This means thay the process e, takes the vamies g or -a. L ping
hetween the states st randora mmstants of Sme consbitaing 2 Poissorin peint
DIOCSN.
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and the higher order mowmenis satisly the [ollowing recurrent relations:

(2.4) m(ty,.. b0 = <Ptt,y)..PiL,y

\
= < P(wpum oMy llela) 222,50

(<-> denotes the mathematical expectation ol a random variable).

-

Let RIP(0)] be some H-valued functionai depending on the alues ci Flt)
or <. (His a real scparable Thilberr space) The funcnondl Ri P} can he

s al

represented in the forin of the following funct.onai dayior SCT1ES:

C‘(} 1 i H
(2.5) RIP] =R[0]+ »  1dt Lfdn, KM ean PU PG,
= 1 n/ J O

where K{(t,,...t.) arc H-valued deterministic functions ol n arguments ,,....t,
from the interval (0,f) and one real positive parameter t, defined as

_O'R{P]
SP(t,)..5P(t,)

(2.6) K{"M(t, .. t,) =

where 6/[SP(t)] is the Volterra variational derivative.
Since K™ is a symmetric function of all its arguments, the formula (2.5) can

be written as

In— %

R[P] = R,[0] + Z jdt1 j dt,... j dt,. K"(t,,...t,) P(¢t,)--P(t,).

n=10

(2.7)

Consider the product of P(t) and R[P]. We have

(2.8 <POR[P]1> = <P(IR|0]>

o T [y ln— 1
+ Y fde,Vdt,... | dt, KPP (ty,nt,) <POP(t).P(t,)>
n=10 0 O
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Differentiating Eq. (2.7) with respect to t, multiplying by P(t) and taking
expectation, we have

(2.9) < P(t) 4 R, P]> = <P(1) gt R[O] >

dt B
* O 1 [y In — 1
+ ), bdt Jdty.. [ di, - K®(t,...1,) <P@O)P(t,)..P(t,)>
n=120 9, O df '
a ) Iy — | |
+ ) Jdty fdey | ode, K™ (tt,,.t) <P20P(t,)..P(t.)>
n=2 0 ) 0

o [ 11 [y — d

+ 2, Jdt fdty. [ dt, - K™(t,,..t) <POP(t,)..P(t,)>

n
n=10 O 0) d[
z , ~
sdty §diy . [ dr, Kty < P21)P (). Pt ) >
O 3

t [ e — d
fde, fdiy. | dt, K™ (1) "
O O

) " <P{1)P(1)...P(t,) >

LP]> + jt <P(t)> R,[0]

+ Z jdtl j dt,... j dt, Ki”(t,...t,) d <P()P(t,)..P(t ) >

n=10 0 0 | dt

where in the second part of Eq. (2.10) the formula (2.9) has been used.
Using now the property (2.4) of the moments of the telegraphic process P()

and the following two equations satisfied by the mean and the covariance
(deduced from Eq. (2.3))

_____ { PR — 7 ¢ < IE
C<Ply)> = —2v < P{ty) >
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(2.12) j{ < P(ty) R,[P] > = < P(ty) ; R,[P]> —2v < P(ty) R, P] >.

The derivation of the equation for the mean value of the solution to Eq.
(2.1) runs in two steps. First, taking the expectatior of Eq. (2.1), we (')btain
the cquation for two unknown tunctions <U(t,y)> and <P(,)Ulty)>.
Next, using the Shapiro-Loginov formula (2.1.0) tor R [ P] = U(t) and the
governing equation {;2..1), we obtain the equation for < P(ty)U(ty)> (the
property (2.2): P*(t,y) = a® closes the hierarchy of the equations). The result

is the following:

d .
(2.13) " <U(ty)> = A <Ulty)> + B < P(ty)U(Ly)>
d b
" < Pt U(ty)> = A <P(t,y)U(ty)> —=2v<P(t,y)U(ty)>

+ a’#B<U(ty)>,

with the initial conditions
<U>0)=U,, <PU>(0)=alU,.

