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1. INTRODUCTION  

Symmetric block ciphers are one of the 
fundamental tools in modern cryptography. 
Their popularity requires a high level of trust in 
their security. Unfortunately there are neither 
known constructions of block ciphers, which 
offer unconditional security nor practical 
constructions, which offer provable 
computational security. So in practice 
evaluations of the security of these ciphers is 
heuristic. The effectiveness of an attack is 
measured by a comparison of its complexity 
(time and memory) with the exhaustive search 
attack. During this evaluation only those attacks 
are taken into account, which are known at the 
time. One of the most important attacks 
considered is linear cryptanalysis. In 1993 it was 
successfully used by Matsui to analyse DES 
[11]. It needed 243 known plaintext/ciphertext 
pairs to derive 26 bits of the key.  

Since 1993 several extensions of linear 
cryptanalysis appeared (from the use of multiple 
expressions [7], through non-linear 
approximations in outer rounds [9], probabilistic 
counting [15] and Shimoyama’s extension [16] 
to differential-linear cryptanalysis [10]). In our 
previous paper [20] we have suggested that the 
complete evaluation of the resistance of a block 
cipher to linear cryptanalysis should consider 
combining the extensions mentioned above. 

The purpose of this paper is to describe 
recent experimental results of combining the 
extensions of linear cryptanalysis. We have 
added multiple expressions to the differential-
linear analysis, which results in a decrease of the 
amount of analysed texts in an attack on DES 
reduced to 8 rounds by a factor greater than 4.  

1.1 NOTATION AND 
DEFINITIONS 

Throughout this paper we use Matsui’s 
numbering of DES bits. The input bits, key bits 
and output bits of F-functions, S-boxes, etc. are 
numbered from right to left starting from 0. We 
also use Matsui’s notation in which A[i] denotes 
i-th bit of vector A, while A[i1, i2, ... in] denotes 
exclusive or of the bits of vector A located in 
positions i1, i2, ... in. We also use the notation of 
Harpes [6] in which A•ΓA denotes scalar 
multiplication of two binary vectors over GF(2), 
which is equivalent to an exclusive or of the  

bits of A chosen by binary vector ΓA (e.g. A = 
1011, ΓA = 0001, then A•ΓA  = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 
A[i4]). 

Let P, C, K denote plaintext, ciphertext and 
key. We assume that plaintexts, ciphertexts and 
keys are uniformly distributed in appropriate 
spaces. We also assume that round keys are 
independent. 

By r we denote the number of rounds, while 
by Ci we denote the ciphertext after round i, 
which means that P = C0 and C = Cr. N denotes 
the number of analysed pairs of texts. 

A linear approximation is a linear 
dependence between bits of the round input 
block, bits of the round output block and bits of 
the round subkey. A linear expression is a linear 
dependence between bits of the cipher input, 
cipher output and bits of all the subkeys. An 
effective linear expression is an expression 
which holds with probability different from 1/2. 

Probability of the linear approximation (p) is 
defined in the probabilistic space with: 

• a set of elementary events Ω, which is a 
Cartesian product of the set of all input 
blocks to the round and all subkey blocks, 

• σ - field which is the set of all subsets of 
Ω, 

• probability distribution on the elementary 
events assigning to each of them equal 
probability.  

There is a random variable defined in this 
space, which assigns to each elementary event 
the value 0 or 1, dependent on whether the 
approximation holds or not. Event X is defined 
as a sum of the elementary events for which the 
random variable is equal to 0. Probability of a 
linear approximation is equal to the probability 
of event X in this probabilistic space. 

1.2 LINEAR CRYPTANALYSIS 

The basic idea of linear cryptanalysis is to 
find an effective linear expression for an 
analysed block cipher, s.t.: 

(P • ΓP) ⊕ (C •Γ C) = Σz (Kz • ΓKz). (1) 

with a certain probability p, measured over 
all choices of plaintext P and key K. 

In the case of iterative block ciphers, finding 
the linear expression has 2 steps. At first we 
linearise one round, looking for effective 
approximations of non-linear elements, then we 
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combine them to derive round approximation of 
the following form: 

(Ci-1 • ΓCi-1) ⊕ (Ci •Γ Ci) = Ki • ΓKi (2) 

where Ci-1 is the input vector to round i, Ci is 
the output vector from round i and Ki is the key 
used in round i. A linear expression is obtained 
by combining linear approximations in such a 
way, that only bits of plaintext, ciphertext and 
subkeys appear in the final expression. For a few 
rounds of a cipher and for ciphers with a simple 
structure (e.g. RC5) this process can be done 
manually, but in most cases it is easier to use a 
computer. The algorithms for finding linear 
expressions for DES can be found in [13], [14], 
[17], the comparison of their effectiveness can 
be found in [17] and discussion of the potential 
mistakes can be found in [4]. 

