
PROPOSALS OF GRAPH BASED CIPHERS, THEORY AND
IMPLEMENTATIONS

Andrzej Paszkiewicz

Institute of Telecommunications, Technical University
Nowowiejska 15/19, 00-665 Warsaw, Poland

E-mail: anpa@tele.pw.edu.pl
Anna Górska, Karol Górski,

ENIGMA Systemy Ochrony Informacji Sp.z.o.o.
Cietrzewia 8, 02-492 Warsaw, Poland
E-mail: ania, karol@enigma.com.pl

Zbigniew Kotulski, Kamil Kulesza, Janusz Szczepański
Institute of Fundamental Technological Research, Polish Academy of Sciences

Świętokrzyska 21, 00-049 Warsaw, Poland
E-mail: zkotulsk, kkulesza, jszczepa@ippt.gov.pl

ABSTRACT

Graphs may be used for the design of stream
ciphers, block ciphers or public-key ciphers. This
paper presents a method of using paths between a
pair of graph vertice for designing effective
polyalphabetic substitution ciphers. A similar
method can be developed basing on cut-sets or
spanning trees. The period of alphabet
changeovers is equal to the number of paths
between a pair of selected vertices on the graph,
the number of spanning trees, cut-sets or is a
multiple of these values.
The results of statistical tests and an assessment of
the cryptographic strength of these ciphers are
presented. Also proposed are modifications of
these ciphers based on modifying the labels of
vertices or edges (arcs) of the graph. These
modifications influence the statistical properties
and period lengths.

1. INTRODUCTION

A significant demand exists for new
non-standard cryptographic methods (see, e.g.,
[1], [2]). In addition to traditionally employed
for this purpose branches of mathematics such
as algebra, Boolean function theory,
information and coding theory [3] and classical
probability theory, other branches, particularly
discrete mathematics and chaos theory [4] may
also be used. In discrete mathematics, graph
theory appears to be a good source of non-
standard methods. Graph theory provides
examples of problems characterized by large

computational complexity [5]. Problems such
as the search for the shortest (weighted)
Hamiltonian cycle are known to be NP-
complete. Also, the number of various
structures which may be created on a given
graph, e.g. the number of paths or the number
of cut sets between a pair of graph vertices or
the number of spanning trees grows much
faster than exponentially [6]. This may form a
good foundation for the design of efficient and
secure ciphers, more secure than the ciphers
proposed in the past.

Graphs may be used for the design of
stream ciphers, block ciphers or public-key
ciphers [7]. This paper presents a method of
using paths between a pair of graph vertices
and spanning trees for designing effective
polyalphabetic substitution ciphers. The period
of alphabet changeovers is equal to the number
of paths between a pair of selected vertices on
the graph, the number of spanning trees or is a
multiple of these values.

The results of statistical tests and an
assessment of the cryptographic strength of
these ciphers are presented. Also proposed are
modifications of these ciphers based on
modifying the labels of vertices or edges (arcs)
of the graph. These modifications influence the
statistical properties and period lengths.

The statistical tests carried out by the
authors show that promising results may be
obtained already for relatively small graph
sizes, e.g., 24 vertices. This translates to a

large efficiency of ciphers designed on the
basis of graph theory.

Graphs can be also used for other
cryptographic algorithms like: secret sharing,
and authentication of streams of bits. In the
paper we present an idea of the graph-based
secret sharing scheme. We indicate the
possibility of application of the graphs to some
simple authentication method which makes
possible to identify the origin and to confirm
contents of the message.

Before we present the examples of the
graph-based algorithms applied to all the listed
cryptographic tools, we introduce the
fundamental facts concerning graphs.

2. MATHEMATICAL NOTATION

As we mentioned, graphs, as
mathematically complicated objects, can be
good candidates for coding cryptographic
elements, especially secret keys. However, to
apply a certain graph for cryptographic
purpose we must know if it is connective and
its structure is rich enough to guarantee
security of the graph-based cryptosystem. In
this section we present some theoretical
results, that later are used for in construction of
algorithms. The goal is to make them
sufficiently general in order to provide
theoretical foundation for various cryptological
applications. Hence once theorems and proofs
are stated, remarks are provided showing
options for possible modifications.

