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A safe programmable electronic system
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Abstract. A dual-channel computer architecture for utilisation in programmable logic controllers is presented. Faults can be detected by
novel high-speed comparators with fail-safe operation. The cyclic operating mode of PLCs and a specification-level, graphical programming
paradigm based on the interconnection of application-oriented standard software function modules are architecturally supported. Thus, by
design, there is no semantic gap between the programming and machine execution levels enabling the safety licensing of application software
by an extremely simple, but rigorous method, viz., diverse back translation.
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1. Introduction

Economical considerations impose stringent constraints on de-
velopment and utilisation of technical systems. This holds
for safety-related systems as well. Since manpower is becom-
ing increasingly expensive, also safety-related systems need to
be highly flexible in order to be adjustable to changing require-
ments at low costs. In other words, safety-related systems must
be program-controlled. Thus, the use of hard-wired safety sys-
tems is rapidly diminishing in favour of computerised ones,
and in daily life the significance of programmable electronic
systems in safety-related applications is increasing rapidly.

In society, on the other hand, there is increasing aware-
ness of and demand for dependable technical systems in or-
der not to endanger human life and to prevent environmental
disasters. Computer-based technical systems have the special
property to consist of hardware and software. Hardware is
subject to wear and to faults occurring at random and possi-
bly being transient. These sources of non-dependability can,
to a very large extent, successfully be coped with by applying
a wide spectrum of redundancy and fault tolerance measures.
In software, on the other hand, there are no faults caused by
wear or environmental events. Instead, all errors are design
errors, i.e., of systematic nature, and their causes are always
– latently – present. Hence, dependability of software cannot
be achieved by reducing the number of errors contained by
testing, checks, or other heuristic methods to low levels, gen-
erally greater than zero, but only by rigorously proving that it
is error-free. Taking the high complexity of software into ac-
count, only in exceptional cases this objective can be reached
with the present state of the art. Therefore, safety licensing of
systems whose behaviour is largely program-controlled is still
an unsolved problem. It is exacerbated by the fact that object
code, i.e., a program’s only version actually visible to and
executed by a machine, must be licensed, because the trans-

formation of a program representation from source to object
code by a compiler or assembler may introduce errors into
the object code.

To provide a remedy for this unsatisfactory situation, and
to make a step into the direction of realising a workable pro-
grammable electronic system for industrial use, which can be
safety licensed in its entirety, in [1–3] the intrinsic properties
of a special, but not untypical case identified in industrial au-
tomation were exploited. Here the complexity turns out to be
manageable, because attention is restricted to rather simple
computing systems in the form of programmable logic con-
trollers, and since application domains exist giving rise to soft-
ware of limited variability only, which may be implemented
in a well structured way by interconnecting carefully designed
and rigorously verified blocks of software functionality. De-
spite the mentioned restrictions of generality, this approach
is scientifically relevant and technologically useful, since its
application area comprises the technical systems in charge of
safety-critical automatic control.

The leading idea followed throughout this design is to
combine already existing software engineering and verifica-
tion methods of highest trustworthiness with novel architec-
tural support, and to custom tailor an execution platform.
Thus, the semantic gap between software requirements and
hardware capabilities is closed, relinquishing the need for not
safety-licensable compilers and operating systems. By keeping
the complexity of each system component as low as possible,
the safety licensing of the hardware in combination with ap-
plication software is enabled on the basis of well established
and proven techniques.

2. Safety-related software engineering

Special emphasis is dedicated to the software side, since soft-
ware dependability still needs to catch up with the one already
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achieved by hardware. The novelty of this design consists in
providing comprehensive support for software verification al-
ready in the hardware architecture. The particular method sup-
ported is diverse back translation [4], the only one endorsed
by the licensing authorities for the verification of larger pro-
grams.

A programming paradigm allowing for software to be easy
to grasp and to verify with respect to both source and object
code is available in form of the graphical language Function
Block Diagram (FBD) defined within the standard IEC 61131-
3 [5]. With its long tradition in control engineering, graphical
programming in form of function block diagrams as depicted
in Fig. 1 is already well established in automation technology.

The function block diagram language consists of only four
different structural elements:

1. instances of functions and function blocks, represented by
rectangular symbols,

2. dataflow lines, i.e., connection lines,
3. names, i.e., identifiers, and
4. (external) connection points.

