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ABSTRACT 

Graphs may be used for the design of stream 
ciphers, block ciphers or public-key ciphers. This 
paper presents a method of using paths between a 
pair of graph vertice for designing effective 
polyalphabetic substitution ciphers. A similar 
method can be developed basing on cut-sets or 
spanning trees. The period of alphabet 
changeovers is equal to the number of paths 
between a pair of selected vertices on the graph, 
the number of spanning trees, cut-sets  or is a 
multiple of these values. 
The results of statistical tests and an assessment of 
the cryptographic strength of these ciphers are 
presented. Also proposed are modifications of 
these ciphers based on modifying the labels of 
vertices or edges (arcs) of the graph. These 
modifications influence the statistical properties 
and period lengths. 

1. INTRODUCTION 

A significant demand exists for new 
non-standard cryptographic methods (see, e.g., 
[1], [2]). In addition to traditionally employed 
for this purpose branches of mathematics such 
as algebra, Boolean function theory, 
information and coding theory [3] and classical 
probability theory, other branches, particularly 
discrete mathematics and chaos theory [4] may 
also be used. In discrete mathematics, graph 
theory appears to be a good source of non-
standard methods. Graph theory provides 
examples of problems characterized by large 

computational complexity [5]. Problems such 
as the search for the shortest (weighted) 
Hamiltonian cycle are known to be NP-
complete. Also, the number of various 
structures which may be created on a given 
graph, e.g. the number of paths or the number 
of cut sets  between a pair of graph vertices or 
the number of spanning  trees grows much 
faster than exponentially [6]. This may form a 
good foundation for the design of efficient and 
secure ciphers, more secure than the ciphers 
proposed in the past.  

Graphs may be used for the design of 
stream ciphers, block ciphers or public-key 
ciphers [7]. This paper presents a method of 
using paths between a pair of graph vertices 
and spanning trees for designing effective 
polyalphabetic substitution ciphers. The period 
of alphabet changeovers is equal to the number 
of paths between a pair of selected vertices on 
the graph, the number of spanning trees or is a 
multiple of these values.  

The results of statistical tests and an 
assessment of the cryptographic strength of 
these ciphers are presented. Also proposed are 
modifications of these ciphers based on 
modifying the labels of vertices or edges (arcs) 
of the graph. These modifications influence the 
statistical properties and period lengths. 

The statistical tests carried out by the 
authors show that promising results may be 
obtained already for relatively small graph 
sizes, e.g., 24 vertices. This translates to a 



large efficiency of ciphers designed on the 
basis of graph theory.  

Graphs can be also used for other 
cryptographic algorithms like: secret sharing, 
and authentication of streams of bits. In the 
paper we present an idea of the graph-based 
secret sharing scheme. We indicate the 
possibility of application of the graphs to some 
simple authentication method which makes 
possible to identify the origin and to confirm 
contents of the message.  

Before we present the examples of the 
graph-based algorithms applied to all the listed 
cryptographic tools, we introduce the 
fundamental facts concerning graphs.  

2. MATHEMATICAL NOTATION  

As we mentioned, graphs, as 
mathematically complicated objects, can be 
good candidates for coding cryptographic 
elements, especially secret keys. However, to 
apply a certain graph for cryptographic 
purpose we must know if it is connective and 
its structure is rich enough to guarantee 
security of the graph-based cryptosystem. In 
this section we present some theoretical 
results, that later are used for in construction of 
algorithms. The goal is to make them 
sufficiently general in order to provide 
theoretical foundation for various cryptological 
applications. Hence once theorems and proofs 
are stated, remarks are provided showing 
options for possible modifications.  

