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IN THE PAPER reflection law models describing the motion of a free particle in a
bounded domain are considered. Properties of such dynamical systems are strongly
related to the boundary conditions, expressed by a map called a reflection law. We
discuss recent results concerning the problem of transferring important properties like
chaos, ergodicity and mixing from the reflection law to the motion of the particle.
T'hen we present in a consistent way a method of construction of block cryptosystems.
using chaotic reflection law models with appropriate properties. We also propose an
application of the mechanical particle model (possessing the transferring property)
tor constructing pseudo-random numbers generator which can be applied in stream
ciphers. The security of the cryptosystem based on particle’s motion is due to the
property ot statistical independence of the actual location of the particle, after a
number of reflections, of its initial location.

1. Introduction

DURING THE PROGRESS of civilisation many branches of science of very particular
specialisations appeared, so experts in one field do not know what is being done
in another. However, 1t often happens that tools and methods developed in one
branch of science can be applied in others, apparently very far away. Let us
remember, for example, the use of genctic algorithms in engineering tasks of
structural optimisation. In this paper we give another example: the application
of non-classical reflection law models, originating from the kinetic theory of dilute
gases, for constructing cryptographic algorithms applied in secure communication
and information systems.

"The paper has been prepared with the financial support of the Committee of Scientific
Research (KBN) under grant no. 8T11D01112
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In classical mechanics, the problem of elastic reflection of a moving body from
a rigid wall 1s governed by the fundamental conservation laws, which determine
the behaviour of the velocity of the body after the reflection. This gives the
following reflection law: the reflection angle is equal to the incidence angle of the
body. However, in kinetic theory, where the scale of the reflected bodies (particles)
1s smaller, the structure of the boundary must be taken immto account. Up to now
there are only hypotheses as to what happens when the particle reaches the
boundary, more or less confirmed by experiment. This results in the necessity of
assuming some more complicated boundary conditions for the description of the
behaviour of gas particles in a container. The concept of non-classical reflection
law models 1s an attempt at a description of such complicated conditions by some
global method.

The theory of non-classical reflection laws tound its place in the literature
3, 30, 32, 35, 36, 37|. Reflection law models are an intermediate case between
the deterministic systems first considered by SCHNUTE and SHINBROT (32|, and
the systems with random reflection laws [9]. Namely, we admit a system with
strictly deterministic reflection laws that are not one-to-one maps. Thus, in this
case 1t can happen that two different initial configurations in the phase space lead
to the same final configuration which is impossible in the Schnute and Shinbrot
model. There are a number of maps which can play the role of the reflection law.
These and other authors investigated the properties of reflection laws finding
that they can lead to non-slip reflection on the boundary, non-increasing entropy,
chaos, ergodicity and mixing property of systems describing the behaviour of the
particle. These phenomena are examples of a more general effect of transterring
chaos (ergodicity, mixing) from some subsystem to an extended system |8, 12,
25, 29, 35, 36, 37].

Non-classical reflection laws found their place in modelling real physical phe-
nomena. A certain interesting physical process governed by a non-classical re-
flection law was observed and investigated by ANDREYEV |2|. He studied the
motion of an electron in the neighbourhood of the boundary separating normal
and superconducting phases. It was found that the electron, reflected from the
superconducting phase, changes the sign of all three components of the velocity
(the “anti-reflection” law), what is essentially different from the classical reflec-
tion, where only the sign of the orthogonal component is changed. An interesting
step in description of the mesoscopic scale physical systems in solids [1], where
the theory of the Andreyev reflection law is developed (approaching practical
construction of such systems), is the recent paper of NAzZAROV |24] devoted to
the novel circuit theory of superconductivity.

Problems of transterring some imposed properties from a dynamical system
to its extension appear in various situations and scem to be interesting both trom
the theoretical and practical point of view. They naturally arise from many pro-
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blems of engineering dynamics or physics. In general. by an extended dynamical
system we understand a system with state space of dimension greater than the
original one and functionally dependent on it (e.g. vibrations of a vehicle excited
by a working engine). Such a system can be a simmple extension of the given dyna-
mical system obtained by adding more co-ordinates without changing the form
of the primary ones, or i1t can be some higher-dimensional dynamical system dri-
ven by the lower-dimensional one. Many practical engineering applications dealt
with this problem, posed as, tor example, the stabilisation of systems by small
perturbations (noise or chaos). In this paper we consider the transfer problems
In the case of a tree particle motion inside a bounded plane domain. We assume
the reflection law as a primary dynamical system and the motion of the reflecting
particle as an extended system. For our cryptographic applications, the transter-
ring property of “irregularities” in the model used i1s the basis for constructing a
secure algorithm.

