
On automatic secret generation and sharing : part I

KAMIL KULESZA, ZBIGNIEW KOTULSKI
Institute of Fundamental Technological Research, Polish Academy of Sciences
ul.Świętokrzyska 21, 00-049, Warsaw Poland, e-mail: {kkulesza, zkotulsk}@ippt.gov.pl

Abstract: The secret considered is a binary string of fixed length. In the paper we
propose a method of automatic sharing of a known secret. In this case the
dealer does not know the secret and the secret’s owner does not know the
shares. We discuss how to use extended capabilities in the proposed method.

Key words: cryptography, secret sharing, data security, extended key verification protocol

1. INTRODUCTION

Everybody knows situations, where permission to trigger certain action requires
approval of several selected persons. Equally important is that any other set of
people cannot trigger the action.

Secret sharing allows to splitt a secret into different pieces, called shares, which
are given to the participants, such that only certain group (authorized set of
participants) can recover the secret. Secret sharing schemes (SSS) were
independently invented by George Blakley [2] and Adi Shamir [10]. Many schemes
have been presented since, for instance, Asmuth and Bloom [1], Brickell [5], Karin-
Greene-Hellman (KGH method) [6]. In our paper we concentrate on the last method.

In KGH the secret is a vector of η numbers { }ηη sssS ,...,, 21= . Any modulus k

is chosen, such that),...,,max(21 ηsssk > . All t participants are given shares that are

η -dimensional vectors tjS j ,...,2,1,)(=η with elements in Zk. To retrieve the secret

they have to add the vectors component-wise in Zk.
For 2=k , KGH method works like ⊕ (XOR) on η -bits numbers, much in the

same way like Vernam one-time pad. If t participants are needed to recover the
secret, adding 1−t (or less) shares reveals no information about secret itself.

Once secret sharing was introduced, people started to develop extended
capabilities. Some of examples are: detection of cheaters (e.g. [8],[9]), multi-secret
threshold schemes (e.g., [8]), pre-positioned secret sharing schemes (e.g., [8]).

2

2

Anonymous and random secret sharing was studied by Blundo, Giorgio Gaggia,
Stinson in [3], [4]. Some of ideas in automatic secret sharing and generation come
from the same field.

Dealer of the secret is the entity that assigns secret shares to the participants.
Usually, the dealer has to know the secret in order to share it. This gives dealer
advantage over ordinary secret participants. There are situations, where such
advantage can lead to abuse.

Automatic sharing of a known secret addresses problem of secret owner not
trusting the dealer. Using such a method owner can easily share the secret. The
resulting secret shares are random. It may have added feature, that even secret owner
knows neither secret shares, nor their distribution. The later decreases chances of
owner interfering with the shared secret.

The paper consists of two parts with the following outline:
Part I: preliminaries are given in section 2; we also state useful property of binary
vectors’ set. Next section brings algorithms for automatic sharing for the existing
secret. Proposed methods support extended capabilities, which apart from being
interesting theoretical constructs on their own, allow greater flexibility in the
applications of secret sharing schemes. Part II: we present method for automatic
secret generation and sharing, next we discuss further research for results from both
parts of the paper. Methods presented in both parts form automatic secret generation
and sharing (ASGS).

Remarks about procedures and algorithms presented in this paper. Every routine
is described in three parts:
a. Informal description. It states the purpose of routine, describes what is being

done and specifies output (when needed). Such description should be enough to
comprehend the paper and get main idea behind presented methods.

b. Routines written in pseudocode, resembling high level programming language
(say C++). Level of detail is much higher than in description part. Reading
through pseudocode might be tedious, but rewarding in the sense that allows
appreciate proposed routines in full extend.

c. Discussion (if needed). Methods and results are formally justified.

2. PRELIMINARIES

In order to formally present procedures and algorithms, one needs to introduce
notation. Further, we describe two devices and their functions. First comes random
number generator; its output strings have good statistical properties (e.g., see [7]).
Next comes the accumulator, which is a dumb, automatic device that memory
cannot be accessed otherwise than by predefined functions. Its embedded
capabilities are described below. In further considerations im denotes l-bit vector.

Given set A , its cardinality (number of elements) is denoted by A .