We start the presentation of results
from introduction of basic notations. Let G be
the graph with e edges and v vertices. Then we
have:
X is the set of vertices of the graph G,

{ }vxxxX ,...,, 21= ;
U is the set of edges of the graph G;

XXU ×⊂ , { }euuuU ,...,, 21= ;
),(yxu is the edge linking the vertices x and y

and),(yxu� is the directed edge starting at x
and ending at y;

Sx is a tagged vertex, called the initial one;
Tx is another tagged vertex, called the final

one;
µ is the path, that is the sequence of vertices,
such that every neighbors have an edge linking

them (alternatively: a sequences of edges such
that every neighbors have a common vertex);
Γ is a function mapping the set of vertices to
the set of subsets of vertices,

XX 2: →Γ
in such a way, that

{ }UyxuXyx ∈∈=Γ),(:)(,
)(xΓ is the set of vertices following the vertex

x (for the non-directed graphs: the set of
neighbors of the vertex x);

1−Γ is the function inverse to Γ;
)(1 x−Γ is the set of vertices preceding the

vertex x (for the non-directed graphs:
)()(1 xx Γ=Γ−);

)(vK is the complete graph with v vertices;
)deg(x denotes the degree of the vertex x and

)(GDEG is the degree of the graph G (the
sum of degrees of all vertices in the graph G).
We introduce the vector WAY as a register of
variable length, where we store the sequence
of vertices of the path linking the initial vertex

Sx and the final vertex Tx .
 The conditions that should be satisfied
by the graph applied in our cryptosystem are
presented in the following series of statements.

Theorem 1
Graph G with v vertices is connective if

1
2

)2)(1(+−−≥ vve

Outline of proof:
One shows for the graph G with v vertices:
a. The existence of a non-connective graph

with
2

)2)(1(−−= vve edges;

b. The property that graph with

1
2

)2)(1(+−−= vve edges cannot be

partitioned into disjoined (non-connective)
subgraphs.

Corollary 1.1
Maximal edges difference between)(vK and
the graph satisfying conditions of Theorem 1 is

2−v

Corollary 1.2

In the graph G, 1
2

)2)(1(+−−≥ vve implies

)(432 GDEGvv ≤+−

Theorem 2
Graph G, such that)(432 GDEGvv ≤+− ,
will have minimum 2−v vertices of degree at
least 3−v .

Corollary 2.1
The graph G, such that)(432 GDEGvv ≤+− ,
will have maximum 2 vertices of degree lower
than 3−v .

Corollary 2.2
In the graph G satisfying the condition

)(432 GDEGvv ≤+− , such that, every vertex
x of 3)deg(−≥ vx will be connected with
minimum 5−v vertices of 3)deg(−≥ vx .

Theorem 3
In any graph maximal number of vertices of

1deg −= v is limited to the lowest degree of
the vertex in the given graph.

Corollary 2.3
Graph G with v vertices and

)(432 GDEGvv ≤+− can have only one
vertex of degree 1. Moreover:
a. Such a vertex can be connected only with

the vertex of degree 1−v
b. Subgraph G’ created by removing the

vertex of degree 1 from graph G will be
complete.

Outline of proof:
Corollary 2.3 results from Theorem 3, some
combinatorial reasoning and a simple
computation.

Lemma 1
In the graph G, such that

)(432 GDEGvv ≤+− , any two vertices
2,1, =ixi of degree 3)deg(−≥ vxi can be

connected by a path of the length of 2 edges.
Outline of proof:
One should consider three cases, where the
graph G has:

a. v vertices, vixi ,...,2,1, = , with
3)deg(−≥ vxi ,

b. one vertex 1x with 3)deg(1 −< vx and
1−v vertices, vixi ,...,3,2, = , with

3)deg(−≥ vxi ,
c. two vertices, 21, xx of

3)deg(),deg(21 −< vxx and 2−v vertices,
vixi ,...,4,3, = , with 3)deg(−≥ vxi .

