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Abstract

In the paper several stochastic methods for detection and identification of cracks in
the shafts of rotating machines are proposed. All these methods are based on the
Monte Carlo simulations of the rotor-shaft lateral-torsional-longitudinal vibrations
mutually coupled by transverse cracks of randomly selected depths and locations on
the shaft. For this purpose there is applied a structural hybrid model of a real cracked
rotor-shaft. This model is characterized by a high practical reliability and great com-
putational efficiency, so important for hundreds of thousands numerical simulations
necessary to build databases used in solving the inverse problem, i.e. crack parame-
ter identifications. In order to ensure a good identification accuracy, for creating the
Monte Carlo samples of data points there are proposed special probability density
functions for locations and depths of the crack. Such an approach helps in enhanc-
ing databases corresponding to the most probable faults of the rotor-shaft system of
the considered rotor machine. In the presented study six different database sizes are
considered to compare identification efficiency and accuracy of considered methods.
A sufficiently large database enable us to estimate almost immediately (usually in
less than one second) the crack parameters with precision that is in most of the cases
acceptable in practice. Then, as a next stage, one of the proposed fast improvement
algorithms can be applied to refine identification results in a reasonable time. The
proposed methods seem to provide very convenient diagnostic tools for industrial
applications.

Keywords: crack rotor dynamics, nonlinear and parametric vibrations, hybrid modeling,
Monte Carlo simulation, crack identification methods

1 Introduction

An efficient detection and localization of defects in the most heavily affected parts of mod-
ern turbo-machinery is always a very important task in exploitation of these machines.
For this purpose the on-line acting monitoring routines during regular operation of the
turbo-machinery are the most advantageous. Majority of the fault identification methods
applied till present are based on analyses of vibratory behaviour associated with rota-
tional motion of the rotor-machine. Since natural frequencies and mode shape functions
are usually not very sensitive to local imperfections of such mechanical systems caused by
relatively small defects, e.g. cracks in the rotor-shafts, the corresponding changes of these
quantities can not serve as effective fault indicators. Thus, non-linear effects introduced
by the mentioned defects, e.g. due to crack breathing, have been used by some authors
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as fault diagnostic symptoms, [1, 2, 3, 4]. Fortunately, typical defects observed in the
rotor-machines, e.g. transverse cracks in the rotor-shafts, shaft segment misalignments or
bearing eccentricities, yield disturbances resulting in couplings between several kinds of
vibrations affecting the rotor-shaft systems, i.e. coupling of bending vibrations with tor-
sional and axial vibrations, [5, 3, 6]. As it follows from numerous theoretical studies and
practical observations, in the cases of the abovementioned defects of the rotor-machines
these couplings are usually non-linear or parametric in character. Moreover, magnitudes
of the additional vibration components induced by the coupling effects are large enough
to serve efficiently as identification measure for the given kind of a defect. According to
the above, in the case of cracked rotor-shafts there were studied, e.g. in [7, 8, 4], coupling
effects between shaft bending and torsional vibrations regarded as crack occurrence diag-
nostic symptoms caused by a local anisotropy of the faulty shaft cross-section. The com-
plete coupling effects due to anisotropy of the cracked shaft cross-section, i.e. between
shaft bending, torsional and axial vibrations, are taken into consideration in [5, 3, 6]. The
numerical simulation results of coupled vibrations of the cracked rotor shaft systems ob-
tained in [5, 3] by means of the one-dimensional finite element model of the real object
have been qualitatively analyzed in [5] and used for composing the cause - symptom re-
lationships necessary for crack diagnostics in [3]. Then, in order to identify crack depth
and position on the shaft, several methods of inverse mapping of the on-line measured
response - investigated symptom relationships have been developed. Most of them em-
ploy neural networks or other adaptive systems, see e.g. [3]. Since, the fault identification
routines based on the neural networks seem to be quite labor-consuming and not always
sufficiently accurate, in the current paper, as an alternative approach, stochastic methods
of transverse crack detection and localization in the rotating shafts are proposed.

All the proposed methods of fault identification are based on the Monte Carlo sim-
ulation of lateral-torsional-axial vibrations coupled by the crack in the rotor-shaft repre-
sented by a proper theoretical model. Here, by means of the Monte-Carlo simulation an
input-output database is generated for various crack depths and locations on the rotor-
shaft. The identification of the most probable crack parameters consists in analyzing the
database points in the neighborhood of readouts obtained from on-line monitoring of the
real machine. The methods also provide a measure of confidence for the identified values
of crack parameters. In order to guarantee that the relationship of interest is properly in-
vestigated for the most probable crack occurrence events, some assumptions concerning
probability distribution functions of the random crack parameters have to be made. This
is one of the major concepts of the proposed approach, which is discussed in detail in
section 5.

The numerical simulations should be carried out using a theoretical model which guar-
antees sufficiently accurate representation of the real object as well as a very high compu-
tational efficiency, so important for the Monte-Carlo simulation involving computations
repeated thousands or even hundreds of thousands times for various crack depths and
axial positions on the shaft. For this purpose, similarly as in [9, 6], there is applied a hy-
brid mechanical model built in an analogous way as the beam-like finite element models
commonly used for the rotor-shaft systems.

To demonstrate a high identification accuracy of this approach and its good applicabil-
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ity for practical engineering requirements, the computational tests have been performed
for the large multi-bearing rotor-shaft system of the steam turbogenerator. The results of
this study are presented in section 6.

2 Assumptions for the hybrid mechanical model

In order to obtain sufficiently reliable results of numerical simulations together with a
reasonable computational efficiency the vibrating rotor-shaft system of a rotor machine
is usually modelled by means of the one-dimensional finite elements of the beam-type.
Nevertheless, such models are characterized by relatively high number of degrees of free-
dom in the range between hundreds and even thousands. The commonly applied cracked
shaft models introduce non-linear and parametric effects into the entire dynamical system.
Thus, for such large finite element models proper algorithms reducing number of degrees
of freedom have to be employed in order to shorten computer simulation times. More-
over, for the Monte-Carlo simulation performed for numerous axial fault positions along
the entire rotor-shaft line, the discretization mesh density of the finite element model must
be appropriately modified in each case. Thus the necessary corresponding multiple reduc-
tions of degrees of freedom are troublesome and can lead to computational inaccuracies.

