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In the classical regime, thermodynamic state transformations are governed by the free energy. This is
also called as the second law of thermodynamics. Previous works showed that, access to a catalytic system
allows us to restore the second law in the quantum regime when we ignore coherence. However, in the
quantum regime, coherence and free energy are two independent resources. Therefore, coherence places
additional nontrivial restrictions on the state transformations that remain elusive. In order to close this gap,
we isolate and study the nature of coherence, i.e., we assume access to a source of free energy. We show that
allowing catalysis along with a source of free energy allows us to amplify any quantum coherence present
in the quantum state arbitrarily. Additionally, any correlations between the system and the catalyst can be
suppressed arbitrarily. Therefore, our results provide a key step in formulating a fully general law of
quantum thermodynamics.
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Thermodynamics was motivated by the need to under-
stand what are the allowed state transformations of a
system. The restrictions are codified into the laws of
thermodynamics, which take on a central importance in
the way we understand how nature works. One of the
highlights is the concept of free energy, that is, the
maximum available work that can be reversibly extracted
in a cycle from a system. Because of the time of its
conception, this was done in a classical setting, with a large
ensemble that is in equilibrium, and thermodynamic
quantities understood as averages.
Recently, there has been an effort to understand how

thermodynamics translates to quantum systems [1,2]. Some
of the most significant advances on this front work within
the so-called resource theory approach, with the Gibbs state
as the free state and the set of thermal operations as the free
operations [2–5]. Notably, it was shown that transforma-
tions between classical (diagonal) states are actually
governed by a “family” of free energies that reduces to
the standard Gibbs free energy in the macroscopic limit [6].
On a technical level, they proved that these free energies
characterize the allowed exact catalytic transformations,
with the environment fulfilling the catalytic conditions [7].
This makes sense since the state of the environment should
be unchanged in a cyclic process.
However, requiring exact catalysis might often be too

strict. An analogous result showed that if we allow for a
small system-catalyst correlation (approximate catalysis),
state transformations between classical states are completely
characterized by the standard Gibbs free energy [8]. For
transformations between general states, thermal operations
additionally exhibit coherent restrictions. Even when we

augment thermal operations with an unbounded source of
free energy, these restrictions due to coherence still persist,
forbidding transformations that create coherence [9]. In
fact, this setting gives rise to the so-called resource theory
of asymmetry [9]. Therefore, studying the resource theory
of asymmetry allows us to understand the restrictions
on coherence manipulation imposed by the allowed thermo-
dynamic transformations. While there are some recent
results on characterizing catalytic transformations in this
setting [10–13], a general characterization is still missing.
In this Letter, we argue that the restrictions that arise

solely from coherence can be expressed as a set-inclusion
relation. This is because any nonzero coherence in the
initial state can be amplified by an arbitrary amount. Our
result answers a conjecture posed in Ref. [11] in the
positive. Moreover, it suggests that the laws of thermody-
namics take on a simple form determined by free energy
and set inclusion of the coherences.
Preliminaries.—Resource theories provide us with a

mathematical framework to study various quantum resour-
ces [3]. A (quantum) resource theory is defined by a set of
free statesF s that do not contain any resources, and a set of
free operations F o that are easily implementable. We
require that the set of free states be preserved by the free
operations, i.e., for every free state ρ and every free
operation Λ, we have ΛðρÞ∈F s.
This captures the intuition that resources cannot be

created for free. Depending on the structure of the theory,
having access to a (resource) state σ ∉ F s might allow us to
access some other resource states as well as implement
operations that are not free using free operations. This
resource theoretic approach has be successfully applied to
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study various quantum resources such as entanglement [14],
coherence [15], purity [16–18], imaginarity [19–22], and
magic [23,24].
The resource theory of thermodynamics was defined to