Cryptography is a permanent field of interest {31|. At present, the secret
communication plays an increasing role in many fields of common life. The basic
idea of encryption is to modify the message i such a way that its contents can
be reconstructed only by a legal recipient. The message should be represented by
a sequence of symbols from a finite alphabet. In practice, the message written
c.g. 1In Latin alphabet, must be transtormed, by some known, standard algorithm,
to a certain sequence of numbers M (in decimal or binary representation). This
procedure is called message encoding. The process of encryption e(M) can be
regarded as a function or algorithm producing the ciphertext €' = e(M, k). By
k we denote a parameter (number), called the sccret key chosen at random from
a large set. The tunction inverse to e 1s the decryption function d, which from
the ciphertext C and the secret key k produces the plaintext: M = d(C, k). The
security of the algorithm is based on the fact that the decryption is possible only
for people who know the secret key k.

One of the fundamental properties of cryptosystems required for their secu-
rity 1s statistical independence of plaintexts and the corresponding ciphertexts,
strongly connected with the concepts of ergodicity, mixing and chaos |7, 22|. The
idea of ergodicity and sensitive dependence on initial conditions (chaos) has its
source in the theory of gases (e.g. n-particle models, Lorentz gas, Brownian mo-
tion). In the theory, two properties play a fundamental role: ergodicity, that is the
convergence of the average value over trajectory to the ensemble mean value, and
mixing, which guarantees the convergence from local non-equilibrium to equili-
brium state. Analysing the behaviour of individual particles, assuming ergodicity
or mixing, we go from any initial conditions of the particles to some macroscopic
equilibrium state, where the particles are practically non-discriminable. There-
fore, using the reflecting system tor encryption, we expect that the position of
our particle, describing at its initial state the message being encrypted, after
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several reflections will take some non-predictable position and will not be stati-
stically distinguishable from any other possible position, making the algorithm
cryptographically secure.

In this paper we present in a consistent way (pointing out the mechanical
aspects of the models used) the application of two-dimensional discrete dynami-
cal systems describing the motion ot particles, so-called reflection law models, for
constructing secure cryptosystems. In the block cryptosystem we take the initial
condition of the first coordinate ot the system (which describes the position of the
particle on the boundary at the moment of reflection) as the plaintext, and the
initial condition of the second coordinate (representing the angle of reflection) as
the secret key. Both coordinates are iterated:; the second, independently ot the
first, in a chaotic way:; the hrst with some dependence on the second coordinate
at each step. For the chaotic dynamical system, taking two initial conditions,
we observe an exponential divergence of their trajectories, depending on the di-
stance between the mitial conditions of both trajectories. The required statistical
properties (ergodicity, mixing) and chaos are obtained in the dynamical system
describing the motion of the particle by a transfer from the reflection law.

Except for the results concerning the block ciphers, we suggest an 1dea of ap-
plication of the particle motion models tor construction ot pseudo-random number
cenerators used i the stream cipher. In the models, the required property ot the
system could be obtained by the transferring process. The basic 1dea of bit ge-
neration 1s that the actual location of the particle (in a phase space) indicates
which bit we choose: “0” or “1”". We hope that such a theoretical construction
(usually simulated in the computers) can be further developed to some physical
realisation, slightly increasing the speed of generation of bits and avoiding the
computer calculations errors.

2. Reflection law models

To establish a reflection law model. one must sclect a domain with a certain
shape of the boundary and dehne the reflection law. Usually, the boundary 1s
assumed to be a closed, sufhiciently regular surtace. The reflection laws describe
In a macroscopic way the behaviour of the velocity ot a freely moving particle
during its contact with the boundary of the domain. From this point of view,
non-classical reflection laws need not satisty such a fundamental physical law
as the conservation of linear momentum. However, one can find some situations
where such laws can describe realistic physical phenomena. Consider for exam-
ple a container, the wall of which has some microstructure (Fig. 1). We assume
that the mass of the reflected particle 1s negligible in comparison to the mass
of the container. Then the reflection process, observed as non-classical, can in

fact be the effect ot several classical elastic reflections where, for every micro-
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reflection, the conservation of linear momentum is satisfied. In this model, due
to the small scale of the microreflection, we identify the outgoing position with
the 1mncoming position. The reflection law is usually quite general and it can be
written symbolically as:

(21) Vref -— Tr:(l/inc)a

where v 1s the incoming velocity of the particle at the boundary point z, and
Uref 18 the velocity of the particle after the reflection.

N T

~

FiG. 1. Eftect of the boundary microstructure on the reflection law.

In our considerations we assume that the particle moves with a constant
velocity, changing only the direction at the moment of reflection. In the particular
case of the reflection law conserving the angle of incidence (the angle of incidence
1s equal to the angle of reflection), one obtains the class of dynamical systems
called billiards. This conservative reflection law (as a map) is neither ergodic
nor chaotic [35]. (However, it is well known that in appropriate domains it can
lead to ergodic or chaotic motion of a particle.) Thus, to obtain ergodic 7] and
chaotic properties [29] of a reflection law, one must assume another map relating
the incident and outgoing angles. In this paper we consider the reflection law
models 1 two dimensions, where we can observe the qualitative results we are
interested 1n, especially the transterring property. We approximate the boundary
of the plane domain ot particle’s motion by some closed, sufficiently smooth
curve. BExtensions of the results in two dimensions to more-dimensional spaces
lead to some technical problems, which can be also observed in the case of the
widely studied classical billiards theory. However, the results in R* can give some
suggestions concerning the behaviour of more-dimensional systems.