According to the above, in order to avoid the abovementioned drawbacks of the fi-
nite element approach and to maintain the obvious advantages of this method, in this
paper dynamic investigations of the entire rotating system are performed by means of the
one-dimensional hybrid structural model consisting of continuous visco-elastic macro-
elements and discrete oscillators. This model is employed here for eigenvalue analyses
as well as for Monte-Carlo numerical simulations of coupled nonlinear lateral-torsional-
axial vibrations of the cracked rotor-shaft. Similarly as in [6, 9], in this model successive
cylindrical segments of the stepped rotor-shaft are substituted by flexurally, axially and
torsionally deformable cylindrical macro-elements of continuously distributed inertial-
visco-elastic properties. Since in the rotor-shaft system of the real rotor machine the
bladed disks and gears are attached along many shaft segments by means of shrink-fit
connections, the entire inertia of such fragments is increased, whereas usually the shaft
cross-sections only are affected by elastic deformations due to transmitted loadings. Thus,
the corresponding visco-elastic macro-elements in the hybrid model must be characterized
by geometric cross-sectional parameters responsible for their elastic and inertial proper-
ties and by the separate layers responsible for inertial properties only. These are the
diametric and polar moments of inertia as well as the cross-sectional areas. Such exem-
plary i-th continuous visco-elastic macro-element is presented in Fig. 1. In this figure
symbols AEi, IEi and I0Ei denote respectively the cross-sectional area, diametric and polar
moments of inertia responsible for elastic properties, i = 1, 2, , n, where n is the to-
tal number of macro-elements in the considered hybrid model. Symbols AIi, IIi and I0Ii

denote respectively the cross-sectional area, diametric and polar moments of inertia re-
sponsible for inertial properties. Moreover, values of the material constants of each i-th
macroelement, i.e. Young’s and Kirchhhoff’s moduli, can depend on the actual operation
temperature of the corresponding rotor-shaft segment of the machine. The transverse and
torsional external loads continuously distributed along the macro-element length li, if any,
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Figure 1: Continuous visco-elastic macro-element with distinguished cross-sections re-
sponsible for elastic and inertial properties.

are described by the two-argument functions pi(x, t) and qi(x, t), where x is the spatial
coordinate and t denotes time.

With an accuracy that is sufficient for practical purposes, in the proposed hybrid model
of the rotor-shaft system some heavy rotors or coupling disks can be represented by rigid
bodies attached to the macro-element extreme cross-sections, as shown in Fig. 1. Each
journal bearing is represented by the use a dynamic oscillator of two degrees of freedom,
where apart from the oil-film interaction also the visco-elastic properties of the bearing
housing and foundation are taken into consideration. This bearing model makes possi-
ble to represent with relatively high accuracy kinetostatic and dynamic anisotropic and
anti-symmetric properties of the oil-film in the form of constant stiffness and damping
coefficients, see [3]. An example of such a hybrid model of the steam turbogenerator
rotor-shaft system supported on seven journal bearings is presented in Fig. 2.

Figure 2: Hybrid mechanical model of the steam turbogenerator rotor-shaft system.

In this system in the selected fragment of the rotor-shaft there is considered a trans-
verse crack implemented in the model by a proper elastic connection of the respective
adjacent left- and right-hand side parts of the faulty shaft segment. An exemplary cracked
shaft segment with its geometrical dimensions is presented in Fig. 3. Additional flexural,
torsional and axial flexibilities introduced by the crack into the shaft are represented here
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by means of mass-less springs connecting the adjacent beam macro-elements substitut-
ing cracked shaft segment. Stiffness values of these springs are determined according
to [7, 5, 3] using the fundamentals of fracture mechanics.
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Figure 3: Geometry of the cracked shaft segment.

In this study a hinge model of the transverse crack has been applied. Thus, the co-
efficients of the abovementioned additional flexural, torsional and axial flexibilities in-
troduced by the crack are determined using the Paris equation based on the Castigliano
theorem. In the considered case a double-partial differentiation of the strain energy den-
sity function with respect to the virtual generalized loadings yields the coefficients of
additional flexibility caused by the crack

fij =
∂2

∂Pi∂Pj

b∫

−b

a∫

0

J(η) dη dz = fij(a,D,E, ν), i, j = 1, 2, ..., 6, (1)

where Pi, Pj are the virtual generalized loadings acting on the cracked shaft segment of
diameter D, as shown in Fig. 3, a denotes the crack depth, E is Young’s modulus, ν
denotes Poison’s ratio of the shaft material and b =

√
a(D − a) . Symbol J(η) in (1) is

the strain energy density function

J(η) =
1

E(1− ν2)





[
6∑

i=1

KIi(Pi, η, D)

]2

+

[
6∑

i=1

KIIi(Pi, η, D)

]2

+

+(1 + ν)

[
6∑

i=1

KIIIi(Pi, η,D)

]2


 ,

(2)

where KIi, KIIi, KIIIi denote the stress intensity factors of the first, second and the third
mode, respectively. Exact analytical expressions for the strain density function for the
cracked shafts can by found, e.g., in [7, 5, 3]. As it follows from these papers, since the
stress intensity factors KIi, KIIi, KIIIi are quadratic functions of the virtual generalized
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loadings Pi, the coefficients of flexibility obtained using (1) are functions of the material
constants and cracked shaft cross-section parameters a and D. These coefficients create
the 6 × 6 symmetrical local flexibility matrix. The inverse of this matrix becomes the
crack local stiffness coefficients matrix of the following form:




c11 0 c13 0 0 c16

0 c22 0 c24 c25 0
c13 0 c33 0 0 c36

0 c24 0 c44 c45 0
0 c25 0 c45 c55 0

c16 0 c36 0 0 c66




(3)

The above matrix is not diagonal. If we assume, according to Fig. 3, that the direction
“1” corresponds to translational motion along 0η axis, the direction “2” corresponds to
rotational motion around 0ζ axis, the direction “3” corresponds to translational motion
along 0ζ axis, the direction “4” corresponds to rotational motion around 0η axis, the di-
rection “5” corresponds to translational motion along the shaft rotation axis 0x and the
direction “6” corresponds to rotational motion around 0x axis, it follows from (3) that
due to local cross-sectional anisotropy caused by the crack the shaft transverse motion
is directly coupled with its rotational motion around the rotation axis as well as the ro-
tational motions around diameters are directly coupled with translational motions in the
axial direction. According to the above, such a crack model makes possible to take into
consideration coupling effects between the torsional and axial vibrations of the rotor-shaft
with its bending vibrations induced by residual unbalances of the rotating system.

All coefficients in the local stiffness matrix (3) remain constant in the coordinate sys-
tem {0xηζ} rotating with the shaft. Since the further considerations are going to be
carried out in an inertial non-rotating coordinate system, matrix (3) has to be properly
transformed and then all stiffness coefficients become time-dependent functions

k∗11(t) = 1
2
(c11 + c33) + 1

2
(c11 − c33) cos(2α)− c13 sin(2α),

k∗13(t) = 1
2
(c11 − c33) sin(2α) + c13 cos(2α),

k∗16(t) = c16 cos(α)− c36 sin(α),

k∗33(t) = 1
2
(c11 + c33)− 1

2
(c11 − c33) cos(2α) + c13 sin(2α),

k∗36(t) = c16 sin(α) + c36 cos(α),

k∗22(t) = 1
2
(c22 + c44) + 1

2
(c22 − c44) cos(2α)− c24 sin(2α),

k∗24(t) = 1
2
(c22 − c44) sin(2α) + c24 cos(2α),

k∗25(t) = c25 cos(α)− c45 sin(α),

k∗44(t) = 1
2
(c22 + c44)− 1

2
(c22 − c44) cos(2α) + c24 sin(2α),

k∗45(t) = c25 sin(α) + c45 cos(α),

k∗55(t) = c55,

k∗66(t) = c66,

(4)

where α = Ωt + αp, Ω is the shaft constant angular speed and αp denotes the angle of
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crack circumferential position on the shaft with respect of the vector of resultant excitation
caused by the shaft residual unbalance.

