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Quantum resources may provide an advantage over their classical counterparts. Theoretically, in certain tasks,
this advantage can be very high. In this work, we construct such a task based on a game, mediated by the Referee
and played between Alice and Bob. The Referee sends Alice a value of a random variable. At the same time, the
Referee also sends Bob some partial information regarding that value. Here partial information can be defined in
the following way. Bob gets the information of a random set that must contain the value of the variable, which
is sent to Alice by the Referee, along with other value(s). Alice is not allowed to know what information is sent
to Bob by the Referee. Again, Bob does not know which value of the random variable is sent to Alice. Now,
the game can be won if and only if Bob can unambiguously identify the value of the variable that is sent to
Alice, with some nonzero probability, no matter what information Bob receives or which value is sent to Alice.
However, to help Bob, Alice sends some limited amount of information to him, based on any strategy that is fixed
by Alice and Bob before the game begins. We show that if Alice sends a limited amount of classical information,
then the game cannot be won, while the quantum analog of the “limited amount of classical information” is
sufficient for winning the game. Thus, it establishes a quantum advantage. We further analyze several variants of
the game and provide certain bounds on the success probabilities. Moreover, we establish connections between
the trine ensemble, mutually unbiased bases, and the encoding-decoding strategies of those variants. We also
discuss the role of quantum coherence in the present context.
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I. INTRODUCTION

Efficient utilization of nonclassical features of elementary
quantum systems, such as coherent superposition, quantum
entanglement, measurement incompatibility, and indefinite
causal order, leads to advantageous information and com-
munication protocols that otherwise are not possible with
classical resources [1,2]. A few such innovative protocols
are quantum cryptography [3], quantum superdense coding
[4], and quantum teleportation [5], which establish quantum
advantages in a communication scenario by invoking quantum
entanglement between the sender and the receiver. Quan-
tum advantages, however, are hard to find and sometimes
constrained by fundamental no-go theorems. For instance,
Holevo’s no-go theorem [6] limits the capacity of a quantum
channel as that of its classical counterpart when no preshared
entanglement between the sender and the receiver is allowed.
More recently, a stronger version of this no-go theorem was
obtained that establishes that the classical information storage
in an n-level quantum system is not better than the correspond-
ing classical n-state system [7].

In this work, we report a communication advantage of an
elementary quantum system without invoking any preshared
entanglement between the sender (Alice) and the receiver
(Bob). At this point, the task of random access codes (RACs),
which also depicts communication advantages of quantum
systems between an unentangled sender and receiver, is worth

mentioning. In an RAC, a long message is encoded into fewer
bits with the ability to recover (decode) any one of the initial
bits with a high degree of success probability. Historically,
quantum random access codes (QRACs) were first studied
by Wiesner, and they were termed “conjugate coding” [8].
Later QRACs were reanalyzed by Ambainis et al. [9,10],
and subsequently they attracted a huge amount of research
interest [11–21]. The task we consider, however, is different
from the RAC task, and it can best be described in terms of a
game, mediated by the Referee and played between Alice and
Bob. The Referee sends Alice a value of a random variable.
At the same time, the Referee also sends Bob some partial
information regarding that value. Here partial information can
be defined in the following way. Bob gets the information of a
random set that must contain the value of the variable, which
is sent to Alice by the Referee, along with other value(s). Alice
is not allowed to know what information is sent to Bob by
the Referee. Again, Bob does not know which value of the
random variable is sent to Alice. Now, the game can be won if
and only if Bob can unambiguously identify the value of the
variable that is sent to Alice, with some nonzero probability,
no matter what information Bob receives or which value is
sent to Alice. However, to help Bob, Alice sends some limited
information to him. This is based on any strategy that is fixed
by Alice and Bob before the game begins. We mention here
that only deterministic strategies are considered in this work,
i.e., the parties do not use any randomness. For example, when
Alice sends a cbit, she sends either “0” or “1.” On the other
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FIG. 1. There are three spatially separated parties: the Referee,
Alice, and Bob. The Referee sends a value of a random variable
to Alice. At the same time, the Referee sends the information of a
random set to Bob. The set contains the value of the random variable,
sent to Alice, along with some other value(s). Remember that Alice
does not know about the information of the random set that is sent to
Bob, but she knows the size of the set. Similarly, Bob does not know
which value of the random variable is sent to Alice. The task of Bob
is to unambiguously identify the value of the random variable sent
to Alice, with some nonzero probability all the time, i.e., no matter
what information he receives from the Referee or which value of the
random variable is sent to Alice by the Referee. However, Alice is
allowed to send a limited amount of information to Bob based on
any predecided strategy. This is to help Bob in identifying the value
of the variable unambiguously. Note that both Alice and Bob know
about all possible values of the random variable.

hand, when she sends a qubit, she actually sends a pure qubit
state. No additional correlation (local or global) is used by
Alice and Bob. See also Fig. 1 for the description of the
present game.

Note that the game can be won perfectly if there is no
restriction imposed on the available communication from Al-
ice to Bob. Interesting situations arise only when the allowed
communication is limited. In that situation, Bob is not able
to identify the value of the random variable perfectly all the
time. Then, it can be explored how well Bob can identify
the value of the random variable no matter what information
he receives. In particular, this becomes a probabilistic case
that helps us to explore the advantages and limitations of
resources. In this direction (the direction of the probabilistic
study), there are two popular settings that researchers usu-
ally adopt. One is the minimum error strategy: Bob can try
to identify the value of the random variable minimizing the
error. The other is the unambiguous strategy: Bob can try to
identify the value of the random variable without committing
any error, but in this case there will be a nonzero probability
of inconclusive outcome. In other words, the unambiguous
strategy can be explained as either answering the right result
without any error, or answering “inconclusive.” But the former
answer has to occur with nonzero probability. In this work we
consider the second strategy, i.e., the unambiguous strategy,
and we explore corresponding bounds on the success proba-
bilities considering different cases. We also explore the role of
several mathematical concepts in these cases.

We are now ready to define Bob’s task more accurately.
This is done by following the definition of an unambiguously

distinguishable set of quantum states. Suppose a set of quan-
tum states is given and we want to distinguish these states
unambiguously. If a particular state of the given set can be
identified error-free with some nonzero probability, then we
say that the state is unambiguously identifiable. Moreover, if
all the states of a given set are unambiguously identifiable,
then the set is unambiguously distinguishable [22,23] and the
task of the state distinguishability can be accomplished un-
ambiguously with some nonzero probability. Similarly, here
we are interested in those situations in which all values of
a random variable are unambiguously identifiable no matter
what information Bob receives. Such a situation implies that
the task of determining the value of the random variable
unambiguously with some nonzero probability can be accom-
plished. So, we set the condition of winning the game as
follows: the game can be won if and only if Bob is able to
identify the value of the random variable error-free with some
nonzero probability all the time (no matter which value is sent
to Alice by the Referee or what information Bob receives).

