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Abstract: Thermal barrier coatings (TBCs) are widely used to improve the oxidation resistance and
high-temperature performance of nickel-based superalloys operating in aggressive environments.
Among the TBCs, aluminide coatings (ACs) are commonly utilized to protect the structural parts of
jet engines against high-temperature oxidation and corrosion. They can be deposited by different
techniques, including pack cementation (PC), slurry aluminizing or chemical vapor deposition
(CVD). Although the mentioned deposition techniques have been known for years, the constant
developments in materials sciences and processing stimulates progress in terms of ACs. Therefore,
this review paper aims to summarize recent advances in the AC field that have been reported between
2019 and 2023. The review focuses on recent advances involving improved corrosion resistance in
salty environments as well as against high temperatures ranging between 1000 ◦C and 1200 ◦C
under both continuous isothermal high-temperature exposure for up to 1000 h and cyclic oxidation
resulting from AC application. Additionally, the beneficial effects of enhanced mechanical properties,
including hardness, fatigue performance and wear, are discussed.

Keywords: high-temperature corrosion; aggressive environment; coating deposition; nickel alloys

1. Introduction

Nickel-based superalloys are a group of high-performance materials that are used
in applications requiring excellent strength, oxidation resistance, and creep resistance at
elevated temperatures [1]. These superalloys are commonly used in aircraft, aerospace,
nuclear, and other industries where materials suffer from high-temperature exposure
and harsh operating conditions [2]. They are classified into four groups: commercially
pure nickel-based alloys (I), nickel–copper alloys (Monel) (II), non-heat treatable nickel–
chromium–iron alloys (Incoloy, Hastelloy) (III) and heat treatable nickel–chromium–iron
alloys (Inconel, Nimonic, Waspaloy) (IV). Although they are characterized by outstanding
properties at high temperatures, the recent demands of the aerospace and aircraft indus-
tries require further increasing the operational conditions of critical elements working in
the engines [3]. Thus, aluminide coatings are often deposited on nickel superalloys to
improve their oxidation and wear resistance [4]. They are a cost-effective and efficient
way to enhance the performance and durability of nickel superalloys in high-temperature
applications [5]. Since the application of aluminide coatings has remained stable over the
years, it is worth summarizing the recent advances in this field. The constant development
in aircraft industries requires proper modification of aluminizing processes in order to
further increase the operating parameters of coated engine parts.

One should emphasize the importance of TBCs in different industrial sectors, also
represented by the increasing number of publications concerning their high-temperature
and -corrosion performance (Figure 1). Among the TBCs, the interest in Acs has remained
stable over the years, with less than 100 papers each year since their invention in 1970, which
is directly related to their commercialization and widespread application in the aircraft
and power-engineering sectors. The increasing demands of these sectors enforce the use of

Coatings 2024, 14, 630. https://doi.org/10.3390/coatings14050630 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings14050630
https://doi.org/10.3390/coatings14050630
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://orcid.org/0000-0001-9565-3407
https://doi.org/10.3390/coatings14050630
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings14050630?type=check_update&version=1


Coatings 2024, 14, 630 2 of 15

critical service parameters of engines and turbine elements, which significantly reduce their
service life. Therefore, ACs are usually applied on the structural parts made of nickel-based
superalloys to improve their corrosion resistance and high-temperature performance.
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The main aim of this review is to introduce and summarize the recent achievements
related to AC deposition by using conventional techniques, including pack cementation
(PC), slurry aluminizing and chemical vapor deposition (CVD). Additionally, some non-
standard approaches for coating deposition are discussed. The review highlights studies
in which significant corrosion resistance improvement was achieved. Additionally, the
positive impact of AC application on the mechanical properties of Ni-alloys with a special
emphasis on hardness, fatigue performance, and wear resistance is discussed.

2. Review Methodology

This literature review involved the detailed investigation of aluminide coatings applied
on nickel-based superalloys with an emphasis on their deposition methods and high-
temperature performance. The review was conducted based on the Web of Science, Scopus,
PubMed, ERIC, IEEE Xplore and ScienceDirect databases and scientific papers published
between 2019 and 2023, among which “aluminide coatings” and “nickel alloys” were the
main phrases used for paper scanning. The period of the last 5 years was selected to
highlight the recent achievements in the field of AC application for Ni-based superalloys
since the continued development of deposition techniques and characterization methods
in recent years has revealed new possibilities and trends that were not reported as yet. A
total of 250 scientific papers and conference proceedings were identified via the electronic
databases. They were evaluated in terms of their eligibility by examining the title, abstract,
and summary of each paper based on specific inclusion and exclusion criteria. Following
this, papers that did not meet the inclusion criteria were not discussed. In order to avoid
potential similarities, the review papers were not considered or analyzed. Finally, 72 papers
were deemed relevant and included in the review. They were divided by specific topics
into sections devoted to each deposition technique.