Functions and function blocks according to IEC 61131-3 are
highly application-dependent and re-usable elementary units
of application programming on a higher level of abstraction.
In principle, they are objects having inputs and outputs of arbi-
trary data types, and are able to perform arbitrary processing.
Functions do not have any internal states. After being exe-
cuted, they yield exactly one data element as a result, which
may be multivalued. Multiple named instances, i.e., copies,
can be created of function blocks. Each instance possesses
an associated designator and a data structure, which contains
its output and internal variables as well as possibly its input
variables. All values of the output variables and the internal
variables in such a data structure persist from one execution
of a function block instance to the next. Therefore, invocation
of a function block with the same arguments may not neces-
sarily yield the same output values. This is necessary to be
able to express feedback and internal storage behaviour. Only
the input and output values are accessible outside a function
block instance, i.e., a function block’s internal variables are
hidden from the outside and are, thus, strictly protected. By
the connection lines within a function block diagram a data
flow is represented.

Fig. 1. A cascaded Proportional-Integral-Differential controller
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Graphical, system-independent program development in
form of function block diagrams is very easy, and is carried
out in two steps:

1. only once building a library of functions and function
blocks, and

2. application-specific interconnection of functions and func-
tion block instances.

The guideline VDI/VDE 3696 [6] states, that all automa-
tion programs occurring in process engineering can be con-
structed from a rather small library of (some 70) function
blocks. Their correctness can be proven rigorously due to their
limited complexities. Such blocks are used as elementary units
of application programming. Safety-related automation soft-
ware is then formulated graphically in form of function block
diagrams according to IEC 61131-3. The following list gives
an impression of these modules’ functionalities:

• Monadic mathematical functions,
• Polyadic mathematical functions,
• Comparisons,
• Monadic Boolean function,
• Polyadic Boolean functions,
• Edge detectors,
• Selection functions,
• Counters, monostables, bistables, and timers,
• Process input/output,
• Network communication input/output,
• Dynamic elements and regulators,
• Conditioning for display and operation.

In order to give another typical example, the programming
of emergency shut-down systems, which is usually performed
graphically in form of functional logic diagrams to describe
the mapping from Boolean inputs to Boolean outputs as func-
tions of time such as, for instance,

if a pressure is too high
then a valve should be opened and an indicator should
light up after 5 seconds

even requires as few as only four function modules, viz., three
Boolean operators and a timer.

The still impossible formal verification of compilers trans-
forming function block diagrams into conventional object
code is not necessary, because only the block interconnec-
tions need to be verified. These are written as sequences of
function block invocations and corresponding parameter pass-
ings, representing the application programs at the architec-
tural level described in the next section. Only this part of the
software is subject to application-specific verification by the
architecturally supported method of diverse back translation,
which can be employed very easily and cost-effectively, be-
cause the program code consists of only two types of instruc-
tions, and relates immediately to application-oriented objects.
By inspecting this special kind of object code, function block
diagrams describing control programs essentially on the spec-

ification level can be re-gained in a single and easy working
step.

Many automation programs including safety-related ones
have the form of sequence controls composed of steps and
transitions. While in a step, an associated program, called ac-
tion, represented as a function block diagram is being execut-
ed. For safety-related applications, linear sequences of steps
and alternative branches of such sequences as shown in Fig. 2
are permitted, only. Parallel branches in sequential function
charts must either be implemented by hardware parallelism
or already resolved by the application programmer in form
of explicit serialisation. Also, for clarity as well as for easy
comprehension and verification only non-stored actions may
be used. All other types of actions as defined in the language
Sequential Function Charts according to IEC 61131-3 can be
expressed in terms of non-stored ones and re-formulated se-
quential control logic.

Fig. 2. Sequential function chart

3. Hardware architecture

When designing an execution platform closely matching and
supporting software represented in form of function block di-
agrams and sequential function charts, it was not the objective
to save hardware costs, but to facilitate the understandability
of object programs and their execution process. This led to
the architecture depicted in Fig. 3 with – conceptually – two
different processors:

• a control flow processor (master) and
• a basic function block processor (slave).

