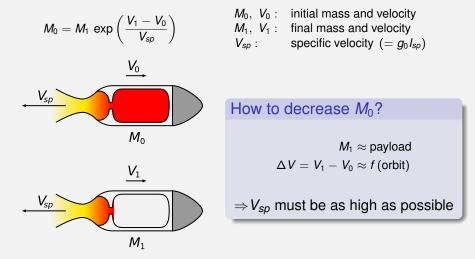
Electric Propulsion

An short introduction to plasma and ion spacecraft propulsion

S. Barral

Instytut Podstawowych Problemów Techniki - PAN

sbarral@ippt.gov.pl


э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

The rocket equation

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Tsiolkovsky's equation:

э

Chemical vs. electric propulsion (1/2)

Chemical propulsion

$$V_{sp} \sim \sqrt{rac{C_p T}{M}}$$

 $V_{sp}\sim \sqrt{Q}$

limited by nozzle temperature & molecular mass of gases

limited by the chemical specific energy of propellants

In practice, $V_{sp} < 4500 \text{ ms}^{-1}$

Electric propulsion

no intrinsic limit on V_{sp} , but

 $V_{sp} \propto rac{P}{F}$

 $\Rightarrow V_{sp}$ constrained by the available electrical power (*P*) and/or requirered thrust (*F*)

Chemical vs. electric propulsion (1/2)

Chemical propulsion

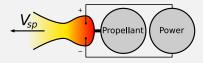
$$V_{sp} \sim \sqrt{rac{C_p T}{M}}$$

 $V_{sp}\sim \sqrt{Q}$

limited by nozzle temperature & molecular mass of gases

limited by the chemical specific energy of propellants

In practice, $V_{sp} < 4500 \text{ ms}^{-1}$


Electric propulsion

no intrinsic limit on V_{sp} , but

 $V_{sp} \propto rac{P}{F}$

 \Rightarrow V_{sp} constrained by the available electrical power (*P*) and/or requirered thrust (*F*)

イロト イポト イヨト イヨト

Chemical vs. electric propulsion (2/2)

Available chemical power: 3000 MW

Available electrical power: 13 kW

S. Barral (IPPT-PAN)

Typical performances & use

ヘロマ ヘロマ ヘロマ

Thrust:	0.1µN – 200mN
Input Power:	0.5mW – 10 kW
Efficiency:	5% – 90%

Missions

- Orbit correction (NSSK in particular)
- Deep space propulsion
- Drag cancellation
- LEO-LEO and LEO-GEO Orbit raising
- Deorbiting

A short summary of the (long) EP history

1906	Robert Goddard	First known hand-writtent notes on EP	
1911	Konstantin Tsiolkowsky	First published mention of the EP concept	
1929	Hermann Oberth	Full chapter in Wege zur Raumschiffahrt	
1949	Shepherd & Cleaver	Considerations on nuclear-electric propulsion	
1951	Lyman Spitzer	Demonstration of the feasability of EP	
1954	Ernst Stuhlinger	In-depth analysis of EP system	
1964	US and Russia	First succesful EP tests in space	
1980's	US and Russia	Commercial use (resistojets, Hall thrusters)	
1998	US	First deep space probe with EP (Deep Space I)	

<ロト < 回 > < 回 > < 回 > .

Relevant concepts of plasma physics

Definition

"A **plasma** is a quasi-neutral gas of charged and neutral particles which exhibits a collective behavior" [F. C. Chen]

Why is a plasma quasi-neutral?

Being very light, electrons tend to move so as to screen out electric field perturbations (electrodes, walls, ...). The screening distance is called the **Debye length**:

$$\lambda_D = \sqrt{\frac{\varepsilon_0 \kappa T_e}{n_e q_e^2}}$$

- 0 : permitivity of free space
- s : Boltzmann constant
- T_e : temperature of electrons

イロト 不得 トイヨト イヨト

- *n_e* : density of electrons
- q_e : charge of an electron

A plasma is thus macroscopically neutral over Debye length scales:

 $n_e \approx n_e$ n_i : density of ions

э

Definition

"A **plasma** is a quasi-neutral gas of charged and neutral particles which exhibits a collective behavior" [F. C. Chen]

Why is a plasma quasi-neutral?