We start the presentation of results 
from introduction of basic notations. Let G be 
the graph with e edges and v vertices. Then we 
have:  
X is the set of vertices of the graph G,  

{ }vxxxX ,...,, 21= ;  
U is the set of edges of the graph G;  

XXU ×⊂ , { }euuuU ,...,, 21= ;  
),( yxu  is the edge linking the vertices x and y 

and ),( yxu�  is the directed edge starting at x 
and ending at y; 

Sx  is a tagged vertex, called the initial one;  
Tx  is another tagged vertex, called the final 

one;  
µ is the path, that is the sequence of vertices, 
such that every neighbors have an edge linking 

them (alternatively: a sequences of edges such 
that every neighbors have a common vertex);  
Γ is a function mapping the set of vertices to 
the set of subsets of vertices,  

XX 2: →Γ  
in such a way, that  

{ }UyxuXyx ∈∈=Γ ),(:)( , 
)(xΓ  is the set of vertices following the vertex 

x (for the non-directed graphs: the set of 
neighbors of the vertex x);  

1−Γ  is the function inverse to Γ;  
)(1 x−Γ  is the set of vertices preceding the 

vertex x (for the non-directed graphs: 
)()(1 xx Γ=Γ− );  

)(vK  is the complete graph with v vertices;  
)deg(x  denotes the degree of the vertex x and 

)(GDEG  is the degree of the graph G (the 
sum of degrees of all vertices in the graph G).  
We introduce the vector WAY as a register of 
variable length, where we store the sequence 
of vertices of the path linking the initial vertex 

Sx  and the final vertex Tx .  
 The conditions that should be satisfied 
by the graph applied in our cryptosystem are 
presented in the following series of statements.  
 
Theorem 1 
Graph G with v vertices is connective if 

1
2

)2)(1( +−−≥ vve  

 
Outline of proof: 
One shows for the graph G with v vertices: 
a. The existence of a non-connective graph 

with 
2

)2)(1( −−= vve  edges; 

b. The property that graph with 

1
2

)2)(1( +−−= vve  edges cannot be 

partitioned into disjoined (non-connective) 
subgraphs. 

 
Corollary 1.1 
Maximal edges difference between )(vK  and 
the graph satisfying conditions of Theorem 1 is 

2−v   
 

 
 



Corollary 1.2  

In the graph G, 1
2

)2)(1( +−−≥ vve  implies 

)(432 GDEGvv ≤+−  
 
Theorem 2 
Graph G, such that )(432 GDEGvv ≤+− , 
will have minimum 2−v  vertices of degree at 
least 3−v .  
 
Corollary 2.1  
The graph G, such that )(432 GDEGvv ≤+− , 
will have maximum 2 vertices of degree lower 
than 3−v .  
 
Corollary 2.2  
In the graph G satisfying the condition 

)(432 GDEGvv ≤+− , such that, every vertex 
x of 3)deg( −≥ vx  will be connected with 
minimum 5−v  vertices of 3)deg( −≥ vx .  
 
Theorem 3 
In any graph maximal number of vertices of 

1deg −= v  is limited to the lowest degree of 
the vertex in the given graph.  
 
Corollary 2.3  
Graph G with v vertices and 

)(432 GDEGvv ≤+−  can have only one 
vertex of degree 1. Moreover:  
a. Such a vertex can be connected only with 

the vertex of degree 1−v  
b. Subgraph G’ created by removing the 

vertex of degree 1 from graph G will be 
complete.  

Outline of proof: 
Corollary 2.3 results from Theorem 3, some 
combinatorial reasoning and a simple 
computation. 
 
Lemma 1 
In the graph G, such that 

)(432 GDEGvv ≤+− , any two vertices 
2,1, =ixi  of degree 3)deg( −≥ vxi  can be 

connected by a path of the length of 2 edges. 
Outline of proof: 
One should consider three cases, where the 
graph G has:  

a. v vertices, vixi ,...,2,1, = , with 
3)deg( −≥ vxi ,  

b. one vertex 1x  with 3)deg( 1 −< vx  and 
1−v  vertices, vixi ,...,3,2, = , with 

3)deg( −≥ vxi ,  
c. two vertices, 21, xx  of 

3)deg(),deg( 21 −< vxx  and 2−v  vertices, 
vixi ,...,4,3, = , with 3)deg( −≥ vxi . 