These two processors are implemented by separate physical
units. Thus, a clear and physical separation of concerns is
achieved: execution of function blocks in the slave processor,
and all other tasks, i.e., execution control, sequential func-
tion chart processing, and function block invocation, assigned
to the master. This concept implies that application code is
restricted to the control flow processor, on which project-
specific safety licensing can concentrate. To enable the de-
tection of faults in the hardware, a dual-channel configuration
is chosen as displayed in Fig. 4, which also supports diver-
sity as it allows for different master processors and different
slave processors. All processing is simultaneously performed
on two processors each, and all data communicated are subject
to comparison.
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The function block processors perform all data manipu-
lations and take care of the communication with the envi-
ronment. The master and slave processors communicate with
each other through queues of first-in-first-out memory (FI-
FO). Clearly, the masters’ and slaves’ programs, though co-
ordinated via communication, can be separated. This separa-
tion enables to migrate data access and data protection issues
from software to hardware, thus increasing the controller’s
dependability. The master and slave processors execute pro-
grams in co-ordination with each other as follows. The master
processors request the slaves to execute a function block by
sending the latter’s identification and the corresponding para-
meters and, if need be, also the block’s internal state values
via one of the FIFO queues to the slave processors. Here the
object program implementing the function block is performed
and the generated results and new internal states are sent to the
master processors through the other FIFO queue. The elab-
oration of the function block ends with fetching these data
from the output FIFO queue and storing them in the masters’
RAM memories.

It is stressed that the results and internal states are stored
in the masters’ memories. The slaves’ memories, if needed
at all, are only used temporarily as scratchpads while elabo-
rating function blocks. Hence, the slaves may be viewed as
memoryless function co-processors or dedicated calculators.
A number of fail-safe comparators as described in the next
section checking the outputs from the master processors be-
fore they reach the slaves and vice versa completes a fault-
detecting dual-channel configuration. Any inequality detect-
ed by the comparators generates an error signal (see below)
which stops the entire system and sets the outputs to safe
states. These states are provided by fail-safe hardware.

To prevent any modification by malfunctions, there is no
program RAM, but all programs are provided in read-only
memories (ROMs). The code of the function blocks resides
in mask-programmed ROMs, which must be produced under
supervision of and released by the licensing authorities, after
the latter have rigorously established the correctness of the
modules and their translation into object code. On the oth-
er hand, the sequences of module invocations together with
the corresponding parameter passing, representing applica-
tion programs at the architectural level, can be written into
(E)PROMs by the user. This part of the software is subject
to project-specific verification again to be performed by the
licensing authorities, which finally still need to install and
seal the (E)PROMs in the target systems. Here again it be-
comes obvious why the master/slave configuration was cho-
sen, namely, to physically separate two system parts from one
another: one whose software only needs to be verified once,
and the other one performing the application-specific part of
the software.

Besides program memory, the masters’ address spaces al-
so comprise RAM memory and various registers (cp. Fig. 5).
The latter are:

1. the FIFO input register,
2. the FIFO output register,
3. two step registers, viz., step identifier and step initial ad-

dress, and
4. the transition condition register.

Furthermore, it has a program counter (PC) and a single-
bit step clock occurred register, which are not accessible to
the programmer. Additionally, in the masters’ address spaces
other units are memory-mapped to create and receive con-
trol signals for the access of ROM, RAM, and FIFO queues.
To fulfill their purpose, the master processors need just two
instructions, viz.,

• MOVE and
• STEP.

The MOVE instruction has two operands, which directly point
to locations in address space. Thus, the memories and the
above-mentioned registers can be read and written. A read
from a FIFO input register implies that the processor has to
wait when the input FIFO queue register is empty. In case of
writing into an output FIFO queue register, the processor also
has to wait when the register is full. Execution of a MOVE
implies incrementation of the program counter.