Previously, a few communication tasks were designed
in which a huge separation between classical and quantum
resources was reported [24–28]. In our game also, we re-
port a huge advantage of qubit communication over classical
communication, and theoretically this advantage might be
increased up to an arbitrary height if the dimension of the
random variable increases. In Sec. II, we first present an ele-
mentary version of the game. We also present several variants
of this game in that section. We find the connection of trine
ensemble with the encoding-decoding strategy of a variant.
Then, we provide several generalizations of this game for
higher-dimensional random variables. These generalizations
are given in Secs. III and IV. Eventually, we present several
bounds on the success probabilities, and we find a connec-
tion with mutually unbiased bases and the encoding-decoding
strategy of a variant of the game. In a few cases, we derive the
optimal success probabilities and discuss their achievability.
In Sec. V, another generalization is given. We also discuss the
role of coherence in this game. Finally, a conclusion is drawn
in Sec. VI, and we mention some open problems that warrant
further research.

II. AN ELEMENTARY VERSION OF THE GAME

We assume that there are three parties: the Referee, Alice,
and Bob. The Referee sends the value of a three-dimensional
random variable to Alice. We denote the variable by X and its
dimension by d . In this section, we assume d = 3. Here X is
a discrete variable, so one may formulate our communication
task without defining the dimension of X . However, for the
convenience of equations that will appear later in the paper,
we define the dimension of the variable X as the number of
available values. In fact, in some cases this quantity also helps
us to understand the quality or quantity of the communication
required (from Alice to Bob) to accomplish our task.

So, the Referee sends Alice xi (value of X ), while xi be-
longs to the set {x1, x2, x3}. This set is known to both Alice and
Bob. On the other hand, the Referee sends Bob “ j,” where this
“ j” is associated with a random set S j . We denote by n := |S j |
the size of S j . In this section, we consider n = 2. This value is
known to both Alice and Bob. Depending on the values of d
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and n, three random sets can be defined: S1 ≡ {x1, x2}, S2 ≡
{x2, x3}, S3 ≡ {x3, x1}. These definitions are also known to
both Alice and Bob. Note that two things—(i) sending xi to
Alice and (ii) sending “ j” to Bob—are simultaneously done
by the Referee. Again, information on which set is sent to
Bob is not known to Alice, and similarly, Bob does not know
which value of the random variable is sent to Alice. But j
will be chosen (randomly) in such a way that Sj must contain
the particular value of X that is sent to Alice by the Referee,
along with some other value of X . For example, if x1 is sent
to Alice, then either 1 or 3 is sent to Bob. If 1 is sent, then
it means Bob is instructed that the value of the variable that
is sent to Alice belongs to S1. Similarly, if 3 is sent, then it
means Bob is instructed that the value of the variable that is
sent to Alice belongs to S3. Clearly, before Alice receives the
value of the random variable, Alice and Bob know that the in-
formation regarding any set can be sent to Bob, and these sets
are equally probable. When we say that the sets are equally
probable, one may point out that this applies only to the sets
containing the value of X that is sent to Alice by the Referee
because the probability of the other set is null. While this is
correct, in the overall process all sets are equally probable.
Therefore, Alice and Bob have to fix an encoding-decoding
strategy accordingly. To help Bob in identifying the value of
the variable, Alice is allowed to send a classical bit (cbit) or
a quantum bit (qubit). The game can be won if and only if
Bob is able to identify xi unambiguously with some nonzero
probability ∀ j = 1, 2, 3. Remember that Alice does not know
the information on which set is sent to Bob, but she knows
that the set must contain the value of the random variable that
she has received, along with some other value.

In this context, the first thing we want to prove is the
following. If Alice sends only a cbit to Bob, then it is not
always possible for Bob to unambiguously identify the value
of the random variable that Alice receives with some nonzero
probability. This can be illustrated through a simple example.
Suppose Alice tries to fix an encoding strategy, and for this
purpose she thinks about computing a function:

F = 0 if xi = x1, F = 1 if xi �= x1.

This is one of the simplest forms that can be computed by
Alice, and before the game starts, Alice can inform Bob
about computing this function. Similarly, there can be many
other strategies that can be adopted by both Alice and Bob.
However, the key point is that F cannot have more than two
values because Alice is allowed to send a cbit only to Bob.
But through those two values of F it is not possible for Bob
to extract three different values of X , which is necessary for
unambiguous identification. More precisely, in this example,
if x2 or x3 is sent to Alice, then she sends “1” to Bob. In such
a situation, if Bob receives a j = 2 value from the Referee,
he is not be able to identify the value of the random variable
unambiguously with some nonzero probability.

We are now ready to present the above observation in a
proposition form, and we also provide a general proof of the
proposition.

Proposition 1. There exists no strategy through which the
game can be won when Alice is allowed to send only a cbit to
Bob.

Proof. The encoding-decoding strategy should be fixed
before the value of the random variable is sent to Alice.
The values of the variable are equally probable. Thus, the
information on which value set is sent to Bob is also com-
pletely random. Furthermore, this information is not known to
Alice. Thus, “the information regarding the random set” does
not help Alice to fix an encoding strategy. But this information
may help Bob to choose the right decoding strategy.

However, to fix an encoding-decoding strategy through
which the game can be won, Alice has to compute a func-
tion, and before the game starts Alice can inform Bob about
this function. This is like the example given above, but the
function can be any function.

Because the random variable is three-dimensional, the
function must output three different values corresponding to
the values of the random variable. But when Alice is allowed
to send only a cbit, Alice cannot encode three different values
of a function within that cbit.

Next, we assume that the function does not output different
values corresponding to the values of the random variable. In
that case, there must be at least one situation when the value
of the variable cannot be identified unambiguously. More
precisely, this means that there exists at least one value of j
(where j is associated with S j) for which an unambiguous
identification is not possible. These complete the proof. �

Proposition 2. There exists a strategy through which the
game can be won when Alice sends a qubit to Bob, i.e., Bob
is able to identify xi ∀ j unambiguously with some nonzero
probability.

Proof. To prove the above proposition, if an explicit strat-
egy is provided through which the game can be won, then
it is sufficient. For example, Alice can avail herself of the
following encoding strategy:

x1 → |0〉 , x2 → |1〉 , x3 → 1√
2

|0〉 + 1√
2

|1〉 ,

where the states |0〉 and |1〉 are orthogonal to each other.
Now, if any two values of X are chosen, then the corre-

sponding states are linearly independent states that can be
unambiguously distinguished with some nonzero probability
[29]. In this way, for any value of j (where j is associated
with S j), Bob is able to identify the value of the variable
unambiguously with at least some nonzero probability, and
thus the game can be won. These complete the proof. �

From Propositions 1 and 2, it is clear that in the context
of the present game, a qubit can provide an advantage over a
cbit. Again, the advantage is coming from superposition. Also
notice that we compare between deterministic strategies only,
since we do not allow the parties to use any type of random-
ness here. More precisely, in our case when Alice sends a cbit,
she sends either “0” or “1,” and when Alice sends a qubit, she
actually sends a pure qubit state. No additional correlation
(local or global) is used by Alice and Bob. However, in the
following, we explore the advantage of qubit communication
in detail.

A. Bounds on the success probabilities

Before we proceed, we mention that we are going to talk
about two types of success probabilities: individual proba-
bility and average probability. But before we provide these
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definitions, it is important to say the following. Here we
consider a random variable that has different values. Now a
value of the variable is sent to Alice, while at the same time
the Referee also sends some partial information regarding that
value to Bob. This partial information is defined by different j
values, where j is associated with S j . Corresponding to each
j value, we define “an event.” Based on these events, we now
provide the definitions of two types of success probabilities.

