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Abstract: The secret considered is a binary string of fixed length. In the paper we
propose a method of automatic secret generation and sharing. We show how to
simultaneously generate and share random secret. Such a secret remains
unknown until it is reconstructed. Next, we propose a method of automatic
sharing of a known secret. In this case the Dealer does not know the secret and
the secret’s Owner does not know the shares. We discuss how to use extended
capabilities in the proposed method.
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1. INTRODUCTION

Everybody knows situations, where permission to trigger certain action requires
approval of several selected persons. Equally important is that any other set of
people cannot trigger the action.

Secret sharing allows to split a secret into different pieces, called shares, which
are given to the participants, such that only certain group (authorized set of
participants) can recover the secret. Secret sharing schemes (SSS) were
independently invented by George Blakley [2] and Adi Shamir [11]. Many schemes
have been presented since, for instance, Asmuth and Bloom [1], Brickell [5], Karin-
Greene-Hellman (KGH method) [6]. In our paper we concentrate on the last method.

In KGH the secret is a vector of η  numbers { }ηη sssS ,...,, 21= . Any modulus k

is chosen, such that ),...,,max( 21 ηsssk > . All t participants are given shares that are

η -dimensional vectors tjS j ,...,2,1,)( =η  with elements in Zk. To retrieve the secret

they have to add the vectors component-wise in Zk.
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For 2=k , KGH method works like ⊕ (XOR) on η -bits numbers, much in the

same way like Vernam one-time pad. If t participants are needed to recover the
secret, adding 1−t  (or less) shares reveals no information about secret itself.

Once secret sharing was introduced, people started to develop extended
capabilities. Some of examples are: detection of cheaters (e.g. [9],[10]), multi-secret
threshold schemes (e.g., [9]), pre-positioned secret sharing schemes (e.g., [9]).

Anonymous and random secret sharing was studied by Blundo, Giorgio Gaggia,
Stinson in [3], [4]. Some of ideas in automatic secret sharing and generation come
from the same field.

Dealer of the secret is the entity that assigns secret shares to the participants.
Usually, the Dealer has to know the secret in order to share it. This gives Dealer
advantage over ordinary secret participants. There are situations, where such
advantage can lead to abuse.

Automatic secret generation and sharing (ASGS) allows computing and sharing
the secret “on the spot”, when it is not predefined. This is typical situation, that
secret helps to identify authorized set of participants upon recovery. In such an
application any element from certain set (say, all l-bit vectors) can be a secret.
Automatic secret generation allows random generation of the secret and elimination of
the secret Owner. First feature is important even without elimination of the secret Owner.
It makes the secret choice “owner independent”; hence decrease chances for the Owner
related attack. For instance: users in computer systems have strong inclination to use as
the passwords character strings, that have some meaning for them. The most popular
choices are spouse/kids names and cars’ registration numbers.

Automatic sharing of a known secret addresses problem of secret Owner not
trusting the Dealer. Using such a method Owner can easily share the secret. The
resulting secret shares are random. It may have added feature, that even secret
Owner knows neither secret shares, nor their distribution. The later decreases
chances of  Owner interfering with the shared secret.

The outline of the paper is the following:
Preliminaries are given in section 2; we also state basic property of binary

vectors’ set. Next section brings description of methods for automatic secret
generation and sharing. In section 4 outline of method for automatic sharing for the
existing secret is presented. Proposed methods support extended capabilities, which
apart from being interesting theoretical constructs on their own, allow greater
flexibility in the applications of secret sharing schemes.

Finally, we make few remarks about procedures and algorithms presented in this
paper. Short description is provided for every routine. It states the purpose of
routine, describes what is being done and specifies output (when needed). Such
description should be enough to comprehend the paper and get main idea behind
presented methods. In selected cases (volume constrains) we give routines written in
pseudocode, resembling high level programming language (say C++). Level of
detail is much higher than in description part. Reading through pseudocode might be
tedious, but rewarding in the sense that allows appreciate proposed routines in full
extend.  Pseudocode for all presented routines can be found in preliminary version
of this paper [8].
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2. PRELIMINARIES

In order to formally present procedures and algorithms, one needs to introduce
notation. Further, we describe two devices and their functions. First comes random
number generator; its output strings have good statistical properties (e.g., see [7]).
Next comes the accumulator, which is a dumb, automatic device that memory
cannot be accessed otherwise than by predefined functions. Its embedded
capabilities are described below. In further considerations im  denotes l-bit vector.