The programs executed by the master processors consist
of sequences of steps. Behind the program segment of each
step a STEP instruction, with a next-step address as operand,
is inserted, which checks whether the segment was executed
within a step cycle frame or not. The step cycle is a period-
ic signal generated by the system clock and establishing the
basic time reference for operation as programmable logic con-
troller (Fig. 6). The length of the cycle is selected in a way as
to accommodate during its duration the execution of the most
time-consuming step occurring in an application (class). If the
execution of a segment does not terminate within a step cycle,
an error signal is generated, which indicates an overload situ-
ation or a run time error. Then, program execution is stopped
immediately, and suitable error handling is carried through
by external fail-safe hardware. Normally, however, segment
execution terminates before the instant of the next step cycle
signal. Then, the processors wait until the end of the present
cycle period. When the clock signal finally occurs, the step
clock occurred registers are set. According to the contents of
the transition condition registers it is decided, whether the step
segment is executed once more, or whether the execution of
the logically subsequent step is commenced, i.e., whether the
program counters are re-loaded from the step initial address
registers, or if another segment’s initial program address is
loaded from the STEP instruction’s operand called next-step
address. Since only one step is active at any given time, and
since program branching is only possible in this restricted
form within the framework of executing STEP instructions,
this mechanism very effectively prevents erroneous access to
code of other (inactive) steps as well as to program locations
other than the beginnings of step segments.
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The design objective of providing FIFOs is to imple-
ment easily synchronisable and understandable communica-
tion links, which decouple the master and slave processors
with respect to their execution speeds. The FIFO queues con-
sist of a fall-through memory and two single-bit status reg-
isters each, viz., FULL and EMPTY, which indicate the fill-
ing states of the FIFOs. The status registers are not user-
accessible. They are set and reset by the FIFO control hard-
ware and, if set, they cause a MOVE to a FIFO’s input port
or from an output port, respectively, to wait until space in the
FIFO becomes available or data arrive. The comparison for
equality of the outputs from the two master processors and
of the inputs from the two slave processors, respectively, is
carried out by the two fast comparators placed into the FI-
FO queues. Since the responsibility for detecting errors in the
system rests on these comparators, they need to meet high
dependability requirements and are, therefore, implemented
in fail-safe technology as described below. A comparator is
connected to two FIFOs’ outputs. The first data elements from
each input queue are latched and subsequently compared with
each other. If both latches do not hold the same value, then
an error signal is generated, which stops the operation of the
entire system. Otherwise, the value is transferred into both
output FIFOs. The comparison of FIFO data is shown in
Fig. 7. By this set-up, errors that may appear in the proces-
sor modules and manifesting themselves by inconsistent data
are detected by the comparators which continuously check
consistency of data flow through the FIFO queues. They are
triggered by any kind of inconsistency, equally by brief dis-
turbances and permanent failures.
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Fig. 7. Comparison of FIFO data

Communication with external technical processes takes
place through fault-detecting input/output driver units attached
to the slave processors. Output data words generated by the
two slaves are first checked for equality in a fail-safe compara-
tor and, subsequently, they are latched in an output port. If
output data are not identical, an error signal is generated lead-
ing to a system stop. To achieve full determinism of execution

time behaviour, the basic cycle was introduced as maximum
step execution period. Although it exactly determines a pri-
ori the cyclic execution of the single steps, the processing
instants of the various operations within a cycle, however,
may still vary and, thus, remain undetermined. Since precise-
ly predictable temporal behaviour is only important for input
and output operations, temporal predictability is achieved as
follows. Input data are read by the drivers at the beginning
of each cycle and stored en bloc in two independent RAM
buffers assigned to the respective slaves. The cycle start is
signaled by the step clock occurred register. Only after that,
the data are made available for further processing, thus pro-
viding predictability in timing. Output data generated by the
slaves are latched in registers before the end of every cycle.
When the step clock occurred register is set, the data are first
checked for equality in fail-safe comparators and, subsequent-
ly, they are transferred to output ports to become effective to
the environment. If output bytes are not identical, however,
an error signal is generated leading to a system stop.

The FIFO queue and output comparators mentioned above
are the components of a global comparator unit, which also re-
ceives operation monitoring signals from processor watch-dog
timers and some correctness signals from other units. Based
on all these, a global correctness signal, in other words, a
negated global error, is generated and fed back to all units
of the programmable electronic system. Naturally, each one
can operate if this signal indicates “no error”. Otherwise, the
system stops and the outputs are set to safe states. The glob-
al error signal is also provided as output, allowing to trigger
some external hardware as well.

4. Fast fail-safe comparator

The classical control components switches, relays, ther-
moswitches etc. have high probabilities to assume a certain
“natural” switching state in case of failure, namely, the state
of disconnection. This allows to design controllers perform-
ing safety-related tasks in such a way that in case of com-
ponent failures the entire controllers assume states being safe
for persons and the processes controlled (“fail-safe principle”).
Semiconductor devices, the other hand, assume unpredictable
states such as short-circuits or complete disruptions in cases of
defect. Therefore, it is impossible to associate an unambigu-
ous error state with a semiconductor component. One way to
solve this problem is to use redundant controller structures.
In technical applications this means that control components
are replicated to fulfill the same task. Furthermore, switching
to a state other than a safe one is subject to monitoring with
majority or unanimity voting. Controlled devices or processes
are brought to safe states in case of disagreement.