With an effective linear expression we can 
start a so-called 0R attack (algorithm 1), based 
on the maximum likelihood method. This attack 
determines with required probability whether the 
right side of equation 1 is equal to 0 or 1. The 
success rate of the attack increases with the 
number of analysed texts and with the bias |p - 
1/2|. 

Algorithm 1 (attack 0R) [11] 
Input:  

N known pairs of plaintext and ciphertext,  
effective linear expression with probability p 

Step 1:  
For each pair count the value of left side of 
equation 1. Let N0 be the number of pairs for 
which the left side of the equation is equal to 
0. 

Step 2: 
If N0 > N/2 then  

set Σz(Kz • ΓKz) = 0, if p>1/2 and 1 if 
p<1/2, 

else 
set Σz(Kz • ΓKz) = 1, if p>1/2 and 0 if 
p<1/2. 

Output: 
the value of Σz(Kz • ΓKz) (correct with 
probability dependent on N and |p - 1/2|). 
 
In practical attacks with similar complexity 

we can obtain more subkey bits. For this 
purpose attacks with round reduction are used 
(1R and 2R). The first uses an effective linear 
expression for r-1 rounds and computes the 
inverse of the last round of the cipher for each 
candidate for the last round subkey. For each 

candidate we count the difference between the 
number of times when the left side of the linear 
expression is equal to 0 and when it is equal to 
1. For the correct subkey the difference between 
this value and N/2 (relative to N) will be close to 
the expected bias for the expression in use. For 
incorrect keys it will be close to 0. In this way 
we can determine with the required probability 
the subkey bits in the last round and the value of 
the modulo 2 sum of the subkey bits appearing 
in the linear expression. The idea of this attack 
is based on a hypothesis described by Harpes [6] 
that the choice of an incorrect key in the last 
round is equivalent to adding an additional 
round to the cipher, which decreases the 
effectiveness of the linear expression in use. In 
practice checking all the possible values of the 
subkey in the last round is too complex (requires 
too much memory). The solution is to check 
only a subset of the bits of the last round subkey.  

In a similar way the 1R attack can be used 
for the reduction of the first round of the cipher. 
Algorithm 2 (attack 1R) [11] 

Input: 
N known pairs of plaintext and ciphertext, 
effective subset of last round subkey bits 
being searched 
effective linear expression for r-1 rounds 
with probability p, which uses only these bits 
of Cr-1 which can by computed from the 
effective subset of subkey bits  

Step 1: 
For value of Ki

r effective bits of subkey Kr, 
let N0

i denote the number of pairs of texts for 
which the left side of the (r-1) - round linear 
expression is equal to 0. 

Step 2: 
Let N0max = max

i
(N0

i) and N0min = min
i

(N0
i). 

Step 3: 
If |N0max - N/2| > | N0min - N/2 | then 

set the value of effective subkey bits Ki
r 

corresponding to N0max, 
set Σz(Kz • ΓKz) = 0, if p>1/2 and 1 if 
p<1/2, 

If |N0max - N/2| < | N0min - N/2 | then 
set the value of effective subkey bits Ki

r 
corresponding to N0min, 
set Σz(Kz • ΓKz) = 1, if p>1/2 and 0 if 
p<1/2, 

Output: 
effective subkey bits in last round, 
the value of Σz(Kz • ΓKz) for rounds 1 to r-1, 
both results returned with probability 
dependent on N and |p-1/2|. 
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The 2R attack allows further increase of the 

effectiveness of the analysis. The idea is similar 
to the 1R attack: we use an expression for r-2 
rounds of the cipher and invert the first and the 
last round. 

2. PROBABILISTIC 
FUNDAMENTALS OF 
LINEAR CRYPTANALYSIS 

In this section we sketch the probabilistic 
tools which form the basis of linear 
cryptanalysis. Among these tools we should list 
first the piling-up lemma (used to calculate the 
linear expression probability from probabilities 
of linear approximations and to calculate the 
success rate), the Moivre-Laplace theorem and 
the formula for total probability (which are 
fundamental for the construction of the 
algorithms for 0R, 1R and 2R attacks).  