Each case should be proven separately using 
theorems stated above, combinatorial 
reasoning and simple computation.  
 
Lemma 2 
In the graph G such, that 

)(432 GDEGvv ≤+− , any two vertices can 
be connected by the path of the length of 3 
edges. 
Outline of proof: 
Assume, Sx  and Tx  are the starting and the 
ending vertex of the path. The proof should be 
made for three separate cases:  
a. both vertices Sx  and Tx  have 3deg −≥ v ,  
b. one vertex is with 3deg −< v  another 

with 3deg −≥ v ,  
c. both vertices have 3deg −< v .  

Each case should be proven separately using 
theorems stated above and lemma 1, 
combinatorial reasoning and simple 
computation. 
 
Theorem 4  
In the graph G with v vertices and satisfying 
the condition )(432 GDEGvv ≤+− , the 
minimal number )( SxN  of paths such that: 
a. Sx  is the starting point for the path; 
b. n is the number of edges in the path and 

32 −<< vn ; 
c. each edge is used only once in the path; 
d. each vertex is used only once in the path  
can be calculated from the formula  

.
)!3(

)!5()5(
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Outline of proof: 
Because theorem states “minimal number of 



paths”, the worst case scenario (conditions for 
the lowest numbers of path) should be found. 
Then it should be proven using theorems stated 
above and combinatorial reasoning. 
 
Remarks: 
1. Theorem and proof were made for 

theoretical worst case scenario, careful 
analysis shows that such strict conditions 
are mutually exclusive, hence cannot hold 
both. Further reasoning yields:  

∏
−

=

−−−=
3

0
)5()3()(

n

c

S cvvxN  

2. Eliminating condition d from Theorem 4 
can significantly increase N. In such cases 
it is also possible to create path with length 

vn >  (n can even reach magnitude 
2

2v ), 

further increasing N. 
 
Theorem 5 
In the graph G, with v vertices and satisfying 
the condition )(432 GDEGvv ≤+− , the 
minimal number ),,( mxxN TS  of paths such 
that: 
 
a. Sx  is the starting point and Tx  is ending 

point of the path;  
b. m is a natural number and the path length 

is a number form the interval )2,( +mm ; 
c. each edge is used only once in the path; 
d. each vertex is used only once in the path, 

with the exception for last two vertices x’ 
and x’’ preceding Tx , x’ and x’’ can come 
from vertices previously visited, 

 
can be calculated according to  

),4)...(7)(6(
))2(6)...(7)(6(),,(

nvvv
nvvvmxxN TS

−−−−=
=−−−−−=

 
where 1−= mn  and 42 −≤≤ vn , provided 
that at least one such a path can be found, or  

0),,( =mxxN TS   
otherwise. 
Outline of proof:  
Proof is based on the assumption that path can 
be constructed. Then, it is shown that certain 
shorter paths can be constructed and the 
number of them is given by Theorem 4. 

Finally, Lemmas 1, 2 together with some 
previous results (especially, corollaries to 
Theorem 2) show that the shorter path can be 
linked with Tx  in a fixed number of steps. 
Such composed paths will fulfill conditions of 
Theorem 5 and their minimal number can be 
provided. 
 
Remark: 
If some assumptions are lifted (say b. and/or 
d.) similar results can be found. In such cases 
it may be required to introduce additional 
assumptions about the path (specially its 
length).  