RAND yields im obtained from a random number generator.

ACC denotes the value of l -bit memory register. Register’s functions are:
ACC.reset sets all bits in the memory register to 0,
ACC.read yields ACC,

3

3

ACC.store(x) yields xACCACC ⊕= (performs bitwise XOR of ACC with the
input binary vector x, result is stored to ACC).

Accumulator consists of l -bit memory register together with defined above
functions. It has also some storage capacity separate from memory register.
Accumulator can execute functions and operations as described in procedures.

Secure communication channel. In this paper we assume that all the
communication between protocol parties is done in the way that only
communicating parties know plaintext. Whenever we use command like “send”, we
presume that no third party can know the message contents. There is extensive
literature on this subject, interested reader can for instance consult [8].

Encapsulation. Entities and devices taking part in the protocol can exchange
information with others only via interface. Inner state of the entity (e.g. contents of
memory registers) is hidden (encapsulated) and remains unknown for external
observers.

The idea of automatic secret generation and sharing is based on the following
property of binary vectors.
Basic property: Let nimi ,...,2,1, = , such that

0
1

�

=⊕
=

i

n

i

m , (1)

form the set M . For any partition of M into two disjoined subsets 1C , 2C , that is

such that ∅=∩=∪ 2121 , CCMCC , holds:

i
Cm

i
Cm

mm
ii

⊕⊕
∈∈

=
21

. � (2)

Now we present the procedure that generates set of binary vectors M .
Procedure description: GenerateM creates set of n binary vectors im , satisfying
condition (1). Procedure is carried out by the Accumulator.
Procedure 1: GenerateM(n)
Accumulator:

ACC.reset;
for 1=i to 1−n do

RANDmi =:
ACC.store (im)

save im
end //for

readACCmn .=
save nm
return { }nmmmM ...21=

end // GenerateM

4

4

Discussion: We claim that the generated set M satisfies condition (1). First,
statistically independent random vectors 1,...,2,1, −= nimi are generated, while

i

n

i
n mm ⊕

−

=
=

1

1

, so 0
1

1

1

1

1

11

�

=��
�

�
��
�

�
⊕��

�

�
��
�

�
=⊕��

�

�
��
�

�
= ⊕⊕⊕⊕

−

=

−

=

−

==
i

n

i
i

n

i
ni

n

i
i

n

i

mmmmm . �

3. AUTOMATIC SECRET SHARING

To share secret S , secret owner has to generate set

{ })()(
2

)(
1

)(... o
n

ooo sssS = , such Ss o
i

n

i

=⊕
=

)(

1

.

Automatic secret sharing algorithm takes away responsibility, for proper
construction of the secret shares, from the owner. Algorithm FastShare provides an
automatic tool to complete this task. Next, comes algorithm SaveShares that adds up
two more capabilities:
a. Shares are prepared using secret mask provided by an external dealer.
b. Owner knows neither distributed shares, nor their assignment to the participants.

Once the shares are distributed by SaveShares, they have to be activated by the
algorithm ActivateShares.

Finally, we discuss how automatic secret sharing can be used to implement secret
sharing schemes with extended capabilities (e.g. see [8]).

3.1 Known secret sharing

FastShare is the tool that provides fast and automatic sharing for a known
secret.
Algorithm description: FastShare takes secret S and n (number of secret

participants). Accumulator generates random 1,...,2,1,)(−= nis o
i . Every)(o

is is

added to the ACC and simultaneously saved. To obtain)(o
ns the secret S is added to

ACC. Next, ACC value is read and saved as)(o
ns . Algorithm returns

{ })()(
2

)(
1

)(... o
n

ooo sssS = .

Algorithm 1:FastShare(S , n)
Accumulator:
ACC.reset

for 1=i to 1−n

RANDs o
i =:)(

ACC.store()(o
is)

save)(o
is

end// for
Owner: Send secret to Accumulator

5

5

Accumulator:
ACC.store(S) //adding secret to the accumulator

readACCs o
n .:)(=

save)(o
ns

return { })()(
2

)(
1

)(... o
n

ooo sssS =
end//FastShare
Discussion:

1. We claim that FastShare produces random secret shares, due to the fact that
all of them originate from a random number generator. First 1−n shares are purely
random, while the last one results from bitwise XOR of the secret and random

number. More formally, Sss o
i

n

i

o
n ⊕= ⊕

−

=

)(
1

1

)(. So,)(o
ns is random.