Each case should be proven separately using
theorems stated above, combinatorial
reasoning and simple computation.

Lemma 2
In the graph G such, that

)(432 GDEGvv ≤+− , any two vertices can
be connected by the path of the length of 3
edges.
Outline of proof:
Assume, Sx and Tx are the starting and the
ending vertex of the path. The proof should be
made for three separate cases:
a. both vertices Sx and Tx have 3deg −≥ v ,
b. one vertex is with 3deg −< v another

with 3deg −≥ v ,
c. both vertices have 3deg −< v .

Each case should be proven separately using
theorems stated above and lemma 1,
combinatorial reasoning and simple
computation.

Theorem 4
In the graph G with v vertices and satisfying
the condition)(432 GDEGvv ≤+− , the
minimal number)(SxN of paths such that:
a. Sx is the starting point for the path;
b. n is the number of edges in the path and

32 −<< vn ;
c. each edge is used only once in the path;
d. each vertex is used only once in the path
can be calculated from the formula

.
)!3(

)!5()5(

)2)...(6)(5(
))3(5)...(6)(5()(

3

0 nv
vcv

nvvv
nvvvxN

n

c

S

−−
−=−−=

=−−−−
=−−−−−=

∏
−

=

Outline of proof:
Because theorem states “minimal number of

paths”, the worst case scenario (conditions for
the lowest numbers of path) should be found.
Then it should be proven using theorems stated
above and combinatorial reasoning.

Remarks:
1. Theorem and proof were made for

theoretical worst case scenario, careful
analysis shows that such strict conditions
are mutually exclusive, hence cannot hold
both. Further reasoning yields:

∏
−

=

−−−=
3

0
)5()3()(

n

c

S cvvxN

2. Eliminating condition d from Theorem 4
can significantly increase N. In such cases
it is also possible to create path with length

vn > (n can even reach magnitude
2

2v),

further increasing N.

Theorem 5
In the graph G, with v vertices and satisfying
the condition)(432 GDEGvv ≤+− , the
minimal number),,(mxxN TS of paths such
that:

a. Sx is the starting point and Tx is ending

point of the path;
b. m is a natural number and the path length

is a number form the interval)2,(+mm ;
c. each edge is used only once in the path;
d. each vertex is used only once in the path,

with the exception for last two vertices x’
and x’’ preceding Tx , x’ and x’’ can come
from vertices previously visited,

can be calculated according to

),4)...(7)(6(
))2(6)...(7)(6(),,(

nvvv
nvvvmxxN TS

−−−−=
=−−−−−=

where 1−= mn and 42 −≤≤ vn , provided
that at least one such a path can be found, or

0),,(=mxxN TS
otherwise.
Outline of proof:
Proof is based on the assumption that path can
be constructed. Then, it is shown that certain
shorter paths can be constructed and the
number of them is given by Theorem 4.

Finally, Lemmas 1, 2 together with some
previous results (especially, corollaries to
Theorem 2) show that the shorter path can be
linked with Tx in a fixed number of steps.
Such composed paths will fulfill conditions of
Theorem 5 and their minimal number can be
provided.

Remark:
If some assumptions are lifted (say b. and/or
d.) similar results can be found. In such cases
it may be required to introduce additional
assumptions about the path (specially its
length).

3. GRAPH-BASED BLOCK CIPHER

The proposed algorithm uses paths
between two vertices of a graph. To construct
the series of paths we apply the table of
preferences of visiting the vertices of the
graph. For every vertex Xx ∈ , the table of
preferences is a list of numbers of the vertices

Xxi ∈ such that Uxxu i ∈),(giving the
sequence of visiting the points ix . The cipher
graph G must be defined in such a way, that it
is connective and it has exactly 256 edges; this
means that it has at least 24 vertices (We bear
in mind the conclusion of Theorem 1). Next,
we assign to all the edges 256,...,2,1, =ju j , in
a random way, the binary numbers of the range

255...0 , called the labels 256,...,2,1, =jk j
(assuming that all the labels are different). To
obtain the working path for the encryption the
actual character, one performs an algorithm of
finding paths between two vertices, Sx and

Tx ; the numbers of the vertices belonging to
the generated path are written, in sequence, in
the vector WAY; this vector is returned always
after application of the procedure of searching
the next path between Sx and Tx . Finally,

11
,...,, iii uuu

rr −
 are the edges belonging to the

path linking Sx and Tx , written in the inverse
order.