3. GRAPH-BASED BLOCK CIPHER  

The proposed algorithm uses paths 
between two vertices of a graph. To construct 
the series of paths we apply the table of 
preferences of visiting the vertices of the 
graph. For every vertex Xx ∈ , the table of 
preferences is a list of numbers of the vertices 

Xxi ∈  such that Uxxu i ∈),(  giving the 
sequence of visiting the points ix . The cipher 
graph G must be defined in such a way, that it 
is connective and it has exactly 256 edges; this 
means that it has at least 24 vertices (We bear 
in mind the conclusion of Theorem 1). Next, 
we assign to all the edges 256,...,2,1, =ju j , in 
a random way, the binary numbers of the range 

255...0 , called the labels 256,...,2,1, =jk j  
(assuming that all the labels are different). To 
obtain the working path for the encryption the 
actual character, one performs an algorithm of 
finding paths between two vertices, Sx  and 

Tx ; the numbers of the vertices belonging to 
the generated path are written, in sequence, in 
the vector WAY; this vector is returned always 
after application of the procedure of searching 
the next path between Sx  and Tx . Finally, 

11
,...,, iii uuu

rr −
 are the edges belonging to the 

path linking Sx  and Tx , written in the inverse 
order.  

To complete the algorithm of 
encryption the characters, we define a 
cryptographically strong bijective map 
(permutation) Π ,  

 55}{0,1,...,2  55}{0,1,...,2 : →Π ,  



and the cyclic shift to the left with b bits 
(denoted by the symbol <<< b).  

The input of the cipher is the sequence 
of 8-bit characters nzzz ,...,, 21 . The other parts 
of the cryptosystem immediate: the table of 
preferences, the set of labels 256,...,2,1, =jk j , 
the bijective function Π , and the structure of 
the graph G can be considered as elements of 
the secret key. The paths needed for encryption 
of each character can be generated according 
to algorithms given in [8], [9], [10]. The action 
of the algorithm can be written symbolically in 
the following way.  
 
Algorithm of encryption:  
Input:  

nzzz ,...,, 21 , the characters that should be 
encrypted;  

Sx , the initial vertex of the path; 
Tx , the final vertex of the path;  

r, the length of the path beeing analyzed; 
the table of preferences of the visited vertices. 
For i := 1 to n do  
begin 
 temp := zi 
 Generate next path linking xS and xT; 
 For j:=r downto 1 do begin  

temp := temp XOR jk  
temp := temp <<< 1 
temp := (temp)Π  

 End { For j } 
 iw  := temp;  
 Return encrypted character iw ; 
End { For i} 
Output: 

nwww ,...,, 21 , the encrypted characters.  
 The above algorithm of encryption is 
very simple. It has been implemented in 
PASCAL and C++. Both versions are very 
effective in time and the obtained ciphertexts 
satisfy the required statistical tests (see [11]).  

4. GENERAL FORMULATION OF A 
SYMMETRIC CIPHER  

The block cipher (alternatively: the 
pseudo-random function, the cryptographic 
primitive) can be written in the form of the 
following abstract two-argument map  

CPKF →×:(.,.) , 
where  
K is the secret key space,  

{ }lP 1,0=  is the plaintext (domain) space,  
{ }LC 1,0=  is the ciphertext space.  

If we fix the secret key k, substitute it as the 
first argument of the function (.,.)F  and make 
the function transforming the sequence of 
plaintexts ,..., 21 pp  (second arguments) to 
ciphertexts ,..., 21 cc  (images of (.,.)F ), then 
we have the block cipher constructed.  

To apply the function (.,.)F  for 
random bits generation we must do three steps 
(all of them written symbolically) of the 
following algorithm.  
 
Algorithm 1.  
1) Kk R← , the random choice of the secret 
key k,  
2) Ps R← , the random choice of an initial 
condition (seed) s,  
3) CskFsFk ∈= ),(:)( , calculation of the 
sequence of bits as the value of the function F 
for chosen values k and s. 

To obtain more bits (a long stream of 
bits) we should go through the following 
algorithm.  
 