Analogously, diffcrentiating the tcnqor product of the functions U(t,y) and
substituting R,[P] = U(t 'y) e U(ty), 1=23,.., we arrive at the following

llmCS

cquations for the moments of any order of the solution to Eq. (2.1):

{ {
= Y AT, + ) #TIY,
i=1 i=1

(2.14)

d I'? = ZJJ‘F”+aZZ BT , — 2vly,

d 1=1
and corresponding initial conditions

F‘(O) — UO D ... ® UO’

[ times

Irr0) =al, e...e Uy,

{ times

where the moments arc defined as

r(=<U(ty) ¢..e Ulty)>

[ times
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I'i(t) = <P(t,y)U(ty) & ...0 U(t,y)>,

{ times

and the used operators /' and %' are acting on the simple tensors of the form

I''=7v0..0Y,

in the following way:

AT, = V1i® - @HY; ® ... @Y,
BTl =7v8..¢ HY; &...07,

3. The string equation

As an tlustrative application of the obtained moment equations we will
deal with the problem of the moment stability of a dynamical system. Consider

the equation of vibrations of a string in a medium with the viscosity fluctuating
according to the telegraph process

0°u B 0°u

or2 ~ “axt

3
() a?’ t€(0,T], xe[0,L]

with the following initial and boundary conditions:

u(0,x) = uy(x),

ou
(3.2) 3 (0,x) = vy(x)

u(t,0) = u(t,L) = 0,

where Lis the length of the string and p(t,y) is the stochastic process of the
tollowing form:

(3.3) pity) = b[1l —ay(—1)¥*"],  0<a, <1,

and N(t,y) 1s the Poisson point process with intensity v.
Substituting the velocity v = d,/0, into Egs. (3.1 ), we arrive at the system of
two evolutionary differential equations of the form

ou

¢

cv G
¢! {
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where

(3.5) P(ty) = a(— D"V

is the telegraphic stochastic process defined in Eq. (2.2), a = ba,, ¢ and b are
arbitrary positive constants.
The system of evolution equations (3.4) written in the abstract form 1s as

follows:

dU(t,
ﬂ_d(} YD _ s Uty) + P(ty) BUY),
(3.6)
U(an) — UO’

where

0 , 1 0,0

'_gf i 62 ’ ‘@
e L b
0x> 0, 1

In the above problem the Hilbert space where the operators o/ and # are
acting is X = H{(0,L) x I*(0,L). Here H{(0,L) is the Sobolev space of square
integrable functions possessing square-integrable derivatives, with the support
contained within the interval (0,L), and I*(0,L) is the space of square-integrable
functions on the same interval.

In order to apply our generalized moment equations (2.14) to the derivation
of equations for the mean value and the covariance of the solution of Eq. (3.1),
we introduce the following denotations for the required moments:

N'=<u>, I’ =<v> DI’=<pu>, TI*=<pv>,
and

't = <uu>, ! = <vu>, TI?*=<ww>,

re‘tt = <puu>, re2t = <pou>, TI°%% = <pww>.

The obtained equations for the mean value are

oI =r?

0,I* =co*T'' — bI'* + I'%,

6,I° = —2I + I'%,

0.I'* = co*I'? — v+ b)Ir'* + a*rI-,

(3.7)
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with the following initial conditions:

I''(0) = u,, I'*(0) = v,

Ir'“(0) = av,,

The equations for the second order moments are the following:

o,r''t = ri2 4 r2t

0,I''* = cosrt* —pri? 4 r2z 4 roz

0,I'*' = coiIr''t — br2! 4+ r2? 4 ro2,

0,I'** = c0iI'? + cd3Ir*' — 2br?? 4 2r°22
0, = o' 4 ro2t — ayrott
0,I°12 = cp2 Ot — (v 4 b)I°12 4 [022 4 42112
0,T%%" = It — (2v + b)I°?* 4 122 4 g2r2t,
0,I°%% = cdiI°1% 4 03I — 2(v + b)I°22 4 242122,

(3.8)

def 6 def 8

51: 62:'

0X, 0x,

along with the deterministic initial conditions
r'0) = u(x)u(x;,),  I'0)
r4(0) = v(x;)u(x,), I'*(0) = v(x;)v(x,),

Ir°*0) = au(xyu(x,), I'°*%0) = au(x,)v(x,),
r°*4(0) = av(x)u(x,), I'°*%(0) = av(x,)v(x,).