To complete the algorithm of
encryption the characters, we define a
cryptographically strong bijective map
(permutation) Π ,

 55}{0,1,...,2 55}{0,1,...,2 : →Π ,

and the cyclic shift to the left with b bits
(denoted by the symbol <<< b).

The input of the cipher is the sequence
of 8-bit characters nzzz ,...,, 21 . The other parts
of the cryptosystem immediate: the table of
preferences, the set of labels 256,...,2,1, =jk j ,
the bijective function Π , and the structure of
the graph G can be considered as elements of
the secret key. The paths needed for encryption
of each character can be generated according
to algorithms given in [8], [9], [10]. The action
of the algorithm can be written symbolically in
the following way.

Algorithm of encryption:
Input:

nzzz ,...,, 21 , the characters that should be
encrypted;

Sx , the initial vertex of the path;
Tx , the final vertex of the path;

r, the length of the path beeing analyzed;
the table of preferences of the visited vertices.
For i := 1 to n do
begin
 temp := zi
 Generate next path linking xS and xT;
 For j:=r downto 1 do begin

temp := temp XOR jk
temp := temp <<< 1
temp := (temp)Π

 End { For j }
 iw := temp;
 Return encrypted character iw ;
End { For i}
Output:

nwww ,...,, 21 , the encrypted characters.
 The above algorithm of encryption is
very simple. It has been implemented in
PASCAL and C++. Both versions are very
effective in time and the obtained ciphertexts
satisfy the required statistical tests (see [11]).

4. GENERAL FORMULATION OF A
SYMMETRIC CIPHER

The block cipher (alternatively: the
pseudo-random function, the cryptographic
primitive) can be written in the form of the
following abstract two-argument map

CPKF →×:(.,.) ,
where
K is the secret key space,

{ }lP 1,0= is the plaintext (domain) space,
{ }LC 1,0= is the ciphertext space.

If we fix the secret key k, substitute it as the
first argument of the function (.,.)F and make
the function transforming the sequence of
plaintexts ,..., 21 pp (second arguments) to
ciphertexts ,..., 21 cc (images of (.,.)F), then
we have the block cipher constructed.

To apply the function (.,.)F for
random bits generation we must do three steps
(all of them written symbolically) of the
following algorithm.

Algorithm 1.
1) Kk R← , the random choice of the secret
key k,
2) Ps R← , the random choice of an initial
condition (seed) s,
3) CskFsFk ∈=),(:)(, calculation of the
sequence of bits as the value of the function F
for chosen values k and s.

To obtain more bits (a long stream of
bits) we should go through the following
algorithm.

Algorithm 2.
1) generate the sequence of secret keys

,...,, 321 kkk , each according to Step 1 of
Algorithm 1,
2) generate the sequence of initial conditions

...,, 321 sss , each according to Step 2 of
Algorithm 1,
3) for every pair of arguments, ii sk , , calculate
the bits values according to Step 3 of
Algorithm 1,
4) construct the stream of bits G as:

....||)(||)(||)(321 321
sFsFsFG kkk= ,

where || denotes the concatenation of strings.
In a lot of widely used cryptosystems,

the secret key space is the set of bit sequences,
e.g., { }kK 1,0= . In this paper we propose to
use, as the secret key space K, the set of graphs
being subgraphs (with certain assumed
properties) of our basic graph G. Moreover, for

simplicity of calculations in this presentation,
we assume 8== Ll , so the other spaces used
in the cryptosystem are: { }81,0=P , { }81,0=C .

