Machine Learning Modalities for Materials Science, Jožef Stefan Institute, Ljubljana, Slovenia, 13.05 - 17.05.2024

Suitability of the available interatomic potentials for the modeling of 2D materials Marcin Maździarz

Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw, Poland

ABSTRACT

Most interatomic potentials, both classical and machine learning-based (MLPs), are parameterized for 3D structures. The question naturally arises whether they are suitable for modeling their 2D allotropes. In the present study, using ab initio calculations, I determined the structural and mechanical properties of 2D phases of materials such as MoS2, Si, Ge and Sn and then investigated whether the available potentials are able to reproduce these properties.

2D Molybdenum Disulphide (MoS₂)

Figure 1. Single-layer (SL) 1H-MoS₂. (a) Top and (b) 3D view.

SL 1T-MoS₂. (a) Top and (b) 3D view

Figure 3. SL 1T'-MoS₂. (a) Top and (b) 3D view.

Table 4. Structural and mechanical properties of SL 1T'-MoS₂ from molecular calculations: lattice parameters a,b (Å), average cohesive energy E_c (eV/atom), average bond lengths d (Å), average height h (Å), 2D elastic constants C_{ii} (N/m), 2D Kelvin moduli K_i (N/m), mean absolute percentage error (MAPE) (%).

Method	DFT	SW2013	SW2015	SW2016	SW2017	REBO	SNAP	ReaxFF
а	5.751	4.944	5.757	5.263	5.728 †	5.563	5.321 +	5.609
b	3.177	3.062	3.148	3.172	3.307 +	3.245	3.072 +	3.209
$-E_c$	5.56	3.02	0.55	1.87	4.96	6.93	2.31	4.83
d_{Mo-S} ‡	2.415	2.399	2.406	2.504	2.42	2.468	2.476	2.490
h_{S-S}	3.364	4.641	5.173	4.142	2.973	3.781	3.454	3.399
<i>C</i> ₁₁	68.1	1.1	0.0	60.4	121.8	56.8	437.1	120.1
C ₂₂	78.9	100.5	37.6	94.6	121.8	113.0	437.1	255.7
C ₁₂	18.2	1.1	0.0	20.3	28.6	23.1	6.1	68.1
C_{44}	43.2	27.1	0.0	26.9	46.6	70.5	215.5	6.4
K_I	90.9	100.5	37.6	88.4	150.4	121.3	443.2	194.3
K_{II}	56.1	1.1	0.0	66.6	93.2	48.5	431.0	181.5
K_{III}	86.4	54.2	0.0	53.8	93.2	141.0	431.0	12.8
MAPE _{1T'}		42.070	63.020	20.110	30.399	25.395	249.177	91.913
∑MAPE		127.830	151.074	102.187	100.522	104.840	483.573	325.504

Table 1. Structural and mechanical properties of SL MoS₂ phases from density functional theory (DFT) calculations: lattice parameters a, b (Å), average cohesive energy E_c (eV/atom), average bond length d (Å), average height h (Å), 2D elastic constants C_{ii} (N/m) and 2D Kelvin moduli K_i (N/m).

Polymorph		1H			1T			1T′			
Source	Present	Exp.	DFT	Present	Exp.	DFT	Present	Exp.	DFT		
a	3.165	3.157 ^a	3.183 ^b	3.194		3.179 ^b	5.751		5.717 ^b		
b	3.165	3.157 ^a	3.183 ^b	3.194		3.176 ^b	3.177		3.179 ^b		
$-E_c$	5.64		5.35 ^a	5.52			5.56				
d_{Mo-S}	2.403	2.38 ^a	2.43 ^a	2.422		2.430 ^c	2.415‡				
h_{S-S}	3.120	3.116 ^a	3.11 ^a	3.142		3.184 ^c	3.364				
<i>C</i> ₁₁	126.5		127.2 ^d	84.1		103.8 ^d	68.1		94.0 ^d		
C ₂₂	126.5		127.2 ^d	84.1		103.8 ^d	78.9		119.2 ^d		
<i>C</i> ₁₂	28.5		25.8 ^d	5.0		-2.5 ^d	18.2		17.2 ^d		
C ₄₄	49.0		51.0 ^d	39.6		52.8 ^d	43.2		37.5 ^d		
K_I	155.0			89.1			90.9				
K_{II}	98.0			79.1			56.1				
K_{III}	98.0			79.1			86.4				

^a Ref. [50], ^b Ref. [55], ^c Ref. [56], ^d Ref. [57]. [‡] average first-neighbour bond lengths calculated with *cutoff* radius = 3.5 and number of histogram bins = 50.