 
Lemma 1 (Piling-Up) [11] 

Let Appri (1 ≤ i ≤ r) be independent, random 
variables, which are equal to 0 with probability 
pi and are equal to 1 with probability 1 - pi. Then 
the probability that 

Appr1 ⊕ Appr2 ⊕ ... ⊕ Apprr = 0 (3) 

is equal to: 

1/2 +2r-1∏
=

−
r

i
ip

1

).2/1(  (4) 

Theorem 1 (Moivre-Laplace) [5] 
Let random variable Appr realise some event 

(called success) with probability p, and opposite 
event with probability q = 1 – p. By SN denote a 
random variable which represents the number of 
successes in N independent trials of variable 
Appr. We define a standardised random variable 
SN’: 

SN’ = 

N
pq

p
N

S N −
 (5) 

Then, if 0 < p < 1: 

,
2
1})'Pr({ 2/2

�
−

∞→
=<<

b

a

t
N

N
dtebSa

π
lim

 (6) 

where a, b ∈ R. 
According to this theorem, for large enough 

N, the distribution of SN’ converges to the 
standardised normal distribution (N(0;1)). 

2.1 Probabilistic fundamentals of 
the 0R attack 

From the probabilistic point of view a 
(random) choice of N plaintext blocks and 
evaluation of the left side of equation (1) can be 
treated as N independent trials, where by success 
we mean obtaining zero (with probability p), 
and by failure obtaining one (with probability 
q = 1 - p). 

Let p > 1/2. The probability of correct 
decision is equal to the probability that the 
number of successes N0 in the Bernoulli scheme 
is greater than N/2. In this case N0 describes the 
random variable SN in theorem 1 formulated 
above. We get a sequence of equivalences: 

N0 > N/2 ⇔ SN > N/2 ⇔ SN/N > 1/2 ⇔  

⇔ pp
N
S N −>−

2
1

⇔ 

N
pq

p
N

S N −
 > 

N
pq

p−
2
1

.

 (7) 

Therefore: 

Pr(N0 > N/2)=Pr(SN > N/2)=Pr(SN/N > 1/2)= 

= Pr(

N
pq

p
N

S N −
 > (

N
pq

p−
2
1

) = Pr(SN > 

N
pq

p−
2
1

).

 (8) 

In practical ciphers probability p (and also q) 
should be close to 1/2, so we obtain that 

2/1≈pq  and in consequence an 
approximation of (8): 

Pr(N0 > N/2) = Pr(SN > -2 N (p-1/2)). (9) 
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For large enough N from theorem 1 we 
obtain: 

Pr(N0 > N/2) = �
∞

−−

−

)2/1(2

2/ .
2
1 2

pN

t dte
π

 (10) 

This equation describes the success rate 
(Table 1) for some probability p of a linear 
expression. This probability increases when the 
number of analysed texts increases and when 
bias |p-1/2| increases. 

 
N 1/4|p-1/2|-2 1/2|p-1/2|-2 |p-1/2|-2 2|p-1/2|-2 
SR 84,1% 92,1% 97,7% 99,8% 

Table 1. Success rate of 0R attack  

2.2 Probabilistic fundamentals of 
1R attack 

We assume that the following equations hold 
with probability qi: 

Fr(Cr, kr) • ΓCr-1 = Fr(Cr, Ki
r) • ΓCr-1, (11) 

where Cr are randomly chosen, kr is the real 
value of last round subkey, Ki

r are the candidates 
for the subkey value. Fr is the last round 
function with one of the arguments reduced to 
the length of effective subkey bits. The Fr value 
for each candidate Ki

r is substituted in place of 
Cr-1 used in the linear expression for r-1 rounds. 

Assume for simplicity |N0max - N/2| > |N0min –
N/2|. Then the probability of the correct choice 
of subkey bits is: 

Pr(Kr
i
max = kr) = �

∞

−−

−

)2/1(2

2/2

2
1

pN

x dxte
π

,  

where 

dyet y

kK

qpNx

qpNxr
i
r

i

i

2/
)1)(2/1(4

)2/1(4

2

2
1 −

≠

−−+

−−−
∏ �=

π
 

The above equation describes the success 
rate (Table 2) of the 1R attack. 
N 2|p-1/2|-2 4|p-1/2|-2 8|p-1/2|-2 16|p-1/2|-2