Equations (3.7) and (3.8) can be easily used for the investigation of the mean
and the mean-square stability of the solution of the string equation (3.1). In the
considered example the moment stability is the (Lyapunov) stability of the
deterministic systems of partial differential equations (3.7) and (3.8). As

appropriate Lyapunov functionals we use the squared norm in, respectively,
the spaces X xX and (X xX)e(X xX) for the mean and the mean-stability.
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Such functionals are very natural; they guarantee that energy carried by our
dynamical system (the string) remains bounded.

At the beginning consider Eq. (3.7) for the mean value. In this case the
Lyapunov functional is defined as

(3.9) V=|,||?=§[c@I'')? + (I'*)? + c(@r'’)* + (I'*)*] dx.
Differentiating the functional V along the trajectories of Eq. (3.7), we obtain

(3.10)  V ={[2cor*art + 2r2r2+ 2cor*er? + 2r+r+]dx
= ([2cor*or? + 2r*co*r* — br* + r# + 2coro(I* — 2vl)
+ 2I*%(cd*I® — (v + b)Ir'* + a*I*] dx
= [[ —4vce(@®)? + 2(1 + a®)['2r* — 2b(I'%)? — 22v + b)YI'™)?] dx.

From Eq. (3.10) we have that the solution of Eq. (3.7) 1s stable if the matrix
2b, —(1+4a?
| |
—(14a%), 2(2v+Db)_

is positive definite. Therefore the condition of the mean stability of the solution
of Eq. (3.1) 1s

(3.11) 4b(2v + b) > (1 +a?)?,

or, after substituting the definition of a from Eq. (3.5),
(3.12) 4b(2v+b) > (1 4+ b*a2)>.

To investigate the stability of Eq. (3.8), we choose as the Lyapunov
functional the following expression:

(3.13)  V={{[c*0,8,"")* + c(0,I'%)?* + c(0,I'*")* + (I'*?)?
+ ¢(0,0,7°1)? + (8,13 + (0,I'°%)* + (I'°%%)* ] dx,dx,.
Differentiating Eq. (3.13) along trajectories of the equation, we have

(3.14) V' =2[[[c?0,0,I'"'8,0,I'** + cd,I''?3,I'*? + cd,I'**d,I'*!

+ rzszzz 4 Czalazroualazfon + 061F°1261f012 4 c81F°2151f°21
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(3.14) + I°221°22] dx dx, = 2 [[ [ —be(d,I'1?)? + cd, 125, 012

[cont. ]
—bc(0,I'*Y)? + ¢d,I'?'0,I'°?! — 2b(I'%%)* 4 2r22022
— 2vc*(0,0,I°")? — (2v+b)c(9,I'°12)? 4+ a*cd, I'?9,I°12
+ a®cd,'*'0,r°* — 2(v+ bYI°%%)* + 2a2I°22122 _ 2y + b)e(0,I°*1)* ] dx,dx,.
The mean-square stability of Eq. (3.1) is guaranteed if the matrices constituting
in Eq. (3.14) the quadratic forms with respect to the moments and the spatial

derivatives of the moments, respectively, are negative definite.
The appropriate matrices of the quadratic forms are

\ [ —2b, (1+4a?
- l(1+a?), -—-2(v+b):|’

—2bc 0 c(1+ a®) 0
R— 0 —2bc 0 c(1+a?)
| c(1+a? 0 —2(2v+b)c 0
0 c(1+a?) 0 —2(2v+ b)c

The nontrivial inequalities obtained as the conditions of the stability are: from
matrix A:

4b(v+ b) > (1 +a?)?,
and, from matrix B:
4b(2v+ b) > (1 + a?)?.

Finally, since we consider only positive values of the parameters, the
condition of mean-square stability is

(3.16) 4b(v+ b) > (1+a®)?,
or, with the use of Eq. (3.5)

(3.17)

4b(v+b) > (1 +a2b?)?.