Being very light, electrons tend to move so as to screen out electric field perturbations (electrodes, walls, ...). The screening distance is called the **Debye length**:

$$\lambda_D = \sqrt{\frac{\varepsilon_0 \kappa T_e}{n_e q_e^2}}$$

- ε_0 : permitivity of free space
- κ : Boltzmann constant
- T_e : temperature of electrons

- *n_e* : density of electrons
- q_e : charge of an electron

A plasma is thus macroscopically neutral over Debye length scales:

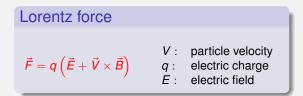
 $n_i \approx n_e$ n_i : density of ions

Particle motion in an electrostatic field

Force on a free particle $\vec{F} = q\vec{E}$ q: electric charge
E: electric field

Ohm law

Electrons also often experience a significant drag force, $\vec{F}_{drag} = -m_e \nu_e \vec{V}_e$, related to frequent collisions with heavy species (ions and neutrals). In such a case the pulling and drag forces approximately cancel:


 $ec{V}_e pprox rac{q_e}{m_e
u_e} ec{E}$ $m_e:$ mass of an electron $u_e:$ collision frequency

from which Ohm law for a plasma is obtained

 $\vec{J_e} = q_e n_e \vec{V_e} = \left(\frac{n_e q_e^2}{m_e \nu_e}\right) \vec{E} \qquad \qquad J_e: \text{ electron current density} \\ n_e: \text{ density of electrons}$

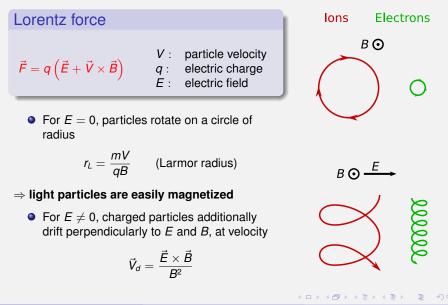
・ロン ・ 四 > ・ ヨ > ・ ヨ > ・ ヨ

Particle motion in uniform E and B fields

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

 For E = 0, particles rotate on a circle of radius

$$r_L = \frac{mV}{qB}$$
 (Larmor radius)


\Rightarrow light particles are easily magnetized

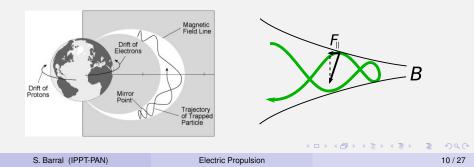
 For E ≠ 0, charged particles additionally drift perpendicularly to E and B, at velocity

$$\vec{V}_d = rac{\vec{E} imes \vec{B}}{B^2}$$

S. Barral (IPPT-PAN)

Particle motion in uniform E and B fields

Particle motion in a converging B field


Magnetic mirror force

The projection of the Lorentz force along the gradient of B gives

$$ec{F}_{\parallel} = -\mu \; \textit{gradB}$$

$$\begin{array}{ll} \mu = \frac{mV_{\perp}^2}{2B}: & \text{magnetic moment} = \text{cons} \\ m: & \text{particle mass} \\ V_{\perp}: & \text{velocity perp. to B} \end{array}$$

\Rightarrow charged particles are reflected by strong magnetic gradients

Categorization of EP devices

Electrothermal

The propellant is heated (resistor/arc discharge) and expanded in a nozzle to velocity:

 $V < \sqrt{\frac{2C_pT}{M}}$

- C_p : specific heat T: max. nozzle temperature

・ロン ・四 と ・ ヨ と ・ ヨ

$$\vec{F} = \vec{J} \times \vec{B}$$
 J: current density

S. Barral (IPPT-PAN)

Categorization of EP devices

Electrothermal

 $V < \sqrt{\frac{2C_pT}{M}}$

The propellant is heated (resistor/arc discharge) and expanded in a nozzle to velocity:

- C_p : specific heat T: max. nozzle temperature

Electrostatic

lons are accelerated directly by an electric field *qE* up to velocity:

 $V_i \approx \sqrt{\frac{2q_iU}{m_i}}$ U: acceleration potential

$$\vec{F} = \vec{J} \times \vec{B}$$
 J: current density

S. Barral (IPPT-PAN)

・ロン ・四 ・ ・ ヨン ・ ヨ ・

Categorization of EP devices

Electrothermal

 $V < \sqrt{\frac{2C_pT}{M}}$

The propellant is heated (resistor/arc discharge) and expanded in a nozzle to velocity:

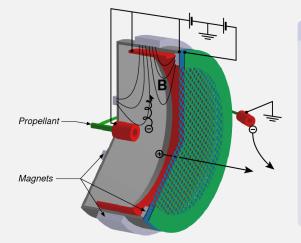
- C_p : specific heat T: max. nozzle temperature

Electrostatic

lons are accelerated directly by an electric field *qE* up to velocity:

$$V_i \approx \sqrt{\frac{2q_i U}{m_i}}$$
 U : acceleration potential

Electromagnetic


A plasma is accelerated using a combination of electric and magnetic fields. The plasma is quasineutral ($\sum q = 0$) thus $\sum qE = 0$:

> $\vec{F} = \vec{J} \times \vec{R}$ J: current density

S. Barral (IPPT-PAN)

・ロン ・四 と ・ 回 と ・ 回

The ion thruster (1/2)

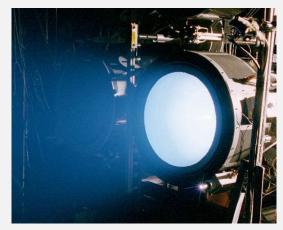
Characteristics

- electrostatic thruster
- xenon propellant
- Iimited thrust/area:

$$\frac{F}{A} < \frac{8\epsilon}{9} \left(\frac{U}{d}\right)^2$$

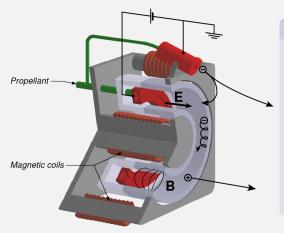
ionization methods:

- ion bombardment (US, UK)
- μ wave heating (Germany, Japan)


э

The ion thruster (2/2)

Performances


- specific impulse:
 - *lsp* = 2500 4000 s
- thrust:
 - F = 10 40 mN
- efficiency:
 - \etapprox 60%
- complex Power Processing Unit
- flight experience:

> 70 flights

NEXT ion engine (Credit: NASA GRC)

The Hall thruster (1/2)

Characteristics

- electromagnetic thruster
- xenon propellant
- electrons "trapped" in
 - azimuthal $E \times B$ drift
 - \Rightarrow improves ionization

- two main types:
 - Anode Layer Thruster (metal walls)
 - Stationary Plasma Thruster (ceramic walls)

The Hall thruster (2/2)

Performances

• specific impulse:

lsp = 1500 - 2500 s

thrust:

F = 20 - 200 mN

• efficiency:

 $\eta \approx 50\%$

- moderately complex
 Power Processing Unit
- relatively wide beam
 (⇒ S/C contamination)
- flight experience:

> 120 flights

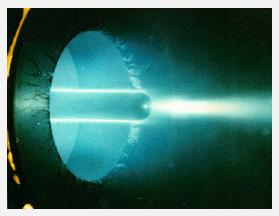
PPS® 5000 Hall thruster (Credit: Snecma)

イロト イポト イヨト イヨト

The magnetoplasmadynamic thruster (1/2)

B

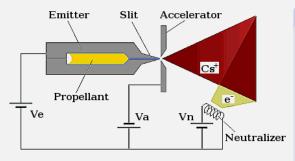
• "Lorentz force" electromagnetic thruster


Propellant

- nobles gases, hydrogen or lithium propellant
- several types: continuous or quasi-stationary (pulsed), self field or applied field
- close parent: pulsed plasma thruster (solid propellant)

The magnetoplasmadynamic thruster (2/2)