Algorithm 2.  
1) generate the sequence of secret keys 

,...,, 321 kkk , each according to Step 1 of 
Algorithm 1,  
2) generate the sequence of initial conditions  

...,, 321 sss , each according to Step 2 of 
Algorithm 1, 
3) for every pair of arguments, ii sk , , calculate 
the bits values according to Step 3 of 
Algorithm 1,  
4) construct the stream of bits G as:  

....||)(||)(||)( 321 321
sFsFsFG kkk= ,  

where ||  denotes the concatenation of strings.  
In a lot of widely used cryptosystems, 

the secret key space is the set of bit sequences, 
e.g., { }kK 1,0= . In this paper we propose to 
use, as the secret key space K, the set of graphs 
being subgraphs (with certain assumed 
properties) of our basic graph G. Moreover, for 



simplicity of calculations in this presentation, 
we assume 8== Ll , so the other spaces used 
in the cryptosystem are: { }81,0=P , { }81,0=C .  

The basic graph G of the cryptosystem 
has v vertices and e edges; each vertex and 
edge has its individual number. Every edge of 
the graph is associated with the label being 
some 8-bit number. Every vertex has its 
individual table of preferences which describes 
sequence of the neighbor vertices when the 
paths are constructed. The secret keys used in 
the cryptosystem are the subgraphs 

,...,2,1, =iki  generated from the basic graph G 
(e.g., the paths of certain length starting from a 
fixed vertex Sx ) according to some rule based 
on the tables of preferences associated to the 
vertices of the graph.  

A certain subgraph k, being the secret 
key in our cryptosystem, can be interpreted as 
a sequence of words (bytes, elements of the 
space { }81,0 , the labels associated to the edges 
of the subgraph) of random length r (the length 
is dependent on the way the path is generated) 
of the form  

( )rkkkk ,...,, 21= .  
Now, the cipher function (.,.)F  is the 

composition of r round operation ,.)( jkf , 
where in each round subkey (the label assigned 
to the graph edge) jk  of the key k  is applied 
and the initial plaintext 1ss =  is iterated 
according to  

,,...,2,1),,(1 rjskfs j
j

j ==+   
and the output of (.,.)F  is 1+= rsc . Every 
round should be built according to usual 
conditions to guarantee good cryptographic 
properties of (.,.)F  (see, e.g., [12]). In the 
particular case of our cipher we applied the 
XOR operation of the subkey jk  and the 
plaintext js  and permutation of bits in the 
resulting byte.  

The general scheme presented in this 
section is now implemented for certain graph 
scheme.  

5. STREAM CIPHER  

To apply the algorithm of the graph cipher 

applied for bits generation one must do the 
following.  
1) Construct the graph G with v vertices and e 

edges, 
2

)1(1
2

)2)(1( −≤≤+−− vvevv ;  

2) Assign the labels ],255,0[∈pk  
np ,...,2,1= , to the edges;  

3) Assign the tables of preferences to the 
vertices of the graph;  

4) Choose the seed ]255,0[∈s ;  
5) Choose the way to generate the keys 

),...,,( 21 r
iiii kkkk = , e.g.,  

a) choose the initial vertex Sx1  and 
generate a long path starting from it, 
using the tables of preferences (e.g., the 
length of the path is 18),  

b) choose all the 8 element subsets of the 
edges from this path and place their 
numbers to rows of the table in a 
natural order (leaving the order of 
edges governed by the path 
unchanged),  

c) change the order the rows of the matrix 
in a random way using the 
pseudorandom numbers generator for 
the indexes of rows, obtaining the keys 

( )821 ,...,, j
i

j
i

j
ii kkkk = , max,...,2,1 ii = ,  

6) Generate the sequence of bits according to: 

),1(||....

...||)2(||)1(||)()(

maxmax

321

−+

++=

isF

sFsFsFsG

ik

kkk
  

where addition of the function’s argument 
is modulo 82 .  

7) Select next path and repeat the procedure 
of points 5b, 5c, 6. After exploiting all the 
paths starting from the vertex Sx1 , choose 
other initial vertices S

ix , vi ,...,3,2=  and 
continue the procedure of points 5, 6.  

The final step of the procedure is statistical 
verification of the generated stream of bits.  