Definition 1 (Individual probability of success). This is the
probability of successfully identifying the value of the random
variable that is sent to Alice in each event.

According to the winning condition of the game, the indi-
vidual probabilities of success must be nonzero.

Definition 2 (Average probability of success). We first take
the sum of all individual probabilities. Then, we divide that
sum by the total number of events. Thus, we get the average
probability of success.

As mentioned, an event is defined by a “ j” value. If pj

is the probability of success corresponding to a “ j” value,
then p j’s are individual probabilities of success. Furthermore,
the average probability of success P(d )

avg, when dim X = d , is
defined as

P(d )
avg = 1

| j|
∑

j

p j,

where | j| is the total number of events, given by
(d

n

)
.

Proposition 3. The average probability of success can be
maximized by sending only a cbit from Alice to Bob, but in
this scenario the goal of the present game cannot be achieved.

Proof. The values of the random variable are equally prob-
able. Thus, the information regarding any set can be sent to
Bob. These sets are also equally probable. To achieve the
present goal, the values of the random variables of a particular
set must be associated with linearly independent states in
order to ensure unambiguous discrimination [29]. In an unam-
biguous discrimination of two pure states, the probability of
an inconclusive outcome depends on the overlap of the states
[30–32]. So, the average probability of success, denoted by
P(3)

avg, is given as follows:

P(3)
avg = 1 − 1

3 [|〈φ1|φ2〉| + |〈φ2|φ3〉| + |〈φ3|φ1〉|]. (1)

Here, the superscript “(3)” indicates that the dimension of
X is 3. The states |φi〉, ∀i = 1, 2, 3, are the states that are
used for the encoding strategy by Alice. They are defined
as follows: We assume that the values of the random vari-
ables are mapped against these states: x1 → |φ1〉, x2 → |φ2〉,
x3 → |φ3〉, where |φ3〉 = a1 |φ⊥

1 〉 + a2 |φ⊥
2 〉. The states |φ1〉

and |φ2〉 must be linearly independent. The coefficients a1

and a2 are some complex numbers such that |φ3〉 is a valid
quantum state. Again, we take the values of |a1|, |a2| as
nonzero. It is quite clear now that the average probability of
an inconclusive outcome in the present case is dependent on
[|〈φ1|φ2〉| + |〈φ2|φ3〉| + |〈φ3|φ1〉|]. So, to increase P(3)

avg, we
have to decrease the average probability of an inconclusive
outcome. For this purpose, we consider the following:

|φ1〉 = |φ〉 , |φ2〉 = a |φ〉 + b |φ⊥〉 ,

|φ3〉 = a1 |φ⊥〉 + a2(b∗ |φ〉 − a∗ |φ⊥〉). (2)

|φ1〉 and |φ2〉 are linearly independent, 〈φ|φ⊥〉 = 0, and |a|2 +
|b|2 = 1. a∗ and b∗ are complex conjugates of the complex
numbers a and b. We can rewrite |φ3〉 as a2b∗ |φ〉 + (a1 −
a2a∗) |φ⊥〉, where |a2b∗|2 + |(a1 − a2a∗)|2 = 1. We next want
to calculate the lower bound of the quantity, [|〈φ1|φ2〉| +
|〈φ2|φ3〉| + |〈φ3|φ1〉|], which can be rewritten as follows:

|〈φ1|φ2〉| + |〈φ2|φ3〉| + |〈φ3|φ1〉| = |a| + |b|(|a1| + |a2|).
(3)

Since |a1| + |a2| cannot be zero, by setting |b| = 0 we
minimize the quantity |b|(|a1| + |a2|). This implies that
[|〈φ1|φ2〉| + |〈φ2|φ3〉| + |〈φ3|φ1〉|] = 1 and P(3)

avg = 2
3 . In the

following, we prove that this is the maximum value of P(3)
avg.

But if |b| = 0, then |φ1〉 and |φ2〉 become linearly dependent,
and this is not good when one wants to achieve the goal of the
present game. Therefore, when |b| �= 0 we want to determine
how to reduce the value of the quantity of (3), i.e., we want
to check if there is any way of maximizing the quantity of (1)
along with winning the game.

If |b| �= 0, then to reduce the value of the quantity of (3), we
have to reduce the quantity |a1| + |a2|. It is easy to show that
(|a1| + |a2|) � 1. For this purpose, we derive the following:

|a2b∗|2 + |(a1 − a2a∗)|2 = 1

⇒ |a2|2|b|2 + (a∗
1 − a∗

2a)(a1 − a2a∗) = 1

⇒ |a1|2 + |a2|2 − (a∗
1a2a∗ + a1a∗

2a) = 1

⇒ |a1| + |a2| = √
[1 + 2|a1||a2| + (a∗

1a2a∗ + a1a∗
2a)]

=
√

[1 + 2|a1||a2|{1 + |a| cos (θ1 + θ − θ2)}], (4)

where a = |a|eiθ and ai = |ai|eiθi , ∀i = 1, 2, i = √−1. From
the above, it is clear that (|a1| + |a2|) � 1 and (|a1| + |a2|) =
1 if and only if one of the following conditions is satisfied:
|a1| = 0, |a2| = 0, or |a| = 1 along with cos (θ1 + θ − θ2) =
−1. By setting (|a1| + |a2|) � 1, we get the following lower
bound:

[|〈φ1|φ2〉| + |〈φ2|φ3〉| + |〈φ3|φ1〉|] � (|a| + |b|). (5)

We can also think about minimizing the quantity |a| + |b|,
which is 1, if and only if either of the following conditions
is satisfied: |a| = 0 or |b| = 0. Finally, we consider all the
possibilities together for increasing the value of P(3)

avg. But
we see that the maximum value of this quantity is 2

3 . This
is achievable if and only if one of the following conditions is
satisfied:

(i) |a| = 1, |b| = 0, |(a1 − a2a∗)|2 = 1;

(ii) |b| = 1, |a| = 0, |a1| = 1, |a2| = 0;

(iii) |b| = 1, |a| = 0, |a1| = 0, |a2| = 1. (6)

It is easy to check that for each of the above conditions, two
of the states of (2) are going to be the same state, and the
other state is orthogonal to that state. Such an encoding can
be communicated, for sure, from Alice’s side to Bob’s side
by sending a cbit only. The same states can correspond to 0
while the orthogonal state can correspond to 1, or vice versa.
However, for such an encoding, for at least one value of j ( j is
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associated with S j), Bob will not be able to identify the value
of X unambiguously with some nonzero probability. Thus, the
goal of the present game cannot be achieved. These complete
the proof. �

Notice that to win the game, it is quite justifiable to start
with the states of (2) because if we choose any two states
from these three states, then the two states are going to be
linearly independent for sure when we take the coefficients
|a|, |b|, |a1|, |a2| as nonzero. In particular, here we have taken
the states |φ1〉 and |φ2〉 as linearly independent. So, like
{|φ1〉 , |φ2〉}, {|φ⊥

1 〉 , |φ⊥
2 〉} are also linearly independent and

they form a basis for two-dimensional Hilbert space. Thus,
|φ3〉 can be written as a linear combination of |φ⊥

1 〉 and |φ⊥
2 〉.