In order to get the simplest form of cquations of particle motion, we use
the following co-ordinate system mmtroduced by BIRKHOFE [5]: (x,,,1,), where
T, denotes the position ot the particle on the boundary at the moment of the
n-th reflection, and v,, 1s the angle between the velocity of the particle after the

- emale amlem s eje s
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reflection and the tangent to the boundary at x, (see Fig. 2) |7, 36, 37|. In the
case of a fixed plane domain we obtain a two-dimensional discrete dynamical
system Fp(.,.) whose properties are dependent functionally on the reflection law
T..(.) (under some assumptions, a dynamical system itself). Thus, Fr(.,.) acts
from the product of two intervals onto the same product:

(2.2) Fr:[0,L) x (0,7) — [0, L) x (0, )
and can be written in the following form:
(23) (In—l—la I/n-{—l) — F”[‘(In, l/n.)-

The symbol L in Eq. (2.2) denotes the length of the boundary of the domain.

", -onir B Wil . . A o e At v - sy - S 1 . gy P =yl

Fi1a. 2. The reflection law in local coordinates.

In our further considerations the reflection law T, (.) is assumed to be inde-
pendent of z (which means that the properties of the walls of the contamner are
identical at every point ),

(2.4) T.()=T(.).

Then the reflection law T'(.) is a one-dimensional dynamical system itsell and 1t
is used for construction of the two-dimensional dynamical system Fp(.,.). It 1s
interesting to know, how properties of the smaller system 7°(.) affect the larger
one — Fp(.,.), which describes the motion of a particle in the container.

3. Transferring problems

In the previous section we considered reflection laws as dynamical systems
with certain properties. If the reflection law extracted from the extended dyna-
mical system describing the motion of a freely moving particle 1s independently
considered, one can ask the following questions: what are the properties of the
extended system if we use a non-classical reflection law? What is the effect of
the specific properties of the reflection law (like chaos or ergodicity) on the be-
haviour of the particle? Is the particle motion chaotic or ergodic? In our model
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the shape of the boundary also affects the properties of motion and it leads to a
new question: what 1s the mmfluence of the shape of the container on the motion
of the particle? In this section we present some interesting results concerning the
above problems.

lo give some insight into transterring properties we study this phenomenon
in two typically used containers: a circle and a square. In the case of a circle,
after siiple geometrical considerations, making use of the rotational symunetry,
we obtain the following system of evolution equations:

]

Vn+1 T(V’rz,):

(3.1)
Tyl = Ty — 2041 (mod 27),

where z,, € [0,27), v, € (0,7). The first cquation constitutes a reflection law
and the second one 1s inherently connected with systems of such type. It turned
out [36] that in this model, ergodicity (and also chaotic behaviour) of a reflection
law 1mplies ergodicity (chaos) of the trajectories of a particle. Moreover, if the
reflection law has an attracting periodic orbit then the trajectories of moving
particles are asymptotically periodic.

Related questions were studied in the context of Brownian motions and also
as a purely mathematical problem. In [4] a class of non-linear dynamical systems
describing the motion of a particle in a viscous liquid under the influence of a kick
force was 1nvestigated. In this case the time evolution of velocity of the particle
1S governed by the system of equations:

|

Lo 41 JT(:’:N)a

(3.2)

Yn+1 Ay, f '(mn)'

[t was proven [4] that under appropriate conditions on the map T'(.), the force
f(.) and the constant A (|A| < 1 depends on the viscosity of the liquid) periodi-
city, ergodicity and the mixing property (see Sec. 5 for definitions) of 1°(.) imply
the same properties of the extended dynamical system (3.2). The variable v, in
FEq. (3.2) corresponds to the velocity of the kicked particle and the ergodic (pe-

riodic, mixing) property is supported by the vicinity consisting of other particles
(whose evolution 1s governed by 7°(.) through the force f(.)). In our model (3.1),
ergodicity (periodicity, chaos) is transmitted to the velocity of the particle from
the boundary of the container by means of the reflection law.

The equation (3.1) has another interesting physical interpretation. It turned
out that this evolution equation 1s topologically conjugated [37] to the well-known
“standard maps” (see |23, 34| and the literature therein), for the first time introdu-
ced by the physicists B.V. Chirikov and J.IB. Taylor. The standard maps appear
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in many situations; they are obtained as a Poincaré map describing the motion
of an electron rotating in the plane perpendicular to a uniform magnetic field in
circular accelerators |13, 14].