Given set A , its cardinality (number of elements) is denoted by A .

RAND yields im  obtained from a random number generator.

ACC denotes the value of l -bit memory register. Register’s functions are:
ACC.reset sets all bits in the memory register to 0,
ACC.read yields ACC,
ACC.store(x) yields xACCACC ⊕=  (performs bitwise XOR of ACC with the
input binary vector x, result is stored to ACC).

Accumulator consists of l -bit memory register together with defined above
functions. It has also some storage capacity separate from memory register.
Accumulator can execute functions and operations as described in procedures.

Secure communication channel. In this paper we assume that all the
communication between protocol parties is done in the way that only
communicating parties know plaintext. Whenever we use command like “send”, we
presume that no third party can know the message contents. There is extensive
literature on this subject, interested reader can for instance consult [9].

Encapsulation. Entities and devices taking part in the protocol can exchange
information with others only via interface. Inner state of the entity (e.g. contents of
memory registers) is hidden (encapsulated) and remains unknown for external observers.

The idea of automatic secret generation and sharing is based on the following
property of binary vectors.

Basic property: Let nimi ,...,2,1, = , such that
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m , (1)

form the set M . For any partition of M into two disjoined subsets 1C , 2C

( ∅=∩=∪ 2121 , CCMCC ), it holds:
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=
21

.     � (2)

Now we present the procedure that generates set of binary vectors M .

Procedure description: GenerateM creates set of n  binary vectors im ,
satisfying condition (1). Procedure is carried out by the Accumulator.
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Procedure 1: GenerateM(n )
Accumulator:

ACC.reset;
for 1=i  to 1−n do

RANDmi =:
ACC.store ( im )

save im
end //for

readACCmn .=
save nm
return  { }nmmmM ,...,, 21=

end // GenerateM
Discussion: We claim that the generated set M satisfies condition (1). First,
statistically independent random vectors 1,...,2,1, −= nimi  are generated, while
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3. AUTOMATIC SECRET GENERATION
AND SHARING

Longman’s “Dictionary of Contemporary English” describes secret as
“something kept hidden or known only to a few people”. Still, there are few basic
questions about nature of the secret, that need to be answered:
• When does the secret existence begin?
• Can secret exist before it is created?
• Can secret existence be described by binary variable?
• Can secret exist unknown to anyone; do we need at least one secret holder?

• If secret is shared, how one can verify its validity upon combining the shares?

In our approach secret existence begins, when it is generated. However, for the
secret that is generated in the form of distributed shares, moment of creation comes
when shares are combined for the first time. Before that moment, secret exists only
in some potential (virtual) state. Nobody knows the secret, though secret shares
exist, because they have never been combined. In order to assemble it, cooperation
of authorized set of participants is required.

In such a situation, there are only two ways to recover secret: by guess or by
cooperation of participants from the authorized set. The first way can be feasibly
controlled by the size of the secret space, while the other one is the legitimate secret
recovery procedure.

In case of the KGH (see [6]) secret sharing scheme, the process of creating
secret shares destroys original copy of the secret. Once shares are combined, the
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secret is recovered. Recovered secret has to be checked against original secret in
order to validate it. Hence, there must exist primary (template) copy of the secret.
This can be seen from different perspective: recovered secret allows to identify and
validate authorized set of participants, so, the template copy is required for comparison.
For instance, consider opening bank vault. One copy of the secret is shared between bank
employees that can open vault (the authorized set of secret participants). Second copy is
programmed into the opening mechanism. When the employees input their combined
shares, it can check whether they recover proper secret.

We propose the mechanisms, that allow automatic secret generation, such that:
a. The generated secret attains a randomly generated value.
b. Two copies of the secret are created.
c. Both secret copies are created in a distributed form.
d. Nobody knows the secret till the shares from the authorized set are combined.
e. Distributed secret shares can be replicated without compromising the secret.
f. The secret shares resulting from replication have different values then the source

shares.

3.1 Basic secret shares generation

In this section we present algorithm that creates a secret simultaneously in two
distributed copies.