3. Deposition of Aluminide Coatings
3.1. Pack Cementation (PC) and above the Pack/Vapor-Phase Aluminizing

Pack cementation is a process in which metal parts or components are placed in a
container filled with a mixture of powdered metal and a chemical activator, typically argon
or nitrogen [6]. The container is then sealed and heated to a high temperature, allowing
the powdered metal to diffuse onto the surface of the parts, and consequently forming a
hard, wear-resistant coating (Figure 2). This process is commonly used in industries such as
automotive, aerospace, and tool manufacturing to improve the surface properties of metal
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parts, such as the hardness, wear resistance, and corrosion resistance. Pack cementation
can be used to apply a variety of coatings, such as nitriding, carburizing, and boronizing,
depending on the specific requirements of the application. On the other hand, above the
pack/vapor-phase aluminizing is a surface treatment process used to enhance the wear
resistance, corrosion resistance, and high-temperature performance of metal components.
In this process, the metal component is placed in a container with aluminum powder and
then heated to a temperature above its melting point. The aluminum vaporizes and diffuses
onto the surface of the metal, forming a thin layer of aluminum-rich alloy. This process
is commonly used in aerospace, automotive, and other industries where components are
subjected to high temperatures and harsh environments.
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Although PC is commonly used as a conventional process in different industries, there
are many new reports that provide new insights into such methodology. Cojocaru et al. [6]
used pack cementation to deposit an NiAl coating on Inconel 718. The formed NiAl layer
was well adhered to the substrate material and was characterized by improved hardness of
40HRC due to the precipitation of the δ-Ni3Nb-hardening phase inside the grains of the
solid solution γ. Gloria et al. [7] presented optimized halide-activated pack cementation
technology for the Mar-M246 alloy, the effectiveness of which was assessed through high-
temperature oxidation tests in air up to 1000 ◦C. The coated nickel-based superalloy
exhibited superior oxidation resistance as compared to its wrought state. Recently, Morgiel
et al. [8] proposed a novel pack cementation approach during which the NiAl coating
system was modified with rare earth elements. The studies confirmed the successful
formation of a very thin (<10 nm) amorphous layer of Yb2O3 that may decrease the
cavitation erosion and oxidation. On the other hand, Zahedi et al. [9] modified the NiAl
coating by the addition of cerium oxide. The obtained coating deposited on Rene 80
was characterized by the dense Al-rich NiAl surface layer with uniformly distributed
cerium. Zhang and Zhou [10] proposed an Si-modified coating consisting of an Al-rich
Ni0.9Al1.1 layer with the dispersion of minor Ni2Al3 and Cr-rich phases of Al13Cr2 and
Cr5Si3 [10]. It exhibited a lower oxidation rate and improved alumina scale adhesion
in air at 1100 ◦C as compared to conventionally aluminized specimens. Furthermore, it
was also characterized by an extended service life. It was stressed that while specimens
after simple aluminide lost their scale, the Si-modified aluminide coatings retained their
protective capabilities even after 300 h. Such behavior was also reported for Inconel 738LC
protected with a Ce-Si-modified NiAl coating obtained by using PC [11]. It was found
that the simultaneous addition of 1% cerium and 6% silicon led to the formation of Ce1Si6,
which limits the oxygen diffusion, promotes the growth of the continuous Al2O3 layer, and
further enhances the hot-oxidation resistance of the coating. A similar improvement in the
hot-temperature corrosion resistance was reported for aluminized Incoloy 825 [12], Inconel
625 [13], and Inconel 600 [14]. One should mention that PC could also significantly improve
the mechanical behavior of the protected substrate. It was reported that δ-Ni2Al3 and
β-NiAl coatings deposited on pure nickel significantly increase the tribological properties
up to 600 ◦C [15].