The basic graph G of the cryptosystem
has v vertices and e edges; each vertex and
edge has its individual number. Every edge of
the graph is associated with the label being
some 8-bit number. Every vertex has its
individual table of preferences which describes
sequence of the neighbor vertices when the
paths are constructed. The secret keys used in
the cryptosystem are the subgraphs

,...,2,1, =iki generated from the basic graph G
(e.g., the paths of certain length starting from a
fixed vertex Sx) according to some rule based
on the tables of preferences associated to the
vertices of the graph.

A certain subgraph k, being the secret
key in our cryptosystem, can be interpreted as
a sequence of words (bytes, elements of the
space { }81,0 , the labels associated to the edges
of the subgraph) of random length r (the length
is dependent on the way the path is generated)
of the form

()rkkkk ,...,, 21= .
Now, the cipher function (.,.)F is the

composition of r round operation ,.)(jkf ,
where in each round subkey (the label assigned
to the graph edge) jk of the key k is applied
and the initial plaintext 1ss = is iterated
according to

,,...,2,1),,(1 rjskfs j
j

j ==+
and the output of (.,.)F is 1+= rsc . Every
round should be built according to usual
conditions to guarantee good cryptographic
properties of (.,.)F (see, e.g., [12]). In the
particular case of our cipher we applied the
XOR operation of the subkey jk and the
plaintext js and permutation of bits in the
resulting byte.

The general scheme presented in this
section is now implemented for certain graph
scheme.

5. STREAM CIPHER

To apply the algorithm of the graph cipher

applied for bits generation one must do the
following.
1) Construct the graph G with v vertices and e

edges,
2

)1(1
2

)2)(1(−≤≤+−− vvevv ;

2) Assign the labels],255,0[∈pk
np ,...,2,1= , to the edges;

3) Assign the tables of preferences to the
vertices of the graph;

4) Choose the seed]255,0[∈s ;
5) Choose the way to generate the keys

),...,,(21 r
iiii kkkk = , e.g.,

a) choose the initial vertex Sx1 and
generate a long path starting from it,
using the tables of preferences (e.g., the
length of the path is 18),

b) choose all the 8 element subsets of the
edges from this path and place their
numbers to rows of the table in a
natural order (leaving the order of
edges governed by the path
unchanged),

c) change the order the rows of the matrix
in a random way using the
pseudorandom numbers generator for
the indexes of rows, obtaining the keys

()821 ,...,, j
i

j
i

j
ii kkkk = , max,...,2,1 ii = ,

6) Generate the sequence of bits according to:

),1(||....

...||)2(||)1(||)()(

maxmax

321

−+

++=

isF

sFsFsFsG

ik

kkk

where addition of the function’s argument
is modulo 82 .

7) Select next path and repeat the procedure
of points 5b, 5c, 6. After exploiting all the
paths starting from the vertex Sx1 , choose
other initial vertices S

ix , vi ,...,3,2= and
continue the procedure of points 5, 6.

The final step of the procedure is statistical
verification of the generated stream of bits.

6. PUBLIC-KEY CRYPTOSYSTEM

The scheme for public-key
cryptosystem called “Polly Cracker” can be
found in [7]. The general idea behind this
scheme is to:
a. construct polynomials over finite field F;
b. take an arbitrary vector nFz ∈ as a private

key and the subset { }iqB = of the
polynomials over finite field F, such that,
for every i, 0)(=zqi , as a public-key;

c. encrypt a message m obtaining cipher
polynomial C using the public-key (a
randomly chosen element generated by B);

d. message m can be decrypted by finding the
value of polynomial C at z.

Having described public-key

cryptosystem “Polly Cracker”, one can move
to its special case based on graph 3-coloring.
The problem of graph 3-coloring is NP class.
To formulate the cryptosystem in terms of
graph theory, we introduce:
The public-key is the graph),(UXG , that is
the graph with the set of vertices X and the set
of edges U;
The private key is the proper 3-coloring of the
graph using colors { }3,2,1∈c and the map
assigning cx � for Xx ∈ , according to
graph 3-coloring rule.