This is what we have considered. However, we end up with
the fact that if we want to achieve the maximum value of
the average probability of success, then the game cannot be
won. Again, there is no quantum advantage in maximizing
the average probability of success as this maximum value can
be achieved when Alice is sending a classical bit to Bob.
In fact, from the proof of Proposition 3, it is clear that the
maximum value of P(3)

avg cannot be achieved when states of
a quantum encoding strategy are pairwise linearly indepen-
dent. Nevertheless, we are interested in the following: Bob
unambiguously identifies the value of X all the time (for all
“ j” values, where j is associated with S j), i.e., in every event
with some nonzero probability. Furthermore, we search for the
maximum value of P(3)

avg when Alice and Bob win the game.
From the preceding proposition, we can conclude that to win
the game, |b| must be nonzero. In that case, we can start with
the lower bound given in (5). In fact, we argue that this lower
bound is achievable if and only if (|a1| + |a2|) = 1. We now
put this condition in a proposition form.

Proposition 4. The lower bound of (5) is achievable if and
only if |a1| + |a2| = 1, provided |b| �= 0.

Proof. The “if” part is already shown in the proof of the
preceding proposition; in particular, see (3). Thus, for the
“only if” part, we consider the following:

|a| + |b|(|a1| + |a2|) = |a| + |b| ⇒ |b|(|a1| + |a2| − 1) = 0.

(7)

We have already mentioned that |b| �= 0, so the only possibil-
ity is (|a1| + |a2| − 1) = 0, i.e., |a1| + |a2| = 1, to satisfy the
bound. These complete the proof. �

We now want two things together: (a) winning the game
and (b) achieving the lower bound of (5). We set (a) here
because it is the main goal. On the other hand, (b) helps to
reduce the probability of an inconclusive outcome. Together
these can be expressed in the following manner:

We want: ε > 0,

Such that (1 − |〈φi|φi′ 〉|) � ε,

∀i, i′ = 1, 2, 3, i �= i′

and

|〈φ1|φ2〉| + |〈φ2|φ3〉| + |〈φ3|φ1〉| = |a| + |b|. (8)

To solve the above, we can start with |a1| + |a2| = 1,
so that |〈φ1|φ2〉| + |〈φ2|φ3〉| + |〈φ3|φ1〉| = |a| + |b|. Now,
|a1| + |a2| = 1 only when a1 = 0 or a2 = 0 because |a| can-
not be 1; see (4) for details. Either of the conditions a1 = 0

or a2 = 0 provides a similar type of solution, so without loss
of generality we can take a2 = 0. Therefore, the states of (2)
become

|φ1〉 = |φ〉 , |φ2〉 = a |φ〉 + b |φ⊥〉 , |φ3〉 = |φ⊥〉 . (9)

We take |a| � |b|. So, for each value of “ j” ( j is associated
with S j), the individual probabilities of success are 1, 1 − |a|,
and 1 − |b|. Among these three probabilities, the minimum
value is 1 − |a|. Thus, we take 1 − |a| = ε. In this way, we
get a solution of (8) given by

|φ1〉 = |φ〉 , |φ2〉 = (1 − ε) |φ〉 +
√

2ε − ε2 |φ⊥〉 ,

|φ3〉 = |φ⊥〉 .

In this case,

|〈φ1|φ2〉| + |〈φ2|φ3〉| + |〈φ3|φ1〉| = 1 − ε +
√

2ε − ε2

and

P(3)
avg = 1

3 (2 + ε −
√

2ε − ε2).

Let us understand the meaning of this solution with one
example.

Example 1. We assume that ε = 0.1. So, if we con-
sider the encoding through the states |φ1〉 = |φ〉, |φ2〉 =
0.9 |φ〉 + √

0.19 |φ⊥〉, |φ3〉 = |φ⊥〉, then (1 − |〈φi|φi′ 〉|) �
0.1 and P(3)

avg = 0.5547 (approx.). In fact, there is no solu-
tion for which (1 − |〈φi|φi′ 〉|) � 0.1 while at the same time
P(3)

avg > 0.5547.
Example 2. If we think about maximizing ε within the

problem of (8), then the only possibility is that we take
|a| = |b| = 1/

√
2. This is a special case of the problem of (8).

The maximum value of ε is given by 1 − (1/
√

2), achievable
through the states |φ1〉 = |φ〉, |φ2〉 = (|φ〉 + |φ⊥〉)/

√
2,

|φ3〉 = |φ⊥〉, |〈φ1|φ2〉| + |〈φ2|φ3〉| + |〈φ3|φ1〉| = √
2, and

P(3)
avg = 1 − (

√
2/3). Notice that |〈φ1|φ2〉| + |〈φ2|φ3〉| +

|〈φ3|φ1〉| = √
2 is the greatest lower bound, and |φ2〉 is now

a maximally coherent state1 with respect to the {|φ〉 , |φ⊥〉}
basis.

B. Role of the trine ensemble

Having optimized the average probability of success, we
now consider optimizing the individual probabilities of suc-
cess. In the case of the problem of (8), this means that we
drop the constraint |〈φ1|φ2〉| + |〈φ2|φ3〉| + |〈φ3|φ1〉| = |a| +
|b|. Then, some of the individual probabilities of success
might be improved. Alice and Bob can fix the following
encoding process:

x1 → |φ1〉 = |0〉 , x2 → |φ2〉 = 1
2 (|0〉 +

√
3 |1〉),

x3 → |φ3〉 = 1
2 (|0〉 −

√
3 |1〉). (10)

1For details regarding quantum coherence, one can refer to [33] and
references therein. However, all states of the form μ0 |μ′

0〉 + μ1 |μ′
1〉

are coherent states with respect to the basis {|μ′
0〉 , |μ′

1〉}, |μ0|, |μ1| >

0. Now, if this basis is an orthonormal basis and μ0 = μ1 = 1/
√

2,
then the superposed states, just mentioned, are maximally coherent
states with respect to the basis {|μ′

0〉 , |μ′
1〉}.
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Accordingly, the measurement that is performed by Bob to
decode the information is given by the positive operator val-
ued measure (POVM) elements �i = 2

3 |φ̃i〉〈φ̃i|, where |φ̃i〉 is
orthogonal to |φi〉, defined in the above equation ∀i = 1, 2, 3.
In this case, unambiguous discrimination is accomplished by
the elimination of a state. Here the individual probability of
success is 0.5 and the average probability of success is also
0.5. Clearly, in this case some of the individual probabilities
of success are improved, but the average probability of success
is decreased. Then, the question of interest is as follows: What
is the optimal strategy to ensure that the success probability in
any individual case cannot be less than a maximal value?