Let )1(
is  and )2(

is  be some secret shares in KGH secret sharing scheme, let S
denote the secret shared. Now, we show how to generate two authorized set of secret

shares { })1()1(
2

)1(
1

)1( ,...,, dsssU =  and { })2()2(
2

)2(
1

)2( ,...,, nsssU = , such that
)2()1(

)2()1(
i

Ui
i

Ui

sSs ⊕⊕
∈∈

== . )1(U  is authorized set of primary secret shares that is used

for verification of )2(U . )2(U  is called authorized set of user secret shares or, for the
reasons that will become clear later, authorized set of master secret shares. To
generate )1(U  and )2(U  algorithm SetGenerateM is used.

Algorithm description:  SetGenerateM creates )1(U  and )2(U , such that dU =)1( ,

nU =)2( . First, GenerateM  is used to create set M , such ndM += . Next, M  is

partitioned into )1(U  and )2(U . The Accumulator executes algorithm automatically.

Algorithm 1: SetGenerateM(d , n )
Accumulator:

GenerateM( nd + )

for 1=i  to d do // preparing )1(U

ii ms =:)1(

save )1(
is

end //for

for 1+= di  to nd + do // preparing )2(U
dij −=:
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ij ms =:)2(

save )2(
js

end //for

return  { })1()1(
2

)1(
1

)1( ,...,, dsssU = , { })2()2(
2

)2(
1

)2( ,...,, nsssU =
end// SetGenerateM
�

So far, generation of secret sets )1(U  and )2(U , was described. In order to make
use of the secret shares they should be distributed to secret shares participants.
Shares distribution is carried out via secure communication channel. Little
modification (using send instead of save) of SetGenerateM allows distribution of
shares once they are created. Due to the volume constrains this topic will be omitted.
Usually, one participant from the authorized set is assigned one secret share. Let

)(n
iP  denote secret share participant that was assigned the share )(n

is from )(nU .

When 1)1( =U , one is dealing with degenerate case, where Ss =)1(
1 . It is

noteworthy that, when 1)1( >U , shares assignment to different participants )1(
iP

allows to introduce extended capabilities in the secret sharing scheme. One of
instances could be split control over secret verification procedure.

3.2 Secret shares replication

Algorithm 1 allows only two sets of secret shares to be created. Usually,

only )2(U  will be available for secret participants, while )1(U  is reserved for shares
verification. Often, it is required that there are more than one authorized sets of
participants. On the other hand property used in Algorithm 1 does not allow creating
more than two authorized sets. The problem is: how to share the secret further
without recovering it’s value?

This question can be answered by distributed replication of )2(U  into )3(U .

Although all participants )2(
iP  take part in the replication, they do not disclose

information allowing secret recovery. Any of )2(
iP  should obtain no information

about any of )3(
is . Writing these properties formally:

1. Sss i
Us

i
Us ii

== ⊕⊕
∈∈

)3()2(

)3()3()2()2(

.

2. )2(
iP  knows nothing about any of )3(

is .

Such approach does not compromise S and allows to maintain all previously
discussed automatic secret generation and sharing features.
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3.2.1 Authorized set replication (same cardinality sets)

The authorized set satisfies: nUU == )3()2( , { })2()2(
2

)2(
1

)2( ,...,, nsssU = ,

{ })3()3(
2

)3(
1

)3( ,...,, nsssU = . Procedure SetReplicate replicates set )2(U into the set )3(U .

Procedure description: SetReplicate takes )2(U , M , such that )2(2 UM ∗= .

First, all participants )2(
iP  are assigned corresponding vectors im . Each of them

performs bitwise XOR on their secret shares and corresponding im . Operation result is

sent to the Accumulator. Accumulator adds nim +  to form )3(
is , which later is sent to

)3(
iP . As the result, simultaneous creation and distribution of )3(U  takes place.

Procedure 2:SetReplicate(M , )2(U )
Accumulator:

)2(: Un =

for 1=i to n

send im to )2(
iP

)2(
iP : iii ms ⊕= )2()2( :ω  // ω  is l-bit vector (local variable)

end//for
for 1=i  to n

)2(
iP  send )2(

iω  to Accumulator

Accumulator: niii ms +⊕= )2()3( : ω

send )3(
is to )3(

iP

end// for
end//SetReplicate
�

Algorithm EqualSetReplicate is the final result in this section.