model the thermodynamics of quantum systems [4]. To
every system (S), we associate a Hamiltonian HS and the
Gibbs state γS, where γS ¼ ðe−βHS=Tre−βHSÞ. Here, β ¼
ð1=kBTÞ is the inverse temperature. The set of free states is
defined to contain only the Gibbs state, motivated by the
classic result that it is the only state from which we
cannot extract any work, even from multiple copies [25].
When we have a joint system, we assume that the joint
Hamiltonian is simply a sum of the local Hamiltonians, i.e.,
HSS0 ¼ HS ⊗ IS0 þ IS ⊗ HS0 . The set of free operations are
defined to be thermal operations [4]. These are the
operations that can be built up from the following steps:
(1) bringing the system in contact with another system
in a Gibbs or thermal state, ρS ↦ ρS ⊗ γS0 ; (2) applying
an energy-preserving unitary, ρS ⊗ γS0 ↦ UρS ⊗ γS0U†,
with ½U;HSS0 � ¼ 0; and (3) tracing out subsystems,
ρSS0 ↦ TrS0ρSS0 .
There are two properties that together feature in thermal

operations [9]: (1) time-translation invariance,

∀ ρ; t;e−iHS0 tΛS→S0 ðρÞeiHS0 t¼ΛS→S0
�
e−iHStρeiHSt

�
; ð1Þ

and (2) Gibbs state preservation,

ΛS→S0 ðγSÞ ¼ γS0 : ð2Þ

The first condition alone gives us covariant operations,
while keeping only the second gives us Gibbs-preserving
operations. Note that when we augment thermal operations
with an infinite store of incoherent work, we obtain exactly
the set of covariant operations. Formally, adding ρS ↦
ρS ⊗ ωS0 to the set of thermal operations allow us to
implement any covariant operations. Here, we require that
ωS0 is incoherent, i.e., ½ωS0 ; HS0 � ¼ 0. Recall that covariant
operations are exactly the set of maps that are invariant
under time translation, and thus we obtain the resource
theory of asymmetry [26]. In contrast, a similar prescription
to obtain Gibbs-preserving maps is an open problem [27].
There is another crucial ingredient in thermodynamical

processes: the environment. In a cyclic process, we expect
to be able to “borrow” a system, as long as we return it in
the same state in the end. This is exactly the notion of
catalysis in state transformations, first introduced in the
theory of entanglement [28] and extended to other resource
theories more recently [7,29]. In the context of thermody-
namics, Ref. [6] showed that exact catalytic transformations
between diagonal states are governed by a family of free
energies, i.e., for any incoherent states ρ, σ, the free
energies SαðρkγÞ ¼ ½sgnα=ðα − 1Þ� log Trραγ1−α are non-
decreasing SαðρkγÞ ≥ SαðσkγÞ for all α∈ ð−∞;∞Þ if and
only if there exists a catalyst τC and a thermal operation
ΛSC such that ΛSCðρS ⊗ τCÞ ¼ σS ⊗ τC. This is also

known as an exact catalytic transformation. However,
requiring the final state to be in exact tensor product might
be too strict, as requiring the marginal state of the catalyst
to be preserved and the system-catalyst correlations to be
small is often a good enough approximation. Therefore, we
will say ρ can be transformed into σ with approximate
catalysis if for every ε > 0 there is a catalyst τC and a
thermal operation ΛSC such that

μSC¼ΛSCðρS⊗ τCÞ; kμSC−σS⊗ τCk1< ε and μC¼ τC:

ð3Þ

Here, kMk1 ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffi
M†M

p
is the trace norm. Note that one

can also define so-called correlated catalytic transforma-
tions by replacing kμSC−σS⊗ τCk1< ε by kμS − σSk1 < ε
in Eq. (3). Since kμSC−σS ⊗ τCk1< ε implies kμS −
σSk1 < ε, a transformation is achievable by approximate
catalysis, then it is also achievable by correlated catalysis.
Reference [8] showed that when ρ and σ are incoherent,
then ρ can be transformed into σ via thermal operations and
approximate catalysis if and only if SðρkγSÞ ≥ SðσkγSÞ.
Here, SðρkγÞ ¼ Trρðlog ρ − log γÞ is the quantum relative
entropy (or the quantum Kullback-Leibler divergence).
This statement has been extended to general quantum
states but by replacing thermal operations with Gibbs-
preserving operations [30]. However as mentioned before,
Gibbs-preserving operations are in general more powerful
than thermal operations for transformation of general
quantum states due to the effects of coherence [31].
In this Letter, we will focus on studying the effects of

coherence, which complements the existing results that
ignore coherence [2,8,30]. To do so, we analyze catalytic
transformations in the resource theory of asymmetry using
recently developed tools of marginal reducibility [32–34].
Catalytic transformations in resource theory of