SR 48,6% 78,5% 96,7% 99,9% 

Table 2. Success rate of 1R attack  

3. DIFFERENTIAL 
CRYPTANALYSIS 

Differential cryptanalysis is a method which 
analyses the effect of the differences of plaintext 
pairs on differences of ciphertext pairs. These 
differences are used to assign probabilities to 
keys and to determine the most probable key. In 
the case of DES the used difference is a modulo 
2 sum (XOR) of a pair of plaintexts. The XOR 
operation of two texts is invariant for most of 
the DES elements (expansion E, permutation P, 
xor with subkey and xor with left half of the 
text). Only in the case of S boxes knowledge of 
the input XOR does not guarantee the 
knowledge of the output XOR, but the input 
XOR of an S box suggests a probabilistic 
distribution of output XORs (table containing 
probabilities for all possible input XORs and all 
possible output XORs is called the differential 
profile of an S box). There are entries in the 
differential profile table which have 0 or near 0 
probability, and there are entries which have 
high probability e.g. 16/64. This property can be 
used to identify key bits. If we have the output 
XOR of the F function in the last round and we 
know the pair of resultant ciphertexts, we can 
calculate the input XOR to the F function in the 
last round, and then input and output XOR to 
each S box in the last round. So it is possible to 
check in the differential profile table how many 
input pairs can lead to the entry determined by 
the input and output XOR of an S box. If there 
are k input pairs, which lead to the entry, exactly 
k values of the corresponding six bit key are 
possible. Most subkey values are suggested by 
only a few pairs, but the real value is suggested 
by all the pairs and this makes it possible to 
recognise it. 

Let us give an example [3], XOR of two 
plaintexts, denoted by P* = 00808200 
60000000x results in the same difference of 
ciphertexts after three rounds of DES 
C* = 00808200  60000000x with probability p = 
(14/64)2 ≈ 0.05. Above 3-round characteristic 
can be used to analyse 6-round DES (in so-
called attack with round reduction) by 
deciphering a part of ciphertexts to determine 
when the characteristic occurs, in which case it 
is possible to derive some bits of the subkey. 
The attack is possible, because the partial 
deciphering of ciphertexts after round 6, which 
tells us when the characteristic occurs depends 
on a small subset of subkey bits, possible to 



6 Chapter 
 
search exhaustively. Further details of the 
differential attack can be found in [3]. 

In [8] Knudsen introduced the concept of 
truncated differential, which is used in 
differential-linear cryptanalysis. Just to sketch 
the concept, truncated differential is a set of 
differential characteristics, which have a defined 
input XOR, and which have a defined output 
XOR truncated to some bits (the rest of the 
output XOR bits remains unknown). 

Differential attack usually requires a large 
amount of chosen texts. To reduce the number 
of texts needed to be analysed Biham and 
Shamir [3],[1] proposed the use of differential 
structures (these structures are of interest to us, 
because they also let us reduce the number of 
analysed texts in differential-linear analysis 
[10]). The basic idea is the following: whenever 
it is possible to use a set of characteristics we 
can analyse a structure of plaintexts instead of 
only one pair, and this allows to get more pairs 
with particular differential from the same 
amount of plaintexts. Let us assume, that we 
need in an attack pairs of texts, which have all 
possible differences on the two youngest bits of 
the first byte of the plaintext. The construction is 
as follows: for a randomly chosen plaintext P we 
construct 4-tuple of plaintexts: P, P ⊕ 
0100000000000000x, P ⊕ 0200000000000000x, 
P ⊕ 0300000000000000x and denote them by P, 
P1, P2 and P3. Using them we can obtain two 
pairs of plaintexts of characteristic with input 
difference 0100000000000000x (P ⊕ P1, P2 ⊕ 
P3), two pairs of plaintexts of characteristic with 
input difference 0200000000000000x (P ⊕ P2, 
P1 ⊕ P3), and two pairs of plaintexts of 
characteristic with input difference 
0300000000000000x (P ⊕ P3, P1 ⊕ P2). So after 
encryption of only four texts we receive six 
pairs of plaintexts, satisfying the input 
difference.  

4. EXTENSIONS OF LINEAR 
CRYPTANALYSIS 

Several extensions to linear cryptanalysis 
were proposed, which improve the effectiveness 
of the attack, e.g. use of non-linear 
approximations in outer rounds reduces the 
number of analysed texts by a factor of 1/ 2 . 