Performances


- ower: up to 1 MW! specific impulse: *lsp* = 4000 - 10000 s thrust: F = 10 mN - 100 N• efficiency: $\eta \approx 20 - 40\%$
- flight experience: very few flights

(Credit: unknown)

э

Field Emission Electric Propulsion (1/2)

(Credit: Centrospazio)

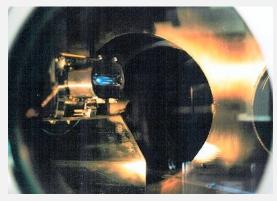
Characteristics

- electrostatic thruster
- propellant: cesium or indium
- uses field-enhanced ion emission
- very low thrust/high lsp
- close parent: colloid thruster

э

Field Emission Electric Propulsion (2/2)

Performances


• specific impulse:

lsp = 6000 - 10000 s

- thrust:
 - $F = 0.1 \mu \text{N} 5 \text{ mN}$
- efficiency:

 $\eta \approx 90\%$

- S/C contamination issues with Cesium
- flight experience: none

Alta FEEP-50 (Credit: ESA)

Assumptions

- the mission is *time-constrained*: the time t to achieve a given ΔV is prescribed
- the available power P and the thrust F are constant during the mission
- the mass of the propulsion subsystem is proportional to the power: $M_{ps} = \alpha P$

Starting from:

$$P = \frac{1}{2}\dot{M}\frac{V_{sp}^2}{\eta} = \frac{1}{2}\frac{M_{prop}}{t}\frac{V_{sp}^2}{\eta}$$

 $\begin{array}{lll} M: & \text{mass flow rate} \\ V_{sp}: & \text{specific velocity } (= g_0 \, I_{sp}) \\ M_{prop}: & \text{initial mass of propellant} \\ \eta: & \text{propulsion system efficiency} \end{array}$

one obtains:

$$\frac{M_{pl}}{M_0} = \exp\left(-\frac{\Delta V}{V_{sp}}\right) - \frac{\alpha V_{sp}^2}{2\eta t} \left[1 - \exp\left(-\frac{\Delta V}{V_{sp}}\right)\right]$$

M_{pl} : payload mass *M*₀ : initial mass

イロン イロン イヨン イヨン 三日

Assumptions

- the mission is *time-constrained*: the time t to achieve a given ΔV is prescribed
- the available power P and the thrust F are constant during the mission
- the mass of the propulsion subsystem is proportional to the power: $M_{ps} = \alpha P$

Starting from:

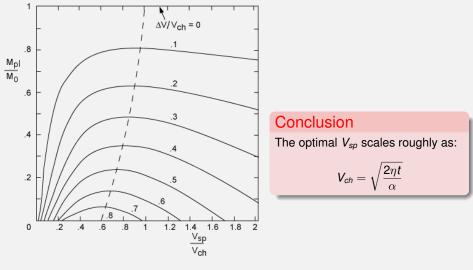
$$P = \frac{1}{2}\dot{M}\frac{V_{sp}^2}{\eta} = \frac{1}{2}\frac{M_{prop}}{t}\frac{V_{sp}^2}{\eta}$$

$$M : mass flow rate$$

$$V_{sp} : specific velocity (= g_0 I_{sp})$$

$$M_{prop} : initial mass of propellant$$

$$\eta : propulsion system efficiency$$


one obtains:

$$\frac{M_{pl}}{M_0} = \exp\left(-\frac{\Delta V}{V_{sp}}\right) - \frac{\alpha V_{sp}^2}{2\eta t} \left[1 - \exp\left(-\frac{\Delta V}{V_{sp}}\right)\right] \qquad \qquad M_{pl}: \text{ payload mass} \\ M_0: \text{ initial mass} \end{cases}$$

(二)
 (二)

Derivation of an "ideal" I_{sp} (2/2)

イロト イヨト イヨト

Payload fraction vs. V_{sp} for $\Delta V \ll V_{ch}$

(Credit: MIT)

S. Barral (IPPT-PAN)

э

Choice of the propellant (1/2)

The choice of the propellant follows from a variety of technical considerations: storage requirements, spacecraft contamination, handling hazards, etc, and from its impact on thruster efficiency.