We want: εmax > 0,

Such that (1 − |〈φi|φi′ 〉|) � εmax,

∀i, i′ = 1, 2, 3, i �= i′,

where εmax is the maximum probability at least achievable in
the individual cases. To figure this out, we consider a specific
encoding xi → |φi〉, i = 1, 2, 3,

|φ1〉 = |0〉 , |φ2〉 = a |0〉 + b |1〉 , |φ3〉 = a |0〉 − b |1〉 ,

where a, b are complex numbers such that |a|2 + |b|2 = 1.
Notice that if we pick any two states from these three states,
then the picked states are linearly independent and thus they
can be distinguished unambiguously. One may wonder why
we consider the same coefficients a, b for both states |φ2〉
and |φ3〉. The reason is as follows. Suppose we take different
coefficients for |φ3〉. It may then be possible to reduce the
overlap between |φ1〉 and |φ3〉 in comparison with the overlap
between |φ1〉 and |φ2〉. But in that case, the overlap between
|φ2〉 and |φ3〉 may increase. On the other hand, if we take the
same coefficients, then keeping the overlaps between the pairs
{|φ1〉 , |φ2〉} and {|φ1〉 , |φ3〉} the same, one can reduce the
overlap between |φ2〉 and |φ3〉. This is extremely important to
solve the above problem (finding the value of εmax). However,
we do not consider |φ2〉 and |φ3〉 orthogonal to each other, as
this case was already discussed (see Example 2 of the previous
subsection). Let us now calculate the probabilities of success
for each pair of states,

j = 1 ⇒ p{|φ1〉,|φ2〉} ⇒ 1 − |〈φ1|φ2〉| = 1 − |a|,
j = 2 ⇒ p{|φ2〉,|φ3〉} ⇒ 1 − |〈φ2|φ3〉| = 1 − |(|a|2 − |b|2)|,
j = 3 ⇒ p{|φ3〉,|φ1〉} ⇒ 1 − |〈φ3|φ1〉| = 1 − |a|.

In this case, we assume |a| < |b|. So, 0 < |a|2 < 1/2 and
1/2 < |b|2 < 1. If |a|2 = |b|2 = 1/2, then it is similar to Ex-
ample 2. We now consider a small positive number 0 < δ <

1/2, such that |a|2 = 1/2 − δ and |b|2 = 1/2 + δ. So, the
success probabilities, corresponding to j = 1, 2, 3, become
1 − √

1/2 − δ, 1 − 2δ, and 1 − √
1/2 − δ. We then assume

2δ � √
1/2 − δ ⇒ δ � 1/4. Clearly, εmax = 0.5 when δ =

1/4. Similarly, if we take 2δ � √
1/2 − δ, then we get δ �

1/4. In this case, also εmax = 0.5 when δ = 1/4. These sug-
gest that the maximum achievable value of ε, i.e., εmax, is 0.5
and this is happening when δ = 1/4, thereby the values of |a|2
and |b|2 are 1/4 and 3/4. Thus, we get the trine ensemble as
the optimal solution when we only focus on improving the in-
dividual probabilities. One can also check this by considering

|a| > |b|, but no better value of ε can be obtained with this
consideration.

From the above discussion, it is clear that finding the value
of εmax is connected with finding the point where all of the
individual probabilities are equal. In other words, if we set the
overlap of |φ1〉 and |φ2〉 as |a|, then clearly the overlap of |φ1〉
and |φ3〉 also needs to be |a|. This gives the construction of
the encoding presented here, and all that is left is to find the
point where 1 − |a| = 1 − |(|a|2 − |b|2)|, which occurs when
|a| = 1/2 and |b| = √

3/2. This solution gives the states of
the trine ensemble (for details regarding the trine ensemble,
see Ref. [34] and the references therein).

Furthermore, notice that in the case of a quantum strategy
like Proposition 2, for which the game can be won, Bob can
change his measurement according to the information of the
set that he receives from Referee. For example, if Bob receives
“1,” then Bob distinguishes between |φ1〉 and |φ2〉. Again, if
Bob is given “2,” then Bob distinguishes between |φ2〉 and
|φ3〉. In each case, Bob can choose a measurement defined
by suitable POVM elements to achieve the optimal probabil-
ity. Clearly, if the constraint is put on Bob that “he cannot
change his measurement,” i.e., if he is allowed to perform
only one measurement, then the situation is more complex.
Here the motivation of fixing this constraint can be described
as follows. Actually, in our case a measurement corresponds
to a specific setup. So, with increasing the number of required
measurements, the number of required setups also increases.
This is certainly a costly affair. Therefore, it is reasonable to
consider the constraint that “Bob is not able to change his
measurement.” In fact, it demonstrates less resource require-
ment in a practical situation as Bob is allowed to use only
one measurement setup. However, for the simplest case (i.e.,
d = 3) described above, we can have a solution through the
so-called “trine” ensemble.

III. FOUR-DIMENSIONAL RANDOM VARIABLE

In this section, we consider that the dimension of the ran-
dom variable is four, i.e., d = 4, but still we consider that
n = 2. So, in this case there could be six random sets, given
by S1 = {x1, x2}, S2 = {x1, x3}, S3 = {x1, x4}, S4 = {x2, x3},
S5 = {x2, x4}, S6 = {x3, x4}. Ultimately, Bob receives a “ j”
value (“ j” can be 1, 2, . . . , 6) from the Referee and tries to
distinguish between two states, where the encoding of the
quantum scenario is like xi → |φi〉 , ∀i = 1, 2, 3, 4. Overall,
here our communication task proceeds in the same way as
described in the previous section.

In this case also if Alice sends only a cbit, then the game
cannot be won. This is obvious because when d = 3 by send-
ing a cbit, the game cannot be won, and when d is increased
but n is the same, the complexity of the game is also increased.
Therefore, it is obvious that the game cannot be won. How-
ever, we will show that by sending a qubit, the game can be
won. We define P(4)

avg as the average probability of success
when d = 4. P(4)

avg is given by

P(4)
avg = 1 − 1

6 [|〈φ1|φ2〉| + |〈φ1|φ3〉| + |〈φ1|φ4〉|
+ |〈φ2|φ3〉| + |〈φ2|φ4〉| + |〈φ3|φ4〉|]. (11)
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We rewrite this equation as follows:

P(4)
avg = 1 − 1

12 [(|〈φ1|φ2〉| + |〈φ2|φ3〉| + |〈φ1|φ3〉|)
+ (|〈φ2|φ3〉| + |〈φ2|φ4〉| + |〈φ3|φ4〉|)
+ (|〈φ1|φ2〉| + |〈φ1|φ4〉| + |〈φ2|φ4〉|)
+ (|〈φ1|φ3〉| + |〈φ1|φ4〉| + |〈φ3|φ4〉|)]

⇒P(4)
avg = 1

4

[(
P(3)

avg

)
123 + (

P(3)
avg

)
234 + (

P(3)
avg

)
124

+ (
P(3)

avg

)
134

]
, (12)

where (P(3)
avg)klm stands for the average probability of success,

provided there are three values of the random variable avail-
able: xk , xl , and xm, k �= l �= m. Clearly, P(4)

avg is maximum
when individual (P(3)

avg)klm are maximum. From the previ-
ous section, it is known that (P(3)

avg)klm � 2
3 , and the equality

holds when we apply an encoding like xk → 0, xl → 0, and
xm → 1. Therefore, it must be the case that P(4)

avg � 2
3 , but

the question is if an encoding exists for which P(4)
avg = 2

3 .
Such an encoding is given by x1 → 0, x2 → 0, x3 → 1, and
x4 → 1. Notice that if we choose any three values from {xi|i =
1, 2, 3, 4}, the encoding is always like xk → 0, xl → 0, and
xm → 1, or like xk → 1, xl → 1, and xm → 0, k �= l �= m.