asymmetry.—In the resource theory of asymmetry, we
associate a Hamiltonian H to every system as in the
resource theory of thermodynamics. The free states are
given by states that are invariant under time translation, i.e.,
states that commute with the Hamiltonian H, while the free
operations are the covariant operations [26]. As discussed
earlier, we can think of restrictions arising in this theory
as general limitations of coherence processing through
thermal operations, since covariant operations can be
implemented by thermal operations when one has access
to a source of free energy.
It is known that covariant operations and approximate

catalysis cannot create coherence if the initial state is
incoherent, which puts an important restriction on the power
of approximate catalysis (no-broadcasting theorem) [12,13].
However, this does not cover the case when the initial state
ρS has nonzero coherence on some level pairs. We inves-
tigate exactly this setting, giving a sufficient condition for
the existence of a catalytic transformations.

PHYSICAL REVIEW LETTERS 132, 200201 (2024)

200201-2



Following the formalism of Ref. [11], we call IðρÞ ¼
fΔij ¼ Ei − Ejjhijρjji ≠ 0g the available coherences of ρ,
i.e., all the energy differences for which ρ has nonzero
coherence. We then construct the reachable coherences
J ðρÞ¼ fΔEjΔE¼P

Δij∈IðρÞmijΔij;mij∈Zg, which are
the energy differences that can be written as integer
multiples of those in IðρÞ. Intuitively, these are the
coherences that are available in multiple copies of ρ [35].
Indeed, an explicit calculation shows that if ρS contains
nonzero coherence at energy difference ΔES and σS0
contains nonzero coherence at energy difference ΔES0 ,
then ρS ⊗ σS0 contains nonzero coherence at energy differ-
ence ΔES þ ΔES0 . Let us now consider a qubit state
jþiji ¼ ð1= ffiffiffi

2
p Þðjii þ jjiÞ, where jii and jji are the energy

eigenstates with eigenvalues given by Ei and Ej respec-
tively, such thatΔij ¼ Ei − Ej ∈ IðρÞ. From [11], we know
that having enough number of such qubit states allows us to
create ρ via covariant operations. We formalize this as a
fact below.
Fact 1 ([ [11], proof of Theorem 2, step 3]).—Given

enough copies of fjþijijEi − Ej ∈ IðρÞg, we can create the
state ρ via covariant transformations.
Reference [11] also shows that there exists a sequence of

correlated catalytic transformation that transforms ρ into
any number jþiji whenever Ei − Ej ∈J ðρÞ. The fact
below formalizes this.
Fact 2 ([ [11], supplementary material, Proposi-

tion 10]).—There exists a sequence of correlated catalytic
transformations (also called a quasicorrelated catalytic
transformation in Ref. [11]) that create arbitrarily many
copies of jþiji, if Δij ∈J ðρÞ.
Combined, these two results shows that if IðσÞ ⊆ J ðρÞ,

then there is a sequence of correlated catalytic trans-
formations that transform ρ into σ. However, it is not
known whether this sequence of correlated catalytic trans-
formations can be combined into a single correlated
catalytic transformation. In other words, we do not know
whether correlated catalytic transformations form a tran-
sitive relation. Indeed, Ref. [11] conjectured that if
IðσÞ ⊆ J ðρÞ, then there is a correlated catalytic trans-
formation that transforms ρ into σ. Since IðσÞ ⊆ J ðρÞ is
equivalent to J ðσÞ ⊆ J ðρÞ, we can alternatively state the
conjecture as J governs correlated catalytic transforma-
tions, ordered by set inclusion.
In this Letter, we show that this sequence of catalytic

transformations can in fact be combined. We do this by
relating the catalytic transformations to the notion of
marginal reducibility.
Catalytic transformations and marginal reducibility.—

Reference [32] introduced the notion of marginal reduc-
ibility and showed its connection to catalytic transforma-
tions. (Refs. [33,34] introduced the same notion in a
different context.) A quantum state ρ is marginally reduc-
ible into σ if for any ε, δ > 0 there exists a free operation Λ

and two natural numbers m ≤ n such that the following
conditions hold for all i ≤ m:

Λðρ⊗nÞ¼ μm; k½μm�i−σk1< ε and
m
n
≥ 1−δ: ð4Þ

Here, μm is a quantum state of m subsystems and the
reduced state of μm on ith subsystem is given by ½μm�i.
Compare this to correlated catalysis: we say that ρ can
be converted into σ via correlated catalysis if for every
ε > 0 there is a catalyst τC and a covariant operation ΛSC
such that