2. All secret shares combine to S . Just observe:

SSsssss o
i

n

i

o
i

n

i

o
n

o
i

n

i

o
i

n

i

=��
�

�
��
�

�
⊕⊕=⊕= ⊕⊕⊕⊕

−

=

−

=

−

==

)(
1

1

)(
1

1

)()(
1

1

)(

1

.�

3.2 Confidential secret sharing

We present two algorithms. First, algorithm SaveShares will be described,
algorithm ActivateShares follows. SaveShares shares secret S using secret sharing
mask M provided by dealer. In the method the following conditions hold:
a. Dealer does not know S ;
b. Secret owner does not know M ;
c. Secret owner does not know secret shares and their assignment to the secret

participants
Algorithm description: SaveShares requires cooperation of two parties: Dealer and
Owner. First, Dealer uses GenerateM to create secret sharing mask M , such

that 0
�

=⊕
∈

i
Mm

m
i

. He also creates set K of encryption keys ik , such that

0
�

≠⊕
∈

i
Mk

k
i

. M elements are encrypted using corresponding keys from K to form

encrypted mask set C .

�
�
�
�

�

�

�
�
�
�

�

�

=
�
�
�
�

�

�

�
�
�
�

�

�

⊕
�
�
�
�

�

�

�
�
�
�

�

�

nnn c

c

c

k

k

k

m

m

m

:::
2

1

2

1

2

1

or CKM =⊕

6

6

Dealer stores K and sends C to the Owner. Owner shares original secret S using

FastShare to obtain)(oS . Using C and)(oS he obtains)(pS , which elements are

randomly distributed to the participants.

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

⊕
�
�
�
�

�

�

�
�
�
�

�

�

)(

)(
2

)(
1

)(

)(
2

)(
1

2

1

:::
p

n

p

p

o
n

o

o

n s

s

s

s

s

s

c

c

c

or)()(po SSC =⊕

Participants receive secret shares from)(pS and store them.
Algorithm 2: SaveShares

Dealer:
GenerateM(n)
ACC.reset

Owner:
FastShare(S, n)

for 1=i to n
Dealer:

Label < ik generation>:

RANDki =:
ACC.store(ik)

if (ni == AND 0.
�

==readACC) {
ACC.store(ik) //remove ik from ACC

go to < ik generation> // generate ik again
} // end if
save ik

iii kmc ⊕=:
send ic to Owner

Owner:)()(: o
ii

p
i scs ⊕=

send)(p
is to randomly chosen jP 1

Participant jP :

)()(: p
i

p
j ss = // share index i is updated

save)(p
js // participant stores his secret share2

1 { }nj ,...,2,1∈ , one participant is allowed to obtain only one secret share. Once)(o
is is send

to particular jP , this participant is removed from the set of participants eligible to obtain
secret share.

2 Secret share)(p
is that was sent to the participant jP has now the same index j as the

participant.

7

7

end//for
end//SaveShares

Discussion: Note, that Ss p
i

n

i

≠⊕
=

)(

1

. So, all secret participants, upon combining their

shares, will not receive S . The rest of discussion is postponed after Algorithm 3.�
ActivateShares is used to activate secret shares that were distributed to secret

participants using SaveShares.
Algorithm description: ActivateShares requires cooperation of two parties: Dealer
and Owner (of the secret). Dealer contacts participant 1P . Once participant’s

identity is established participant obtains one key from the set K . Participant

combines ik with)(p
is to obtain activated share)(a

is . Action is repeated for all
participants.

The algorithm yields KSS pa ⊕=)()(, where { })()(
2

)(
1

)(... a
n

aaa sssS = .