Assumptions

- the propellant related energy loss is mainly due to ionization (realistic for ion and Hall thrusters, less for MPDs and FEEPs)
- the effective ionization cost is proportional to the single ionization energy

The ratio of the effective ionization power to the usefull power:

$$rac{P_{ioniz}}{P_{useful}} pprox rac{\gamma \epsilon_i}{rac{1}{2}m_iV_{sp}^2}$$

 γ : effective ionization cost factor

- i : ionization cost
- *n_i* : mass of an ion
- V_{sp} : specific velocity

suggests that for given V_{sp} the parameter $rac{\epsilon_i}{m_i}$ must be minimized

S. Barral (IPPT-PAN)

Choice of the propellant (1/2)

The choice of the propellant follows from a variety of technical considerations: storage requirements, spacecraft contamination, handling hazards, etc, and from its impact on thruster efficiency.

Assumptions

- the propellant related energy loss is mainly due to ionization (realistic for ion and Hall thrusters, less for MPDs and FEEPs)
- the effective ionization cost is proportional to the single ionization energy

The ratio of the effective ionization power to the usefull power:

P_{ioniz} $\gamma \epsilon_i$	'	effective ionization cost factor ionization cost
$rac{P_{ioniz}}{P_{useful}}pprox rac{\gamma\epsilon_i}{rac{1}{2}m_iV_{sp}^2}$	m_i :	mass of an ion specific velocity
s that for given V_{co} the param	meter $\frac{\epsilon_i}{1}$	must be minimized

suggests that for given V_{sp} the parameter $\frac{\epsilon_i}{m_i}$ must be minimized

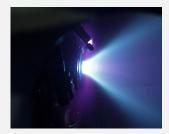
Choice of the propellant (2/2)

ヘロト ヘロト ヘヨト ヘヨト

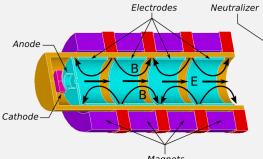
Propellant	ϵ_i [e.V]	<i>m</i> [u]	ϵ_i/m
Cs	3.9	132.9	0.029
Li	5.9	6.9	0.855
Bi	7.3	209.0	0.035
Hg	10.4	200.6	0.052
Xe	12.1	131.3	0.092
Н	13.6	1.0	13.600
Kr	14.0	83.8	0.167
Ar	15.8	39.9	0.396

æ

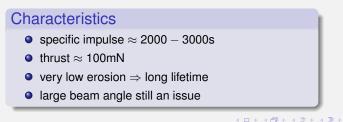
Some current trends


Short and mid-term R&D

- high power (P>5kW) and low power (P<200W) Hall thrusters</p>
- high I_{sp} Hall thrusters (I_{sp}>2000s)
- high power (P>5kW) ion thrusters
- erosion-resistant grid and channel materials for ion and Hall thrusters
- indium FEEP, colloid thrusters, μ-size field emission thruster arrays
- applied field MPDs


Long term R&D

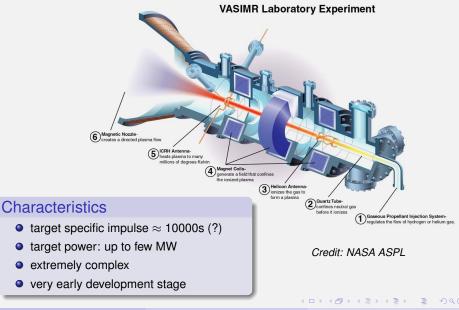
- Iithium MPDs
- Nuclear-Electric Propulsion (NEP)
- new thruster concepts


Highly Efficient Multistage Plasma thruster (HEMP)

HEMP DM3a (Credit: Thales)

Helicon thruster

Characteristics


- very efficient ionization using an helicon antenna
- no electrodes
- early development stage (ongoing evaluation at ESA)

ANU's HDTL (Credit: ESA)

イロト イポト イヨト イヨト

Variable Specific Impulse Magnetoplasma Rocket