Coatings 2024, 14, 630 4 of 15

Furthermore, β-NiAl coatings were effective in enhancing the high-temperature oxida-
tion resistance up to 1100 ◦C of Rene 108DS [16] and CMSX-4 [17]. It has been reported that
the NiAl coatings doped with zirconia [18–20] and hafnium [21] also reduce the oxidation
rate of nickel-based superalloys since the addition of these elements leads to the formation
of stable oxides, inhibiting aluminum depletion. Other significant studies report that a func-
tional NiCoCrAlY coating improves the hot-corrosion resistance of Inconel 738L exposed
to air for 100 h at 700 ◦C [22]. It is worth mentioning that aluminide coatings also improve
the high-temperature corrosion resistance of Inconel 718 in a salty environment [23]. This
interesting fact is related to the microstructure of the coating itself. Khan et al. [24] reported
that an ultrafine-grained Ni2Al3 coating significantly enhances the oxidation resistance in
air at 900 ◦C as compared to the same coating in a coarse-grained state [24]. A summary
of the pack cementation research concerning the coating, deposition method and main
advantages is presented in Table 1.

Table 1. A summary of the pack cementation-related research [6–24].

Substrate Coating/Technology Main Features Ref.

Inconel 178 NiAl/PC

Perfectly adherent; precipitation of the
δ-Ni3Nb-hardening phase inside the

grains of solid solution γ increases the
matrix hardness to 40 HRC

[6]

MAR-M46 NiAl/halide-activated PC Superior behavior in oxidation at high
temperatures up to 1000 ◦C. [7]

Haynes 263 NiAl + Yb2O3/PC

Formation of a very thin (<10 nm)
amorphous layer of Yb2O3 that may

decrease the cavitation erosion
and oxidation

[8]

Rene 80 NiAl + CeO2/PC

Formation of a dense Al-rich NiAl
surface layer with cerium distributed in

the coating suitable for
high-temperature applications

[9]

K438
Ni0.9Al1.1 +

Ni2Al3/Al13Cr2/Cr5Si3/
Hybrid Slurry/PC

A lower oxidation rate and improved
alumina scale adhesion in air at 1100 ◦C;

a longer service life compared to the
conventionally aluminized coatings;

retained its protective nature after 300 h

[10]

Inconel 738LC Ce-Si-Modified NiAl/PC
Cerium addition up to 1% increases

oxidation resistance during the cyclic
oxidation test at 1100 ◦C

[11]

Incoloy 825 NiAl/PC Improved oxidation resistance [12]

Inconel 625 NiAl/PC

Homogeneous and continuous coating of
60 µm thickness characterized by

improved oxidation resistance
and hardness

[13]

Inconel 600 NiAl/PC

The aluminide coating obtained from
20 wt% Al had the best hot-corrosion

resistance, which was attributed to the
formation of Al2O3 surface scale

[14]

Nickel δ-Ni2Al3 and β-NiAl/PC Significantly improved the tribological
properties up to 600 ◦C [15]

Rene 108DS Al-rich β-NiAl/HTLA PC

Improved hot-corrosion resistance at
1050 ◦C, negligible mass variations after
200 h of high-temperature exposure to

aggressive NaCl and Na2SO4 salts

[16]

CMSX-4 βNiAl/PC Improved oxidation resistance at 1150 ◦C
for 100 h due to β→ γ’ transformation [17]
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Table 1. Cont.

Substrate Coating/Technology Main Features Ref.

Rene 80 NiAl + Zr/HAPC

Formation of high-density Zr-rich phases
(AlNi2Zr and Al2-xNixZr) and Al-rich

nickel aluminides (βAl and Ni2Al3)
restricts the out-diffusion of Ni and

triggers the changing of the stoichiometry
of the surface NiAl in favor of Al

[18]

Inconel 738L NiAl + Zr/HAPC

Excellent scale adhesion, a slow oxidation
rate and lower amounts of Ti and Cr in

its oxide layer, leading to a pure
aluminide oxide layer at 1000 ◦C in air

[19]

Nimonic 75 CrAl + Zr/PC

High oxidation resistance due to the
formation of the stable α-Al2O3 phase,
improved the adherence of the oxide

scales and reduced void formation at the
coating/metal interface and inhibited the

outward diffusion of Al, resulting in a
lower oxidation rate

[20]

Nickel NiAl + Hf/PC

Formed HfO2 acts as a diffusion barrier
to prevent inter-diffusion during cyclic

oxidation; the surface rumpling extent is
much relieved due to a slower Al

depletion rate and higher creep resistance
by Hf addition

[21]