However, for this type of encoding, if Bob receives “1” or
“6,” he fails to identify the value of the random variable unam-
biguously with some nonzero probability. This is not allowed
if Alice and Bob want to win the game. At the same time,
it is also important to maximize P(4)

avg. As we have seen, to
maximize P(4)

avg, we have to maximize the individual quantities
(P(3)

avg)klm. Ultimately, it is required to minimize the quan-
tity |〈φk|φl〉| + |〈φl |φm〉| + |〈φm|φk〉| for k, l, m ∈ {1, 2, 3, 4}
and k �= l �= m, and thus we can think about the lower bound
of (5). We are now ready to present a similar problem to that
given in (8) but for d = 4,

We want: ε > 0, Such that: (1 − |〈φi|φi′ 〉|) � ε,

∀i, i′ = 1, 2, 3, 4, i �= i′ and

|〈φk|φl〉| + |〈φl |φm〉| + |〈φm|φk〉| = |a| + |b|,
∀k, l, m = 1, 2, 3, 4, k �= l �= m. (13)

One may think that for different sets of {k, l, m} there should
be different sets of {a, b}. But that is not the case. In particular,
we will fix ε first and then we will fix the condition following
the previous section, i.e., |〈φk|φl〉| + |〈φl |φm〉| + |〈φm|φk〉| =
1 − ε + √

2ε − ε2. Remember that we want to achieve the
lower bound of (5) as it helps to maximize the individual
(P(3)

avg)klm and thereby P(4)
avg. Now, for achieving the lower

bound of (5), the if and only if condition is |a1| + |a2| = 1.
Ultimately, the solution of the problem (13) turns out to be
the following:

|φ1〉 = |φ〉 , |φ2〉 = (1 − ε) |φ〉 +
√

2ε − ε2 |φ⊥〉 ,

|φ3〉 = |φ⊥〉 , |φ4〉 =
√

2ε − ε2 |φ〉 − (1 − ε) |φ⊥〉 . (14)

Now, if we choose any three states from the above,
then the condition |〈φk|φl〉| + |〈φl |φm〉| + |〈φm|φk〉| = 1 −
ε + √

2ε − ε2 is satisfied. It is also easily verifiable that
(1 − |〈φi|φi′ 〉|) � ε, ∀ i, i′ = 1, 2, 3, 4, i �= i′. In this regard,

note that we have assumed |a| � |b|, so (1 − ε) �
√

2ε − ε2,
resulting in the fact that 1 − |〈φ2|φ3〉| = 1 − |〈φ1|φ4〉| =
1 − √

2ε − ε2 � ε. Notice that ∀i = 1, 2, 3, 4, |φi〉’s of (15)
belong to two-dimensional Hilbert space, and thus by sending
a qubit from Alice’s side to Bob, the problem of (13) can be
solved and thereby the game can be won for d = 4 and n = 2.

A. Role of mutually unbiased bases

Example 3. If we think about maximizing ε within the
problem of (13), then the only possibility is that we take
|a| = |b| = 1/

√
2, i.e., (1 − ε) = √

2ε − ε2 = 1/
√

2. This
is a special case of the problem of (13). The maximum
value of ε is given by 1 − (1/

√
2), achievable through

the encoding xi → |φi〉 , ∀i = 1, 2, 3, 4, where the states
|φ1〉 = |φ〉 , |φ2〉 = (|φ〉 + |φ⊥〉)/

√
2, |φ3〉 = |φ⊥〉, |φ4〉 =

(|φ〉 − |φ⊥〉)/
√

2, |〈φk|φl〉| + |〈φl |φm〉| + |〈φm|φk〉| = √
2,

and P(3)
avg = P(4)

avg = 1 − (
√

2/3). Notice that |φi〉’s are from
mutually unbiased bases of two-dimensional Hilbert space.
We now put this observation in a proposition form.

Proposition 5. To maximize ε in the problem of (13), it is
necessary and also sufficient to encode the values of a four-
dimensional random variable, within the states of mutually
unbiased bases.2

The proof of the above proposition follows from Example
2 and Example 3.

IV. HIGHER-DIMENSIONAL RANDOM VARIABLE

In this section, we consider that the dimension of the
random variable is d � 5. But still we consider that n = 2.
Ultimately, Bob receives a “ j” value from the Referee and
then tries to distinguish between two states, where the en-
coding in the quantum scenario is given by xi → |φi〉 , ∀i ∈
{1, 2, . . . , d}. Following a similar argument to that given in
the previous section, it can be argued that by sending only a
cbit, the game cannot be won when d � 5, too. We can define
P(d )

avg in a similar way as we did forP(4)
avg andP(3)

avg.P(d )
avg is given

by

P(d )
avg = 1 − 2

d (d − 1)

( ∑
i,i′

|〈φi|φi′ 〉|
)

= 6

d (d − 1)(d − 2)

[ ∑
k,l,m

(
P(3)

avg

)
klm

]
, (15)

where i, i′, k, l, m ∈ {1, 2, . . . , d}, i �= i′, and k �= l �= m.
(P(3)

avg)klm are similar quantities as defined in the previous
section. The second line of the above equation tells us that
if the quantities (P(3)

avg)klm are maximized, then the quantity
P(d )

avg will be maximized. We know that (P(3)
avg)klm can be

maximized when we use the following (classical) encoding:
xk → 0, xl → 0, and xm → 1 (or, in other words, any two

2We consider two bases B1 = {|ν1〉, |ν2〉 , . . . , |νD〉} and B2 =
{|ν ′

1〉, |ν ′
2〉 , . . . , |ν ′

D〉} in aD-dimensional Hilbert space. We say that
these bases are mutually unbiased if and only if |〈νi|ν ′

i′ 〉| = 1/
√
D

for every i, i′. For details regarding mutually unbiased bases, one can
refer to [35–37].

052608-7



HALDER, STRELTSOV, AND BANIK PHYSICAL REVIEW A 109, 052608 (2024)

of the three randomly chosen values of a random variable
are encoded against the same bit value, and the third value
of the random variable is encoded against the orthogonal bit
value). It is easy to check that when d � 5, it is not possible
to have an encoding strategy such that among d values of a
random variable if we randomly choose three values xk , xl ,
and xm, then the corresponding quantity (P(3)

avg)klm is maxi-
mum. Nevertheless, what could be a sensible choice here is
that we can fix a number N < d!

3!(d−3)! for d � 5 and we can
maximize this number N . The significance of this number
is that we can get at least N ensembles of randomly chosen
{xk, xl , xm} such that the quantity (P(3)

avg)klm is maximum. So,
the question is as follows: What is the encoding strategy
corresponding to maximum N? We first adopt an encoding
strategy for even d , where half of the values of the random
variable are encoded against 0 and the other half are against 1.
Here, N = d!

3!(d−3)! − 2 × (d/2)!
3!(d/2−3)! . If we encode (d/2 + d ′)

values of the random variable against a particular bit value
and the remaining values of the random variable against the
orthogonal bit value, then the value of N becomes strictly
less than d!

3!(d−3)! − 2 × (d/2)!
3!(d/2−3)! for any nonzero d ′ (d ′ is an

integer). In this way, we argue that the strategy in which half
of the values of the random variable are encoded against a
particular bit value and the other half against the orthogonal
bit value is the best strategy, i.e., P(d )

avg is maximized here
when d is even. In the same way (as argued for even d), it
is possible to show that for odd d one can adopt a strategy
in which (d − 1)/2 + 1 values of the random variable can be
encoded against a particular bit value while (d − 1)/2 values
of the random variable can be encoded against the orthogonal
bit value. In fact, this is the best strategy for odd d in a sense
that for this strategy, N is going to be maximum and thereby
the quantity P(d )

avg will be maximum. However, we have to
remember that these strategies do not help to win the game.