Algorithm 3:ActivateShares
for 1=i to n

Dealer:
contacts iP
starts identification procedure
if (1==tionidentifica) sends ik to iP

Participant iP :

i
p

i
a

i kss +=)()(:

saves)(a
is // activated share is stored

end//for
end//ActivateShares
Discussion: Once secret shares are activated, S can be recovered by standard KGH

procedure. We claim that Ss a
i

n

i

=⊕
=

)(

1

. To see it one has to combine results from two

algorithms SaveShares and ActivateShares :

() ()=⊕⊕=⊕= ⊕⊕⊕
===

)()(

1

)()(

1

)(

1

d
i

o
ii

n

i

d
i

p
i

n

i

a
i

n

i

ksckss

() ())()()(

1

)()()(

1

d
i

p
i

o
ii

n

i

d
i

o
i

p
ii

n

i

kksmkskm ⊕⊕⊕=⊕⊕⊕= ⊕⊕
==

One should note that particular participant iP usually obtains two different keys

from K . Key)(p
ik comes from the Owner embedded in)(p

is , while)(d
ik comes

from the Dealer as a part of ActivateShares. Hence, () 0)()(

1

�

=⊕=⊕⊕
=

KKkk d
i

p
i

n

i

and () Sssms o
i

n

i

o
ii

n

i

a
i

n

i

==⊕= ⊕⊕⊕
===

)(

1

)(

1

)(

1

, since 0
1

�

=⊕
=

i

n

i

m �

8

8

3.3 Remarks

1. To create single authorized set of participants both algorithms have to be
executed. Hence, to obtain many authorized sets of participants, multiple execution
of SaveShares and ActivateShares take place.

2. Extended capabilities. Algorithms defined above can be easily adapted to
enable pre-positioned secret sharing. In [8] pre-positioned secret sharing schemes
are described as that: „All necessary secret information is put in place excepting a
single (constant) share which must later be communicated, e.g., by broadcast, to
activate the scheme.” In order to implement this capability in our case it is enough to
separate execution of SaveShares from ActivateShares. Scheme is initialised by
SaveShares. When the time comes, it is activated by using ActivateShares. In
addition, algorithm ActivateShares can be modified, so it will send key values only
to selected secret participants. For instance, assume that only one participant is
selected. To activate the scheme he obtains i

Mk

k
i

⊕
∈

as the key. Another possible

modification can lead towards public initialization. In this case value of i
Mk

k
i

⊕
∈

is

made public by algorithm ActivateShares, so secret participants make use of it to
recover original secret.

3. Security discussion. Automatic secret sharing security is based on KGH
security (see [6]), combined with encapsulation and use of secure communication
channels. We consider method secure, although strict proof of security has not
carried out yet.

4. ASGS is further discussed in the part II of this paper.

4. REFERENCES

[1] Asmuth C. and Bloom J. 1983. ‘A modular approach to key safeguarding’. IEEE
Transactions on Information Theory IT-29, pp. 208-211

[2] Blakley G.R. 1979. ‘Safeguarding cryptographic keys’. Proceedings AFIPS 1979 National
Computer Conference, pp. 313-317.

[3] Blundo C., Giorgio Gaggia A., Stinson D.R. 1997.’On the dealer's randomness required in
secret sharing schemes’. Designs, Codes and Cryptography 11, pp. 107-122.

[4] Blundo C., Stinson D.R. 1997.’ Anonymous secret sharing schemes’. Discrete Applied
Mathematics 77, pp. 13-28.

[5] Brickell E.F. 1989. ‘Some ideal secret sharing schemes’ Journal of Combinatorial
Mathematics and Combinatorial Computing 6, pp. 105-113.

[6] Karnin E.D., J.W. Greene, and Hellman M.E. 1983. ‘On secret sharing systems’. IEEE
Transactions on Information Theory IT-29, pp. 35-41.

[7] Kotulski Z. 2001. ‘Random number generators: algorithms, testing, applications’. (Polish)
Mat. Stosow. No. 2(43), pp. 32-66.

[8] Menezes A.J, van Oorschot P. and Vanstone S.C. 1997. ‘Handbook of Applied
Cryptography’. CRC Press, Boca Raton.

[9] Pieprzyk J. 1995. ‘An introduction to cryptography’. draft from the Internet.
[10] Shamir A. 1979. ‘How to share a secret’. Communication of the ACM 22, pp. 612-613.