Inconel 738L NiCoCrAlY/PC Improved hot-corrosion resistance at
700 ◦C [22]

Inconel 718 NiAl/PC
Aluminized surface reduced the hot

corrosion by 50% at 700 ◦C in an
NaCl environment

[23]

Nickel Ni2Al3/PC
Ultrafine-grained Ni2Al3 coating

significantly enhances the oxidation
resistance in air at 900 ◦C

[24]

3.2. Slurry Aluminizing

The slurry-aluminizing process is the technology in which the substrate is protected
with a slurry containing aluminum particles. The slurry typically consists of aluminum
powder mixed with a binder, such as a polymer or a solvent. The substrate is first cleaned
and prepared to ensure good adhesion of the aluminized coating. It is then applied to the
surface of the substrate using techniques such as dipping, spraying, or brushing. After the
slurry is applied, the coated substrate is dried and then heated in a furnace to sinter the
aluminum particles. This process bonds the aluminum particles to the substrate, forming a
uniform and durable aluminized coating (Figure 3).

The slurry method offers several advantages as compared to other methods [25]. This
involves a shorter thermal cycle during the coating preparation and the possibility of
precise protection of large parts. Due to these benefits, the slurry method is widely used
in obtaining diffusion aluminide coatings for engine jet parts. Li et al. [25] confirmed that
smooth coating with a surface roughness Ra < 4.5 µm could be obtained on a nickel-based
substrate by using slurry aluminizing. Besides the precise and uniform nature of these
coatings, they are characterized by excellent high-temperature corrosion resistance either in
molten NaCl–KCl at 700 ◦C [26], air [27,28] and in the absence of salt [29]. Slurry-aluminized
coatings are also effective under extreme service conditions. Bortoluci Ormastroni et al. [30]
reported that the CMSX-4 Plus alloy with an NiAl coating exhibited improved fatigue life as
compared to the AM1, CMSX-4 and Rene N5 alloys for the same applied alternating stress
(180 MPa) at a high temperature (1000 ◦C) and under fully reversed conditions (Rε = −1).
Recently, some effective ultrafast slurry-aluminizing techniques were reported for pure
nickel [31,32]. It was proved that during a very short coating process of 5 min, a defect-free
coating with a microstructure and features similar to the ones obtained using conventional
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gas-aluminizing processes (CVD-like) could be formed. Other interesting approaches
involve the successful addition of different alloying elements. Pillai et al. [33] added the
iron to NiAl coating to reduce its manufacturing cost and maintain its resistance to cyclic
oxidation in air +10% H2O at 900 ◦C for 1000 h. Galetz et al. [34] have used a modified
NiGeAl-aluminized coating to increase the high-temperature performance of the 602 CA
alloy at 1200 ◦C. Hatami et al. [35] successfully applied a silico-aluminide layer containing a
β-(Ni, Co)Al phase on Hastelloy-X/NiCoCrAlY by the slurry technique after heat treatment
in argon. It was found that the NiCoCrAlY(HVOF)/silico-aluminide (slurry) coating was
more resistant to high-temperature oxidation at 1000 ◦C than the NiCoCrAlY coating. Such
interesting findings confirm that even an already coated nickel-based superalloy could
be additionally protected by an aluminized layer, which enhances its corrosion resistance.
Mahmoudi et al. [36] developed a new plasma paste-aluminizing process to deposit an
Ni/Cr/Ti-Al coating on Inconel 738. The main finding of this study was that the growth
activation energy equal to 83 kJ/mol was lower than the values provided in the literature
for the conventional aluminizing techniques.
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A summary of the slurry-aluminizing research concerning the coating, deposition
method and main advantages is presented in Table 2. It could be observed that most studies
aimed to increase the operating temperature [28,30–33] and improve the high-temperature
corrosion resistance in either air [28,30], molten salts [26,29] or water vapor [33].

Table 2. A summary of the slurry-aluminizing-related research [25–34].

Substrate Coating Main Features Ref.

DZ22B NiAl Smooth coating with a surface roughness
Ra < 4.5 µm [25]

Inconel 600/pure nickel NiAl Corrosion resistance in molten NaCl–KCl
at 700 ◦C for 100 h under argon [26]

Ni20Cr/CM-247 LC NiAl + Cr
New slurry coating design offers new

opportunities to coat gas turbine
components with complex geometry

[27]

Pure nickel NiAl + Cr
β-NiAl coating with undissolved Cr

particles for
high-temperature applications

[28]

Pure nickel NiAl
Considerably increased the

oxidation–sulfidation resistance of nickel
in a salty environment

[29]
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Table 2. Cont.