In this section we have used moment equations for studying the stability of
the solution to the partial differential equation. In practical problems of
mechanics the evolution of systems is very often investigated using the modal
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approach. Such a treatment leads from partial to ordinary differential
equations and, usually in stability problems, yields conditions easier to derive.

The considered case, which is relatively simple in analysis, gives us the
opportunity to compare the results obtained using both methods. The

following section is devoted to the modal treatment of our string equation.

4. String equation. Modal approach

Assume that the solution of the system (3.4) can be expanded into the series
of the form

u(tx) =), y,(t) sin n?,
(41) n:l
wWtx) = ¥ z(t) sin —.
n=1 L

Substituting Eq. (4.1) into Eq. (3.4) results in the sequence of equations of
motion for all the modes

dy,(t)

dt - = Zn(t)'
(4.2) dz () 22,
: c;t == ya(t) — bz, (t) + p(t)z,(t),

= 1,2,.., and the initial conditions

n

. nnx
.Vn(o) — .‘.uO(x) S L dx — ynOr

z (0) = fv,(x) sin mIer dx = zp.

The systems of ordinary differential equations (4.2) written down 1n abstract
form (2.1) are the following:

d
0 Yo=Y+ pOBY,,

)fn(o) — Y;IO: n = 13 2) 33"'7

(4.3)

where o/, n=1,2,.. and # are the following matrices:



154 Z. KOTULSKI

0, |
(4.4) n‘n?c ’
— — b
and

x' _ [ n}’ Y,,o _ [yrszI-
Z, Zn0

To study the approximate conditions of the moment stability of the
solution of Eq. (3.1), we consider the moments of the modes. Equations for the

mean values of the solutions to Eq. (4.3) (also possible to obtain with the use of
Eq. (2.7)) are

<Y, > =<z,>,
_ n’n?c
<Z,> = —b<z > — 72 <Y.> + <pz,>,
(4.5)
<pyn> — "'-2V<pyn> + <<pz,>,
2_2
, — b n°mec , )
<pZ,> = —0<pz,> —- 72 <PY,> — 2v<pz,> +a*<z,>,

with the initial conditions

<Y,>(0) = y,o0, <z,>(0) = z,,

<pyn>(0) = AYno» <p2n>(0) = AZyp,

where the angle bracket denotes the mathematical expectation of a random

variable. The characteristic polynomial of the matrix U of the system
(4.5) 1s

(4.6) Det(U — A1) = A% + aA® + a32%? + a" A + a”,

where

2

n‘n’c n‘m’c
ap = 12 (2 v(2v +b) + - L2>'

(4.7)

22
ai = (2v + b) (2vb + 2-”17; C) — 2va?,
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4.17 214
Ecm]) a% = 2v(2v+ b) + (4v+ b)b + 22;~E — a’,

aiy = 2(2v + b).

Applying the Routh-Hurvitz criterion (cf. [2]) to Eqgs. (4.5), we have that
for n = 1,2, ... their solutions are stable if simultaneously three conditions are
satisfied:

(4.8) a">0, W45 =adld}— apai>0, W35 =W35aj— (a})*>0.

Hence we say that the solution of our string equation is stable in the mean (in
k-th approximation) if the equations for the mean values of modes (4.5) are
stable for n = 1,2,... k. This means in fact that the approximated solution
of Eq. (3.1) (the truncated series (4.1)) is stable in the mean.

To investigate mean-square stability, we should consider the mutual
moments of the solutions of Eq. (4.2) for arbitrary fixed n and m (the pairs
(nm)n=1,2,..k, m=1,2,..., k), because the second moment of the truncated
series (4.1) contains the terms <y,¥.>, <VuZm>, <ZpZ,>, nm=12,., k.
The adequate moment equations are

<ynym> — <ynzm> + <Znym> ’