Considering our second model of the container, that 1s the square, we come
to quite different results concerning the transferring property. We show that 1t
we assume 1'(.) to be a unimodal map, for example:

4
(33) Un+1 — T(l/n) — ;T"Vn(ﬁ o Vn):
then in the square the transferring problem reduces to the study of dynamical

systems given by the following one-dimensional map:
(3.4) G=Toh:|0,7] — |0,
where h 1s some 1nvolution, 1.c.

(3.9) h*(v) = v for every v € |0,7].

We proved that in the square containers, ergodic and chaotic reflection laws 7°(.)
can even lead to some periodic motion of the particle |37|. This result can be
generalised to containers with convex polygon boundaries.

The interesting question is if for a given container, equivalent reflection laws
(topologically conjugated) lead to the same qualitative properties of the motion
of the particle. We found [35] two topologically equivalent reflection laws, both
ergodic and chaotic which in the square domain transfer to the extended sys-
tem in completely different ways. For the first law, the motion of the particle 1s
asymptotically periodic, that is the particle tends to some fixed periodic orbit.
In contrast, for the second reflection law and almost all initial points (xg, vp), the
set of velocities {v,,n = 1,2,...} corresponding to each initial point 1s dense 1 a
set, of Lebesgue measure of at least 7 /2.

In Sec. 5 we give an example of a reflection law satisfying the transterring
property in the square, which is useful for our cryptographic purposes. [t 1s in-
teresting to find some general assumptions on the reflection law that assure the
transferring property for a large class of containers. It seems that these types ot
reflection laws could be interesting from a physical point of view.

4. Elements of cryptology

Before we start the presentation of a cryptographic algorithm taking 1ts so-
urce from some mechanical phenomena or, more precisely, from the theory of
rarefied gases, we introduce the definitions of fundamental terms needed for un-
derstanding the procedures. The first procedure, preceding the encryption, 1s a
coding algorithm. It is the method of translation of the natural message (spoken
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or written) into a sequence of numbers. This can be for example the representa-
tion of letters and numbers by the ASCII code i digital computers, or transter ot
human voice to a sequence of binary pulses in telephone communication. When
the message is coded, i.e. represented in the form of a sequence of numbers (de-
cimal or binary), it can undergo some additional transformation, which makes it
non-understandable for everyone except the intended recipient. This is the field
of interest of cryptology.

Cryptology is the branch of science |31| dealing with the design of encryp-
tion algorithms and the investigation of their strength (by studying methods ot
breaking them). Cryptology has been of some interest at all times. Mostly 1t
has been used in connection with military or diplomatic affairs and for instance,
In its early stages 1t was almost exclusively concerned with secretly written 1in-
formation. With the development of an ever rehined communication technology,
nowadays secret communication plays also an increasing role in commercial, 1n-
dustrial and banking sectors. It 1s due to the actually Increasing importance of
cryptology in economics that the rescarch activities in the field and the search
for new cryptographic methods still continues.

Cryptography is the process of transforming information (plaintext) into
unintelligible form (ciphertext) so that it may be sent over insecure channels
or it may be stored in insecure files. Cryptographic procedures can also be used
for personal 1dentification, digital signatures, access control etc.

A cryptosystem 1s a cryptographic algorithm, which is usually known, and
which depends on some parameter called the key. With encryption we can trans-
form the plaintext to a form which an outsider cannot interpret unless he knows
the method and the key used in the process. Decryption 1s the mverse process
in which encrypted data are translated to clear data. Thus, a cryptosystem 1s a
two-way procedure: encryption — decryption. Let us also remark, that the coding
procedure must be also two-way. It we precede the encryption algorithm with so-
me encoding procedure, then we must follow the decryption with some decoding,
inverse to the encoding process.

There are two types of encryption algorithms: strecam ciphers and block ci-
phers [31]. A stream cipher is a method in which we have some secret key genera-
tor which produces a bit stream (the key stream) which enciphers the plaintext
bit stream by simple modulo 2 addition. The stream cipher system thus hides the
plaintext by changing the bits of it in a random-like way. An interceptor, who do-
es not know the key, will not know which bits have been changed (corresponding
to the occurrence of “1” in the key stream), and which ones remain unchanged
(“0” in the key stream). Unlike stream ciphers, where only one bit at a time 1s
encrypted, in block ciphers whole blocks ot bits are treated simultaneously. In
this case the plaintext information i1s hidden by the tact that, depending on the
key, a ciphertext block can be deciphered to any combination ot plaintext bits




518 J. 5zCzZEPANSKI, K. GORSKI, Z. IKOTULSKI, A. PASZKIEWICZ AND A. ZUGAJ

or to as many combinations as there are keys. If the keys are chosen with equal
probability, then to the interceptor observing a ciphertext block, all the possible
plaintext blocks are equally likely to have occurred.