μSC¼ΛSCðρS⊗ τCÞ; kμS−σSk1< ε; and μC¼ τC: ð5Þ

Note that the notion of marginal reducibility involves many
copies of initial and final states. On the other hand the
definition of correlated catalysis only involves single copy
of the initial (and final) state. Even though these concepts
look different, it was shown in Ref. [32] that these two
concepts are deeply related. Let us first note that the works
of [32,36], show us that if ρ is marginally reducible into σ,
then ρ can be transformed into σ via correlated catalysis.
Fact 3 ([ [32], Proposition 3]).—Marginal reducibility

implies correlated catalysis.
In fact the converse also holds [32], assuming that the

initial state is distillable, i.e., if ρ can be transformed into σ
via correlated catalysis and ρ is distillable, then ρ is
marginally reducible into σ.
Fact 4 ([ [32], Proposition 4]).—If the initial state is

distillable, then correlated catalysis implies marginal
reducibility.
While these results are derived in the context of entan-

glement theory, they generalize to other resource theories
with the appropriate modifications. Let us now focus on
what we mean by distillable. A close reading of [32] shows
that the distillability condition can be relaxed to the
following: let ρ be transformable into σ via correlated
catalysis, we then say that ρ is distillable if many copies
of ρ can be used to create the catalyst with arbitrary accuracy.
Formally speaking, if ρ can be transformed into σ via
correlated catalysis, then for every ε > 0, there exists a τ
and a covariant operation ΛSC, satisfying Eq. (5). We
then say ρ is distillable if for every ϵ > 0 and ϵ0 > 0 there
is a number k and a covariant operation Λ0 such
that kΛ0ðρ⊗kÞ − τk1 ≤ ϵ0.
We first prove that marginal reducibility is a transitive

relation.
Lemma 1.—If ρ is marginally reducible to μ and μ is

marginally reducible to σ, then ρ is marginally reducible
to σ.
The argument relies on first principles analysis of

marginal reducibility, and the detailed proof can be found
in the Supplemental Material [37]. Along with the equiv-
alence (between marginal reducibility and correlated
catalysis), this lemma implies that correlated catalysis is

PHYSICAL REVIEW LETTERS 132, 200201 (2024)

200201-3



transitive. As a side remark, Lemma 1 along with results in
Ref. [32] show that correlated catalytic transformations
induce a transitive relation between distillable states in
bipartite entanglement theory, which might be of indepen-
dent interest. This is due to the equivalence between
marginal reducibility and correlated catalytic transforma-
tions for distillable states [ [32], Theorem 1].
Main result.—Let usmove to themain result of this Letter,

namely the set inclusion of reachable coherences implies
that a catalytic covariant transformation is possible. This
suggests that thermodynamic restrictions that arise solely
from coherence can be expressed simply as set inclusion.
Theorem 1.—If J ðσÞ ⊆ J ðρÞ, then ρ can be transformed

into σ via approximate catalysis.
Proof.—Note that for any three states ρ1, ρ2, and ρ3,

if ρ1 can be transformed into ρ2 via approximate catalysis
and ρ2 can be transformed into ρ3 via covariant operation,
then ρ1 can be transformed into ρ3 via approximate
catalysis. Therefore, because of Fact 1, it is enough to
show that there exists an approximately catalytic operation
transforming ρ into arbitrarily many copies of jþiji ¼
ð1= ffiffiffi

2
p Þðjii þ jjiÞ for all Δij ∈J ðρÞ. Since by assumption

J ðσÞ ⊆ J ðρÞ, this means we can obtain the state σ.
Recall that there exists a sequence of correlated catalytic

transformations that creates arbitrarily many copies of jþiji
from ρ, if Δij ∈J ðρÞ (Fact 2). We will show that each step
in the sequence is also achievable in marginal asymptotics.
Note that a close reading of the original proof (of [11])
shows that every catalytic step in the sequence only deals
with a two-level catalyst τ and initial state μ, such that
IðτÞ ⊆ IðρÞ ¼ IðμÞ. This condition [IðτÞ ⊆ IðμÞ], along
with the fact that τ is a two-level system, makes sure
that μ is distillable [11,38]. Therefore correlated catalysis
implies marginal reducibility for each step of the sequence
(Fact 4). Then, using transitivity of marginal reducibility
(Lemma 1), we conclude that the transformation as a whole
is also achievable in marginal asymptotics.
Using Fact 3, we conclude that there exists a correlated