3 Mathematical formulation of the cracked rotor-shaft vibration problem

In the hybrid model motion of cross-sections of each visco-elastic macro-element of the
length li is governed by the partial differential equations derived using the Timoshenko
and Rayleigh rotating beam theory for flexural motion as well as by the hyperbolic equa-
tions of the wave type, separately for torsional and axial motion. Similarly as in [6, 9],
mutual connections of the successive macro-elements creating the stepped shaft as well
as their interactions with the supports and rigid bodies representing the heavy rotors are
described by equations of boundary conditions. These equations contain geometrical con-
ditions of conformity for translational and rotational displacements of extreme cross sec-
tions x = Li = l1 + l2 + . . . + li−1 of the adjacent (i − 1)-th and the i-th elastic macro-
elements:

vi−1(x, t) = vi(x, t),
∂vi−1(x, t)

∂x
=

∂vi(x, t)

∂x
,

θi−1(x, t) = θi(x, t), zi−1(x, t) = zi(x, t),
(5)

where vi(x, t) = ui(x, t) + jwi(x, t), ui(x, t) denotes the lateral displacement in the
vertical direction, wi(x, t) denotes the lateral displacement in the horizontal direction,
θi(x, t) is the angular displacement with respect to the shaft rotational uniform motion
with the constant velocity Ω and zi(x, t) denotes the translational axial displacement,
i = 1, 2, ..., n, j is the imaginary number and n denotes the total number of macro-
elements in the hybrid model.

The second group of boundary conditions are dynamic ones, which contain linear,
nonlinear and parametric equations of equilibrium for external forces and torques, static
and dynamic unbalance forces and moments, inertial, elastic and external damping forces,
support reactions and gyroscopic moments. For example, the dynamic boundary condi-
tions formulated for the rotating Rayleigh beam, and describing a simple connection of
the mentioned adjacent (i− 1)-th and the i-th elastic macro-elements, have the following
form:

EiIEi
∂ 3vi

∂ x3
− ρIIi

∂ 3vi

∂ x∂ t2
− Ei−1IE,i−1

∂ 3vi−1

∂ x3
+ ρII,i−1

∂ 3vi−1

∂ x∂ t2
+

jΩρI0Ii
∂ 2vi

∂ x∂ t
− jΩρI0I,i−1

∂ 2vi−1

∂ x∂ t
= 0, EiIEi

∂ 2vi

∂ x2
− EiIE,i−1

∂ 2vi−1

∂ x2
= 0,

GiI0Ei
∂ θi

∂ x
−Gi−1I0E,i−1

∂ θi−1

∂ x
= 0, EiAEi

∂ zi

∂ x
− Ei−1AE,i−1

∂ zi−1

∂ x
= 0,

(6)

where Ei = Ei(Ti), Gi = Gi(Ti) denote respectively Young’s and Kirchhoff’s moduli of
the shaft material of the density ρ, which are expressed as functions of the actual operation
temperature Ti of the i-th macro-element corresponding to the given rotor-shaft segment
of the machine.
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The transverse crack in the given shaft segment is also described by boundary con-
ditions formulated for extreme cross-sections of the corresponding (k − 1)-th and k-th
adjacent macro elements representing this shaft segment. Then, their dynamic equations
of equilibrium of forces and moments (6) remain valid. However, the geometric equations
of displacement conformity (5) must be appropriately substituted by properly modified re-
lations. If in the shaft the transverse crack is assumed, its “breathing” process usually has
to be taken into consideration as, e.g., in [2, 5, 6]. Then, for the “open” crack in the shaft
cross-section x = Lcr = l1 + l2 + . . . + lk−1 the respective boundary conditions have the
following form:

Ek−1IE,k−1
∂3vk−1

∂x3
= (k∗11(t) + jk∗13(t)) Re [vk − vk−1] +

+ j (k∗33(t)− jk∗13(t)) Im [vk − vk−1] + (k∗16(t) + jk∗36(t)) [θk − θk−1] ,

Ek−1IE,k−1
∂2vk−1

∂x2
= (k∗22(t) + jk∗24(t)) Re

[
∂vk

∂x
− ∂vk−1

∂x

]
+

+ j (k∗44(t)− jk∗24(t)) Im
[
∂vk

∂x
− ∂vk−1

∂x

]
+ (k∗25(t) + jk∗45(t)) [zk − zk−1] ,

Gk−1I0E,k−1
∂θk−1

∂x
= c66 [θk − θk−1] + k∗16(t)Re [vk − vk−1] +

+ k∗36(t)Im [vk − vk−1] ,

Ek−1AE,k−1
∂zk−1

∂x
= c55 [zk − zk−1] + k∗25(t)Re

[
∂vk

∂x
− ∂vk−1

∂x

]
+

+ k∗45(t)Im
[
∂vk

∂x
− ∂vk−1

∂x

]
,

(7)

where the local stiffness coefficients c55, c66, k
∗
ij(t), i, j = 1, 2, , 6 are defined in (1) and (3).

The open/closed-criterion of crack “breathing” can be described by the following re-
lation formulated in the coordinate system rotating with the shaft:

∆ϕk(Lcr, t) > 0, i.e. the crack is open and
∆ϕk(Lcr, t) 6 0, i.e. the crack is closed,

(8)

where:

∆ϕk(Lcr, t) =

(
∂uk(x, t)

∂x
− ∂uk−1(x, t)

∂x

)
· cos(α)+

+

(
∂wk(x, t)

∂x
− ∂wk−1(x, t)

∂x

)
· sin(α) for x = Lcr

It is assumed that for the “closed” crack, i.e. for (82), the geometric boundary condi-
tions (5) are valid instead of relations (7). Moreover, if the crack is closed and the shaft
cracked vicinity is compressed due to the axial vibrations, the boundary condition (54) is
valid. However, for the vicinity of the cracked shaft in tension this relation must be sub-
stituted by (74). It should be noticed here that the problem of cracked shaft is formulated
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as a parametric-nonlinear one, because the considered system changes its configuration
depending on, whether the crack is temporarily “open” or “closed”, [6]. The above equa-
tions of the boundary conditions (61,2) and (71,2) are formulated using the Rayleigh beam
theory. In an analogous way there are derived such boundary conditions in the framework
of the Timoshenko beam theory.

It is worth to mention that similar approach for crack modelling has been applied in
[5, 3] for one-dimensional shaft representation using the finite element method. In those
cases the local shaft weakening due to a transverse crack is artificially distributed along
the entire beam finite element corresponding to the faulty shaft segment by a proper mod-
ification of its local stiffness matrix. However, as mentioned above, in the hybrid model
used in this work the crack is implemented in the form of a discrete mutual connection
of two continuous parts of the cracked shaft segment, which is represented by the visco
elastic macro-elements with numbers k − 1 and k. Such an approach seems to represent
better a local character of shaft weakening by the crack.