1	•	SW2013: the Stillinger-Weber
		potential
2		SW2015
3		SW2016
4		SW2017
5		REBO: the reactive many-body
		potential
6	j.	ReaxFF: the reactive force-field

Silicene - 2D Silicon (Si)

 Table 1: Structural and mechanical properties of flat (FS), low-buckled (LBS), trigonal dumbbell
 (TDS), honeycomb dumbbell (HDS) and large honeycomb dumbbell (LHDS) silicene phases from density functional theory (DFT) calculations: lattice parameters a,b (Å), average cohesive energy E_c (eV/atom), average bond length d (Å), average height h (Å), 2D elastic constants C_{ii} (N/m), 2D Young's modulus E (N/m), Poisson's ratio v and 2D Kelvin moduli K_i (N/m).

Polymorph	I	3S		LBS	TDS		HDS		LHDS	
Source	This	Refs.	This	Refs.	This	Refs.	This	Refs.	This	Refs.
	work		work		work		work		work	
а	3.855	3.90 ^a	3.828	3.87 ^a , 3.83 ^b	6.434	6.52 ^b	6.297	6.38 ^b	7.334	7.425 ^b
b	3.855	3.90 ^a	3.828	3.87 ^a , 3.83 ^b	6.434	6.52 ^b	6.297	6.38 ^b	7.334	7.425 ^b
$-E_c$	4.562	4.764 ^a	4.577	4.784 ^a , 5.16 ^b	4.679		4.679		4.769	
d^{\dagger}	2.225		2.249	2.25 ^b	2.331		2.399		2.357	
h	0.0	0.0 ^a	0.421 ^a	0.45 ^a , 0.44 ^b	2.734		2.635		2.683	
C ₁₁	84.8		69.2		100.5		141.6		104.5	
C ₂₂	84.8		69.2		100.5		141.6		104.5	
C ₁₂	40.6		22.1		52.3		96.4		52.7	
C ₃₃	22.1		23.6		24.1		22.6		25.9	
E	65.4		62.2	61.8 ^a	73.3		76.0		77.9	
ν	0.48		0.32	0.31 ^a	0.52		0.68		0.50	
K_I	125.4		91.3		152.8		238.0		157.2	
K_{II}	44.3		47.1		48.3		45.2		51.8	
K _{III}	44.3		47.1		48.3		45.2		51.8	

^a Ref. [47], ^b Ref. [7]. [†] An average bond lengths calculated using radial pair distribution func-

tion with a *cut-off* radius = 3.0 Å and a number of histogram bins = 1000 [31].

 Table 6: Structural and mechanical properties of large honeycomb dumbbell silicene (LHDS) from
 molecular calculations: lattice parameters a, b (Å), average cohesive energy E_c (eV/atom), average bond length d (Å), average height h (Å), 2D elastic constants C_{ii} (N/m), 2D Kelvin moduli K_i (N/m), mean absolute percentage error (MAPE) (%), relative performance measured as normalized timesteps/second in molecular dynamics (MD) simulation.

c)