6. PUBLIC-KEY CRYPTOSYSTEM  

The scheme for public-key 
cryptosystem called “Polly Cracker” can be 
found in [7]. The general idea behind this 
scheme is to:  
a. construct polynomials over finite field F;  
b. take an arbitrary vector nFz ∈  as a private 



key and the subset { }iqB =  of the 
polynomials over finite field F, such that, 
for every i, 0)( =zqi , as a public-key; 

c. encrypt a message m obtaining cipher 
polynomial C using the public-key (a 
randomly chosen element generated by B); 

d. message m can be decrypted by finding the 
value of polynomial C at z.  

 
Having described public-key 

cryptosystem “Polly Cracker”, one can move 
to its special case based on graph 3-coloring. 
The problem of graph 3-coloring is NP class. 
To formulate the cryptosystem in terms of 
graph theory, we introduce:  
The public-key is the graph ),( UXG , that is 
the graph with the set of vertices X and the set 
of edges U; 
The private key is the proper 3-coloring of the 
graph using colors { }3,2,1∈c  and the map 
assigning cx �  for Xx ∈ , according to 
graph 3-coloring rule.  

Once graph 3-coloring is known, the 
base )(GBB =  is constructed. B is constructed 
from a polynomial derived from the variables 
{ }cxt , , and 321 BBBB ∪∪=  for 

{ }XxtttB xxx ∈−++= :13,2,1,1  
{ }{ }3,2,1,:,,2 ∈≤∈= dcXxttB dxcx  

{ }UyxuttB cycx ∈= ),(:,,3   
Then, the zero point of all polynomials from B 
can be computed by taking 1, =cxt , if the 
vertex x has color c, and 0 otherwise.  

Further references to this public key 
cryptosystem will be given in the secret 
sharing section.  

In a similar way other graph based 
“Polly Cracker” schemes can be constructed. 
One of the examples can be “perfect code” 
graph described in [7]. 

All these implementations, like 
described  above graph 3-coloring system, 
have the following features: 
a. knowing ),( UXG  is equivalent to 

knowing subset { }iqB =  of polynomials 
over finite field F; 

b. knowing NP class problem (resulting from 
graph structure) is equivalent to knowing 
vector nFz ∈ ; 

c. encryption process takes place like in 
general “Polly Cracker” description; 

d. to decrypt message m, value of received 
polynomial (derived from the graph 

),( UXG  structure) at z should be 
calculated. 

7. SECRET SHARING  

Graphs have applications to secret 
sharing on two levels: 
a. theoretical research into secret sharing 

problems;  
b. as structures used for secret sharing 

schemes.  
 

Concerning the first application, 
theoretical results will be presented, the most 
of them coming from [13]. Let us define the 
scheme of the method. Thus, let:  
P denotes the set of w participants of the 
secret, where w is an integer;   
K denotes the shared key;  
Γ is the access structure, that is, the set of 
subsets of P. The elements of Γ are those 
subsets of participants that should be able to 
compute the key. Such subsets in Γ are called 
authorized subsets;  
S is the set of the shares created by the key 
distribution rule (function) SPf →: .  

A perfect secret sharing scheme 
realizing the access structure Γ is a method of 
sharing the secret key K among the participants 
from P in such a way that the following two 
properties are satisfied : 
1. If an authorized subset of participants 

PB ⊆  pool their shares, then they can 
determine the value of K. 

2. If an unauthorized subset of participants 
PB ⊆  pool their shares, then they can 

determine nothing about the value of K. 
In a perfect secret sharing scheme realizing an 
access structure Γ , the information rate for iP  
is the ratio  

)(log
log

2

2

i
i PS

K
q = , 

where )( iPS  denotes the set of possible shares 
that iP  might receive and SPS i ⊆)( .  