Fail-safe logic gates (And, Or, Not) were developed in
special technologies which assure predictable behaviour of
the outputs in case of any failure. Normally, such behaviour
is equivalent to fall into the switched-off state. Galvanic sep-
aration of inputs and outputs is a common feature. There ex-
ist a few families of fail-safe gates applying different princi-
ples of operation. The HIMA Planar Logic [7, 8] and GTI
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MagLog 24 [9] are well established in the market. The for-
mer logic family was the first one for which an official safe-
ty license was granted, in 1971, for use in electronic con-
trol systems. The mentioned fail-safe logic families, of which
comparator circuits can be built, exhibit far too long reaction
times, viz., several milliseconds. In the controller presented
here, however, the reaction time of a comparator must corre-
spond to the speed of data transfer between master and slave,
i.e., a few microseconds per single comparison. This elimi-
nates HIMA or MagLog modules from consideration, creating
the need to design and construct a sufficiently fast compara-
tor. Naturally, the principles of fail-safe technology must be
followed.

Comparators are essentially combinatorial (memoryless)
circuits. To increase safety, the outputs of the fast compara-
tors are monitored by a much slower HIMA module. Since
this is unable to detect very short signal changes, the compara-
tors must be equipped with circuitry to hold the information
on any – even intermittent or spurious – inconsistency occur-
ring, in other words, they must be provided with memory. The
holding circuit requires an initialisation signal. These consid-
erations give rise to the following list of requirements to be
met in developing fast fail-safe comparators:
• A comparator is activated with an initialisation signal,

which must be kept for a while at high state after switching
on the controller.
• When the comparator is active, the compared signals are

equal, and all elements operate normally, its output is high.
• In case of any difference between compared signals or

a hardware fault, the output is set to low, being also the
safe state.
• Low level at the output is kept permanently, even if the

signals compared have become equal again or the hard-
ware resumed normal operation. Another activation of the
comparator is possible by means of the initialisation signal,
only.
Similarly as in HIMA fail-safe gates, alternating signals

are used to carry information and generate output. The com-
parator designed [10] consists of a primary unit generating
rectangular alternating signals, and a secondary one compar-
ing the alternating signals. The primary unit is a 4-bit dual-
channel comparator assembled of standard integrated circuits.
To increase safety despite of employing semiconductor de-
vices, two 4-bit comparator chips monitoring the same sig-
nal are employed in the primary unit. Such double compari-
son unit is still much smaller than a collection of single-bit
comparators built of discrete elements. The secondary unit is
a single-bit comparator of rectangular signals built in fail-safe
technology.

The primary unit’s circuitry diagram is shown in Fig. 8.
The system compares two 4-bit words arriving via the lines
A0–A3 and B0–B3. Two integrated comparator chips U1, U2
are used. The latter compares negated words for increased
functional safety. If U1, U2 operate normally, the outputs Q1,
Q2 are equal. The relatively slowly varying inputs are convert-
ed to alternating signals inside the comparators by means of
the cascade inputs A=B (direct) and A<B (inverted), which

receive rectangular signals from the square wave generator
implemented with U5. As a consequence, the outputs Q1, Q2
produce either identical rectangular signals, when the words
at A0–A3 and B0–B3 are equal, or low state. If a fault occurs
inside the integrated comparator, one cannot predict the be-
haviour at the output. When the chip is still able to transmit
the undisturbed rectangular wave, the fault remains undetect-
ed. In all other cases the outputs Q1, Q2 are different. The
difference is recognised by the secondary unit, and then by
the monitoring module which eventually stops the controller.

The secondary unit compares the signals Q1, Q2 produced
by the primary one. Its circuitry diagram is shown in Fig. 9.
The circuit is based on the design for fail-safe comparators of
analogue signals presented in [11], some parts of which have
been replaced and new values for its components selected to
increase speed. The most important new feature of the digital
comparator is the self-holding safe state, which it assumes
after detecting any signal differences or own malfunctioning,
and in which it then persists. Thus, as a whole, the comparator
becomes a memory device in contrast to the one according to
[11], which is a purely combinatorial circuit.

The signals Q1, Q2 are transmitted through transoptors
U1, U2 provided that these are not blocked. Unblocking re-
quires high state at the finger of potentiometer PR1, connected
to the transoptor pins 7. After switching on, by means of relay
PK1 the initialisation signal RESET connects PR1 to the volt-
age UC providing high state. When the entire unit is activated
and high state appears at output VGL, the relay is switched
off, but the voltage still remains at PR1, this time transmitted
from VGL through the diodes D1–D3. Note that they do not
allow the voltage UC to be transmitted to output VGL when
the relay is still switched on, either. If there is no activation,
there will be no voltage at PR1, so transoptors U1, U2 will
remain blocked keeping output VGL at low state.