In order to perform simulation of forced vibrations of the rotor-shafts taking into con-
sideration the hinge model of crack breathing, it is necessary to determine two separate
sets of orthogonal eigenfunctions: for the cracked and un-cracked system. Relations (7)
demonstrate, how the crack couples the rotor-shaft bending vibrations with the torsional
and axial vibrations. All coupling terms in (7) are parametric because they contain the
explicitly time-variable stiffness coefficients k∗11(t), k

∗
13(t), k∗33(t), k

∗
16(t), k∗36(t), k

∗
22(t),

k∗24(t), k
∗
25(t), k∗44(t) and k∗45(t) defined by relations (4). As it follows from (3) and (4),

k∗11(t), k
∗
13(t), k∗33(t), k

∗
22(t), k∗24(t) and k∗44(t) are responsible for the mutual bending-

to-bending cross-coupling in two perpendicular planes in the mentioned above inertial
non-rotating co-ordinate system. Apart from the terms in (4) oscillating around zero-
mean value with single- 1X and double-synchronous 2X frequency of the rotating shaft,
k∗11(t), k

∗
33(t), k∗22(t) and k∗44(t) contain also constant average components. However, the

variable stiffness coefficients in the terms which couple the bending vibrations with tor-
sional ones, i.e. k∗16(t) and k∗36(t), as well as the stiffness coefficients in the terms which
couple the bending with axial vibrations, i.e. k∗25(t) and k∗45(t), are characterized by the
components fluctuating around zero-mean value with only single-synchronous 1X fre-
quency of the rotating shaft. In order to perform an analysis of natural elastic vibrations,
all the forcing, viscous, parametric and unbalance terms in the boundary conditions have
been omitted. Due to the truncation of these terms, it follows from (7) that the bending,
torsional and axial vibrations of the rotor shaft system are mutually uncoupled. Accord-
ing to the above, similarly as in the case of the un-cracked system, the elastic bending,
torsional and axial eigenvalue problems for the rotor-shaft with a crack can be solved
separately. Thus, in both cases one obtains separate characteristic equations for the con-
sidered three eigenvalue problems. These are:

A(ω)B = 0, for the rotor-shaft bending vibrations,
C(ω)D = 0, for the rotor-shaft torsional vibrations,
E(ω)F = 0, for the rotor-shaft axial vibrations,

(9)

where A(ω) is the complex characteristic matrix and C(ω),E(ω) are the real charac-
teristic matrices and B,D,F denote the vectors of unknown constant coefficients in the
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analytical eigenfuctions defined in [7, 6, 9] for each macroelement in the hybrid model.
Thus, the determination of natural frequencies reduces to the search for values of ω, for
which the characteristic determinants of matrices A,C and E are equal to zero. The
bending, torsional and axial eigenmode functions are then obtained by solving respective
equations (9).

According to the described above approach, in comparison with the corresponding
un-cracked rotor-shaft, the eigenmodes obtained for the cracked system are characterized
by a local weakening caused by this crack. This weakening is expressed by the constant
stiffness coefficients c55 and c66 in (4) and (7) respectively for the axial and torsional
eigenmodes as well as by the average stiffness coefficients 0.5(c11 + c33) and 0.5(c22 +
c44) in (4) in the non-rotating inertial co-ordinate system for the bending eigenmodes.
Moreover, as it follows from (7), the bending eigenmodes become mutually cross-coupled
by the crack in the two perpendicular planes.

According to the above, the coupling effects between the bending, torsional and ax-
ial vibrations is of a purely oscillatory character in the non-rotating inertial co-ordinates.
Thus, all parametric terms in (7) temporarily neglected for the eigenvalue problem solu-
tion are going to be used for the forced vibration analysis in order to simulate bending,
torsional and axial vibrations as mutually coupled by the crack.

The solution for the forced vibration analysis has been obtained using the analytical–
computational approach demonstrated in detail in [9]. Solving the differential eigenvalue
problem for the linearized orthogonal system and an application of the Fourier solutions
in the form of series lead to the set of modal equations in the Lagrange coordinates

M(Ωt)r̈(t) + C(Ω, Ωt)ṙ(t) + K(∆ϕ(t), Ωt)r(t) = F(t, Ω2, Ωt), (10)

where:

M(Ωt) = M0 + Mu(Ωt),

C(Ω, Ωt) = C0 + Cg(Ω) + Cu(Ωt),

K(∆ϕ(t), Ωt) = K0 + Kb + Kcr(∆ϕk(Lcr, t), Ωt).

The symbols M0,K0 denote, respectively, the constant diagonal modal mass and stiff-
ness matrices, C0 is the constant symmetrical damping matrix and Cg(Ω) denotes the
skew symmetrical matrix of gyroscopic effects. The terms of the unbalance effects are
contained in the symmetrical matrix Mu(Ωt) and in the non-symmetrical matrix Cu(Ωt).
Anti-symmetric elastic properties of the journal bearings are described by the skew-
symmetrical matrix Kb. Nonlinear and parametric properties of the breathing crack are
described by the symmetrical matrix Kcr(∆ϕk(Lcr, t), Ωt) of periodically variable coef-
ficients and the symbol F(t, Ω2, Ωt) denotes the external excitation vector, e.g., due to
the unbalance and gravitational forces. The Lagrange coordinate vector r(t) consists of
subvectors of the unknown time functions in the Fourier solutions. In order to obtain the
system’s dynamic response Eqs. (10) are solved by means of a direct integration. The
number of equations in (10) corresponds to the number of eigenmodes taken into consid-
eration, because the forced bending, torsional and axial vibrations of the rotor shaft are
mutually coupled and thus, the total number of equations to solve is a sum of all bending,
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torsional and axial eigenmodes of the rotor shaft model in the range of frequency of inter-
est. These equations are mutually coupled by the parametric and anti-symmetrical terms
regarded as external excitations expanded in series in the base of orthogonal analytical
eigenfunctions. A fast convergence of the applied Fourier solutions enables us to reduce
the appropriate number of the modal equations to solve, in order to obtain a sufficient ac-
curacy of results in the given range of frequency. Here, it is necessary to solve only 15÷60
coupled modal equations (10), even in cases of great and complex mechanical systems,
contrary to the classical one-dimensional beam finite element formulation leading usually
to large numbers of motion equations corresponding each to more than one hundred or
many hundreds degrees of freedom, (if the artificial and often error prone model reduction
algorithms are not applied). However, the proposed hybrid modeling assures at least the
same or even better representation of real objects as well as its mathematical description,
is formally strict, demonstrates clearly the qualitative system properties and is much more
convenient for a stable and efficient numerical simulation.

In the considered case of nonlinear-parametric problem, during simulations of forced
vibrations, condition (8) describing the open/closed-stage of crack “breathing” is com-
putationally predicted after each integration step by means of the explicite numerical
method. Thus, criterion (8) indicates the actual base of eigenfunctions, in which the
coupled dynamic response should be sought, i.e. the eigenfunctions corresponding re-
spectively to the cracked or un-cracked rotor-shaft line. Then, at each “switch” from
the open-crack-stage into the closed-crack-stage and vice-versa, the current system re-
sponse becomes the initial conditions for the “new” stage. Here, for a sufficiently small
direct integration step, equal to 1/50 of the period corresponding to the upper limit of
the frequency band considered, using the Newmark method almost no corrections of the
time-step value were required in order to obtain sufficient accuracy of the computational
routine.