l																	_	potential
	Method	DFT	Tersoff 1988	Tersoff 2007	Tersoff 2017	MEA M 2007	MEA M 2011	SW 1985	SW 2014	EDIP	ReaxFF	COMB	ML-IAP SNAP	ML-IAP aSNAP	ML-IAP SO(3)	ML-IAP ACE	7.	SW2014
l	a	7.334	7.000 [†]	7.249	7.236	7.900 [†]	7.363	7.403	7.062	7.705	7.167	7.422	7.648	7.741	7.427	7.393	8.	EDIP: the environment-dependent
l	ь	7.334	6.978 [†]	7.249	7.236	7.560 [†]	7.363	7.403	7.062	7.705	7.167	7.422	7.648	7.741	7.427	7.393		interatomic potential
l	$-E_c$	4.769	4.468	3.897	4.004	3.505	3.911	3.399	2.602	4.113	3.623	3.646	4.804	4.794	4.698	0.370	9.	ReaxFF: the reactive force-field
l	a h	2.357	2.381	2.387	2.369	2.627	2.407	2.456	2.345	2.438	2.370	2.454	2.436	2.403	2.385	2.515	10.	COMB: the charge optimized many-
l	C ₁₁	104.5	2.3	78.5	68.6	45.6	88.0	84.5	73.0	53.7	99.0	53.1	44.6	43.8	25.9	59.8		body potential
l	C ₂₂	104.5	7.3	78.5	68.6	56.2	88.0	84.5	73.0	53.7	99.0	53.1	44.6	43.8	25.9	59.8	11	SNAP: the machine-learning-based
l	C ₁₂	52.7 25.9	-13.1	42.3	25.5	22.0	29.9	46.1 19.2	38.9	36.0	40.4	31.7	16.1	19.1	0.4	15.2	11.	spectral neighbour analysis potential
l	K_I	157.2	18.5	120.8	94.1	73.6	117.9	130.6	111.9	89.7	139.4	84.8	60.6	62.8	26.4	75.0	17	
Ŀ	K _{II}	51.8	17.8	36.2	43.1	28.8	58.1	38.4	34.1	17.6	58.6	21.5	28.5	24.7	25.5	44.7	12.	q SIVAP
	Km	51.8	-8.5*	36.2	43.1	27.4	58.1	38.4	34.1	17.6	58.6	21.5	28.5	24.7	25.5	44.7	13.	SO(3): the smooth power spectrum

spectral neighbour analysis potential

⁺ Input 1T' converges to 1T. [‡] average first-neighbour bond lengths calculated with *cutoff* radius = 3.5 and number of histogram bins = 50.

[1] M. Maździarz - Transferability of interatomic potentials for silicene, Materials 14, 519 (2021)

Germanene - 2D Germanium (Ge)

TABLE I. Structural and mechanical properties of flat (F), low-buckled (LB), trigonal dumbbell (TD) and large honeycomb dumbbell (LHD) germanene phases from density functional theory (DFT) calculations: lattice parameters a, b (Å), average cohesive energy E_c (eV/atom), average bond length d(Å), average height $h(\text{\AA})$, 2D elastic constants $C_{ij}(N/m)$, 2D Young's modulus E(N/m), Poisson's ratio ν and 2D Kelvin moduli $K_i(N/m)$.

olymorph	F			LB	Т	'D	LH	ID
Source	This work	Refs.	This work	Refs.	This work	Refs.	This work	Refs.
a	4.066		3.955	$4.06^{\rm a}, 4.03^{\rm b}, 3.97^{\rm c}$	6.698	6.772^{a}	7.667	7.88^{a}
b	4.066		3.955	$4.06^{\rm a}, 4.03^{\rm b}, 3.97^{\rm c}$	6.698	6.772^{a}	7.667	7.88^{a}
$-E_c$	3.566		3.687	$3.19^{\rm a}, 4.15^{\rm c}$	3.793	3.30^{a}	3.863	3.35^{a}
d	2.349^{\dagger}		2.370	$2.47^{\rm b}, 2.38^{\rm c}$	2.449		2.485	
h	0.0		0.636	$0.69^{\rm a}, 0.68^{\rm b}, 0.64^{\rm c}$	2.977	2.90^{a}	2.875	2.96^{a}
C_{11}	70.34		49.86		53.56		57.72	48.9^{d}
C_{22}	70.34		49.86		53.56		57.72	48.9^{d}
C_{12}	29.64		15.56		17.20		20.68	
C_{33}	20.35		17.15		18.18		18.52	
\mathbf{E}	57.85		45.00	42.05 ^b	48.04		50.31	
ν	0.42		0.31	0.33 ^b	0.32		0.36	
K_I	99.98		65.42		70.76		78.40	
K_{II}	40.70		34.30		36.36		37.04	
K_{III}	40.70		34.30		36.36		37.04	

^a Ref. ⁷, ^b Ref. ³², ^c Ref. ³³, ^d Ref. ³⁴ [†] An average bond lengths calculated using radial pair distribution function with a *cut-off* radius = 3.5 Å and a number of histogram bins $= 1000^{20}$.

FIG. 1. Polymorphs of germanene: a) flat (F), b) low-buckled (LB), c) trigonal dumbbell (TD). d) large honeycomb dumbbell (LHD).