We can also define a similar problem to that given
in (13) for d � 5. But the relation |〈φk|φl〉| + |〈φl |φm〉| +
|〈φm|φk〉| = |a| + |b| cannot be true for all randomly chosen
xk, xl , xm. This can be easily checked. So, again we have to
consider the number N and we have to maximize N , such that
at least we can get N ensembles of randomly chosen xk, xl , xm

for which the relation |〈φk|φl〉| + |〈φl |φm〉| + |〈φm|φk〉| =
|a| + |b| can be true. This modified version of the problem
is particularly important if we try to maximize ε when d = 5
or 6, because in these cases, one can consider encoding the
values x5 and x6 against the eigenvectors of the Pauli matrix
σy to solve the problem. In higher dimensions (d > 6), it
is not known how to solve this problem with maximum ε.
However, if we just think about winning the game dropping
the condition of satisfying the relation |〈φk|φl〉| + |〈φl |φm〉| +
|〈φm|φk〉| = |a| + |b|, then it is possible by sending only a
qubit even if d > 6. The reason is described in the following.

A. Large quantum-classical separation

Suppose, the dimension of the random variable, the value
of which is sent to Alice, is “d > 6.” (Previously, we have
discussed how to maximize P(d )

avg for d � 5. But with that
strategy, the game cannot be won. Here we want to discuss
a strategy for d > 6, with which the game can be won.) But

ultimately, the Referee sends the information of a random
set of cardinality 2 to Bob. Here also, Alice is allowed to
send Bob one (qu)bit of information. In this scenario, we can
establish quite a high advantage of quantum communication
over its classical counterpart. In brief, we term this “large
quantum-classical separation.” However, we mention that this
advantage is demonstrated with respect to a specific goal, i.e.,
with some nonzero probability, Bob has to identify the value
of the random variable sent to Alice by the Referee no matter
which value she receives or what information Bob receives
from the Referee. This “high advantage” is explained in a
later portion. This is based on the fact that two quantum states
|0〉 and |1〉 can be superposed in infinitely many ways. We
suppose that the superposed states are ai |0〉 + bi |1〉, where
|ai|2 + |bi|2 = 1 and |ai|, |bi| are nonzero. It is also possible
to ensure that for any value of d , the encoding process can
be done in such a way that if any two states are chosen, they
must be linearly independent. The linear independence part is
to confirm the unambiguous identification of the value of the
random variable.

Here the parties apply the following encoding process:
xi → ai |0〉 + bi |1〉, ∀i = 1, 2, . . . , d , and both ai, bi are
nonzero. For simplicity, we can take them as positive. Next,
we assume that between two arbitrary states al |0〉 + bl |1〉 and
al ′ |0〉 + bl ′ |1〉, Bob has to distinguish unambiguously with
some nonzero probability. So, we have to find out the condi-
tion for which these two states can be linearly independent.
We take c1(al |0〉 + bl |1〉) + c2(al ′ |0〉 + bl ′ |1〉) ≡ (0, 0) or
(c1al + c2al ′ ) |0〉 + (c1bl + c2bl ′ ) |1〉 ≡ (0, 0). Thus, (c1al +
c2al ′ ) = 0 = (c1bl + c2bl ′ ). Clearly, for different positive val-
ues of al , al ′ , bl , bl ′ , both (c1al + c2al ′ ) and (c1bl + c2bl ′ ) are
zero when c1 = c2 = 0 or al

bl
= al′

bl′
. But the second condition

does not arise if al and al ′ are different since a2
i + b2

i = 1 ∀i =
l, l ′. Therefore, the only option that is left is c1 = c2 = 0.
This implies that the states al |0〉 + bl |1〉 and al ′ |0〉 + bl ′ |1〉
are linearly independent and they can be distinguished unam-
biguously with some nonzero probability. In this way, we can
construct a strategy of sending a qubit, via which it is always
possible to identify the value of the random variable unam-
biguously with some nonzero probability under the present
conditions.

On the other hand, by sending a cbit it is not possible to
identify the value of the random variable unambiguously with
some nonzero probability under the present conditions. The
proof is due to the similar argument to that given in the proof
of Proposition 1. Moreover, recall that “d” can be anything.
Arguably, for a very large “d ,” to accomplish the present task
Alice must send a large number of classical bits. Therefore,
in the present scenario, a qubit is always effective but a large
number of cbits may not be. In this way, one can realize a
large quantum-classical separation. In fact, theoretically this
separation can be arbitrarily large. However, if Alice sends
only a qubit for winning the game, the success probability of
unambiguously identifying the value of the random variable
with increasing d must be decreasing. Clearly, for a large
value of d , it may not be possible to quantify the small value of
the success probability (individual or average) experimentally.
Again, how far these success probabilities can be determined
experimentally is a completely different problem, and we are
leaving it for future studies.
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V. GENERAL DESCRIPTION OF THE GAME

There are three spatially separated parties: the Referee, Al-
ice, and Bob. The Referee sends a value xi ∈ {x1, x2, . . . , xd}
of a random variable X to Alice, where d is the dimension
of X . At the same time, the Referee also sends the infor-
mation j of a random set Sj to Bob such that S j contains
the particular xi that is sent to Alice, along with some other
value(s) xi′ ∈ {x1, x2, . . . , xd}, but i �= i′. Note that Alice does
not know the information j that is sent to Bob by the Referee,
and similarly, Bob does not know the information xi that is
sent to Alice by the Referee. The task of Bob is to identify
the value of the random variable that is sent to Alice by the
Referee. Clearly, the question of interest is if the task can
be accomplished for any value of j. However, to help Bob,
Alice sends n-level information to Bob regarding xi. This
communication is one-way, i.e., there is no communication
from Bob’s side to Alice’s side. But before the game starts,
they (Alice and Bob) can fix an encoding-decoding strategy.
Notice that if n = d , then the scenario is trivial, i.e., Bob is
able to identify the value of the random variable perfectly
(with 100% certainty) for any value of j. When n < d (i.e., n
is limited), Bob is not able to identify the value of the random
variable perfectly for all values of j. Then, it can be explored
how well Bob can identify the value of the random variable
for any value of j.

We mention that for unambiguous identification, we have
to keep the size of the set Sj , i.e., |S j | = n, 2 � n < d , because
if |S j | > n, then unambiguous identification of the value of the
random variable is clearly not possible. Now, when a value of
the random variable is sent to Alice, information on a set is
sent to Bob. This set must contain the value that is sent to Alice
along with other n − 1 values. Here the question is how many
such sets are possible? This is clearly equal to

(d
n

) = d!
n!(d−n)! .

These numbers define different values of j. Remember that
Alice does not know the information on which set is sent
to Bob, but she knows that the set must contain the value
of the random variable, which she has received, along with
some other value(s). We mention that the set of values of the
variable X , i.e., {x1, x2, . . . , xd}, is known to both Alice and
Bob. The value of n is also known to Alice and Bob. Based
on the values of d and n, several random sets can be defined;
these definitions are also known to them.

