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Summary. In the paper the propagation of wave pulses through bars with random prop-
erties 1s investigated. It is assumed that the bar is built of several homogeneous segments
whose lengths as well as the material parameters are random variables. The overall prop-
erties of such bars are studied. The convergence of the segmented bar to the homogenized
one 1s studied numerically both in case of the periodic and randomly periodic bar.

Y

1. Introduction. Mechanical phenomena taking place in media with
complicated (random) structure make a lot of difficulties in the mathemat-
ical modeling. Therefore authors propose methods of an approximate (in a
certain sense) description of such problems by some simplified models where
the media of complicated structure is replaced by some homogeneous one.
The procedure of such an approximation is called homogenization and the
resulting homogeneous medium — the effective one. Although in the litera-
ture there is many papers on homogenization, the most of them is devoted
to static problems and in dynamic case — to stationary ones.

In this paper we consider the dynamic problem which is strongly non-
stationary — the wave pulse propagation in a segmented bar. We formulate
the equations for the amplitudes of the reflected and transmitted pulses
generated by some incident pulse. They are valid for any combination of
the dimensions of segments and their material parameters. Generally the
values of the parameters can be random variables. We also consider in detail
the particular case of a randomly periodic bar and its limiting case with
the number of segments tending to infinity. In such a case we obtain the
effective parameters of the bar, sufficient to characterize the generated and
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transmitted pulses. We also consider the numerical example comparing the
transmitted pulses in case of the periodic and randomly periodic bar.

2. Formulation of the problem. We consider the wave propagating
along an elastic bar of a constant cross-section, described by the system of
two differential equations (cf. [1])

(1)

where f denotes the force, v is the particle velocity in the medium, A is
the area of the perpendicular cross-section of the bar and p is the material

density, F is the Young modulus. As usually, z is the spatial variable along
the length of the bar and ¢ is time. If we introduce as a new parameter

the impedance Z = A\/oF and as a new variable the travel time from 0

to z defined as £ = z/c, where ¢ = /F/p, and then perform the Fourier
transform of Eq. (1), the wave equation takes the form

o170 2117
2 17]-[3 5112

where f and v are the Fourier transform of the force and Velocity.'
The solution of Eq. (2) at a point £ inside the bar can be represented as

(3) g(é‘aw) — P(§,w)'§(0,w),

where P({,w) is the fundamental matrix of Eq. (2), s(£,w) is the solution
vector, and s(0,w) is the initial pulse at the front of the bar at time 0

B 1 COS wé —17Z sin wé . B f(f,w) -
(4) P(fﬂw) T % [ Z SlIl wE COS CU€ ] 9 3(67‘0) - t:fa(f,w) .
If the bar is built of several homogeneous segments, then the wave partially
reflects from the interfaces of the segments and partially transmits through
them in such a way that the vector field s(£,w) remains continuous.

The solution of Eq. (4) can be represented in the following form

fle.)] 2 [ Fr@)emt + fw)es
(5) [6(6 ,w)] B [ z(—=fr(w)e™¢ + fi (w)ei“’ﬁ)l |

where f R(w) and f (w) are the amplitudes of the incident and reﬂected force
waves, respectively.

Assume now that the bar is built of N homogeneous panels; in a j-th
panel the impedance is Z;, the wave travel time through the segment is h;;
generally, both Z; and h; can be random variables. The beginning of the

bar is located at the point 0. Let the wave pulse f R(w)e —iw€ comes from the
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surrounding media (with the impedance indexed by 0) to the front end of the
bar. Then, using the transition matrix method analogous to the one applied
for the harmonic waves in [2], we obtain the following matrix equation for

fg(w) and ]";Oz(w) — the amplitudes of the pulse reflected from the bar and
transmitted through it

£0 1 [1
(6) [%] =5‘[1

where M, for j = 1,2,..., N, is the transition matrix through j-th segment

COS whj Zj SIn whj
(7) M; = [--Zl-; sinwh;  coswh; ]

3. The model of the bar with random properties. Consider the
bar built of 2K segments with the lengths I1(7),5(7),..., lak (), where

li(v), + = 1,2,..., K, are random variables. We assume that N — 2K, v
is the random element. Assume additionally that the material parameters

of the segments and the areas of their cross-sections form the vector ran-

dom variables (03;-1(7), E2j-1(7), A2j-1(7), 02i(7), E2;(7), A2;(7)), so are
independent and identically distributed (i.i.d.) for j = 1, 2,...,2K. More-

over, we assume that the lengths of the segments can be represented as:

(l2;-1(7),l2:(7)) = (53%%(—7), -I—’%!;.({-?—)-), and for 7 = 1,2,..., K, they are i.i.d.
two-dimensional random variables with E{Ly;_1(v)} = L, E{L, i(7)} =
Ly. In this particular case, we can define the transition matrices through
the couples of segments (25 — 1,25), 5 = 1,2,..., K, in the following form
(hj(7) is the travel time corresponding to the segment of the length [;(7))

(8) M;j(w,v)
coswhy;_1(7)coswhy () — Z%’Q:(l,g;) sinwhaj_1(y)sin why (),
~ sinwhaj—1(v) cos wha;(v) __ cos whoj;_1(v)sin wha, (v)
T Zyo T Tzt
Zgj_l(’)/) SiIl whgj’_l (’)’) COS whgj(’)’) + Zgj(')/) COS whgj__l(’)/) SiIl whgj(")/)}
coswhgy;_1(7)coswhyi(y) — 7%{,)7) sinwhy;_1(7y)sinwhg;(w) |

To study the asymptotic behavior of the equation for the wave’s ampli-
tudes, we apply the law of large numbers for the products of random ma-
trices obtained in [3]. It says that under certain assumptions, the product

of K random matrices M, x(v), 7 =1,2,... , K, possessing the asymptotic
representation

(9)

' 1
M;jk(y)=Id+ —

7 Bix(7)+ R;(K,7),
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where B; k(v),forj =1,2,..., K, arei.i.d. random matrices and IRJ(I&,7)|
= o( K1), for large K satisfying the following law of large numbers

K
(10) lim || M;k(v) =exp(E{Bj k(v)}) in distribution.

K—oo
=1

In the considered case, the matrices B; obtained from expansion (9) are
(11)

B. - [_ 0 Zaj-1(7)wHaj-1(7) + ZZj(’)’)Wsz(’)’)]

wHaj—1(v)  wHa;(v) 0
Zai—1(7) Z25(7Y)

and the exponent of the matrix E(B;) obtained in the limit, being the
transition matrix through a single homogenized bar, is of the following form

| COS Wa b sin wa
(12) eE{B’} —— 1 - .
—rslnwa coswa

where a is the effective travel time and b is the effective impedance of the
bar

(13)
o = [(BZM I} + Bz B (F{ 220+ 8 { Hz("’)}),

E{Z:(7)H1(7)} + E1Za(y)Ha(7)}

(14) b = -
() H(v)
E{ZE )+ E{ )
In the above H; = A%‘_L‘ is the travel time corresponding to the length
Li(‘)/), ] = 1,2.

Analogously to the above considerations we can obtain the effective pa-
rameters in case of the deterministic periodic bar. They have then the fol-

lowing form ‘
[(H1Z1+ HyZ3)(H1Z> + H2Z4)

(15) a — \/-———_——“—Z—;—Z—z—————“—“__,

/ Hi1Zy1 4+ HyZo
16 b=14|/Z149g——"T—,
(16) ‘' H\Zy + Hy Z,

where Hy, Hy, Zy, Zo are deterministic counterparts of the parameters in
stochastic model equal, for comparison of the deterministic and stochastic
model, to the expected values of H1(7v), Ha(7v), Z1(7), Z2(7). '

The effective parameters can also be obtained in the more complicated
model, where some panels built of £ segments are the repeated periodically
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parts of the bar. Then the parameters a and b are the following

Yic1 E {'E_%)'(TPWT}

In formulae (17) and (18) the parameters are characterized by the orig-

inal random parameters: densities p, lengths L. cross-sections A and Young
moduli F.

T'he amplitude of the transmitted wave can be easily obtained from Eq.

(6). In case of a finite number of bar’s segments, one should solve the equa-
tion with respect to }ém(w) and then, calculating the inverse Fourier trans-

form, obtain the shape of the transmitted pulse.