9. Chaotic dynamical systems - new tool for cryptology

In recent years a new approach to constructing cryptosystems based on appli-
cation of the theory of both continuous and discrete chaotic dynamical systems
has been developed. Within the continuous theory, methods of synchronisation
of chaotic systems |15, 16, 27, 28] and the idea of controlling chaos {11, 15, 26]
are applied. In the discrete systems approach, the constructions of cryptosystems
based on 1terations and inverse iterations of chaotic maps (with possible methods
for introducing keys) are developed.

T'he earliest applications of chaotic systems in cryvptography were proposed by
PECORA and CAROLL in 1990 |28] as a possible application of the synchronisation
of chaotic dynamical systems. This idea has been developed by KOCAREV et al.
116] and PARLITZ et al. |27], where an experimental test system based on chaotic
electronic circuits was presented. The first paper employed analogue signals while
the second one used binary signals. An overview of the methods connected with
encrypting messages with the modulation of trajectories of continuous dynamical
systems can be found in |15].

Application of discrete chaotic dynamical systems to cryptography was
first analysed by HABUTSU et al. [10] and then developed by KoTUuLSKI and
SZCZEPANSKI |19, 20|. Before we present the algorithm of encryption and de-
cryption, we mtroduce all the required properties and definitions.

Chaos 1s the property of sensitive dependence of trajectories of the dynamical
system on the initial conditions |22, 34|. More precisely, a non-linear system 1is
chaotic it 1t has positive Lyapunov exponents in a certain domain. Consider for
example a one-dimensional dynamical system (7, ), where ¢ is a C' -class map
transtorming the interval [ into itself. If at some point @ € I. the Lyapunov
exponent A, > 0, then

(5.1) Ve > 0dny,nodUp, pny D @,V << no Vap, 20 € Uy, o,

exp {(Az —€)n}lz1 — zo| <|@"(21) — ¢"(22)] <exp{(Ae +&)n}|z1 — 2.

where U, 5, 1s some neighbourhood of € I. The above expression means that

the mitial distance |21 — z2| between two arbitrary points zy, zo (which are ele-

ments of the neighbourhood U, ,,, of point &) after n iterations will increase at
least exp {(A, — €)n} tines.

Let us illustrate the idea of including the secret key into the initial condition
by some elementary one-dimensional example [19]. Let v be a one-dimensional
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chaotic map with positive Lyapunov exponent A:
(5.2) v 1 [0,1] — [0.1].

and P € (0,1) be the message to encrypt. Fix a natural number n (number of
iterations) and choose the secret key & € (0,1). Let C be some selected pre-image
of P under the map v":

(5.3 C

v P):
Y (v T(P)) = P.

Then, we calculate C, the ciphertext of P as

(5.4) v (C)

|

(5.5) C = C + k(mod1).
Decryption 1s the inverse operation, that 1s
(5.6) P =~"(C-Fk).

An outsider tries to approximate the key £ assuming some value of the secret
key, say kq such that |k — k] < 1074°. Then he calculates the value of plaintext
Py =~"(C —ky). For n = 30, A—c = 1.558 (which is a reasonable value for many
dynamical systems), due to chaos we have:

~ (.5.

(5.7) P — Pl = |4"(C — k) —~+"(C = k)| = ") |k — ky

Formula (5.1) and the above example suggest how to choose a chaotic map
with suitable Lyapunov exponent to construct DDC cryptosystem. First we select
an admissible class of maps (with respect to possibility of practical iinplementa-
tions), e.g. of parabolic type, and establish the number of iterations n to guaran-
tee the required speed and accuracy of calculations. Then we fix the map with
the Lyapunov exponent such that the obtained speed of divergence (governed
by formula (5.1)) makes ciphertexts corresponding to close plaintexts completely
different. For example, for n = 30, the accuracy equal to 1072V the estimation
(5.7) shows that the map with the Lyvapunov exponent A & 1.6 could be used.

The formula (5.7) demonstrates how the chaos property protects the sys-
tem against a brute force attack (where the algorithm is tested with all possible
secret keys). However, cryptoanalysts use some more sophisticated attacks to
break cryptosystems. 1o make the cryptosystem based on the chaos property
more robust against statistical cryptoanalytical attacks, we postulate some other
important properties of the applied dynamical system, like ergodicity and mi-
xing property. For cryptographic purposes we shall use dynamical systems with
invariant measure equivalent to the Lebesgue measure.
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We say that the measure p 1s invariant, 1t and only 1f 1t satishies
(5.8) VAeo(X),  pu(A)=pule  (A))

We postulate that o 1s equivalent to the Lebesgue measure, 1.e.:

(5.9) VA € o(X),  p(A) = / g(2)dor,
A
with its density function g(.) satisfying for all & the following condition:

(5.10) 0 < g, < g(a) < go.

where J1 1s close to Js.