Rectangular signals from the outputs of U1, U2 affect, af-
ter being amplified by transistors T1, T3, transistors T2, T4
with transformers TR1, TR2 in their emitter circuits. In the
secondary windings of TR1, TR2 pulses are generated which
briefly unblock transistors T5, T6. If the Q1 and Q2 input
signals are identical, the unblocking occurs simultaneously,
triggering oscillations in the resonant circuit composed of ca-
pacitor C1 and the primary winding of transformer TR3. The
oscillations are transmitted by TR3 and amplified by tran-
sistors T9, T10, provided that they are energised. Energising
depends on transmission of oscillations by two other ampli-
fiers formed of transistors T7, T8 and T11, T12, respectively.
They use the transformers TR4, TR5 to convey energy. For
safety reasons, T9 and T10 are fed from different circuits. Nat-
urally, the transformers provide Galvanic separation as well.
The signal produced by transistor T10 is amplified by T13
and passed to rectifier GL3 by transformer TR6. Capacitor
C2 provides filtering together with R0. The voltage across C2
becomes the output signal VGL. As indicated above, VGL is
fed back to unblock transoptors U1, U2. Capacitor C2 is con-
tinuously being charged with pulses appearing at TR1, TR2,
and discharged via the input resistance R0 of the subsequent
monitoring module and via potentiometer PR1.
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Fig. 8. Primary unit of the fast fail-safe comparator

Fig. 9. Secondary unit of the fast fail-safe comparator

If one or both signals Q1, Q2 disappear temporarily or
permanently, if these signals get out of phase, or if a device
fails, the rectangular wave does not reach transformers TR1,
TR2 anymore, oscillations are not generated, and the voltage
across C2 goes down. This, in turn, blocks transoptors U1,
U2 bringing this voltage completely to zero. Output VGL re-
mains permanently in low state until relay PK1 is switched on
for re-initialisation. This is the way the comparator’s memory
behaviour is realised.

The frequency of generator U5 in Fig. 8 producing the rec-
tangular wave for the primary unit is 100 kHz. The comparator
is very sensitive – if the secondary unit does not transfer a sin-
gle pulse, output VGL becomes zero. Hence, the shortest time
needed for comparison is 10 µs. Transfer to safe state takes
about 40 µs because of the exponential discharge of capacitor
C2. The monitoring module reacts after 10–20 ms setting the
controller outputs to safe state.
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5. Software verification

Corresponding to their development procedure, the verifica-
tion of programs constructed in the form of function block
diagrams is carried out in two steps:

1. Before being released, first all functions and function
blocks contained in a library are verified employing ap-
propriate, usually formal methods. Such a rather expensive
safety licensing needs to be carried through only once for
a certain application area after a suitable set of function
blocks has been identified. The licensing costs justified by
the safety requirements can, therefore, be spread over many
implementations, leading to relatively low costs for each
single automation project. In general, rather few library
elements are sufficient to formulate all programs in a par-
ticular area of automation. As the details of the function
blocks’ implementation on the slave processors are part of
the architecture, they remain invisible from the application
programming point of view.

2. Then, for any given application program, only the correct
implementation of the corresponding interconnection pat-
tern of invoked functions and function block instances (i.e.,
a certain dataflow) needs to be verified.

Application software is safety licensed by subjecting the
object code loaded into the master processors to diverse back
translation [4]. This technique consists of reading machine
programs out of computer memory and giving them to a num-
ber of teams working without any mutual contact. Only by
human labour, these teams disassemble and decompile the
code, from which they finally try to re-gain the specification.
A safety license is granted to a software if its original spec-
ification agrees with the inversely obtained re-specifications.
Needless to say that this method is, in general, extremely cum-
bersome, time-consuming, and expensive. This is due to the
semantic gap between a specification formulated in terms of
user functions on one hand and the usual machine instructions
carrying them out on the other. Applying the programming
paradigm of function block diagrams, however, a specification
is directly mapped onto sequences of procedure invocations
and parameter passing. It takes only minimum effort to verify
a master program by interpreting such code, which just im-
plements a particular module interconnection pattern, and by
re-drawing the corresponding graphical program specification.
Diverse back translation is especially well-suited to verify the
correct implementation of graphically specified programs on
the architecture introduced above for the following reasons:

• The method is essentially informal, easily comprehensi-
ble, and immediately applicable without any training. Thus,
it is extremely well-suited to be used on the application-
programming level by people with most heterogeneous ed-
ucational backgrounds. Its ease of understanding and use
inherently fosters error-free application.
• The effects of high-complexity utility and compiler-like

programs, whose correctness cannot be established rigor-
ously, are verified, too.