In the particular case of the bar built of K periodically repeated panels,
the formula for the Fourier transformed amplitude is

(19)  J&'(w) = [(MK +

~ where Mg 1s the 1, 7-th element of the K-th power of M — the transition
matrix through the panel.
Analogously, if the homogenized bar is considered, we replace the product

of matrices in Eq. (6) by effective transition matrix (12) with parameters
(13)—(14). Then the formula for the amplitude of the transmitted wave is

o QJ’c‘o (w ciw(H1+ H>)
@) )= R T
[(1+ 7—;;) COS(.UCL-I—I(Zﬁ + —bQ) sinwa]

4. Illustrative example. As a numerical example (for details see 4])
consider the bar built of two kinds of material with the impedances /1 = 2.0
and Z; = 4.0 and average travel time H; = H, = 1.0, surrounded by
the material of impedance Zy = 1.0. We study the bar in two cases: the
periodic one, where the travel time of each segment is constant, equal to
H;/K,1 = 1,2, K is the number of couples of segments within the bar,
and periodic stochastic one, where the travel time is a random variable
(in the calculated example — the random variable uniformly distributes
on the interval (0, %}%L)) with the mean value H;/K, : = 1,2. In the both
cases, the effective parameters calculated according to formulae (13) and
(14) are the same, equal to a = 2.12132 and b = 2.828427. It is seen that the
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effective travel time is greater than the sum of the travel times through the
components. This means that the wave pulse localizes in the bar travelling

through it. From (13) we can also deduce that the bar with random structure
in a general case localizes the wave stronger than the periodic one. Figure 1
shows the pulse transmitted through the homogenized bar, generated by the
travelling force pulse of the unique amplitude and duration. The amplitude

is calcualted according to (20), modified in such a way that the result is
presented in real time. It is seen the effect of localization of the wave pulse

in the segmented bar — the first transmitted pulse as well as next pulses,
generated by reflected the ones, come with some delay (the arrival times of

the pulses in an adequate non-segmented bar would be: 2, 6, 10, etc).

1.00

0.50

amplitude

0.00 l -

0 2 4 6 8 10 12 14 16 18 20
time ' '

Fig. 1. The amplitude of the pulse transmitted through the homogenized bar

Formula (19) for the amplitude of the transmitted wave make it possible
to study the changes of the transmitted pulse if the number of segments
in the bar grows, both in the deterministic periodic and stochastic periodic
cases (in the stochastic case we take the product of matrices instead of the
power of the matrix). Figures 2 and 3 show the pulses transmitted through
the segmented bars built of respectively 30 and 100 couples of segments (fig-
ures (a) show the amplitudes in the periodic case, figures (b) — the mean
amplitudes obtained by simulation in case of the random lengths of seg-
ments). It is seen that the greater number of bar’s segments, the wave pulse
more similar to that in the homogenized bar. Therefore it is seen how the
bar homogenizes in the dynamic non-stationary problem of the wave pulse
propagation. The analogy with the stationary case of harmonic wave prop-
agation is observed e.g. in [5]. One can also compare the shapes of the wave
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Fig. 2. The pulse transmitted through the bar built of 30 couples of segments; a — the
amplitude in the deterministic periodic case, b — the mean value of the amplitude in the
case of the bar where the lengths of the segments are random variables

pulses in the deterministic and stochastic cases. The shape of the averaged
stochastic wave pulses obtained in computer simulation (Figs 2, 3 b) is the
result of a very non-regular structure of the sample-path in the stochastic
case where some additional small transmitted wave peaks in between the
dominating ones can be observed. It is seen that the averaged stochastic
pulse is more regular than deterministic one — due to the elimination rapid
changes of the amplitude by averaging. This averaging makes that, in be-
tween the dominating pulse, it appears a ‘permanent transmitted pulse’ of
the level tending to zero, when the number of segments 1n the bar tends to
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infinity. The averaging makes also that the sharp edges of the transmitted
pulses are fuzzy (see Figs 2, 3b).
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Fig. 3. As Fig. 2 but for 100 couples of segments 1n the bar

In the above considerations we have studied the averaged properties
of the transmitted wave pulses. The obtained equations for the amplitude
make it possible to analyse also the individual paths of the wave process.
For instance, from Eq. (6) we can observe some particular properties of the
pulses paths and under certain assumptions calculate their probabilities.
Generation of a strong pulse inside the bar, analogous to the phenomenon
studied in case of continuously inhomogeneous stochastic stratified media
(see [6]), is an example of such a phenomenon.
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