Algorithm description:  EqualSetReplicate  takes )2(U . It uses SetReplicate to

create and distribute set )3(U , such nUU == )3()2( .

Algorithm 2: EqualSetReplicate( )2(U )
Accumulator:  

)2(: Un =

)2(: nGenerateMM =

SetReplicate(M , )2(U )
end// EqualSetReplicate

Discussion: We claim that EqualSetReplicate fulfils requirements stated at the

beginning of section 3:
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=⊕⊕=  as requested.

2. All )3(
is  result from XOR of some elements from )2(U  with random im , nim +

hence they are random numbers.�

3.2.2 Authorized set replication (different cardinality sets)

For 32 UU ≠  there are two possibilities:

Case 1: The authorized set satisfies: dn < , { })2()2(
2

)2(
1

)2( ,...,, nsssU = ,

{ })3()3(
2

)3(
1

)3( ,...,, dsssU = . The algorithm SetReplicateToBigger  takes )2(U . It uses

SetReplicate to create and distribute set )3(U , such dUUn =<= 32 .

Algorithm 3 description: SetReplicateToBigger  takes d  and )2(U . It generates
M , such that dM = . Next, it uses SetReplicate to create and distribute first n

elements from )3(U . As the result participants )3(
iP  for ni ≤  have their secret

shares assigned. Remaining participants )3(
iP  are assigned im  ( ni > ) not used

by SetReplicate. As the result )3(U , such dUUn =<= 32  is created and

distributed. �

Case 2: The authorized set satisfies: dn > , { })2()2(
2

)2(
1

)2( ,...,, nsssU = ,

{ })3()3(
2

)3(
1

)3( ,...,, dsssU = . The algorithm SetReplicateToSmaller takes )2(U . It uses

SetReplicate to create and distribute set )3(U , such dUUn =>= 32 .

Algorithm 4 description: SetReplicateToSmaller  takes d  and )2(U . It generates
M , such that 1−+= dnM . Next, it uses SetReplicate code to create n  secret

shares )3(
is . First 1−d  shares are sent to corresponding participants )3(

iP .

Remaining )3(
is  ( { }nddi ,...,1, +∈ ) are combined to form )3(

ds  that is sent to )3(
dP .

As the result )3(U , such that dUUn =>= 32  is created and distributed.�

3.3 Remarks

1. All three algorithms meet requirements stated at the beginning of the paper.
Combing this fact with security proof for KGH secret sharing scheme [6],
encapsulation and use of secure communication channels, enables us to consider
them as secure. Certainly, detailed proofs of security are yet to be constructed.

2. To obtain many authorized sets of participants, multiple replication of )2(U takes

place. In such instance )2(U  is used as the master copy (template) for all )(nU ,
3≥n . For this reason it is called authorized set of master secret shares.
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3. Proposed algorithms can accommodate arbitrary access structure, when
combined with cumulative array construction (e.g. see [10]).

4. AUTOMATIC SECRET SHARING

To share secret S, secret Owner has to generate set

{ })()(
2

)(
1

)( ,...,, o
n

ooo sssS = , such Ss o
i

n

i

=⊕
=

)(

1

.

Automatic secret sharing algorithm takes away responsibility, for proper
construction of the secret shares, from the Owner. Algorithm FastShare provides an
automatic tool to complete this task. Next, comes algorithm SaveShares that adds up
two more capabilities:
a. Shares are prepared using secret mask provided by an external Dealer.
b. Owner knows neither distributed shares, nor their assignment to the participants.

Once the shares are distributed by SaveShares, they have to be activated by the
algorithm ActivateShares.

Finally, we discuss how automatic secret sharing can be used to implement
secret sharing schemes with extended capabilities (e.g. see [9]).

4.1 Known secret sharing

FastShare is the tool that provides fast and automatic sharing for a known secret.
Algorithm description : FastShare  takes secret S and n  (number of secret

participants). Accumulator generates random 1,...,2,1,)( −= nis o
i . Every )(o

is  is

added to the ACC and simultaneously saved. To obtain )(o
ns  the secret S is added to

ACC. Next, ACC value is read and saved as )(o
ns . Algorithm returns

{ })()(
2

)(
1

)( ,...,, o
n

ooo sssS = .