4 Numerical example of vibration analysis of the cracked rotor-shaft system

The presented methodology of vibration analysis is shown here on an example of a rotor-
shaft system of the typical 200 MW steam turbogenerator consisting of the single high-
(HP), intermediate- (IP) and low-pressure (LP) turbines as well as of the generator-rotor
(GEN). This rotor-shaft system is supported by seven journal bearings, as shown in Fig. 2.
With the aim of theoretical study, the stepped-rotor shaft of this turbogenerator of the to-
tal length 25.9m has been modelled by means of n = 49 continuous macro-elements,
as an initial approximation of its geometry. More accurate modelling of such rotor-shaft
systems by means of a greater number n of macro-elements does not introduce more
detrimental computational efforts. All geometrical parameters of the successive real rotor-
shaft segments as well as their material constants have been determined using the detailed
technical documentation of this turbogenerator. The average stiffness and damping coef-
ficients of the oil film in the bearings as well as the equivalent masses and stiffness and
damping coefficients of the bearing housings are obtained by means of measurements and
identification performed on the real object. The numerical values of Young’s and Kirch-
hoff’s moduli as the actual temperature functions Ei(Ti) and Gi(Ti), i = 1, 2, ..., 49, have
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Eigen- Natural frequency obtained Natural frequency obtained Relative
form using Rayleigh’s beam using Timoshenko’s beam difference

number theory [Hz] theory [Hz] [%]
1 22.742 22.154 -2.65
2 24.516 23.772 -3.13
3 30.924 30.707 -0.71
4 38.976 38.480 -1.29
5 45.886 45.067 -1.82
6 46.486 45.761 -1.58
7 54.183 52.741 -2.73
8 68.251 67.022 -1.83
9 107.794 105.523 -2.15

10 114.205 112.395 -1.61
11 127.162 125.468 -1.35
12 145.211 141.837 -2.38

Table 1: The first 12 bending natural frequencies of the steam turbogenerator rotor-shaft
system obtained by means of Rayleigh’s and Timoshenko’s beam theory.

been determined by the use of the following relationships:

Gi(Ti) =
Ei(Ti)

2(1 + ν)
, ν = 0.32,

where:

Ei(Ti) = (−0.064286(Ti − 20) + 211)109 [Pa] for Ti 6 300 [◦C],
Ei(Ti) = ( −0.10(Ti − 300) + 193)109 [Pa] for 300 < Ti 6 400 [◦C],
Ei(Ti) = ( −0.15(Ti − 400) + 183)109 [Pa] for 400 < Ti 6 500 [◦C],
Ei(Ti) = ( −0.22(Ti − 500) + 168)109 [Pa] for Ti > 500 [◦C].

In Table 1 there are contained first 12 bending eigenfrequencies of the considered un-
cracked rotor-shaft system obtained using Rayleigh’s and Timoshenko’s beam rotating
with the nominal rotational speed 3000 rpm. As it follows from the performed compar-
ison, the shear effect taken into consideration in the case of Timoshenko’s beam theory
results in a little bit smaller natural frequency values than these determined by means
of Rayleigh’s beam model. Here, in the frequency range 0 ÷ 150 Hz,which is the most
important from the engineering viewpoint, the respective differences slightly exceed 3%.
The eigenfunctions corresponding to these natural frequencies and determined using both
beam theories respectively overlay each other. According to the above, one can conclude
that in this frequency range an application of Rayleigh’s rotating beam theory seems to be
sufficiently accurate for further simulations of forced vibrations.

The first 10 bending eigenforms corresponding to the abovementioned natural fre-
quencies are depicted in Fig. 4, where the vertical projections of the bending eigenfunc-
tions are presented by the solid lines and their horizontal projections by the dashed lines.
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In these plots the vertical bars illustrate the modal transverse vertical and horizontal dis-
placement components of the rigid bodies representing the bearing housings. It is to
remark that due to strong anisotropy and skew-symmetry of the journal bearing elastic
properties the shapes of the eigenform vertical projections are different than the shapes of
their horizontal projections, which indicates a spatial character of these eigenfunctions.
As it was easy to expect, from analogous computations performed for the cracked turbo-
generator rotor-shaft it follows that for the considered crack depth values the respective
differences of natural frequencies obtained for the cracked and un-cracked system do not
exceed 1 Hz for various axial crack positions within the frequency range 0÷ 700 Hz. The
local “un- smoothnesses” of the corresponding eigenfunctions caused by the cracks are
almost unremarkable.

The first five torsional eigenfunctions together with their natural frequency values as
well as the first five axial eigenfunctions with the corresponding natural frequencies are
presented in Fig. 5. It is to remark that the 1st axial eigenform is almost of the typical rigid
mode type. The corresponding natural frequency value f1A = 19.623 Hz depends first of
all on the longitudinal stiffness of bearing #5 (see Fig. 2), playing here also the thrust
bearing role. Similarly as in the case of bending eigenvibrations, all the torsional and
axial eigenfunctions determined for the cracked and uncracked rotor-shaft, respectively,
almost overlay each other within the investigated frequency range 0÷ 700 Hz. Torsional
natural vibrations are the most sensitive to the transverse crack, for which the greatest
difference of the eigenfrequencies obtained for the cracked and un-cracked shaft reach
2.5 Hz. The analogous difference of the axial natural frequencies did not exceed 0.1 Hz
in the mentioned frequency range. This result confirms the known fact that values of nat-
ural frequencies and the corresponding eigenfunctions are not very sensitive to relatively
small transverse cracks in fundamental components of majority of mechanical systems
and structures. Thus, proper identification methods must be employed in order to detect
and localize them effectively.

For this system the Monte-Carlo simulation of coupled forced vibrations is performed
for various crack depth ratios in the range a/D = 0.1÷0.4 and for various axial positions
on the entire length of the shaft. The system dynamic responses are obtained for the
constant nominal rotational speed 3000 rpm for various circumferential crack positions αp

on the shaft within 0◦÷360◦. In addition to the static gravitational load, the only assumed
source of dynamic external excitation are static residual unbalances of the high-pressure
rotor equal to 90 gm each and mutually shifted “in-phase”, of the intermediate-pressure
rotor equal to 135 gm each, mutually shifted “in-phase” and by the phase angle ∆ = 180◦

with respect to the unbalance of the high-pressure rotor, of the low-pressure rotor equal to
180 gm each, mutually shifted “in-phase” and “in-phase” with respect to the unbalance of
the high-pressure rotor as well as of the generator- rotor equal to 270 gm each, mutually
shifted “in-phase” and by the phase angle ∆ = 180◦ with respect to the unbalance of
the high-pressure rotor. This residual unbalance of the considered rotor-shaft system has
been symbolically marked in Fig. 2 by the circles. Thus, the torsional and axial vibrations
can be regarded here as an output effect caused by bending vibrations of the rotor-shaft
line. For the assumed hybrid model of the investigated turbogenerator rotor-shaft system
in the frequency range 0÷ 650 Hz 43 bending, 10 torsional and 7 axial eigenmodes have
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Figure 4: Bending eigenfunctions of the hybrid model of the steam turbogenerator rotor-
shaft system.
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been considered to solve Eqs. (10) with very high computational accuracy of the obtained
results.

The quantities that are of particular interest for the purpose of crack identification
are the ones, which in regular exploitation conditions can be relatively easily measured
on-line. These are lateral vibration displacements of the shaft at the bearing locations,
fluctuation of shaft rotational speed due to torsional vibrations also at the bearing locations
as well as the longitudinal displacements of the shaft at the shaft both free ends and at the
thrust bearing location.