The information rate of the scheme is 



denoted by q and is defined as 
{ }wiqq i ≤≤= 1:min , where w is the total 

number of participants of the secret as defined 
above. Optimal perfect sharing scheme has 

1=q . Such a scheme is called the ideal one.  
Once basic terms are established some 

theoretical results and methods can be 
presented : 

Graphs can be used to visualize and 
ease design of access structures. For example, 
monotone circuit construction method is used 
first to build a monotone circuit that 
“recognizes” the access structure, and then to 
build the secret sharing scheme from the 
description of the circuit.  

Yet, more general theoretical result can 
be stated. Suppose, ),( UXG  is a complete 
multipartite graph. Then, there is an ideal 
scheme realizing the access structure )Cl(U  on 
the participant set X. ( )Cl(U , the closure of U, 
means that all edges of the graph are used in 
the access structure). This short and elegant 
result, although at first looks like another 
“existence” theorem, is indeed powerful tool in 
construction access structures for sharing 
schemes.  

After describing theoretical component 
some more practical results will be presented. 
Graph n-coloring finds applications in many 
fields of cryptography. Two examples are : 
a. public-key cryptosystem “Polly Cracker” 

bases on graph 3-coloring;  
b. zero-knowledge proof based on graph 3-

colorability.  
Two approaches to secret sharing for 

graph n-coloring will be presented. Due to the 
lack of space only rough sketch of idea behind 
solutions will be shown. The volume of 
information required for detailed description 
would easily fill whole paper. 
1. The participants do not know underlying 

graph structure ),( UXG .  
In this case G is extended by some new 
edges and possibly some vertices. Then, 
graph divided into w pieces (number of 
participants) according to wanted access 
structure. Depending on the boundary 
conditions (n, w, access structure, and 
graph extension algorithm) decent results 
can be presented. They are usually of 

combinatorial nature, hence allowing good 
“bottom” estimates of the structure 
strength. At this moment we are working 
on their generalization to one elegant 
model.  

2. The participants know underlying graph 
structure ),( UXG . 
The example of such a problem is the 
public-key cryptosystem “Polly Cracker” 
based on graph 3-coloring, since ),( UXG  
is a public-key in this case. Hence, method 
used above (adding edges, vertices and 
sharing) cannot be applied.  
Even in such case guidelines for efficient 
secret sharing can be found. They heavily 
depend on the structure of G, but what may 
come as a surprise: secret can be shared in 
an efficient way among number of 
participants nw >  (the number of colors). 
Certainly, such secret sharing scheme will 
not be perfect but, yet, can be made of NP 
computational complexity for special 
cases. Yet, again authors are busy working 
on their generalization to one elegant 
model.  

Other results concerning secret sharing 
can be found in [14], [15]. There are also some 
results concerning zero-knowledge proofs, the 
protocols based on graph isomorphism and 
graph 3-colorability.  

8. AUTHENTICATION OF DIGITAL 
STREAMS  

In the paper [16] authors presented a 
graph-based scheme of authentication of 
digitals streams over a lossy networks. In their 
model the data stream being authenticated is 
represented as a contiguous subset of packets 
{ }nPPP ,...,, 21 . For description of the 
authentication procedure some directed graph 
without loops and with n nodes (vertices) is 
used. Every node of the graph corresponds to 
the data packet of the same number. One 
packet in the stream, say sigP , is signed with a 
public-key signature algorithm such as RSA. 
The directed edges of the graph, ),( ji xxu� , 
connecting the i-th and j-th node inform that 
the hash function of the packet iP  is placed in 



the packet jP  if ji > , and some Message 
Authentication Code (MAC) of iP  is placed in 

jP  if ji < . If both the contents and source of 

jP  can be authenticated then also the receiver 
is capable of verifying the contents and source 
of iP . Any packet iP  can be authenticated if 
and only if there is a path from iP  to the 
signature packet sigP  that only includes nodes 
corresponding to received (that is, not lost 
during transmission) packets. Therefore one 
should construct the authentication graph that 
(in some reasonable frames) it maximizes the 
probability ( )sigi PP →Pr  of linking iP  and 

sigP  by the path. Examples of such schemes 
are presented in the paper [16].  