We say that (X, ¢) is ergodic if and only if it has only trivial invariant sets,
e, if o(B) C B then u(B) =0or u(B) = j(X). The ergodicity implies that the
state space cannot be nontrivially divided into several parts. Therefore if some
trajectory starts from any point @, it never localises in a small region. It means
that the plaintext space which can correspond to a given ciphertext cannot be
restricted to a “smaller” subspace (smaller than X'). Thus, for the ciphertext C
the corresponding plaintext PP (during brute attack) must be searched for over
all the state space X. We can also postulate a stronger condition, assuring better
probabilistic properties of the set of possible ciphertexts. The system i1s mixing
if the following condition is satisfied (we assume that p(X) = 1) for any sets A

and [3: (o~ (A) N B (A)
e AN D)
511 1111 —————— il == -
(5.11) v () (X))

This property means that the part of I3 which after n iterations of ¢ will be
contained in A, is asymptotically proportional to the ratio of A in X with respect
to the measure p. Thus for any ciphertext C', all the possible plaintexts P (during
brute attack) are p-equiprobable.

6. A new type of block ciphers — the DCC algorithm

In this section we outline the application of our encryption algorithm using
the reflection law model. The first step is the coding procedure, where the message
expressed in natural language (a sequence of symbols from a finite alphabet) is
transformed to a binary sequence by some public method. Then the sequence
1s divided mto finite blocks of bits of the same length. Now we can identify
the usual elements of a block cryptosystem. We assume, that every plaintext is
some number P € (0.1), the secret key i1s the parameter £ — a number from
some interval (usually also a representation of some finite binary sequence). The
ciphertext is also a number, C' € (0, 1).
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In the general formulation ot the DCC cryptosystem we use some chaotic
map @i(.), depending on the parameter k,

(6.1) Ll - (0,1) —> (0, 1)

The encryption is the n-told iteration ot the inverse map 99]:1 with the initial value
P according to some (secret, determined by k&) rule of choices of the successive
pre-lmages of c,ogl. The ciphertext C' is obtained as:

(6.2) C =" (P)=vr (o5 (o (P))).

The sender encrypts all the blocks of the coded message, say £, 1 = 1,2,...,m,
using the secret key &£ and obtains the sequence of ciphertexts C;, 1 = 1,2, ..., m.
The ciphertexts are sent by an open channel to the recipient. The legal reci-
pient (person, who knows the secret key k), to obtain the plaintext performs the
following decryption algorithm using the n-th iteration of the map ..

(6.3) P = ¢ (C) = vr(er(...on(C)))

He does this tor all C, @ = 1,2, ..., m and obtains the plaintext which 1s the coded
message. The final step 1s the application of the decoding procedure, inverse to
the initial coding step. 1t 1s obvious that the above construction of DCC block
cryptosystems can be generalised to more dimensions (more dimensional spaces
of plaintexts and ciphertexts).

There are two possibilities of introducing the secret key & into the algorithm.
First, £ can be an internal parameter of the map ¢ [10], second, k can be included
into the initial condition |19, 20]|.

The map o(.) applied in (6.2) - (6.3) 1s quite general. However, to assure
suthcient security of the cryptosystem we should apply maps that are chaotic,
ergodic and even mixing. Maps describing particle’s motion governed by appro-
priate reflection laws have the required properties and after some adaptation they
can be applied for constructing secure cryptosystems.

To construct a concrete retlection law model useful for cryptographic pur-
poses, we must take into account not only security but also the computational
aspects — in this case the accuracy of numerical calculations and computational
complexity. Theretore we propose the square as a domain and a pilece-wise para-
bolic reflection law to construct the reflection law model. In the systemn the state
variable is the pair (z,v), where x € [0, L) represents the message evolving (du-
ring encryption) iterations from the plaintext 2 to the ciphertext C' (we identity
r with the distance of the particle’s reflection point from some fixed point of the
square measured along the sides of the square), and v € (0,7) is the reflection
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angle. We take the reflection law T of the following form:

1/ N 31/ " - (O 7T>
— 4 — or I C— .
T 2 b 2 )
(6 4) TD(I/) — ( 71')2 ( -
V"““"Q" 3 I/—*“—Q"') -
VT2) V) e [Ta)

This map is chaotic, ergodic and even mixing [18]|. For Tp(.) these properties
transfer to the larger system describing the motion of a particle as required.

Thus, a general form of the two-dimensional dynamical systems, describing
the motion of a particle that we use for construction ot the cryptosystems, 1s
Fr,(z,v) = (S(z,v),Tp(v)). The inverse iterations of this system are the steps
of encryption. During encryption, the first co-ordinate describes the evolution of
the message and the second one — the evolution of the secret key. Decryption
involves forward iterations transforming the position representing the ciphertext
to the one corresponding to the plaintext. As before, the second co-ordinate
describes the evolution of the secret key. The details of the algorithm together
with the results of numerical experiments can be found in [21].