• Since graphical programming based on application-
oriented function blocks has the quality of specification-
level problem description, and because by design there is
no semantic gap in the architecture of the execution plat-
form between the levels interfacing to humans and to the
machine, diverse back translation leads back in one easy
step from machine code to problem specification.
• For this architecture, the effort required to utilise diverse

back translation for the safety licensing of application pro-
grams is by several orders of magnitude smaller than for the
von Neumann architecture, once a certain set of function
blocks has been formally proven correct.

6. Example of program verification

The application of back translation is now illustrated by elab-
orating a relatively simple, but realistic example. The pro-
gram representation levels function block diagram and object
code for the master processor are shown in full detail. It will
become evident that it is straightforward and very easy to
draw a function block diagram from a given object program
establishing the feasibility of back translation as a software
verification method for the presented architecture.

Figure 10 shows on the left a typical industrial automa-
tion program in graphical form. It performs supervision and
regulation of a pressure. The program is expressed in terms
of standard function blocks as defined in the guideline [6].
An analogue measuring value, the controlled variable, is
acquired by a function block of type IN A from the input
channel with address INADR, and scaled within the range
from XMIN to XMAX to a physical quantity with unit XU-
NIT. The controlled variable is fed into a function block
of type C performing proportional-integral-differential (PID)
regulation subject to the control parameters KP, TN, and TV.
The resulting regulating variable is converted to an analogue
value by a type OUT A output function block, and switched
onto the channel addressed by OUTADR. In addition, the
controlled variable is also supervised, with the help of two
instances of the SAM limit switch standard function block
type, to be within the limits given by the parameters LS and
HS. If the controlled variable is outside of this range, one of
the QS outputs of the two SAM instances becomes logically
true and, hence, the output of the type OR function block
as well. This, in turn, causes the type AM alarm and mes-
sage storing function block to create a timed alarm record.
The inputs of the standard function blocks comprised by the
program which are neither fed by externally visible inputs of
the program itself nor internally by outputs of other standard
function blocks are given constant values.

The object code of this example program for the master
processor is listed on the right hand side of Fig. 10. It shows
a (readable) assembly language version in which, for deno-
tational simplification, MOVE instructions from memory to
the memory-mapped FIFO input registers are denoted by ←,
and from the FIFO output registers to memory by →. Of the
different function block types instantiated in the example, C,
SAM, and AM have internal state variables, viz., C has three
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and the other two types have one each. This object code illus-
trates that all function block instance invocations occurring in
a program are directly mapped onto procedure calls. Each of
them commences with a MOVE instruction, which transfers
the identification tag (e.g., ID-C) of the corresponding block
out of an appropriate ROM location to the slave’s input FIFO.
Then, the input parameters are supplied by reading appropri-
ate ROM (for constants) or RAM (for program parameters and
intermediate values) cells. Finally, if there are any, the values
of the procedure’s internal state variables are read from ap-
propriate RAM locations. There is a set of correspondingly
labeled (e.g., RAM-loc-B2-isvi) locations for each instance of
a function block with internal states. When the slave proces-
sor has received all these data, it executes the procedure and
returns, if there are any, values of output parameters and/or
internal state variables, which are then stored into correspond-
ing RAM locations. A connection between an output of one
function block and an input of another one is implemented
by two MOVE instructions: the former storing the output val-
ue in a RAM location for a temporary value (e.g., TMP-X),
and the latter loading it from there. In other words, each con-
nection in a function block diagram gives rise to exactly one
transfer from the slave’s output FIFO to a RAM cell, and to
one or more transfers from there to the slave’s input FIFO.
The implementation details of the various procedures are part
of the architecture’s firmware and, thus, remain invisible.