2.2
memn-c
<y, z,> = — 72 <y y,> —b<y,z,> + <z,2,> + <Py, z,>.
n’mn*c
<z Ym> =~ <y y,> —b<z,y,> + <z,2,> + <pz,¥,>,
n’n’c m*n’c
<Zpy'Im> = T <y z,> — 7 <z,y,> —2b<z,z,>
+ 2<pz,z,,>,
(4.9)
<PY, Ym> = — 2L DPY V> + <DPYuZm™> + <DPZ,Vm>>
, m?ntc
<pyn.zm> — d <ynzm> - LZ <pynym> _(2v+b)<pynzm>
+ <pz,z, >,
, n‘n’c
<Pz Ym> =G <L Y>> ~ p <PYa¥m> T 2v+b)<pz,y,>
+ <pz,z,>,
, n*néc m2m?c
<Pz,Z,> =20°<ZpZp> — e <PYnIm> — 2 <PZpYm>

—2(v+ b)<pz,z,>.
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Applying the Routh—-Hurvitz criterion of stability of the system of equations
(4.9) for all pairs (n,m) such that njm < k, we obtain the analytical conditions on
the parameters of Eq. (3.1) which guarantee the stability of its solution. Of
course, they are too involved to express them in an explicit form. The results
will be presented graphically in Sect. 5 for some fixed parameters. The
characteristic polynomial of the matrix of the system (4.9), the coefficients of
which are required in the Routh—-Hurvitz criterion, is given in the Appendix.

>. Numerical example

Consider the string equation (3.1) with the initial condition (3.2) and
telegraph parametric excitation (3.3) and the corresponding moment equations
with the following parameters fixed: ¢ = 1.0, L= 1.0, a, =0.1. For such
constants the areas of mean and mean-square stability for the exact criterion
introduced in Sect. 3 are shown in the b-v-system of coordinates (F 1g.1).

Mean square stability regron
|

N — -

Stability in the
—/7°€an region

0.2 - -
01 —————
L !
. . '
J 01 02 03 04 " 05

) %

FiG. 1 Infinite-dimensional criterion of the mean and mean-square stability; L= 1,¢ = 1, a, = 0.1.

It 1s seen that the region of mean-square stability is contained within the region

of the mean one. The dependence of the stability conditions on a,, is relatively
simple (see the inequalities (3.12) and (3.17)). For b =0 the string is always
unstable. The conditions of stability are independent of L and c.

In the case of the modal approach introduced in Sect. 4 the situation is
much more complicated. The conditions of stability depend on th~ paramelers
of the string equation ¢, I, a, and on the rang ol approximation in a very
involved way.

Consider again our numerical exampie, Substituting the given values L= 1
and ¢ =1, we have the mean stability of equations for each mode for all a,, b
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and v (except of b=v=0). The modal equations loose the stability if b 1s
sufficiently small and ¢/I* tends to zero (c is small and L 1s big). We conclude
that in the case of stability in the mean the modal approach and the exact

criterion give quite different results.
When mean-square stability is considered, we have a more interesting

situation. In Fig. 2 the regions of the mean-square stability of the vibrating

05 — - T T |
b {
‘ 25
04 |- +-- —-— l, 1
| N0
T _
03— - i ) A | .
i .
- !

F1G6. 2. Regions of mean-square stability for 1, 2, 5, 10, 15, 20, 25 modes; L=1, ¢ =1, a4 =0.1.

string for n = 1,2,5,10,15,20,25 modes arc shown. Taking into account only
the first mode gives a result far from the one obtained in the infinite-di-
mensional method (see Fig. 1). It is scen that for n tending to 20 the bounds
of the stability regions concentrate near the curve obtained with the use of the
infinite-dimensional criterion; next they diverge and give the stability regions in
the b-v-system of coordinates more restrictive than in the exact case. As
a conclusion we can say that the first mode approximation gives In our
cxample some information about the instability of the string, but 1t may
happen that taking too many modes we loose information about mnstability
and do not gain certainty about stability.