7. DCC as a pseudo-random number generator

The chaotic dynamical systems with good properties can be used for con-
structing pseudo-random sequences of bits [17], being, among other applications,
the foundation for construction of stream cryptosystems. As we mentioned, such
sequences (called the secret key streams) hide the content of the original binary
message by changing the value of a bit to the opposite, if the corresponding bit
of the key stream is 1 and leaves it unchanged if the corresponding bit of the
key stream is 0. An ideal stream cipher would use some physical system (true
random number generator) as a key stream generator. However, since 1ts output
cannot be reproduced, decryption (the operation which in the case of a stream
cipher is the repetition of the same algorithm as in encryption with the same key
strecam) would be impossible unless the whole key stream would be transported
to the legitimate recipient via a secure channel. This procedure 1s often 1mprac-
tical, therefore mostly so-called pseudo-random number generators with special
properties, controlled by a relatively short key (called the seed), have to be used
as key stream generators (instead of physical gencrators commonly used).

The most important property of the binary sequences used as the key streams,
cguaranteeing the security of the cryptosystems, 1s impossibility of reconstruction
or prediction of unknown bits on the basis of a known sequence of bits. In other
words, the key stream must have properties analogous to a white noise process,
that is independence of its states for different instants of time. As 18 known,
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the concept of white noise 1s strongly connected with a description of a particle’s
motion called the Brownian motion. This fact indicates a possibility of application
of the reflection law models. To assure good statistical properties of the genera-
ted sequences we propose to make use ot the physical systems with transterring
phenomena, where the required properties (c.g. mixing, chaotic behaviour) ot a
smaller system affects the extended one, describing globally the physical process.
Consider the motion of a particle in the square with the reflection law given
by (6.4). In this case the state space is the Cartesian product of two intervals:

(7.1) S =10,L) x (0,7).

The basic idea of the method is the following. We divide (in some appropriate
way) the state space S of the reflection law model into two parts Sp, S1 (SgUS| =
S). We start observation of the evolution of the particle starting from an initial
state (xg. 1), playing the role of the seed. We generate a sequence of bits by
taking the n-th bit equal to “0” if the state of the particle 1s at the moment of
the n-th iteration in the set Sy, that is (x,,1,) € So, and “1” otherwise.

T'he most important decision in this construction is the choice of the sets
Sp, 91. Observing histograms of the moving particle we identify the invariant
measure o of this dynamical system. In further considerations we normalise this
measure to 1. 1t 1s known that such a measure is close to the Lebesgue measure
on .9, but is not exactly equal to it. To have the opportunity to use ergodic theory
we choose the sets Sp, 97 1 such a way that

. 1
(7.2) 1(S0) = p(S1) = 5.

L
vl < 5 ). Then, by condi-
tion (7.2) we obtain that the expected number of “0” in the generated sequence is
cqual to the expected number of “17. To be more precise, we can use the Birkhoff -
Khinchin Ergodic Theorem |7|, which for our reflection law model can be written

(In our investigations we assumed Sy = {(:1:, V) €5,

as:
1 1n—1 |
(7.3) nlggo - ZU 12 ( 1, (X0, 1/0)) — / P,
b= S

(for almost all (zg,r9) € S with respect to 1), where p is an arbitrary p — in-
tegrable tunction. Taking as the function p the indicator function of the set Sy,
that 1s

(74) p(') — XS'l('):

we obtain that in the pseudo-random sequence determined by the seed
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(xo,vp) € 9, the average number of “17 is:

1 n—1 i 1
(7.5) - Z X S, (FTD (0, 1/0)) 2 /XS'] die = p(Sy) = 5
i=0 '

S

due to (7.2). This condition guarantees that both values in the sequence of bits,
that 1s “1” and “0” are equiprobable and any illegal recipient has no a prior: indi-
cation concerning the sequence. Now we should show that bits of the generated
sequence are statistically independent, which practically assures the impossibili-
ty of determining some bit on the basis of some others. To show this we use the
mixing property.

Define the random variable 5,,, responsible for the generation of the n-th bit,
in the following way:

(7.6) Bn(zo,v0) = xs, (I, (20, 10)),

where the set S is the space of elementary events and the normalised invariant
measure p 1S the probability distribution describing our binary random variable

B,

(7.7) B, : S —{0,1}.

For every n, the probabilities that the random variables B,, are equal to “1” and
“0” are:

(7.8) P(B, =1) = u (E]:;’*(Sl))  P(B,=0)=pu (F;;(SO))

respectively. Applying the mixing property (5.11) we can show asymptotic inde-
pendence of random variables B3,, and 5,4, for m sufficiently large. Then, taking
the modified dynamical system Grp, (., .):

(7.9) Gy (0. 110) = P2 (w0, 10)

in definition (7.6) instead of Frp,, we obtain the sequence of statistically inde-
pendent random bits.