For the assumed sources of external excitations the lateral response of the considered
un-cracked rotor-shaft system is harmonic in character with the only one synchronous fre-
quency component 1X. Here, the very weak torsional-lateral coupling due to the residual
unbalances results in negligible torsional response and a lack of the lateral-axial coupling
yields zero axial response. In the framework of the carried out Monte-Carlo simulation
the transverse cracks of various depths and axial locations along the entire length of the
considered turbogenerator rotor-shaft line have been assumed. As it follows from results
of these computations, the strongest influence of the crack on the system coupled dy-
namic response is usually observed in the cases of investigated quantities registered in
the vicinity of the given crack, i.e. close to the adjacent bearings or to the corresponding
rotor-shaft ends. In Fig. 6 there are shown the plots of the coupled lateral-torsional-
axial response of the system with a crack of the depth ratio a/D = 0.2 localized in the
intermediate-pressure rotor (IP) in the neighborhood of bearing #3, see Fig. 2. These
plots are given as functions of time and relative to synchronous frequency domain. In this
figure the lateral response is depicted in the form of journal bearing transverse displace-
ment orbits and amplitude spectra of their time histories, where the grey lines correspond
to the adjacent left-hand side bearing #2 and the black lines correspond to the adjacent
right-hand side bearing #3. The torsional and axial responses are demonstrated by means
of time histories and their amplitude spectra. Here, by the grey lines there are depicted,
respectively, the responses registered at the bearing #1 and the shaft left-hand side free
end and by the black lines there are illustrated the responses registered at bearing #7 and
the shaft right hand side free end, Fig. 2. In the case of such a crack the lateral response
seems to be also harmonic, which follows from the almost elliptical shaft displacement
orbits plotted in Fig. 6. Here, although the respective bearing journal displacement orbits
are still elliptical, but the amplitude spectra of their displacement time-histories are sig-
nificantly affected by the double synchronous 2X and triple synchronous 3X frequency
components. The torsional and axial responses are characterized by relatively severe ex-
treme values for the monitoring devices operating on the real object. Their time histories
are affected by many fluctuation components of relative frequencies 1X, 2X, 3X, 4X as
well as by 7X÷13X in the case of the torsional response, and by almost all X multiplied
frequencies (not all are visible in the presented scale) within 1X÷13X in the case of the
axial response. Nevertheless, the highest peak of the axial response component corre-
sponds to ∼ 1.66X approximately equal to the second axial natural frequency 83.044 Hz.
In this case, the respective axial eigenform (presented in Fig. 5) is induced in the form
of transient state component due to systematic closings and openings of the crack during
each successive revolution of the shaft.
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Figure 6: Coupled dynamic response for the rotor-shaft system with the crack of the depth
ratio a/D = 0.2 located in the intermediate-pressure rotor close to bearing #3.

In the same way as Fig. 6, in Fig. 7 there are presented results of analogous simulation
obtained for a bigger crack of the depth ratio a/D = 0.25 and localized in the generator
rotor-shaft mid-span, i.e. in the cross-section between bearings #6 and #7. Here, the lat-
eral response is not harmonic. As it follows from Fig. 7, the bearing journal displacement
orbits are not elliptical and the corresponding amplitude spectra of displacement time his-
tories are affected also by the remarkable frequency components 2X and 3X in addition
to the fundamental synchronous component 1X. In the case of the lateral response regis-
tered at bearing #6 the frequency component 3X is predominant which emphasizes the
nonlinear - parametric character of the coupled dynamic response induced by this crack.
The torsional response is also significant and the axial response is much more severe than
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that in the previous case. Nevertheless, in this case the∼ 1.66X transient state component
of the axial response is much smaller in comparison with the remaining ones than in the
previous example, which follows from the respective FFT-plots in Figs. 6 and 7.

It is noteworthy that torsional and axial responses obtained for various depth ratios
within a/D = 0.1 ÷ 0.3 for the cracks located in several axial positions along the entire
rotor-shaft line are characterized by similarly “rich” amplitude spectra as these obtained
in the above examples, i.e. in general the same fluctuation components are excited with
magnitudes rapidly increasing together with the crack a/D ratio. But mutual relations
between the amplitude values of successive fluctuation components depend on particular
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Figure 7: Coupled dynamic response for the rotor-shaft system with the crack of the depth
ratio a/D = 0.25 located at the generator-rotor mid-span.
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cases of crack depths and locations. Similarly, the 2X and 3X frequency components
of the system lateral response also significantly increase together with the rise of a/D,
whereas maximum values of the peak corresponding to the synchronous 1X component
remain almost unchanged.

According to the observed facts, as diagnostic parameters necessary for crack iden-
tification in the shaft, the maximum amplitude values of the 2X and 3X frequency com-
ponents of the system lateral response as well as the resultant (global) amplitudes of the
torsional and axial response have been selected. The mentioned resultant (global) am-
plitudes of the considered torsional and axial time histories are regarded here as maxi-
mum fluctuation values with respect to their average values of the steady-state dynamic
response. The listed above values of response amplitudes corresponding to randomly gen-
erated crack parameters will constitute the database of numerical experiments used in the
identification process.

5 Crack identification methods

The objective of the proposed methods is an efficient assessment of a possible damage
of the vibrating rotor-shaft system when an information on system responses from mon-
itoring devices is available. In addition to the identification of the most probable crack
parameters, i.e. the crack location xc and its depth a, the methods also provide a con-
fidence measure of the results. Contrary to the method proposed by the authors in their
previous paper [10], the methods described here consist of two major phases:

1. fast crack parameters identification based on the analysis of experimental data points
generated before by the Monte Carlo sampling,

2. identification improvement strategy, mainly by enhancing the database in the neigh-
borhood of the first phase estimation.

The second phase algorithms are meant to improve an accuracy of the identified crack
parameters in a relatively short time, which is the time from the crack detection moment
to the ultimate decision concerning the exploitation of the rotor machine. Moreover, these
methods should enable us to use smaller databases reducing the costs of database prepa-
ration.

As it was mentioned, the foundation of all the presented methods is the database of
points (x,y) relating the crack parameters x to the responses y of the vibrating rotor-
shaft system (see Sec. 4). The database is created by means of the Monte Carlo sampling.
A sample of crack parameters is generated according to the assumed probability distri-
butions of the crack location xc, the ratio a/D where D is the shaft diameter, and the
circumferential crack position αp. The choice of probability density functions (PDFs)
was described in detail in [10]. In the identification example presented in the next sec-
tion 30% of the total number of sample points are generated using the uniform PDF in
the range a/D = 0.1 ÷ 0.4 and the remaining points are generated using the following

19



1.55e-017

3.31

6.61

9.92

13.2

   0 5.18 10.4 15.5 20.7 25.9

crack coordinate xc

m
in

 a
n
d
 m

a
x
 s

tr
e
s
s
 e

n
v
e
lo

p
e

Figure 8: Stress envelope for the uncracked rotor-shaft system supported on seven journal
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half-normal density function

f(a) =
2ϑ

π
exp

[
−(a− amin)

2ϑ2

π

]
, (11)

where amin is the minimal considered identifiable crack depth and ϑ is the parameter se-
lected such that the probability of crack depth greater than the maximal depth observable
in practice is negligible. In the case of PDF for the crack location xc, it is taken to be
proportional to the maximal reduced stress envelope obtained for the nominal uncracked
rotor-shaft. Such an envelope for the considered rotor shaft system shown in Fig. 2 is
presented in Fig. 8. The PDF corresponding to the stress envelope can be expressed as

f(xc) =
|σ(xc)|∫ x7

x1
|σ(x)|dx

, xc ∈ [x1, x7] (12)

where σ(x) is the maximal reduced stress function and x1 and x7 are the axial coordinates
of the first and the seventh bearing, respectively (see Fig. 9 for PDF and the corresponding
cumulative distribution function(CDF)). Similarly to the case of crack depth, 30% of the
total number of points are generated from the uniform PDF in the range [x1, x7] and the
remaining sample points are drawn using the PDF (12) to add numerical experiments at
locations where cracks are most likely to occur.