Substrate Coating Main Features Ref.

CMSX4Plus,
AM1, CMSX-4, Rene N5 NiAl

CMSX-4 Plus exhibited an improved
fatigue response compared to AM1,
CMSX-4 and Rene N5 for the same

applied alternating stress (180 MPa) at a
high temperature (1000 ◦C) and under

fully reversed conditions (Rε = −1)

[30]

Pure nickel Ni2Al3 + NiAl

Ultrafast (35 min) slurry-aluminized pure
nickel was characterized by improved

oxidation resistance between 900 ◦C and
1100 ◦C in air for 100 h

[31]

Pure nickel β-NiAl Ultrafast (5 min annealing) aluminizing
to reduce the coating time [32]

DA-1 Al-rich β-(NiFe)Al

A significant fraction of the phase was
retained in the coating after cyclic

oxidation behavior in air +10% H2O at
900 ◦C for 1000 h

[33]

602 CA NiAl + Ge Maintains its integrity and protective
behavior at 1200 ◦C [34]

Hastelloy-X +
NiCoCrAlY SiAl

NiCoCrAlY (HVOF)/silico-aluminide
(slurry) coating is more resistant to

high-temperature oxidation at 1000 ◦C
than NiCoCrAlY coating

[35]

Inconel 738 Ni/Cr/Ti-Al

The growth activation energy of about
83 kJ/mol was less than the values
provided in the literature for the

conventional aluminizing techniques

[36]

3.3. Gas-Phase Deposition

Chemical vapor deposition (CVD) is a process in which a thin film of material is
deposited onto a substrate by chemical reactions in the vapor phase. In this process, a
precursor gas is introduced into a chamber, where it reacts to form a solid film on the
substrate surface (Figure 4). Since CVD is a commonly used process in the industry, the
recent advances related to this deposition technique are mainly related to its successful
application on different grades of nickel-based superalloys (Table 3) [1–3,5,37–55]. It was
reported that NiAl coatings were effectively deposited on MAR 247 [1–3,37,39,43,49–51],
Inconel 740 [5], Inconel 738 [38,45], Inconel 713 [39,41,52], CMSX 4 [42,44,46], Inconel
100 [39], K-403 [47], K444 [51], pure nickel [48] and even on additively manufactured
Haynes 282 [55].
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Table 3. A summary of the CVD-related research [1–3,5,35–53].

Substrate Coating Main Features Ref.

MAR 247 NiAl
Improved hardness and fatigue

performance at room temperature and at
900 ◦C, wear and oxidation resistance

[1–3,37]

Inconel 740 NiAl
Improved fatigue performance at room
temperature and oxidation resistance at

1000 ◦C in air
[5]

Inconel 738 NiAl

Surface modification by grift blasting
improves the adherence of the coating and
enhances the high-temperature corrosion

resistance during shocking test with cycles
of 2 h heating and 15 min cooling, with

pressurized air at 1120 ◦C in the air

[38]

Inconel 100 Inconel 713
MAR M247 NiAl Excellent corrosion resistance during cyclic

oxidation test at 1100 ◦C [39]

Inconel 713LC NiAl Improved low-cycle fatigue behavior at
800 ◦C [40]

Inconel 740H NiAl Improved corrosion resistance in 0.1 M
Na2SO4 solution [41]

CMSX 4 NiAl
Coatings with hardness greater than
1000 HV due to the presence of TCP

precipitates
[42]

MAR M247 NiAl Improved corrosion resistance after
oxidation at 1100 ◦C for 1040 h [43]

CMSX 4 NiAl + Rh
Improved corrosion resistance during

cyclic oxidation tests at
1100 ◦C/20 h/10 cycles in air

[44]

Inconel 738 LC NiCoCrAlY

The MCrAlY layer is microstructurally
similar to the superalloy substrate and

effectively reduces the mismatch between
their thermal properties

[45]

CMSX 4 NiAl + Pd/Zr Pd + Zr co-doping improved the oxidation
resistance after 250 h at 1100 ◦C [46]