TABLE V. Structural and mechanical properties of large honeycomb dumbbell (LHD) germanene from molecular calculations: lattice parameters a, b(Å), average cohesive energy E_c (eV/atom), average bond length d(Å), average height h(Å), 2D elastic constants $C_{ij}(N/m)$, 2D Kelvin moduli K_i (N/m), mean absolute percentage error (MAPE) (%), relative performance measured as normalized timesteps/second in molecular dynamics (MD) simulation.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	 embedded-atom method potentia 4. MEAM2018a 5. MEAM2018b 6. RANN: combination of embedded atom method and rapid artificial neural network potential 7. DP-PBE: the machine-learning-based potential 8. DP-SCAN 9. POLY: the polynomial machine-learning-based potential 10. MTP: the moment tensor machine learning interatomic potential
[3] M. Maździarz - Transferability of interatomic potentials for germanene (2D germanium), J. Appl. Phys. 134, 184303 (2023)	[4] M. Maździarz - Suitability of available interatomic potentials for Sn to m arXiv (2024)	odel its 2D allotropes,

- Tersoff1989: the Tersoff potential
- Tersoff2017 2.
- MEAM2008: the modified 3. embedded-atom method potential

[2] M. Maździarz - Transferability of interatomic potentials for silicene, Beilstein J. Nanotechnol. 14, 574-585 (2023)

Stanene - 2D Tin (Sn)

TABLE I. Structural and mechanical properties of flat (F), low-buckled (LB), high-buckled (HB), sn HB full dumbbell (FD), trigonal dumbbell (TD), honeycomb dumbbell (HD) and large honeycomb dumbbell (LHD) stanene phases from density functional theory (DFT) calculations: lattice parameters a, b (Å), average cohesive energy E_c (eV/atom), average bond length d (Å), average height h(Å), 2D elastic constants $C_{ii}(N/m)$, 2D Young's modulus E(N/m), Poisson's ratio ν and 2D Kelvin moduli K_i (N/m).

Polymorph	F		LB	H	B	F	D	Т	D	н	D	LH	4D
Source	This Refs	. This	Refs.	This	Refs.	This	Refs.	This	Refs.	This	Refs.	This	Refs
	work	work		work		work		work		work		work	
a	4.753	4.594	$4.66^{b}, 4.67^{c}$	3.329	3.413 ^d	4.309		7.821		7.646	7.74°	8.890	9.05
ь	4.753	4.594	$4.66^{b}, 4.67^{c}$	3.329	3.413 ^d	4.309		7.821		7.646	7.74°	8.890	9.05
$-E_c$	2.719	2.844	2.68°	3.179		3.043		2.933		3.040	2.84°	3.062	2.86
d	2.746^{\dagger}	2.791	$2.83^{a}, 2.83^{b}$	3.266		3.012		2.830		2.945		2.897	
h	0.0	0.875	$0.85^{a}, 0.9^{b}$	2.497		3.267		3.514		3.290	3.34°	3.404	3.42
C ₁₁	31.335	23.426	28.6^{a}	44.046		15.251		27.650		27.923		33.028	
C_{22}	31.335	23.426	28.6^{a}	44.046		15.251		27.650		27.923		33.028	
C_{12}	17.704	8.082	11.3^{a}	28.644		8.710		11.031		13.078		15.753	
C_{33}	6.815	7.672	8.65^{a}	7.701		3.270		8.310		7.422		8.637	
E	21.332	20.638	$24.14^{a}, 24.46^{b}$	25.417		10.276		23.250		21.797		25.514	
ν	0.565	0.345	$0.395^{a}, 0.390^{b}$	0.650		0.571		0.399		0.468		0.477	
K_I	49.039	31.508		72.690		23.961		38.681		41.001		48.782	
K_{II}	13.630	15.345		15.401		6.540		16.620		14.845		17.275	
K_{III}	13.630	15.345		15.401		6.540		16.620		14.845		17.275	

^a Ref. ⁹, ^b Ref. ⁸, ^c Ref. ^{26 d} Ref. ³.

[†] An average bond lengths calculated using radial pair distribution function with a *cut-off* radius and a number of histogram bins $= 1000^{38}$.