According to the above-described structure of the masters’
object programs, the process of back translation – disassem-
ble and decompile object code – turns out to be very easy.
To perform back translation, first the STEP instructions are

searched, which clearly separate the different steps – in the
sense of the language Sequential Function Chart – contained
in a program from each other. The code between two STEP
instructions corresponds to one function block diagram. Then,
the first ← instruction is interpreted. It identifies a function
block instance to be drawn into the function block diagram
to be set up. By comparing the subsequent MOVE instruc-
tions with the function block’s description contained in the
library used, correct parameter passing can be verified easily.
Moreover, for each such MOVE which corresponds to a prop-
er parameter (and not to an internal state variable) a link is
drawn into the diagram. There are two kinds of links. The
first one are connections from program inputs or constants
to inputs of function blocks, or from function block outputs
to program outputs. The second kind are, so to speak, half
connections, namely, from function block outputs to named
connection points in the diagram, or from such points to func-
tion block inputs. When the diagram is completely drawn,
the names of these points can be removed. With respect to
the internal state variables, it needs to be verified that the
corresponding locations in the master processors’ RAM are
correctly initialised, and that the new values resulting from
a function block execution are written to exactly the same lo-
cations from where the internal states were read in the course
of the block’s invocation. The process of function block iden-
tification, parameter passing verification, as well as drawing
of the block’s symbol and of the corresponding connections
is repeated until a STEP instruction is reached, which ter-
minates the step and, thus, the corresponding function block
diagram.
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← ROM-loc-ID-IN A ← RAM-loc-HS
← RAM-loc-XMIN ← RAM-loc-B4-isv
← RAM-loc-XMAX → RAM-loc-TMP-H
← ROM-loc-BAR → RAM-loc-B4-isv
← RAM-loc-INADR ← ROM-loc-ID-SAM
→ RAM-loc-TMP-X ← RAM-loc-TMP-X
← ROM-loc-ID-C ← ROM-loc-1
← RAM-loc-TMP-X ← RAM-loc-LS
← RAM-loc-KP ← RAM-loc-B5-isv
← ROM-loc-2.0 → RAM-loc-TMP-L
← ROM-loc-0.0 → RAM-loc-B5-isv
← RAM-loc-B2-isv1 ← ROM-loc-ID-OR
← RAM-loc-B2-isv2 ← RAM-loc-TMP-H
← RAM-loc-B2-isv3 ← RAM-loc-TMP-L
→ RAM-loc-TMP-Y → RAM-loc-TMP-OR
→ RAM-loc-B2-isv1 ← ROM-loc-ID-AM
→ RAM-loc-B2-isv2 ← RAM-loc-TMP-OR
→ RAM-loc-B2-isv3 ← ROM-loc-1
← ROM-loc-ID-OUT A ← ROM-loc-A1
← RAM-loc-TMP-Y ← ROM-loc-14
← RAM-loc-OUTADR ← RAM-loc-B7-isv
← ROM-loc-ID-SAM → RAM-loc-B7-isv
← RAM-loc-TMP-X STEP
← ROM-loc-0

Fig. 10. Function block diagram of a program for pressure regulation and supervision and its master processor’s object code representation
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7. Conclusion

A real and pressing problem was addressed. Not all open
questions in safety-related computing could be solved, but
a beginning was made which is practically feasible and ap-
plicable to a wide class of common control problems. Hence,
it is hoped that the concept presented here leads to the break-
through that, ultimately, discrete or relay logic can be replaced
by programmable electronic systems executing safety-licensed
high-integrity software to take care of safety-critical functions
in industrial processes. Meeting the need of society for more
dependable computing systems under the prevailing econom-
ical restrictions, the concept is expected to give rise to work-
able industrial implementations.

In a constructive way, and using presently available meth-
ods and hardware technology only, for the first time a comput-
er architecture was defined, which enables the safety licensing
of complete programmable electronic systems including their
software. Special emphasis was dedicated to the software side,
since it is felt that software dependability still needs to catch
up with the one already achieved for hardware. The solution
presented deviates from the mainstream approach by using
hardware as much as possible, but not necessarily in the most
(hardware-) cost-effective way, and by enforcing the (re-) use
of pre-engineered off-the-shelf software modules. The former
deviation is in line with the technological development: there
is cheap hardware in abundance and it ought to be used to
achieve the objective of implementing inherently safe sys-
tems. The other deviation represents leaving the tradition of
the von Neumann architecture allowing maximum flexibility
– also to commit errors and to be unsafe.
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[8] Paul Hildebrandt GmbH & Co. KG, “Fail-safe electronic con-
trols – the HIMA planar system”, Brochure TI 92.08. Brühl
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