Once graph 3-coloring is known, the
base)(GBB = is constructed. B is constructed
from a polynomial derived from the variables
{ }cxt , , and 321 BBBB ∪∪= for

{ }XxtttB xxx ∈−++= :13,2,1,1
{ }{ }3,2,1,:,,2 ∈≤∈= dcXxttB dxcx

{ }UyxuttB cycx ∈=),(:,,3
Then, the zero point of all polynomials from B
can be computed by taking 1, =cxt , if the
vertex x has color c, and 0 otherwise.

Further references to this public key
cryptosystem will be given in the secret
sharing section.

In a similar way other graph based
“Polly Cracker” schemes can be constructed.
One of the examples can be “perfect code”
graph described in [7].

All these implementations, like
described above graph 3-coloring system,
have the following features:
a. knowing),(UXG is equivalent to

knowing subset { }iqB = of polynomials
over finite field F;

b. knowing NP class problem (resulting from
graph structure) is equivalent to knowing
vector nFz ∈ ;

c. encryption process takes place like in
general “Polly Cracker” description;

d. to decrypt message m, value of received
polynomial (derived from the graph

),(UXG structure) at z should be
calculated.

7. SECRET SHARING

Graphs have applications to secret
sharing on two levels:
a. theoretical research into secret sharing

problems;
b. as structures used for secret sharing

schemes.

Concerning the first application,
theoretical results will be presented, the most
of them coming from [13]. Let us define the
scheme of the method. Thus, let:
P denotes the set of w participants of the
secret, where w is an integer;
K denotes the shared key;
Γ is the access structure, that is, the set of
subsets of P. The elements of Γ are those
subsets of participants that should be able to
compute the key. Such subsets in Γ are called
authorized subsets;
S is the set of the shares created by the key
distribution rule (function) SPf →: .

A perfect secret sharing scheme
realizing the access structure Γ is a method of
sharing the secret key K among the participants
from P in such a way that the following two
properties are satisfied :
1. If an authorized subset of participants

PB ⊆ pool their shares, then they can
determine the value of K.

2. If an unauthorized subset of participants
PB ⊆ pool their shares, then they can

determine nothing about the value of K.
In a perfect secret sharing scheme realizing an
access structure Γ , the information rate for iP
is the ratio

)(log
log

2

2

i
i PS

K
q = ,

where)(iPS denotes the set of possible shares
that iP might receive and SPS i ⊆)(.

The information rate of the scheme is

denoted by q and is defined as
{ }wiqq i ≤≤= 1:min , where w is the total

number of participants of the secret as defined
above. Optimal perfect sharing scheme has

1=q . Such a scheme is called the ideal one.
Once basic terms are established some

theoretical results and methods can be
presented :

Graphs can be used to visualize and
ease design of access structures. For example,
monotone circuit construction method is used
first to build a monotone circuit that
“recognizes” the access structure, and then to
build the secret sharing scheme from the
description of the circuit.

Yet, more general theoretical result can
be stated. Suppose,),(UXG is a complete
multipartite graph. Then, there is an ideal
scheme realizing the access structure)Cl(U on
the participant set X. ()Cl(U , the closure of U,
means that all edges of the graph are used in
the access structure). This short and elegant
result, although at first looks like another
“existence” theorem, is indeed powerful tool in
construction access structures for sharing
schemes.

After describing theoretical component
some more practical results will be presented.
Graph n-coloring finds applications in many
fields of cryptography. Two examples are :
a. public-key cryptosystem “Polly Cracker”

bases on graph 3-coloring;
b. zero-knowledge proof based on graph 3-

colorability.
Two approaches to secret sharing for

graph n-coloring will be presented. Due to the
lack of space only rough sketch of idea behind
solutions will be shown. The volume of
information required for detailed description
would easily fill whole paper.
1. The participants do not know underlying

graph structure),(UXG .
In this case G is extended by some new
edges and possibly some vertices. Then,
graph divided into w pieces (number of
participants) according to wanted access
structure. Depending on the boundary
conditions (n, w, access structure, and
graph extension algorithm) decent results
can be presented. They are usually of

combinatorial nature, hence allowing good
“bottom” estimates of the structure
strength. At this moment we are working
on their generalization to one elegant
model.