Differential-linear cryptanalysis is a very 
powerful attack on DES with a reduced number 
of rounds. In comparison to linear cryptanalysis 

of DES reduced to 8 rounds which needs to 
analyse 500,000 of known plaintexts and to 
differential cryptanalysis which needs to analyse 
5,000 chosen plaintexts, a differential-linear 
attack uses only 512 chosen plaintexts to obtain 
the same success probability.  

Multiple expression2 attack reduces the 
number of analysed texts by a factor of  

� −
−

i ip
p

2)2/1(
2/1

,  

where p is the probability of the best linear 
expression in use, and pi are the probabilities of 
each of the expressions. 

The latest extension proposed by Shimoyama 
reduces the number of plaintexts by the factor 
25/34.  

The extension proposed by Sakurai and 
Furuya [15], which uses probabilistic counting 
in reduction of rounds was originally applied to 
LOKI. The major advantage of this extension 
was the increase of the flexibility of an attack, 
by allowing to determine in the reduced rounds 
a number of bits, which is not a multiple of the 
number of S-box inputs. The use of this 
extension in an attack on DES can be found in 
[21]. 

In this section we sketch the use of multiple 
expression and differential-linear attack. 

4.1 Differential-linear 
cryptanalysis 

Differential-linear cryptanalysis was 
proposed by Langford and Hellman [10]. They 
noticed that three round differential 
characteristics [2], [3], which hold with 
probability 1 can be effectively used in linear 
cryptanalysis.  

The main idea of the attack is the observation 
that complementing two bits (which after 
expansion are the middle bits of an input to an 
S-box) in one of the analysed texts leaves many 
bits of C3 unchanged. 

Among these bits are input bits to Matsui’s 
best 3-round linear expression (bits number 57, 
46, 40, 35 and 17). Because the parity of these 
bits never changes, the parity of output bits from 
the linear expression is unchanged with 
probability p’ = p2 ⊕ (1-p)2 = 0.576, where 

 
2 called multiple approximation in the original paper [7]. 
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p = 0.695 is the probability of Matsui’s linear 
expression. (This result comes directly from the 
Piling-Up Lemma.) 

 

3 round differential characteristic 
with p = 1 

3 round linear expression 
with p = 0.576 

C1’= 20 00 00 00 00 00 00 00x 
        40 00 00 00 00 00 00 00x 

        60 00 00 00 00 00 00 00x 

C3: output S1, S7 unchanged output of S1 changed

input to Matsui linear expression unchanged with p=1

C7: output of Matsui linear expression unchanged with p=0.576 

Figure 1. Differential-linear attack on DES 
reduced to 8 rounds 

To attack DES the cryptanalyst for each pair 
of plaintexts inverts the first round and is 
looking for a key (denote by i) which toggles 
bits 2 and/or 3 in the input to the second round 
and for each pair of ciphertexts inverts the last 
round, computes the parity for both inverted 
ciphertexts and, if the parity is equal increases 
N0

ij where j is the index of the analysed 
candidate for the last round subkey. The largest 
N0

ij indicates the correct subkeys with a 
probability depending on the probability of the 
linear expression in use and the number of 
analysed pairs. 

Further improvement of this attack can be 
achieved by using differential structures 
mentioned above, proposed by [1], [3] for 
packing the analysed plaintexts.  

4.2 Multiple expressions 

The extension proposed by Kaliski and 
Robshaw [7] was based on the observation that 
during the attack, the cryptanalyst differentiates 
between the distribution with an expected value 
equal to p and variance p2 and the distribution 
with an expected value equal to 1-p and variance 
p2. Use of multiple expressions decreases the 
variance of the distributions.  

Modified equation 1 assumes the following 
form: 

(P • ΓPj) ⊕ (C •ΓCj) = Σz (Kz • ΓKz), (12) 

where ΓPj, ΓCj denote binary masking 
vectors of plaintext and ciphertext used in linear 
expression number j (1 ≤ j ≤ J). 

Instead of N0 in algorithm 1, Kaliski 
proposed to use a statistic of the following form: 

U = �
=

J

j

j
j Na

1
0  (13) 

where a1, a2, ..., aJ, are positive and s.t. 

�
=

=
J

j
ja

1
1 . 

For simplicity we assume that pj-1/2 > 0. 
 

Algorithm 3 (attack 0R with multiple 
expressions) [7] 
Input:  

N known pairs of texts,  
effective linear expressions with probability 
pj. 

Step 1:  
For each linear expression let N0

j be the 
number of pairs for which the left side of 
equation 12 was equal to 0. 

Step 2: 

Count the value U = �
=

J

j

j
j Na

1
0 . 