catalytic transformation that creates arbitrarily many
copies of jþiji from ρ, if Δij ∈J ðρÞ. Finally, since the
target state is pure, correlated catalysis is equivalent to
approximate catalysis [ [32], Proposition 8], and the claim
is shown. ▪
Our result answers the conjecture in Ref. [11] in

the positive. Note that Ref. [10] claimed the same result
(see Theorem 2) for qubits, but Ref. [11] pointed out that
the proof actually has a gap. Here, we close the gap through
a different technique. This result implies that covariant
operations can transform any two generic states via
approximate catalysis. Furthermore, it provides some
partial evidence for the following conjecture, which was
phrased in a different way in Ref. [10].
Conjecture.—There exists an approximately catalytic

thermal operation transforming ρ to σ if and only if
SðρkγÞ ≥ SðσkγÞ and J ðσÞ ⊆ J ðρÞ.

In principle, this conjecture can be solved by proving the
following statements hold in the approximately catalytic
setting. (1) There exists a covariant operation transforming
ρ to σ if and only if J ðσÞ ⊆ J ðρÞ. (2) The monotones
governing thermal operations are exactly the combination
of the monotones of Gibbs-preserving operations and
covariant operations. Since approximately catalytic trans-
formations under Gibbs-preserving operations are allowed
if and only if SðρkγÞ ≥ SðσkγÞ [30], these statements
combined would solve the conjecture. Recently there has
been some partial results on proving these statements. For
example, the only if direction in statement (1) has been
shown to hold in the special case when the frequencies of ρ
and σ are related in a particular way [35]. Our result (and
Ref. [35]) prove the if direction in statement (1). In
addition, statement (2) is known to hold when the initial
state is incoherent: if the target state is coherent, then the
transformation is forbidden [12]; otherwise it is determined
by the free energy [8].
We remark that our result implies that any correlation

between the system and catalyst allows us to overcome
most restriction from coherence. This is in contrast to what
happens if the catalyst must be completely uncorrelated to
the system. In this case, no amplification of coherence is
possible due to the additivity of quantum Fisher informa-
tion on product states [10]. This shows yet another
example where allowing small correlations between the
system and the catalyst significantly simplifies the trans-
formation laws [8,30,39,40].
Let us turn to the properties of the catalyst that is needed

in Theorem 1. Even though we relied heavily on the explicit
construction of the catalyst in Ref. [11], Theorem 1 does
not provide any construction of the catalyst. This is because
in arguing transitivity of correlated catalysis through
marginal reducibility, we are forced to deal with asymp-
totically many copies. By analyzing how the error scales
with the number of copies in the marginal asymptotic
transformation, we can obtain an upper bound to the size of
the catalyst that is needed in order to achieve a certain error
(using the construction in Refs. [32,36]). However, this
does not provide a complete picture as it was shown that
there exist transformations that cannot be achieved by
finite-dimensional catalysts in other resource theories [41].
With similar techniques, we show that the resource theory
of asymmetry admits a related phenomenon where in
general we need a catalyst whose Hamiltonian has an
unbounded spectrum. In particular, the transformation that
amplifies coherence necessarily needs an unbounded cata-
lyst. The detailed argument, which uses the properties of
quantum Fisher information [26,42], can be found in the
Supplemental Material [37].
Conclusions.—We have shown that allowing system-

catalyst correlation in a catalytic procedure lifts most
restrictions in the resource theory of asymmetry. More
precisely, Theorem 1 showed that as long as the initial state
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has some coherence in the right levels, we can amplify it
and use it to prepare the target state. Because of the
connection of asymmetry with thermodynamics, this sug-
gests that coherence only places a mild restriction on the
allowed thermodynamic transformations. We believe our
results will provide a key step in formulating a fully general
law of quantum thermodynamics.

Note added.—During the completion of our manuscript, we
became aware of an independent related work by Naoto
Shiraishi and Ryuji Takagi submitted concurrently to the
same arXiv posting [35].
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