K-403 NiAl

A novel diffusion barrier of pure Al-rich
β-NiAl bond coat with promising
properties for high-temperature
applications for aircraft engine

turbine components

[47]

Pure nickel Ni2Al3
Nano-alumina–modified NiAl coating
improves the oxidation resistance at

1000 ◦C
[48]

MAR 247 NiAl + Pt, Pd, Zr
and Hf

Fully adhered coatings for
high-temperature applications [49,50]

K444 NiAl Successfully deposited coating for
high-temperature applications [51]

Inconel 713 NiAl + Rh/Pt Improved oxidation resistance at 1100 ◦C
under the atmospheric pressure [52]

Ni3Al-based single
crystal superalloy NiCrAlYSi Improved oxidation resistance at 1200 ◦C [53,54]

Haynes 282 NiAl Additively manufactured Haynes 282 with
successfully deposited NiAl coating [55]

One can observe that NiAl coatings applied on different nickel-based superalloys
have mainly been used to improve the corrosion resistance against high temperatures
ranging between 1000 ◦C [5,38,39,43,44,46,48,52] and 1200 ◦C [53,54]. It should be stressed
that such coatings exhibited excellent corrosion resistance under continuous isothermal
high-temperature exposure [5,43,46,48,52], during cyclic oxidation [38,39,44] as well as in
salty environments [41].
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The effectiveness of the CVD technology for corrosion protection was confirmed for
the MAR247 nickel-based superalloy with a CVD coating obtained at 1040 ◦C during
deposition for 12 h in a hydrogen-protective atmosphere (Figure 5a). It was found that the
surface after 24 cycles of 1 h exposure to air atmosphere at 1100 ◦C (Figure 5b) and after
corrosion tests in a 0.3 M NaCl (Figure 5c) and 0.9 M NaCl (Figure 5d) solutions was still
tight, without visible cracks and spallation products. Furthermore, NiAl coatings could
also be effectively used to improve the mechanical properties of nickel-based superalloys,
including the hardness [1–3,42], fatigue performance [5,40] and wear [3].
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One should mention that the NiAl coatings deposited on MAR 247 exhibited excellent
adherence to the base material, as even after the specimen subjected to cyclic loading
fractured, no cracks were detected in the area near the fracture (Figure 6a) and the coating
was still well connected with the base material (Figure 6b). Recently, some new approaches
were reported to increase the operating temperature of NiAl coatings above 1200 ◦C. These
involve the addition of platinum, palladium, zirconium and hafnium [44,46,49,51].
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3.4. Non-Conventional Deposition Approaches