2. The participants know underlying graph
structure),(UXG .
The example of such a problem is the
public-key cryptosystem “Polly Cracker”
based on graph 3-coloring, since),(UXG
is a public-key in this case. Hence, method
used above (adding edges, vertices and
sharing) cannot be applied.
Even in such case guidelines for efficient
secret sharing can be found. They heavily
depend on the structure of G, but what may
come as a surprise: secret can be shared in
an efficient way among number of
participants nw > (the number of colors).
Certainly, such secret sharing scheme will
not be perfect but, yet, can be made of NP
computational complexity for special
cases. Yet, again authors are busy working
on their generalization to one elegant
model.

Other results concerning secret sharing
can be found in [14], [15]. There are also some
results concerning zero-knowledge proofs, the
protocols based on graph isomorphism and
graph 3-colorability.

8. AUTHENTICATION OF DIGITAL
STREAMS

In the paper [16] authors presented a
graph-based scheme of authentication of
digitals streams over a lossy networks. In their
model the data stream being authenticated is
represented as a contiguous subset of packets
{ }nPPP ,...,, 21 . For description of the
authentication procedure some directed graph
without loops and with n nodes (vertices) is
used. Every node of the graph corresponds to
the data packet of the same number. One
packet in the stream, say sigP , is signed with a
public-key signature algorithm such as RSA.
The directed edges of the graph,),(ji xxu� ,
connecting the i-th and j-th node inform that
the hash function of the packet iP is placed in

the packet jP if ji > , and some Message
Authentication Code (MAC) of iP is placed in

jP if ji < . If both the contents and source of

jP can be authenticated then also the receiver
is capable of verifying the contents and source
of iP . Any packet iP can be authenticated if
and only if there is a path from iP to the
signature packet sigP that only includes nodes
corresponding to received (that is, not lost
during transmission) packets. Therefore one
should construct the authentication graph that
(in some reasonable frames) it maximizes the
probability ()sigi PP →Pr of linking iP and

sigP by the path. Examples of such schemes
are presented in the paper [16].

9. NUMERICAL RESULTS

The encryption algorithm was based on
a directed graph with 24 vertices and 256 arcs.
Outgoing arcs from each vertex were randomly
assigned preference levels used during the
creation of paths through the graph. Each arc
also had a label selected randomly from the set
{0..255} without repetitions. Additionally the
encryption algorithm used a random single
cycle permutation.

Using depth-first search successive 18-
arc paths were selected, each starting from a
fixed vertex. For each path all 8 element
combinations of the 18 arcs were generated in
lexicographic order. Each such combination
was used to encrypt a single plaintext
character. For the purpose of the statistical
tests the plaintext characters took on
successive values from the set {0..256}
repeated as many times as needed.

The encryption of a single character
was performed in 8 stages with each stage
consisting of a bitwise sum modulo 2 of the
plaintext character and the label of an arc from
the current 8-element combination and then
the application of the single cycle permutation
to the result. The result of each stage became
the input to the next stage. At each stage the
next arc from the current combination was
used. The result of the last stage became the
ciphertext character.

The tests were carried out on:
100 sequences of 10 Mbits
10 sequences of 100 Mbits
1 sequence of 1 Gbit.

The tests performed and their results
are shown in Table 1. Each entry consists of
the number of tests which resulted in the
rejection of the null hypothesis in relation to
the total number of tests. All tests were
performed with a significance level of 0.01.

BIBLIOGRAPHY

[1] http://csrc.nist.gov/encryption/aes/

[2] http://www.cosic.esat.kuleuven.ac.be/nessie/

[3] J.Berstel, D.Perrin, Theory of Codes,
Academic Press 1985.

[4] Z.Kotulski, J.Szczepański, K.Górski, A.
Paszkiewicz, A. Zugaj, Application of discrete
chaotic dynamical systems in cryptography -
DCC method; International .Journal of
Bifurcation and Chaos. 9(6), 1121-1135, 1999.

[5] K.C.Kakoulis, I.G. Tollis, On the complexity
of the Edge Label Placement problem,
Computational Geometry Theory and
Applications 18(1), 1-17, Feb 2001.