Generating bits according to the proposed algorithm we require the complete
repeatability of the obtained sequences (what is the necessary condition of cor-
rect decryption in the stream cipher methods). In practical implementations the
numbers used in calculations are expressed with some accuracy. Therefore, if our
moving particle is close to the boundary ot separation of the sets Sg and Sy, then
the numerical error can make that “0” generated in one computer becomes “1”
In another (or wice versa). The idea of how to prevent this inconvenience was
presented in |6]. The authors suggest to introduce a forbidden gap of small size

at the partition Sg — S; boundary an then to neglect all the trajectories which
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go through this gap. For some chaotic maps describing the dynamical systems it
Is possible to characterize the forbidden trajectories imposed by the dynamics it-
self. 'They give also arguments (computing the topological entropy and analysing
successive approximations of the grammar of the symbolic dynamics by means
of a sequence of transition matrices) that for sufficiently small gap, the loss of
the trajectories gencrating the sequences is only incremental and, what it follows,
sucn a procedure does not deteriorate the statistical properties of the sequences.

We presented the construction of a single pseudo-random sequence described
by the seed (zo,10) € S (which is the elementary event in our model). We showed
that statistical properties of such a sequence are sufficiently good for cryptogra-
phic purposes. In practice users of a stream cryptosystem need a large number
of sequences. We can generate them by changing the initial conditions (seeds).
Using the mixing property (provided by transferring phenomenon) of the reflec-
tion law models we can show that two sequences ( corresponding to two different
sceds) are different; moreover, by the chaos we obtain, that they cannot overlap
over long sub-sequences of bits. Thus we have presented a method of generating
bits which can be quite useful in practical applications.

8. Conclusions

Reflection law models arise in a natural way in the theory of rarefied gases
(Knudsen gases) [3, 36], in description of particle’s motion in accelerators 113,
14, 23| and in mesoscopic models of superconductive media 12, 24]. In the first
case the model takes into account the behaviour of the gas particles at the bo-
undary and the shape of the container (which is important, because we neglect
the mutual interactions of the particles). Investigating the accelerators one finds
that the corresponding Poincaré maps (being the standard maps) are topologi-
cally conjugated to some reflection law models. The theory of standard maps |23,
34| is extensively investigated in the literature. Authors studied the coexisten-
ce problem |34], that is the possibility of simmultaneous existence of chaotic and
regular trajectories in the same system. Another important problem is the trans-
ferring of certain properties of a smaller system to the larger one. In our paper
this phenomenon was studied in the context of the effect of boundary conditions
(represented by the reflection law) on the motion of the particle described by the
refiection law model. We studied the possibility of transfer of chaotic, ergodic
and mixing behaviour of the dynamical system modelling the reflection law to
the dynamical system describing particle’s motion (the reflection law model). We
found that, under some additional assumptions concerning the reflection law and
the shape of the container, the reflection law model governed by some chaotic,
ergodic and mixing reflection law can have the same properties. However, we also
observed an unexpected effect where the chaotic reflection law leads to regular
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(even periodic) motion of the particle [37]. It is the interesting problem to con-
struct chaotic and mixing reflection laws which guarantee the transfer of these
properties to dynamical systems describing the motion of a particle in a large
class of containers.

In the second part of our paper we gave a practical application of the obser-
ved effects. Among recent uses of chaos one can find also secure communications
[15]. In [19, 20] we proposed a method of extending discrete dynamical systems
for constructing secure cryptosystems. The algorithms presented in this paper
are examples of a realisation of the general scheme with application of the reflec-
tion law model [21]. The applied unified approach using the theory of abstract
dynamical systems made it possible to prove the security of the proposed cryp-
tosystems. Mathematical tools used for this purpose are quite general and they
are extensively studied in the literature. This new approach allowed us to obtain
rigorous mathematical results concerning the cryptosystems (especially their sta-
tistical properties) but on the other hand, it opens a new area of investigations

The presented DCC algorithm is an idealised model. In practice, developing
software implementations, one should take into account the usual computatio-
nal restrictions [31, 33]. Since numbers in digital computations have a finite re-
presentation, one must assume the lengths of computed values (key, plaintext,
ciphertext) such that both the forward iterations and inverse iterations can be
performed uniquely and in such a manner that one can obtain the required num-
ber of mgmﬁcant bits of plamtext in the decryption process. In other words one
must fix the information rate R

' - plaintext size

) - - R=—

' mphertext size
specific for the algorithm applied and the computer accuracy. Therefore, develop-
ment of programs implementing our algorithms and useful in advanced practical
applications need some additional investigations taking into account this aspect
of the problem. From the other side, 1t could be promising to consider a possibi-
lity of construction of physical systems realising our cryptographical algorithms.
In spite of the fact that, in this case, we avoid the problem of computatlon errors,

we face another one — the accuracy of measurements.
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