Regardless of the conventional techniques used in the deposition of NiAl coatings,
many interesting attempts have been made to improve the high-temperature performance
of coated nickel-based superalloys (Table 4). Genova et al. [56] designed a new modified
diffusion coating for Rene 108DS through electroless deposition of a thick nickel layer,
which improved the high-temperature corrosion resistance of the substrate material at
1050 ◦C. Mazur et al. [57] proposed in situ processing of Ni3Al through a plasma-transferred
arc to increase the elastic modulus, hardness and oxidation resistance of Inconel 625 at
1300 ◦C. Enrique et al. [58] developed an electrospark deposition technique for Inconel
625, which reduced the surface roughness and near-surface porosity. Furthermore, the
coating increased the surface hardness up to 900% and density of 99.2%. Sarraf et al. [59]
presented the reactive air-aluminizing (RAA) methodology as a low-cost method with high
efficiency in forming an aluminide coating on Inconel 738LC. Zhang et al. [60] reported that
the 5Hf-NiAl coating deposited on a nickel-based superalloy by arc-ion plating exhibited
superior hot-corrosion resistance in comparison to a conventional NiAl coating. Such
behavior was related to the addition of Hf, which promoted the formation of a protective
oxide scale and reduced the growth rate of the oxide scale. Golshan and Ganjali [61]
deposited an NiAl coating on Inconel 738 by using injection laser cladding. The coating
exposed to hot-corrosion tests at 800 ◦C was characterized by high resistance against
corrosive salt, even after 480 h, due to the formation of a thick and protective Al2O3
scale. Barjesteh et al. [62] proposed a mixed methodology consisting of Pt electroplating
and low-temperature high-activity to deposit a PtAl coating on Rene 80. Although the
successful methodology was presented, the improvement in the high-temperature low-
cycle fatigue (HTLCF) was only about 5% as compared to the uncoated substrate material.
Ullah et al. [63] studied the initial oxidation behavior of an NiCoCrAlY coating deposited
on a second-generation single-crystal nickel-based superalloy by using arc-ion plating in
air at 900 ◦C, 1000 ◦C and 1100 ◦C. The authors highlighted that the oxide scale in the
initial stage was mainly composed of θ-Al2O3 at 900 ◦C, while α-Al2O3 emerged with
an increasing oxidation temperature. Furthermore, the beneficial effect of Y addition
was reflected by its segregation at the scale/coating interface, which led to less cavity
formation and hence improved the oxide scale adherence. Wu et al. [64] described the
corrosion mechanisms of NiAl-coated pure nickel under a KCl deposition environment
(95%N2 + 5%O2) alone or with 15% or 30% water vapor at 700 ◦C. It was reported that
the coatings were susceptible to slight surface and intergranular corrosion attacks without
water vapor. However, the increase in water vapor to 30% led to the effective oxidation–
decomposition reaction, resulting in severe degradation of the coatings. Góral et al. [65]
proposed a new concept of thermal barrier coating for MAR M247 with a Pt + Pd/Zr/Hf-
modified aluminide bond coat and a ceramic layer formed by the PS-PVD method, which
was found to be an attractive alternative to conventional coatings produced using the
expensive electron beam physical vapor deposition (EB-PVD) method. Shademani et al. [66]
reported positive effects of rejuvenation heat treatment performed before pack cementation
of ZHS32. The deposited β-NiAl coating was characterized by improved nanohardness,
microhardness and elastic modulus as compared to the non-heat-treated substrate. Khan
et al. [67] proposed a two-step electrodeposition + aluminizing process to deposit an
NiAl coating with Cr2O3 nanoparticles on pure nickel, which effectively improved its
high-temperature corrosion resistance at 900 ◦C. Fatemi and Nogorani [68] studied the
halide-activated pack cementation process in which an NiAl coating was doped with Ce, Y,
La, and Zr. The successfully coated Inconel 738LC exhibited protective behavior against
hot corrosion at 900 ◦C in an Na2SO4-NaCl-V2O5 mixture. Liu et al. [69] found that a
combined electroplating and gaseous-aluminizing process during which an (Ni, Pt)Al
coating is doped with Re led to the improved cyclic and isothermal oxidation behavior of
a nickel-based single-crystal superalloy at 1100 ◦C for 500 cycles and 1000 h, respectively,
as compared to an (Ni,Pt)Al undoped coating. On the other hand, Li et al. [70] proposed
a pre-oxidation treatment for an (Ni, Pt)Al coating under pressure 5 × 102 at 1050 ◦C for
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4 h to form a uniform, dense and compact α-Al2O3 scale. The authors found that the
pre-oxidized coating exhibited improved corrosion resistance at 1000 ◦C under a simulated
marine environment (NaCl + water vapor) compared with the one without pre-oxidation
due to the formation of a stable and thick alumina oxide. Similarly to [69], Li et al. [71]
also reported the beneficial effects of Re doping in terms of the improvement of the cyclic
oxidation resistance of 1Re-(Ni,Pt)Al coating. Furthermore, the addition of an Ni/Ni-
Re layer also reduces the oxidation rate of protected material at 1150 ◦C. The improved
resistance to cyclic oxidation at 1150 ◦C was also reported for the Rene N5 alloy following
the addition of Hf/Zr during electron beam physical vapor deposition [72].

Table 4. A summary of the CVD-related research.

Substrate Deposition Coating Main Advantages Ref.

René 108DS Electroless plating Ni + α-Al2O3
Improved corrosion resistance after

1000 h of exposure at 1050 ◦C [56]

Inconel 625 Plasma-transferred arc NiAl Increased elastic modulus, hardness
and oxidation resistance at 1300 ◦C [57]

Inconel 625 Electrospark deposition NiAl

Reduces surface roughness and
near-surface porosity, hardness

increases up to 900% and density of
99.2%

[58]

Inconel 738LC Reactive air-aluminizing β-NiAl Successful application of low-cost
methodology with high efficiency [59]

Nickel-based superalloy Arc-ion plating 5Hf-NiAl Superior hot-corrosion resistance at
900 ◦C [60]

Inconel 738 Injection laser cladding NiAl Corrosion resistance in a salty
environment at 800 ◦C [61]