One of the major advantages of one-dimensional hybrid dynamical models of the
rotor-shaft systems is their high computational efficiency. A single analysis of the parametric-
nonlinear coupled vibration process usually takes less than 75 seconds of CPU on modern
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Figure 9: Probability density function and the corresponding cumulative distribution func-
tion for the crack location xc along the rotor-shaft system of the steam turbogenerator.

PCs. Hence, accounting for inherent parallelism of the Monte Carlo method in most of the
cases it is affordable to perform hundreds of thousands or even millions of simulations.
This allows for thorough exploration of the response space, which facilitates the identi-
fication process. Nevertheless, still the number of sample points (size of the database)
should be large enough to ensure acceptable identification accuracy.

Below, the are presented the “reference” identification algorithm, named here the near-
est point method, and three second phase algorithms for improvement of the results ob-
tained using the nearest point method. A confidence/tolerance measure for the identified
parameters is also described.

Nearest point identification method (NP) Crack parameter identification in the nearest
point identification method consists in localizing a point in the space of responses of
the rotor-shaft system that is the closest to the readout from a monitoring device. The
accuracy of the NP method increases together with the database size. Therefore, the
largest possible databases have to be used, cf. [10] where this method is described in
detail. Unquestionable advantage of this approach is almost immediate identification of
crack parameter values as well as their tolerances.

The NP method can be schematically presented in two dimensional space of param-
eters x1 and x2 and the corresponding space of two responses y1 and y2, see Fig. 10. In
this figure the readout (yR

1 , yR
2 ) is marked with the star and the diamond markers depict

sample points – the responses for randomly generated parameters. In Fig. 10, the point in
the response space, which minimizes the distance from the readout, is point A. The coor-
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dinates (xR
1 , xR

2 ) of point A′, corresponding to A in the parameter space, are assumed as
identification results, i.e. the parameters leading to the readout. Such identification results

Figure 10: Illustration of the identification algorithm

are biased. They very much depend on the database size as well as on a local “saturation”
of the responses space with the sample points. Therefore some measure of confidence for
identification results should also be provided. The confidence measure introduced in [10]
is briefly described below.

In the response space, there are points Bi, i = 1, . . . , NA, falling into the spherical
vicinity of the point A of the radius equal to the distance between A and the readout. We
also identify NA points B′

i in the parameters space that are mapped onto Bi points. If
there are no points in the spherical vicinity, its radius is gradually enlarged till at least two
points are inside. For each point B′

i the differences ∆xi
j = |xR

j −xi
j| are computed, where

xi
j is the j-th coordinate of the point B′

i, j = 1, . . . , n, n being the number of parameters,
n = 2 here. A conservative tolerances for the identified parameters xR

j can be then defined
using the computed differences as

x̂R
j = max

i=1,...,NA

∆xi
j, (13)

and the identification results given as xR
j ± x̂R

j . The described confidence measure is the
same for all the identification methods presented in this section.

The nearest point identification approach is rather straightforward. It is particularly
well suited for rotor-shaft damage identification where, owing to computationally efficient
models of rotor-shaft systems, very large samples can be afforded.

Orthogonal projection identification method (OP) The idea of orthogonal projection
method is illustrated in Fig. 11. Similarly as in Fig. 10, here, the readout is marked with
the star and the diamond markers denote sample points, i.e. they are the responses for
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Figure 11: The idea of orthogonal projection identification method.

randomly generated crack parameters. The OP algorithm starts by searching for the pair
of points in the readout vicinity, which define the straight line that is closest to the readout.
In Fig. 11 these are points B1 and B2 and the line is denoted as l12. Next, the readout is
projected on l12 determining two segments b1 and b2 connecting the projection point with
B1 and B2, respectively, see Fig. 11. In the parameter space the points corresponding to
B1 and B2 are B′

1 and B′
2, respectively, and the straight line passing through these points

is denoted l′12. Accounting for the proportion b1/b2 and the position of the projection
point with respect to B1 and B2 point A′ is established on l′12 as an approximation of the
projection point mapping. Then, at this point the vibrating rotor-shaft system responses
are computed yielding point A with coordinates (yA

1 , yA
2 ). This point is added to the

database and the procedure restarts. If point A is localized in the vicinity of the readout,
it will probably be used in the next iteration as one of the points constituting the closest
straight line. It in turn is likely to produce a new A point that is closer to the readout
than the previous A point. If this is not the case, the procedure is stopped. Another stop
criterion may be set on the number of iterations. The parameter values corresponding
to the best A point (provided it is closer to the readout than any of the original database
points) are taken to be the identification results.

The main advantage of the OP method is a small number of additional simulations of
the rotor-shaft dynamic responses. However, due to strongly nonlinear character of the
considered relationship there is no guarantee that the methodology will always improve
the NP identification results.

Nedler-Mead identification method (NM) This nonlinear simplex method is a popular
direct search optimization technique introduced by Nedler and Mead, see [11], that has
been adopted to the considered identification problem. The simplex graph based on the set
of n + 1 points in the parameter space, n being the number of parameters, corresponding
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to n+1 points closest to the readout in the response space is employed. Each time during
the optimization process a new point (values of crack parameters x) is established the ap-
propriate rotor-shaft responses y are computed and the new point is added to the database.
The objective function that is to be minimized here is the distance in the response space
between the readout and the closest database point. The procedure is stopped if the mini-
mized distance is smaller than certain ε tolerance or the number of calls to the rotor-shaft
simulation program is exceeded.

Similarly to the OP method, the NM identification algorithm requires some additional
simulations of the rotor-shaft system dynamic responses, which increase the identification
time. However, this additional computational effort can be controlled in a quite flexible
way depending on the user preferences. In terms of the distance from the readout the
method always results with a solution, which is not worse than the NP-based identifica-
tion.

Local Sampling identification method (LS) The LS method seems to be the simplest
choice for improving the accuracy of the NP identification results. The method consists
in finding the two closest points yA and yB to the readout yR and computing the system
responses for a certain number of new points sampled in the crack parameter space using
PDFs determined in some way by yA and yB. These new points are generated from the
independent uniform distributions, where point xA (related to the closest point yA) is the
mean vector and the absolute differences between the respective parameter values of xA

and xB are the standard deviations of the assumed distributions.
In the numerical example that follows the identification capacity of the proposed meth-

ods there is tested the turbogenerator rotor-shaft system described in section 4. For ran-
domly generated cracks (given by the parameters xc, a/D and αp) the system responses
are first computed using the one-dimensional hybrid model and then, at the second step,
the obtained results are introduced as readouts to the identification algorithm indicating
the most probable crack parameters. A comparison of the identified parameters and the
original ones provides a measure of the identification quality.