Step 3: 
If U > N/2 then  

set Σz(Kz • ΓKz) = 0, if p>1/2 and 1 if 
p<1/2, 

else 
set Σz(Kz • ΓKz) = 1, if p>1/2 and 0 if 
p<1/2. 

Output: 
the value of Σz(Kz • ΓKz) (correct with 
probability dependent on N and |p – 1/2| and 
weights aj.)  
 
Kaliski noticed that the distribution of 

statistic U can be modelled using a normal 
distribution. He calculated the expected values 
and the variance. He also indicated that when 
the weights aj are proportional to the biases (pj-
1/2) of linear expressions, the distance between 
N/2 and E[U] is maximised. He calculated the 
success rate of the modified algorithm, which is 
equal to: 
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)
)2/1(41

)2/1(
2(

1

2

1

2

�

�

=

=

−−

−
Φ n

j
j

n

j
j

p

p
N , (14) 

where Φ(.) denotes the normal cumulative 

distribution function. When �
=

−
J

j
jp

1
)2/1(  is 

small, the success rate can be approximated as 

))2/1(2(
1

2
�
=

−Φ
n

j
jpN , while the success rate 

of Matsui’s algorithm is equal to 
))2/1(2( −Φ pN . 

Algorithm 3 can be easily extended to 1R 
and 2R attacks. 

5. EXPERIMENTS 

We have extended our work already 
presented in [20]. We propose the differential-
linear cryptanalysis with multiple expressions 
and list decoding [12] as a tool, which enables a 
further decrease in the number of texts in an 
attack on DES. We improved the result obtained 
by Langford [10] for analysis of 8 round DES 
(they achieved probability of success 80% after 
analysing 512 chosen plaintexts), getting a 
success rate improved by a factor larger than 4. 
We obtained the best results by using 
differential 3=round characteristic proposed by 
Langford (chL) which holds with probability 1 
(presented above) and the following linear 
expressions: Matsui’s best 3-round linear 
expression (eM) and: 
C4[39,50,56,15] ⊕ C7[39,50,56,15] = 0, 
denoted by e1, which holds with probability 
p1 = 1/2 + 0.78 / 16, 
C4[37,43,49,59,1] ⊕ C7[37,43,49,59,1] = 0, 
denoted by e2, which holds with probability 
p2 = 1/2 + 0.76 / 8, 
C4[34,40,48,58,23] ⊕ C7[34,40,48,58,23] = 0, 
denoted by e3, which holds with probability 
p3 = 1/2 + 0.56 / 8, and 
C4[34,40,58,23] ⊕ C7[34,40,58,23] = 0, 
denoted by e4, which holds with probability 
p4 = 1/2 + 0.78 / 16. 

We have obtained the following success rate 
function for the basic differential-linear attack: 
 

N 192 384 512 704 
SR 0,33 0,67 0,81 0,92 

Table 3. Success rate of differential linear cryptanalysis 
(linear expression eM, differential characteristic chL) 
 

and the following success rate function for 
the proposed differential linear attack with 
multiple expressions and list decoding (which  
basically means checking the candidates for the 
last round subkey, ordered by decreasing 
number of counts instead of checking only the 
best candidate). A list of candidates in our 
experiments has a length of 100. 
 
N 128 192 384 512 
SR 0,86 0,97 1 1 

Table 4. Success rate of differential linear cryptanalysis 
with multiple expressions and list decoding(linear 
expressions eM, e0, e2, e3, e4, differential characteristic chL).  

6. CONCLUSIONS AND 
FURTHER RESEARCH 

We have presented the experimental results 
of differential-linear cryptanalysis with multiple 
linear expressions and list decoding method. We 
have achieved an improvement over previous 
results by decreasing the number of chosen texts 
by a factor greater than 4. So, the first 
conclusion is that to evaluate the real security of 
a cipher, the combinations of  extensions of the 
basic attack have to be taken into account. 

Presented attack can be effectively extended 
up to 11 DES rounds. which is a slight 
improvement in comparison to previous 
experiments [20], but it still cannot be extended 
further. So, we conclude that differential-linear 
cryptanalysis even extended, still remains only a 
theoretical attack for DES.  

Our further research will concentrate on 
combining extensions of linear cryptanalysis 
with higher order differentials [8] and 
impossible differentials [3], [1]. Also our 
attention will be concentrated on combining the 
extensions of linear cryptanalysis with 
Shimoyama’s attack. 
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