TA: bbell (LHD) stanene energy E_c (eV/atom) fror n), 2D Kelvin moduli ave K_i ce measured as norma

	4. SW1986: the Stillinger–Weber	Mathed DET THEFT WEAM MEAN MEAN MEAN DANN DD DDE DD SCAN DOLY MTD	5. HEAT2017: the mouned
Method DFT Tersoff Tersoff MEAM SW SW EDIP ReaxFF qSNAP SNAP SNAP ACE POD	potential	2016 1997 2017 2018a 2018b 2023 2023 2023 2023 2024	embedded-atom method pot
$1989 2017 2008 1986 2009 \qquad \qquad 2020 2020 2023$		a $8.890 \ 9.175 \ 9.090 \ 8.788 \ 8.977 \ 8.907 \ 9.467 \ 9.103 \ 8.220 \ 9.017 \ 8.724^{\dagger}$	4. MEAM2018a
a 7.667 7.763 7.527 7.517 7.791 7.243 9.018 7.660 8.702 11.746 8.319 7.879 8.184	5. SW2009	b 8.890 9.175 9.090 8.788 8.977 8.907 9.467 9.103 8.220 9.017 8.821 [†]	
b 7.667 7.763 7.527 7.517 7.791 7.243 9.018 7.660 8.702 11.746 8.319 7.879 8.184	6. EDIP: the environment-dependent	$-E_c$ 3.062 3.128 2.459 2.548 2.322 2.830 2.792 3.399 2.981 2.771 1762.220•	5. MEAM2018D
$-E_c$ 3.863 2.960 3.374 2.817 2.844 3.277 5.272 3.152 4.544 5.682 4.070 4.117 4.583	interstamic notantial	$d \qquad 2.897 3.037 3.046 2.938 3.130 2.894 7.508 2.968 3.066 2.922 1.570$	RANN: combination of embed
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		h 3.404 3.976 4.153 3.968 4.853 3.617 2.932 3.492 5.058 3.638 2.515	atom method and ranid artifi
h 2.875 3.581 3.100 3.831 3.449 3.852 2.966 3.229 2.741 3.636 2.708 3.273 2.787	7. ReaxFF: the reactive force-field	C_{11} 33.028 62.603 21.657 28.337 23.896 16.664 23.408 ⁺ 22.768 148.381 ⁺ 7.968 ⁺ 7739.930 [•]	
C_{11} 57.72 55.39 54.55 78.50 76.29 46.06 24.56 56.43 24.17 0.00* 19.34 53.99 48.20	8 SNAD2020: the machine-learning-	C_{22} 33.028 62.603 21.657 28.337 23.896 16.664 22.444 ⁺ 22.768 139.851 ⁺ 9.575 ⁺ 9143.533 [•]	neural network potential
C_{22} 57.72 55.39 54.55 78.50 76.29 46.06 24.56 51.68 [†] 24.17 0.00 [*] 19.34 22.30 [†] 48.20	o. SINAFZUZU. the machine-learning-	C_{12} 15.753 25.854 10.222 11.978 7.496 7.277 18.709 [‡] 14.050 106.473 [‡] 15.109 [‡] 4278.919 [•]	7 DP-PRE: the machine-learning
C_{12} 20.68 18.62 25.44 11.54 35.40 32.05 17.71 14.90 [†] 9.84 0.00 [*] 10.85 33.11 [†] 28.04	based spectral neighbour analysis	C_{33} 8.637 18.374 5.718 8.180 8.200 4.693 1.940 [‡] 4.359 16.008 [‡] -1.213 [‡] 2009.998 [•]	here des tes Pal
$C_{33} = 18.52 + 18.39 + 14.56 + 33.48 + 20.44 + 7.01 + 3.44 + 16.29^{\dagger} + 7.17 + 0.00^{*} + 4.24 + 13.59^{\dagger} + 10.08$	notential	K_I 48.782 88.457 31.878 40.315 31.393 23.941 41.630 36.818 250.503 23.859 12662.705	based potential
K_I 78.40 74.01 79.99 90.04 111.69 78.10 42.27 68.77 34.01 0.00 30.19 67.22 76.25		K _{II} 17.275 36.748 11.435 16.360 16.400 9.387 4.223 8.718 37.729 -6.315" 4220.758 K ₁₁₁ 17.275 26.748 11.425 16.260 16.400 0.287 2.870 8.718 22.016 2.427* 4010.006	8. DP-SCAN
K_{II} 37.04 36.77 29.11 66.95 40.89 14.01 6.86 39.35 14.34 0.00 8.49 9.07 20.16	9. qSNAP2020	$MAPE_{LHD} = 57.744 - 24.280 - 10.221 - 19.605 - 29.589 - 43.341 - 22.240 - 168.606 - 48.901 - 19337 - 268$	0 DOLV, the networking machine
K_{III} 37.04 36.77 29.11 66.95 40.89 14.01 6.86 32.58 14.34 0.00 8.49 27.17 20.16	10. SNAP2023	$\sum MAPE = 209.382 \ 130.073 \ 63.928 \ 149.014 \ 124.659 \ 223.611 \ 204.086 \ 710.469 \ 175.759 \ 19450.445$	9. POLT: the polynomial machin
$MAPE_{LHD} = 26.98 10.80 27.02 22.09 28.98 42.40 10.11 38.87 74.22 42.23 25.62 20.66$	11 ACE, the stemic ductor expansion	timesteps/s 4989.047 2159.590 4552.066 1980.937 5539.323 96.654 1.000 5.987 6.232 105.317	learning-based potential
$\sum MAPE \qquad 139.88 138.42 139.14 84.13 140.02 122.76 75.22 154.41 171.68 182.63 154.73 113.89$	11. ACE: the atomic cluster expansion		10 MTP: the moment tensor ma
$\frac{120.05}{120.05} \frac{120.07}{194.94} \frac{194.94}{167.50} \frac{150.19}{524.37} \frac{524.37}{6.75} \frac{6.75}{2.00} \frac{1.00}{1.00} \frac{3.35}{3.35} \frac{6.94}{6.94} \frac{1.79}{1.79}$	potential	[†] Potential does not reproduce the correct symmetry of the structure $(a \neq b)$	
	12 POD: the proper orthogonal	[‡] Detertial does not reproduce the isotroom of the electricity tensor $(C \rightarrow C)$ and $0 C \rightarrow 0$	learning interatomic potential
[†] Potential does not reproduce the isotropy of the elasticity tensor (C ₁₁ \neq C ₂₂ and 2.C ₂₂ \neq		Potential does not reproduce the isotropy of the elasticity tensor ($C_{11} \neq C_{22}$ and $2 \cdot C_{33} \neq$	
Totential does not reproduce the isotropy of the elasticity tensor $(O_{11} \neq O_{22})$ and $2 O_{33} \neq O_{33}$	descriptors based potential	$C_{11} - C_{12}),$	
$C_{11} - C_{12}),$		* Negative Kelvin moduli K_i indicating a lack of mechanical stability.	
* Nonsensical zero 2D elastic constants C::		• Highly overstated value	
i consensite de la consensite consensite consensite consensite de la consens		inginy overstated value.	
[3] M. Maździarz - Transferability of interatomic potentials for germanen	ne (2D germanium) 1 Appl Phys 134 🦾	[4] M. Maździarz - Suitability of available interatomic potentials for Sn to r	nodel its 2D allotrones
[5] The hazazidiz manuficiability of interatornic potentials for germanen		Light indeation solution of available interation in potentials for Shi to i	
184303 (2023)		arXiv (2024)	
101000 (2020)			