6 Numerical example, identification analysis of the rotor-shaft system of the steam
turbogenerator

The effectiveness of the crack parameters identification methods described in Sec. 5 is
compared using the hybrid mechanical model of the steam turbogenerator rotor-shaft
system supported on seven journal bearings shown in Fig. 2. Selected statistics for all
the methods and for database sizes of 5000, 10000, 50000, 100000, 200000 and 500000
points, respectively, as well as the average computational effort have been collected in one
diagram, so called box plot. The box plot consists of the following statistics, see Fig. 12:
the lower adjacent value (non-outlier simulation), the lower quartile Q0.25, the median, the
mean value, the upper quartile Q0.75 and the upper adjacent value (non-outlier simulation).
Moreover, the box plot depicts simulations considered unusual, called outliers, which are
smaller than Q0.25 − 1.5RQ or grater than Q0.75 + 1.5RQ, where RQ = Q0.75 − Q0.25 is
the interquartile range. The outliers are divided into two groups: mild outliers (marked
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with green circles) – simulations not smaller than Q0.25 − 3.0RQ or not grater than
Q0.75 + 3.0RQ, and extreme outliers (marked with the red crosses) – which are farther
than the mild ones. For the sake of presentation quality, not always all the extreme out-
liers are shown. When this is the case, the number of hidden extreme outliers (in the
brackets) and the maximal/minimal values are specified.

Each of the box-plots presented below displays identification statistics for 100 tests.
The box-plots are prepared for the identification error of two crack parameters: xc and
a/D and their identification tolerances.

As it can be expected, the identification results for xc strongly depend on the database
size. Irrespective of the identification approach, the smallest databases of 5000 or even
10000 simulations do not provide a good identification quality and the obtained results
are far from being reliable, see Fig. 13. All the methods produce many extreme outliers,
moreover, the difference between the lower adjacent value and the upper adjacent value
vary in quite a wide range 0.7 m–1.4 m related to the entire rotor-shaft length of 25.9 m.
Slightly better identification results are produced when the database of 50000 points is
used. Unfortunately, even in this case, some extreme outliers can be observed. There are
two test for the NP identification method that completely failed resulting with identifica-
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extreme outlier
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mild outlier

no. of additional calls to the
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Figure 12: Box plot notation
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tion errors of up to 6 m. Therefore, the fast NP method alone is not sufficiently reliable
for such a medium size database and some improvement algorithm need to be employed.

More promising results deliver identification tests corresponding to large databases of
100000, 200000 and 500000 simulations, see Fig. 14. Here, the NP method for all the
three cases has almost the same scatter which can be considered as acceptable. The only
extreme outlier, registered in an identification test performed with 200000 points database
spoils a little generally very good accuracy and concentration of the results. Unquestion-
ably, the best results for all the examined methods are obtained using the largest database
(500000 data points), which only proves the intuitive relationship between the database
size and identification accuracy. However, also with databases of 100000 and 200000
points one may obtain reliable and accurate results, especially when it is possible to use
one of the improving algorithms, the OP, NM or LS. The fastest and the most successful
among them seems to be the OP method, that needs only about 7 additional simulations.

Identification tolerances of xc for small databases confirm a poor quality of the results
obtained by all the methods, see Fig. 15. The only exception is the OP identification
method with the database of 50000 points where the largest computed tolerance does
not exceed 0.45 m. The quality of OP is not much improved for databases of 100000
and 200000 points, Fig. 16. However, significant improvement is observed for the largest
database, where the outermost value of extreme outlier is approximately 0.13 m, and other
statistics are better than for the remaining methods.

Similar tolerance statistics are computed only for the NM method. However, about
16 additional simulations have to be done compared to 7 for OP. It should be noticed that
the NP method possesses good tolerance statistics in the case of the two largest databases.
Nevertheless, in the considered example only the largest database enables us to obtain
reliable and accurate results. By this we assume identification of the crack position in the
monitored rotor-shaft of the total length of 25.9 m with the maximum error equal to 0.7 m
(the most likely maximum error equals to 0.5 m) and the maximum tolerance equal to
0.45 m (the most likely maximum tolerance is 0.3 m) in the worst case.

At the same time, in the case of xc, the considered identification improvement meth-
ods give comparable results, the maximum error smaller than 0.2 m and the maximum
tolerance smaller than 0.15 m for the NM and OP methods.

The identification process of a/D ratio yields bigger scatter of identification results,
i.e. every applied database and considered method have many mild and extreme outliers,
see Fig. 17–20. As in the case of the parameter xc, the scatter magnitude decreases to-
gether with the increase of database size, which enables us to choose an appropriate level
of accuracy sufficient for monitoring and improvement of identification results. In the
case of the largest database the NP method yields the maximum identification error equal
to 0.065 m, which is about 15% of the assumed a/D value. Slightly better results can
be observed for the improvement algorithms NM and LS. The maximum identification
error they produce is 0.04 m, which is not more than 10% of the maximum assumed a/D.
The most efficient in a/D identification improvement seems to be the OP method, both
in terms of accuracy and computational time.
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Figure 13: Box plots of xc identification error for database sizes equal to 5000, 10000 and
50000, respectively.
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Figure 14: Box plots of xc identification error for database sizes equal to 100000, 200000
and 500000, respectively.
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Figure 15: Box plots of xc identification tolerance for database sizes equal to 5000, 10000
and 50000, respectively.

           100000                                          200000                                          500000

Database size

x
c
 i
d

e
n

ti
fi
c
a

ti
o

n
 e

rr
o

r 
[m

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NP

[2]3.4

0

LS

[4]2.7

20

LP

7

NMs

[2]2

16

NP

[1]3.1

0

LS

[2]0.99

20

LP

7

NMs

[2]2

16

NP

0

LS

20

LP

6

NMs

17

Figure 16: Box plots of xc identification tolerance for database sizes equal to 100000,
200000 and 500000, respectively.
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Figure 17: Box plots for a/D identification error for database sizes equal to 5000, 10000
and 50000, respectively.
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Figure 18: Box plots of a/D identification error for database sizes equal to 100000,
200000 and 500000, respectively.
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Figure 19: Box plots of a/D identification tolerance for database sizes equal to 5000,
10000 and 50000, respectively.
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Figure 20: Box plots of a/D identification tolerance for database sizes equal to 100000,
200000 and 500000, respectively.
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7 Conclusions

In the presented paper non-linear and parametric components of coupled bending-torsional-
axial vibrations have been used as a transverse crack occurrence symptom in rotor-shafts
of the rotor machines. For this purpose, by means of the structural hybrid model of the real
object several databases containing results of dynamic responses corresponding to vari-
ous possible crack depths and locations on the shaft were generated using the Monte-Carlo
simulation. Special probability density functions of crack parameters were proposed in
order to ensure good identification quality for the most probable crack parameters. In
order to detect and localize the crack four identification methods have been applied and
mutually compared. These are: the nearest point method (NP), the orthogonal projection
method (OP), the Nadler-Mead method (NM) and the local sample method (LS). Each of
them was tested from the viewpoint of computational efficiency and crack identification
error on the example of the rotor-shaft system of large steam turbogenerator.

¿From the carried out considerations it follows that the Monte Carlo sampling ap-
proach for damage identification in vibrating rotor-shaft systems together with the pro-
posed methods of improving the accuracy of results seem to be an appropriate solution
for industrial engineering applications. The crucial advantage of the proposed procedure
is the immediate identification process of the real rotor-shaft system under on-line moni-
toring. The method is based on the previously prepared database of hundreds of thousands
numerical experiments, that takes significant but still acceptable computational effort pro-
portional to the demanded accuracy of the results. Additionally, the same database can be
used to obtain in relatively short time (5 to 20 minutes on a present-day PC) more precise
estimation of the crack parameters. The identification error scatter and the scatter of tol-
erance decrease with the database size, which allows to obtain required accuracy of crack
parameter identification. Based on the test results the identification improvement method
that seems to be the most efficient and accurate is the orthogonal projection identification
method (OP).
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