Algorithm 5: FastShare(S , n )
Accumulator:
ACC.reset

for 1=i  to 1−n

RANDs o
i =:)(

ACC.store( )(o
is )

save )(o
is

end// for
Owner: Send secret to Accumulator
Accumulator:
ACC.store(S) //adding secret to the accumulator
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readACCs o
n .:)( =

save )(o
ns

return { })()(
2

)(
1

)( ,...,, o
n

ooo sssS =
end//FastShare
Discussion:
1. We claim that FastShare produces random secret shares, due to the fact that all of

them originate from a random number generator. First 1−n  shares are purely
random, while the last one results from bitwise XOR of the secret and random

number. More formally, Sss o
i

n

i

o
n ⊕= ⊕

−

=

)(
1

1

)( . So, )(o
ns  is random.

2. All secret shares combine to S. Just observe: 
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4.2 Confidential secret sharing

We present two algorithms. First, algorithm SaveShares will be described,
algorithm ActivateShares follows. SaveShares shares secret S using secret sharing
mask M provided by Dealer. In the method the following conditions hold:
a. Dealer does not know S;
b. Secret Owner does not know M ;
c. Secret Owner does not know secret shares and their assignment to the secret

participants

Algorithm 6 description: SaveShares requires cooperation of two parties: Dealer
and Owner. First, Dealer uses GenerateM to create secret sharing mask M , such

that 0
r

=⊕
∈

i
Mm

m
i

. He also creates set K  of encryption keys ik , such that

0
r

≠⊕
∈

i
Mk

k
i

. M  elements are encrypted using corresponding keys from K  to form

encrypted mask set C . 
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 or CKM =⊕ .

Dealer stores K and sends C  to the Owner. Owner shares original secret S

using FastShare to obtain )(oS . Using C  and )(oS  he obtains )( pS , which
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elements are randomly distributed to the participants. 
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)()( po SSC =⊕
Participants receive secret shares from )( pS  and store them. �

ActivateShares is used to activate secret shares that were distributed to secret
participants using SaveShares.
Algorithm 7 description: ActivateShares requires cooperation of two parties:
Dealer and Owner (of the secret). Dealer contacts participant 1P . Once participant’s

identity is established participant obtains one key from the set K . Participant

combines ik  with )( p
is  to obtain activated share )(a

is . Action is repeated for all
participants.

The algorithm yields KSS pa ⊕= )()( , where { })()(
2

)(
1

)( ... a
n

aaa sssS = .�

4.3 Remarks

1. Security discussion is analogous as in the section 3.3 .
2. To create single authorized set of participants both algorithms have to be

executed. Hence, to obtain many authorized sets of participants, multiple
execution of SaveShares and ActivateShares take place.

3. Extended capabilities. Algorithms defined above can be easily adapted to enable
pre-positioned secret sharing. In [9] pre-positioned secret sharing schemes are
described as that: „All necessary secret information is put in place excepting a
single (constant) share which must later be communicated, e.g., by broadcast, to
activate the scheme.” In order to implement this capability in our case it is
enough to separate execution of SaveShares from ActivateShares. Scheme is
initialized by SaveShares. When the time comes, it is activated by using
ActivateShares. In addition, algorithm ActivateShares can be modified, so it will
send key values only to selected secret participants. For instance, assume that
only one participant is selected. To activate the scheme he obtains i

Mk

k
i

⊕
∈

 as the

key. Another possible modification can lead towards public initialization. In this
case value of i

Mk

k
i

⊕
∈

 is made public by algorithm ActivateShares, so secret

participants make use of it to recover original secret.
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5. FURTHER RESEARCH

We hope that in both parts of the paper we managed to present in
comprehensible way all basic algorithms for ASGS. However, much work still
needs to be done. Major research tasks are:
1. Generalization into arbitrary access structures. This seems to be relatively

simple task nevertheless it requires proper formalization.
2. Adding more extended capabilities to both methods. Some of possibilities were

outlined in the paper. Set of extra functions that can be embedded into secret
sharing scheme is much bigger. Authors are busy working in this field.

3. Construction of security proofs.
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