Let us remark that our conclusion differs from the classicai resuits of
Lyapunov stability of the string with deterministic paramecters, where the
positivity of the damping coeflicicut & 15 the condition ol the asympiotic
stability. In the considered approach the solution not only tends ta zero {with

its temporal derivative), but also makes the luctuating parameter Py (the
mixed moments) tend to zcro. The obtamecd conditicas guaranteo that

a numerical procedure for solving the exact set of the moment ¢quations
converge for thc long period of time.
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6. Relation to white-noise coellicient

A% 1t B 3een ftom tq. 2.3), the correlation time ol the random telegraph
process 1s 1/2v and it tends to zero as the intensity v in the Poisson stream of
puises tends to infinity. Therefore we can say that the process P(t,y) tends to
a white-noise when v— oo but a?/v remains bounded, and, what follows, for
very large v the telegraph process could be approximated by a white-noisc onc
with the “equivalent” intensity 7 = a?/v (cf [6]).

Let us assume that the process P(t,y) in Egs. (3.4) is replaced by
a white-noise with intensity / = a?/v. The equations for the two lowest
crder moments of the solution of such a modified equation are (cl. [8]) the
following:

oI =r>=,
(6.1) (
atfzzcﬁzflmbfz+ilfz,
and
o.r't — riz 4 a1
4 ’
|
0,I'*=co’I'' —bI'* 4+ r22 4 , 112
(6.2)

1
atrzl — Cafrll . bFZI 4 r22 __I___z__I 1"'21,

0,[** = cdiI'"'? + c02I'*' —2bI'?2 4 2IT?2.

(The denotations in Eqs. (6.1) and (6.2) are the same as in kqgs. (3.7)
and (3.8)).
The stability conditions obtained from Eqgs. (6.1) and (6.2) (in a way

analogous to that in Sect 3) for the mean and the mecan-square are, res-
pectively,

p)
(6.3) “v < 2b
and

2
(64) av“ < b,

what, with the use of Eq. (3.5), gives
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v ey S —

(6.5) az < 2v
and
(6.6) az <v.

Using the modal approach we obtain the following equations for the
moments (see the series (4.1)) (cf. [1]):

<y> = <z,>,

n

(6.7)

ntr?c |

12 <y,> + “2'I<Zn>,

<z,>

—b<z > —

Y V> = <Vplm” + <z, y,,>,

2. 2
mem-c
<Vn'Zm> = <y.y.>—b<y,z, >+ <z,z,>
1
+ i )| <y,z,>,
(6.8) n*mn*c
<Zp)'Vm=> = — Lfn <Vn¥Vm-~ '—b<Z,,ym> + <Zz,Z,>
1
+ —2" I<z,,ym> ,
nznzc mznzc
<z, 'Zp> =T T3 <VnZm> ~ 2 <z y,> —2b<z,z,>

+ 2I<pz,z,>.

As it is seen, the condition of stability of Egs. (6.7) for n = 1,2,... 1S

1
(6.9) b — EI > 0,
Oor
2
(6.10) f“v <2b,

and it is independent of n.
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From the inequalitics (6.3) and (6.10) we have that the exact and

approximated conditions of mean stability in the case of the white-noise
process in the parameter are equivalent.

T'he condition of mean-square stability in the case of the modal approach
is much more involved. From the Routh-Hurvitz criterion we have that the

system of equations (6.8) is stable if simultaneously W, Wi, W, and W, are
positive, where these quantities in terms of the parameters of the “equivalent”

| | / , n*n’c , mfmic
white-noise are { c* = - 5, €5 = )
\ n | m LZ

b2
Wo =(c2—c?)? + (¢ + c2)(agb* — 3azvb + 2v?) 1
"V""(2+ 2)(4 ____3 2b)§+(___ 6b3 54b2 822b 43 b3
- Cn Cm V aO v aO + aov — aov + 4v )2v3,
2y (b 2 2 4y D
W, :(4v-—3a0b)(c + 6c°c” + c*) -
n m n m V
b3
+ (¢ +¢2)(—19alh> + 88a_vb* —132a2v?b + 64v?) 13
, b>
+(=9a,°b> + 73al vb* — 232av*b> + 360a’v’ h* — 272a2v* b + 80v°) Q5
bz
Wy =4cc’(9ah® — 24a’vh + 16v?) 2
B4