Tersoff2016: the Tersoff potential

Tersoff1988: the Tersoff potential

embedded-atom method potential

SW1985: the Stillinger–Weber

MEAM2007: the modified

Tersoff2007

Tersoff2017

MEAM2011

2.

3.

6.

- MEAM1997 2.
- MFAM2017: the modified tential

- dded cial

	žy x		į,		= 3	3.5 Å
BLE V	/III. St	ructural an	d mechani	ical properties of	large honeycomb d	lumb
n mole	ecular o	calculations	: lattice p	arameters a, b(A)	Å), average cohesiv	ve er
rage b	ond len	d(A), a	average he	ight h (Å), 2D ela	stic constants C _{ij} (I	N/m
(N/m)	, mean	absolute 1	percentage	error (MAPE) (%), relative perform	mano
lized t	imester	s/second in	n molecula	r dynamics (MD)	simulation.	

CONCLUSION

In general, classical, physics-based potentials show better transferability/universality than purely interpolative potentials based on machine learning. According to the methodology used here, it can be concluded that taking into account the performance and cost of computation, classical potentials such as Tersoff, SW and MEAM seem to be the best choice here. The cost of computing MLPs potentials is up to 3 orders of magnitude higher than classical ones, and they often exhibit improper behavior, such as violating the Neumann's principle, which states that the symmetry elements of any physical property of a crystal must include the symmetry elements of the crystal's point group. This work was supported by the National Science Centre (NCN-Poland) Research Project: No. 2021/43/B/ST8/03207