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Introduction

• A discrete structural optimization (DSO) algorithm

assigning to structural members, sections from a list of 

available cross section areas, is presented.

• It is assumed that combination numbers n arising from 

j0 number of structural members and k0 number of 

catalogue are of the order 1010.

• In such cases the direct enumeration is not applicable.
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In DSO, mostly stochastic methods are applied, 

among them are Genetic Algorithm (GA) and 

Evolutionary Optimization (EO). 

Disadvantages of GA and EO are very large numbers 

of analyses and needed experience in evaluating 

parameters.

Introduction continued



• A structure, of a given lay-out, is composed of a

number of j0 elements j made of linear elastic 

material with j=[1,2,...,j0].

• The minimum of the structure weight V, found in 

Continuous Structural Optimization (CSO) constitutes 

a lower bound of a DSO.

Assumptions of  the method



cross section areas Ak and moments of inertia Ik of

beams with k=[1,2,...,k0]

Among parameters are:

The following notations are assumed:

Aj-CSA of j-th structural member, discrete design variable

Cj-CSA of j-th structural member, continuous value

kj - number of CSA assigned to j-th structural member

- kj-th CSA from list assigned to j-th design variable
jk

jA



Find minimum of the structural weight 
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Equality constraints are:

for statics

q0 the number of static loading conditions, 

for eigenfrequencies

Statement of problem



• The largest and the smallest values of listed parameters

• The maximum stresses and displacements

• The minimum value of the first eigenfrequency

0
j kk

j

1 AAA ≤≤

000cr uuuσσσ ≤≤−≤≤− qq

00 ≥− ωω

Inequality constraints are:



The idea of the algorithm

All combinations of structural weight are presented in the 
form of a graph (0,0)
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• An important graph property

maxi,WV > allows to eliminate very large numbers of 

combination from farther consideration
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Discrete weight close to continuous one
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Hybrid algorithm

STEP 1.1

Find cross section areas Cj of structural members, 

solving continuous minimum weight V problem.

PART 1. FIND VALUES OF DISCRETE WEIGHT FUNCTION



Take, for each j-th structural member, two subsequent 

parameters and , such as:

STEP 1.3

For obtained two parameter catalogue construct two 

branch graph.

STEP 1.2
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This gives a two parameter catalogue for each of j-th 

the structural member.
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The last j0 layer contains n combinations of discrete 

values, of the structural weight, equal to

The following two cases can take place:

In this case solution does not exist.

STEP 1.3 continued
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Then combination with smallest structural weight, 

fulfilling  constraints is the solution.

∑
=

+
=≤

0

j

j

1j

k

jjmaxi, AlWV(ii)
1

ρ

STEP 1.3 continued



STEP 2.1

For the smallest Wi,max from STEP 1.3 find a parameter 

µ(m)= max (ui / u
0; σj / σ

0) m=1

PART 2. VERIFY CONSTRAINTS VIOLATION

STEP 2.2

For µ>1 choose two structural members. In one of 

them, decrease its CSA by assigning to next smaller 

value. In the second chosen member increase CSA to 

next larger value.

Structure is considered 
as of minimum weight

µ≤1

Go to STEP 2.2

No Yes



STEP 2.3

Perform structural analysis for new set of structural 

members and find µ(m+1).

STEP 2.4

Repeat STEPs 2.2 and 2.3 until µ reaches value equal 

or smaller than one.

If such a value is not obtained, go to PART 1 and 

enlarge lists of available CSA to four positions. 

Remove structure and go 
back to previous structure

µ(m+1) > µ(m)

µ(m) := µ(m+1)
Go to STEP 2.2

No Yes



STEP 2.4 continued

Graph constructed by taking two additional parameters  

and .
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Example 1
160 bar space truss

28

2

3

52

1

4

25

37

Constraints imposed on:

-stress  limit

σ0 = 1500 kg/cm2

-and buckling

σcr = 1300-S2/24 kg/cm2, for S<120

σcr = 107/S2 kg/cm2,        otherwise

where S - slenderness

38 linking groups j0=38

42 catalogue parameters k0=42

Number of possible combination

4238=4.82*1061



*Groenwold
solution

**Juang
solution

Present
method

Weight 1359.78 kg 1331.75 kg 1341.4 kg

Number of analyses 16+387 170 8+28

Results – Example 1

2 parameter graph

Solution hasn’t been found.

Subsequent iterations end with µ>1.02

4 parameter graph

Optimal weight W=1341.4 kg

Constraints violation µ=1.019

* Groenwold A.A, Stander N., (1997), Structural Optimization, 14, 71-80

** Juang D.S., Chang W.T., (2006), Struct Multidisc Optim, 31(3), 211-223
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8 linking groups

Case 1

30 catalogue parameters

308 combinations

Case 2 

16 catalogue parameters

168 combinations

Constraints on stresess

–40 ksi ≤ σ ≤ 40 ksi

and displacement

–0.35 in.≤ u ≤ 0.35 in.

14 kips
14 kips

0.5 kips0.5 kips

Example 2
25 bar space truss

K.S.Lee, Z.W.Geem, S.Lee, K.W.Bae, Engineering Optimization, 2005, 
37(7), 663-684.



Design
variables 
Ai (in.

2)

Weight (lb)
µ

Number of 
structural 
analyses

Results –Example 2
(2 parameter graph)

Design
variables 
Ai (in.

2)

Weight (lb)
µ

Number of 
structural 
analyses

(4 parameter graph)

HS algorithm
by Lee et al.
(Case 2)

Present
algorithm

560.59 551.60
(1.001)

27847
44 (cont.)
+31(disc.)

HS algorithm
by Lee et al.
(Case 1)

Present
algorithm

484.85 484.85
(1.000)

14163
16 (cont.)
+5 (disc.)

HS algorithm
by Lee et al.
(Case 2)

Present
algorithm

560.59 564.85
(0.992)

27847
44 (cont.)
+9(disc.)

HS algorithm
by Lee et al.
(Case 1)

Present
algorithm

484.85 485.04
(0.998)

14163
16 (cont.)
+1 (disc.)



� The algorithm is based on two main assumptions:

� The structural weight obtained from continuous 

minimum design constitutes a lower bound for 

discrete minimum weight.

� The graph representation of structural volume allows 

to reject, from considerations, large numbers of 

unfeasible  discrete values.

Conclusions

� A very simple and robust algorithm for designing a

minimum weight of a structure composed of prefabricated 

elements, is presented. The structure can be subjected to 

several static loads and constraints imposed on 

eigenfrequency.



Conclusions continued

� The algorithm is numerically very efficient. It requires 

very small number of equilibrium equation solutions, 

and a number of additions of structural element 

volumes.  

� In the example 2, numbers of equilibrium equations 

solved applying the presented method are: 21 (case 1) 

and 75 (case 2) . 

The same problem, solved by the  harmony search (Lee 

et al.) numbers of equilibrium equations solutions 

required are: 14163 (case 1), and 27847 (case 2).



Conclusions continued

� The algorithm is very friendly for designers. They 

don’t need to know any thing about genes, ants, 

swarms and harmony search. The only knowledge 

required to find a discrete minimum is FEM and 

simple additions.



Thank you for your attention.