+ (C:‘ + Ci)(45 ag h4 _ 264agvb3 1 572agv2 h2 _ 544agv3b + 1924 p
+(25a57b% —235a,°vb* + 906alv? b* — 1832a8v3b® + 2048 a*v* b’

b6
— 1200av> b + 288v°) -

Syo

For the parameters taken in the numerical example (a, = 0.1, L= 1, ¢ = 1),
we always have the mean-square stability of each mode except b =0
and v=0. This fact shows that approximation of the telegraph process
with white noise requires great caution. It may happen that the result
of such a substitution gives some unexpected result - like here the
stability of the originally unstable system. This means in fact that even
if the telegraph process in the limit case gives white noise, its nonlinear
transformation (generated by the string equation) might not converge to the
analogous nonlinear transformation of white-noise. Therefore such an ap-

proximation could be performed only within the general problem where it is
used.
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Appendix
The characteristic polynomial of the matrix of the system of Egs. (4.9) 1s
Det(M — AId) = A% 4 a, A7 + agA® + asd’® + a,A* + azd° + a,4% +a, 4 + a,,

| . ., n‘n‘c m2n?c
where its coefficients are [¢f=-—5—, ¢ = 5 |
" L m L

a, = 8(v+b),
as =24v? + 26b* + 56vb + 4(c? + c2) — 6a”,
a, = 32v3 + 144v2b + 156vb? + 44b> + 24(v + b)(c? + c2) — 4a*(9v + Th),
a, = 9a* —2a?(36v* + T0vb + 25b + 4(c? + c2)) + 2(c; — c?)?
+4(c?+c2)* +(c2 + c2)(56v* + 120vb + 56 h?)
+ 16v* + 160v3b + 332vZb? + 220vb> + 41b°,
a,=a*(36v+ 20b) — a*(32(v + b)(c? +c2) + (48v3 +- 224v2b + 200vb*?
+40b%)) + (24(c* + ¢ )+ 16¢c c ) (v + b) + (¢ +c2)(64 (v’ + b)
+ 224vb(v + b)) + 64v*b + 288v3 b3 + 368v2b> + 164vb* + 20b°,
a,= —4a®+a*(4(c’ + c?) + 36v2 + 60vb + 12b%) — a*(—2(c® + ¢)
+ 36¢2c2 + (c2 + c2)(56v* + 96vb + 40b2) 4+ 112v3h + 232v*b?
£ 120vh3 + 126%) + 4(c® + ¢ — e — c2c*) + (c* + c*)(40?
+72vb + 34b%) + c?c2(—16v* + 48vb + 28b%) + (c? 4 c2)(32v*
+ 192v3b + 320v2h?% + 192vh> + 36b%) 4 80v*h* + 224v°b°
+ 196v2b* + 60vb> + 4b°,
a, = —8a®v+a*(8(c?+c2)(v+b)+ 40v2b + 24vb?) — a*(4c* + ¢ )(b — V)
+ c2c2(72v + 56b) + (¢ 4 c2)(48v” + 112v2bh + 80vb? 4 16b°)
+ 64v3b + 80v2b® + 24vb*) + 8(c® + ¢ —c'c? — c2c*)(v + b)
+(c? 4+ c2)(32v7 + 80v2b + 68vb? + 20b%) + c2c2(—64v° — 32v4b
+ 56vb? + 24b%) + (c? + ¢2)(64v*b + 192v3b2 + 192v2b> + T2vb*
+ 855) + 32v*b3 + 64v3b* + 40v2h> + 8vb°,
ag=a*(#c’+c2)* +(c; + c2)(16v* + 8vb)) — a*(4(— c®—c®+cict
+ ety 4 (e + e ) (- 16v* + 4vb + 8b%) + c2c2(32v* + 56vb + 16b7)
+(c* +c2)(48v b + 56v2b* + 16vb?)) 4 (¢’ + ¢ +6¢c” — 4coc® — 4c2c)
+ (cftS +- c; — Cji;‘i — c:i’“'c;)(sz + 8vb + 4b%) + (c: - c";)(16v4 + 32v°b
+ 36v2h% + 20vb> + 4b™) — c2c2(32v* + 64v b + 8vZh? — 24vb> — 8b7)
+(c2 + c2)(32v*h* + 64v3b> + 40vZb* + 8vb>).
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