[6] R.Wilson, Introduction to Graph Theory,
Addison Wesley, London 1996.

[7] N.Koblitz, Algebraic Aspects of Cryptography,
Springer-Verlag, Berlin 1998.

[8] L.Fratta, U.G.Montanari, All simple paths in a
graph by solving a system of linear equations,
Nota Interna No. B71-11 of Consiglio
Nalzonalk dells Riscerche, Institut di
Elaborazione Della Informazione, Pisa 1971,
Oct;

[9] G.S.Hura, Enumeration of all simple paths in a
directed graph using Petri Net - a systematic
approach, Microel and Reliab. Vol. 23, No. 1
pp. 157-159, 1983;

[10] R.B.Misra and K.B.Misra, Enumeration of all
simple paths in a communication network,
Microel. And Reliab. Vol. 20, pp. 419-426,
1980;

[11] A.Paszkiewicz, Przykłady zastosowań teorii
grafów do konstrukcji szyfrów, IV Krajowa
Konferencja Zastosowań Kryptografii
Enigma’2000, K-179-183.

[12] J.Daemen, L.R.Knudsen, V.Rumen, Linear
Frameworks for Block Ciphers, Designs, Codes
and Cryptography 22, 65-87, 2001.

[13] D.R.Stinson, Cryptography. Theory and
Practice. CRC Press, Boca Raton 1995.

[14] G.Simmons, Geometric Shares Secret and/or
Shared Control Schemes, Adv. in Cryptology-
Proc of CRYPTO’90, Springer Verl. 1991, pp.
216-241;

[15] G.Simmons, How to (really) share a secret,
Adv. in Cryptology-Proc of CRYPTO’88,
Springer Verl. 1990, pp. 390-448;

[16] S.Miner, J.Staddon, Graph-Based
Authentication of Digital Streams, preprint

Table 1. The results of ststistical tests performed for the numerical data

Test 10 Mbit

sequences
100 Mbit
sequences

1 Gbit
sequence

FIPS 140-1 test suite in 20000 bit
subsequences

0 / 50000 1 / 50000 0 / 50000

equidistribution of 1 bit blocks in 16384 bit
subsequences (χ2 test)

633 / 61000 604 / 61030 605 / 61035

equidistribution of 1 bit blocks in whole
sequence (χ2 test)

2 / 100 0 / 10 0 / 1

equidistribution of 8 bit blocks in 131072
bit subsequences (χ2

 test)
75 / 7600 77 / 7620 84 / 7629

equidistribution of 8 bit blocks in whole
sequence (χ2 test)

1 / 100 0 / 10 0 / 1

equidistribution of 48 bit blocks in 786432
bit subsequences (Kolmogorov-Smirnov
test)

15 / 1200 16 / 1270 12 / 1271

linear complexity in 1024 bit subsequences 9937 / 976500 - -
randomness of Walsh-Hadamard power
spectrum in 1024 bit subsequences of the
initial 65536 bit subsequence
(Feldman’s test)

82 / 6400 - -

randomness of Walsh-Hadamard power
spectrum in the whole initial 65536 bit
subsequence (Feldman’s test)

0 / 100 - -

entropy of 8 bit blocks in whole sequence
(Maurer’s test)

- 0 / 10 0 / 1

entropy of 9 bit blocks in whole sequence
(Maurer’s test)

- 1 / 10 0 / 1

entropy of 10 bit blocks in whole sequence
(Maurer’s test)

- 0 / 10 0 / 1

entropy of 11 bit blocks in whole sequence
(Maurer’s test)

- 0 / 10 0 / 1

entropy of 12 bit blocks in whole sequence
(Maurer’s test)

- 0 / 10 0 / 1

entropy of 13 bit blocks in whole sequence
(Maurer’s test)

- - 0 / 1

entropy of 14 bit blocks in whole sequence
(Maurer’s test)

- - 0 / 1

entropy of 15 bit blocks in whole sequence
(Maurer’s test)

- - 0 / 1

