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Most interatomic potentials, both classical and machine learning-based (MLPs), are parameterized for 3D structures. The
question naturally arises whether they are suitable for modeling their 2D allotropes. In the present study, using ab initio
calculations, I determined the structural and mechanical properties of 2D phases of materials such as MoS2, Si, Ge and Sn
and then investigated whether the available potentials are able to reproduce these properties.

ABSTRACT

CONCLUSION
In general, classical, physics-based potentials show better transferability/universality than purely interpolative potentials based on machine
learning. According to the methodology used here, it can be concluded that taking into account the performance and cost of computation,
classical potentials such as Tersoff, SW and MEAM seem to be the best choice here. The cost of computing MLPs potentials is up to 3 orders
of magnitude higher than classical ones, and they often exhibit improper behavior, such as violating the Neumann’s principle, which states
that the symmetry elements of any physical property of a crystal must include the symmetry elements of the crystal's point group.
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2D Molybdenum Disulphide (MoS2) 

Stanene - 2D Tin (Sn)

1. Tersoff2016: the Tersoff potential 
2. MEAM1997
3. MEAM2017: the modified 

embedded-atom method  potential
4. MEAM2018a
5. MEAM2018b
6. RANN: combination of embedded 

atom method and rapid artificial 
neural network potential

7. DP-PBE: the machine-learning-
based potential

8. DP-SCAN
9. POLY: the polynomial machine-

learning-based potential 
10. MTP: the moment tensor machine-

learning interatomic potential
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1. SW2013: the Stillinger–Weber 
potential

2. SW2015
3. SW2016
4. SW2017
5. REBO: the reactive many-body 

potential
6. ReaxFF: the reactive force-field
7. SNAP: the machine-learning-based 

spectral neighbour analysis potential

1. Tersoff1988: the Tersoff potential
2. Tersoff2007
3. Tersoff2017
4. MEAM2007: the modified 

embedded-atom method  potential
5. MEAM2011
6. SW1985: the Stillinger–Weber 

potential
7. SW2014
8. EDIP: the environment-dependent 

interatomic potential
9. ReaxFF: the reactive force-field
10. COMB: the charge optimized many-

body potential
11. SNAP: the machine-learning-based 

spectral neighbour analysis potential
12. qSNAP
13. SO(3): the smooth power spectrum 

potential
14. ACE: the atomic cluster expansion 

potential 

1. Tersoff1989: the Tersoff potential
2. Tersoff2017
3. MEAM2008: the modified 

embedded-atom method  potential
4. SW1986: the Stillinger–Weber 

potential
5. SW2009
6. EDIP: the environment-dependent 

interatomic potential
7. ReaxFF: the reactive force-field
8. SNAP2020: the machine-learning-

based spectral neighbour analysis 
potential

9. qSNAP2020
10. SNAP2023
11. ACE: the atomic cluster expansion 

potential
12. POD: the proper orthogonal 

descriptors based potential 
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