9. NUMERICAL RESULTS  

The encryption algorithm was based on 
a directed graph with 24 vertices and 256 arcs. 
Outgoing arcs from each vertex were randomly 
assigned preference levels used during the 
creation of paths through the graph. Each arc 
also had a label selected randomly from the set 
{0..255} without repetitions. Additionally the 
encryption algorithm used a random single 
cycle permutation. 

Using depth-first search successive 18-
arc paths were selected, each starting from a 
fixed vertex. For each path all 8 element 
combinations of the 18 arcs were generated in 
lexicographic order. Each such combination 
was used to encrypt a single plaintext 
character. For the purpose of the statistical 
tests the plaintext characters took on 
successive values from the set {0..256} 
repeated as many times as needed.  

The encryption of a single character 
was performed in 8 stages with each stage 
consisting of a bitwise sum modulo 2 of the 
plaintext character and the label of an arc from 
the current 8-element combination and then 
the application of the single cycle permutation 
to the result. The result of each stage became 
the input to the next stage. At each stage the 
next arc from the current combination was 
used. The result of the last stage became the 
ciphertext character. 

The tests were carried out on: 
100 sequences of 10 Mbits 
10 sequences of 100 Mbits 
1 sequence of 1 Gbit. 

The tests performed and their results 
are shown in Table 1. Each entry consists of 
the number of tests which resulted in the 
rejection of the null hypothesis in relation to 
the total number of tests. All tests were 
performed with a significance level of 0.01. 
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Table 1. The results of ststistical tests performed for the numerical data 

 
Test 10 Mbit 

sequences 
100 Mbit 
sequences 

1 Gbit 
sequence 

FIPS 140-1 test suite in 20000 bit 
subsequences 

0 / 50000 1 / 50000 0 / 50000 

equidistribution of 1 bit blocks in 16384 bit 
subsequences (χ2 test) 

633 / 61000 604 / 61030 605 / 61035 

equidistribution of 1 bit blocks in whole 
sequence (χ2 test) 

2 / 100 0 / 10 0 / 1 

equidistribution of 8 bit blocks in 131072 
bit subsequences (χ2

 test) 
75 / 7600 77 / 7620 84 / 7629 

equidistribution of 8 bit blocks in whole 
sequence (χ2 test) 

1 / 100 0 / 10 0 / 1 

equidistribution of 48 bit blocks in 786432 
bit subsequences (Kolmogorov-Smirnov 
test) 

15 / 1200 16 / 1270 12 / 1271 

linear complexity in 1024 bit subsequences 9937 / 976500 - - 
randomness of Walsh-Hadamard power 
spectrum in 1024 bit subsequences of the 
initial 65536 bit subsequence 
(Feldman’s test) 

82 / 6400 - - 

randomness of Walsh-Hadamard power 
spectrum in the whole initial 65536 bit 
subsequence (Feldman’s test) 

0 / 100 - - 

entropy of 8 bit blocks in whole sequence 
(Maurer’s test) 

- 0 / 10 0 / 1 

entropy of 9 bit blocks in whole sequence 
(Maurer’s test) 

- 1 / 10 0 / 1 

entropy of 10 bit blocks in whole sequence 
(Maurer’s test) 

- 0 / 10 0 / 1 

entropy of 11 bit blocks in whole sequence 
(Maurer’s test) 

- 0 / 10 0 / 1 

entropy of 12 bit blocks in whole sequence 
(Maurer’s test) 

- 0 / 10 0 / 1 

entropy of 13 bit blocks in whole sequence 
(Maurer’s test) 

- - 0 / 1 

entropy of 14 bit blocks in whole sequence 
(Maurer’s test) 

- - 0 / 1 

entropy of 15 bit blocks in whole sequence 
(Maurer’s test) 

- - 0 / 1 

 