A. n > 2 case

We next consider that when the dimension of the random
variable is “d ,” the Referee sends a random set of cardinal-
ity “n” to Bob. In this case, if n > 2, then sending a qubit
from Alice’s side to Bob will not help in accomplishing the
task. In particular, it is possible to show that the above is
solvable if Alice is allowed to send a qunit (n-level quantum
system) to Bob. On the other hand, sending a cnit (n-level
classical system) will not help in accomplishing the task of
identifying the value of the random variable unambiguously
with some nonzero probability for all j values. We mention
that in the classical case, an n-level information is defined by
cnit, which can have the values 0, 1, . . . , n − 1. In the quan-
tum case, an n-level information is defined by qunit, which
can have the states |0〉 , |1〉 , . . . , |n − 1〉. The general case is
quite straightforward. Here we only discuss the case when

d = 4 and n = 3, that is, Alice is given xi ∈ {x1, x2, x3, x4}
and Bob is given “ j,” where “ j” is associated with Sj ,
∀ j = 1, 2, 3, 4. Here, S1 = {x1, x2, x3}, S2 = {x1, x3, x4}, S3 =
{x1, x2, x4}, and S4 = {x2, x3, x4}.

We assume that Alice is allowed to send a ctrit (three-level
classical system) to Bob. The values of the random variable
are equally probable, and thus the sets S j are also equally
probable. So, here Alice has to compute a function that must
output different values for different xi, otherwise unambigu-
ous identification of xi is impossible for all values of j. Now,
even if computation of such a function is possible, encoding
the values of the function corresponding to different xi within
a three-level classical system is impossible. Thus, it is not
possible for Alice and Bob to win that game when Alice is
allowed to send only a ctrit to Bob.

However, it is possible to construct a quantum strategy
through which Bob can identify the value of the random
variable unambiguously with some nonzero probability for all
values of j when Alice is sending only a qutrit to Bob. The en-
coding strategy is given as follows: xi → |φi〉, ∀i = 1, 2, 3, 4.
We can take |φi〉 as linearly independent states ∀i = 1, 2, 3,
and we can take |φ4〉 as a1 |φ1〉 + a2 |φ2〉 + a3 |φ3〉, where |ai|
are nonzero. ai are chosen in such a way that |φ4〉 must be
a valid state. For simplicity, one can simply take |φi〉 as |i〉,
i = 1, 2, 3. Here, {|i〉} forms a basis for a qutrit system. Now,
notice that for any value of “ j,” Bob is left with three linearly
independent vectors that can be distinguished unambiguously
with some nonzero probability. Therefore, the value of the
random variable can be identified unambiguously with some
nonzero probability for all values of j. We mention that if
{|φ1〉 , |φ2〉 , |φ3〉} is a basis, then we say that the state of
the form μ1 |φ1〉 + μ2 |φ2〉 + μ3 |φ3〉 is a coherent state of
coherence rank 3 with respect to the considered basis; here,
|μi| > 0 ∀i. We now provide the following proposition:

Proposition 6. For winning the game, it is necessary and
also sufficient for the state |φ4〉 to have coherence rank 3 with
respect to the basis {|φ1〉 , |φ2〉 , |φ3〉}.

Proof. The states |φ1〉, |φ2〉, and |φ3〉 are linearly indepen-
dent. So, they form a basis for a qutrit (three-level quantum)
system. The sufficient condition follows from the fact that
there exists a strategy that is given above. The necessary con-
dition follows from a couple of arguments. If the coherence
rank is less than 3, then there is at least one value of “ j” for
which three states (to be distinguished by Bob) are not lin-
early independent, and thus the unambiguous discrimination
of such states is not possible. Furthermore, the coherence rank
cannot be greater than 3 when Alice is sending a qutrit to Bob.
These complete the proof. �

From the above example, it is quite realizable that by using
the same model, it is possible to show that a qunit is a more
powerful resource than a cnit in the context of the present task.
Again, if the dimension of the random variable “d” is very
large, then it is also possible to show that a qunit can provide
an advantage over a large number of cnits in the context of
achieving a specific goal in our game.

VI. CONCLUSION

To develop quantum technologies, it is necessary to explore
what advantages one can achieve using quantum resources
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over their classical counterparts. Furthermore, it is also im-
portant to identify the scenarios in which it is not possible to
achieve such advantages.

In this work, we have designed a task that can be described
in terms of a game, mediated by a Referee and played between
Alice and Bob. The Referee sends Alice a value of a random
variable. At the same time, the Referee also sends Bob some
partial information regarding that value. Here partial infor-
mation can be defined in the following way. Bob gets the
information of a random set that must contain the value of the
variable that is sent to Alice by the Referee, along with other
value(s). Alice is not allowed to know what information is
sent to Bob by the Referee. Again, Bob does not know which
value of the random variable is sent to Alice. Now, the game
can be won if and only if Bob can unambiguously identify the
value of the variable with some nonzero probability, no matter
what information Bob receives or which value is sent to Alice.
However, to help Bob, Alice sends some limited information
to him based on any predecided strategy.

For this game, we have shown an advantage of sending a
qubit over cbit(s). However, whether there is any quantum
advantage at all depends on the goal we set. In particular,
we have proved that in some scenarios, it is never possi-
ble to achieve any quantum advantage. We also mention
that to establish a quantum advantage, it is not necessary to
share entanglement among the spatially separated parties in
the present game. Actually, here quantum coherence plays
the key role. We have also analyzed several variants of the
game and provided certain bounds on the success probabili-
ties. Moreover, we have established connections between the
trine ensemble, mutually unbiased bases, and the encoding-
decoding strategies of the variants. In fact, our games should
be treated as applications of the trine ensemble, mutually
unbiased bases, and quantum coherence.

To understand the application of the present game, it is
required to explain its similarity with the quantum dense cod-
ing protocol [4]. Consider the simplest case of our game, i.e.,
the d = 3 case. In this case, Alice is given a random two-bit
string that belongs to the set {00, 01, 10}. One can think that
these are basically values of the random variable. There is a
limited communication from Alice’s side to Bob, which is
one qubit or one cbit. Bob’s task is to identify the bit string
error-free. The only difference between the dense coding and
our game is that in the former protocol there is entanglement
present between Alice and Bob, while in our case there is
no entanglement present between Alice and Bob. Instead,

Bob is receiving additional information (which is from the
Referee) in our case. Here, as with dense coding, when Alice
communicates a qubit more information can be extracted by
Bob regarding the bit string of Alice. The setting of dense
coding is well established at present in quantum information
theory. Therefore, exploiting its connection with our game,
one can think about various applications in information pro-
cessing protocols. However, further analysis is required to
exhibit such applications explicitly.

Finally, we want to talk about the experimental realization
of the game. As explained above, our game has a similar-
ity with the setting of the dense coding protocol. In fact,
the dense coding protocol was experimentally demonstrated
several years back [38]. So, we believe that there is a pos-
sibility to demonstrate our game experimentally. However,
we mention that here we have considered a probabilistic set-
ting. In this regard, we mention Ref. [39], where the optimal
unambiguous state elimination problem was demonstrated ex-
perimentally. In our case, when n = 2, state elimination and
state discrimination are equivalent. So, there is a possibility
of demonstrating some versions of our game experimentally.
Nevertheless, with increasing dimension of the random vari-
able, the situation will become more complex.

For further research, we present the following open ques-
tion. What will happen in our communication tasks when
extra resources, such as randomness, entanglement, etc., are
provided between Alice and Bob?
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