Rene 80 Electroplating + low-temperature
high-activity aluminizing PtAl Improvement of the HTLCF life [62]

Second-generation
nickel-based

single-crystal superalloy
Arc-ion plating NiCoCrAlY

Y segregation at the scale/coating
interface resulted in less cavity

formation and hence improved the
oxide scale adherence

[63]

Pure nickel Aluminizing NiAl
Resistant to high-temperature

corrosion attack after exposure at
700 ◦C for 168 h

[64]

MAR M247 Pt/Pd electroplating + CVD Pt + Pd/Zr/Hf-NiAl Alternative to conventional coatings
produced by using EB-PVD method [65]

ZHS32 Rejuvenation heat treatment +
pack cementation β-NiAl Improved nanohardness,

microhardness and elastic modulus [66]

Pure nickel Electrodeposition + aluminizing Cr2O3 + Ni2Al3
Improved high-temperature corrosion
resistance at 900 ◦C by the addition of

Cr2O3 nanoparticles
[67]

Inconel 738LC Halide-activated pack cementation NiAl + Ce, Y, La, and Zr
Protective behavior against hot
corrosion at 900 ◦C in Na2SO4

-NaCl-V2 O5 mixture
[68]

Nickel-based single
crystal superalloy

Electroplating + gaseous
aluminizing (Ni,Pt)Al+ Re

Improved cyclic and isothermal
oxidation behavior at 1100 ◦C for

500 cycles and 1000 h
[69]

Ni-based single
crystal superalloy

Electroplating + above-pack
aluminizing (Ni,Pt)Al

Pre-oxidized coating exhibited
improved corrosion resistance at

1000 ◦C under simulated
marine-environment (NaCl + water

vapor) compared with the one without
pre-oxidation, due to the formation of
a stable and exclusive α-Al2O3 layer.

[70]

single-crystal
nickel-based superalloy Aluminizing β-(Ni,Pt)Al + Ni/Ni-Re

Addition of an Ni/Ni-Re layer reduced
the oxidation rate during cyclic

exposure at 1150 ◦C
[71]

René N5 Electron beam physical
vapor deposition Hf/Zr + β-NiAl Good oxide scale adhesion during the

cyclic oxidation at 1150 ◦C [72]



Coatings 2024, 14, 630 12 of 15

One should highlight the variety of modified deposition techniques used to enhance the
high-temperature performance of nickel-based superalloys. Such processes usually involve pre-
aluminizing treatments [61,64,67,69,70] and the addition of rare elements [58,64,68,69,71,72] or
oxide nanoparticles [54,67] to increase the corrosion resistance of these alloys. The constant
modification and improvement of conventionally used methods are directly related to the
increasing demands of different industries to increase the operating conditions of elements
made of nickel-based superalloys.

4. Summary and Future Perspectives

In this review, different deposition techniques dedicated to nickel-based superalloys
were presented and discussed. Although all of them were used to deposit NiAl coatings
to improve some functional properties of the base materials, one can expose different
approaches leading to the same findings. It could be noticed that PC methods are mainly
used to deposit pure NiAl or β-NiAl coatings [6,7,12–17,23,24]. Some reports analyze the
addition of different oxides [8,9] and Zr [18–20].

A similar tendency was found for the slurry-aluminizing [25,26,29–32] and CVD
technologies [1–3,5,37–43,47,51,55], for which the deposition of NiAl coatings is still the
main area of interest. Interestingly, the most frequently modified nickel-based alloys are
those with the highest oxidation resistance, possessing high mechanical strength. These
involve Rene 80 [8,18,63], Inconel 625 [13,57,58], Inconel 713 [39,40,52], Inconel 718 [41],
Inconel 738L [11,19,22,36,45,59,61,65,68] and CMSX-4 [17,30,42,44,46]. One should highlight
that the research involving conventional nickel-based superalloys is mainly dedicated to
future high-temperature applications. Therefore, the suitability of deposited NiAl coatings
is assessed not only in terms of the oxidation resistance but also regarding their mechanical
performance. One should stress that such an approach is extremely important since the
coating durability should be investigated together with the substrate material. The coating
itself could possess superior oxidation resistance; however, if it is not well adhered to the
base material, its industrial application is not possible.

Although there is no direct relation between the deposition technique and the cor-
rosion resistance, the following trends have been observed. One should emphasize that
NiAl coatings possess high oxidation resistance at high temperatures and in salty envi-
ronments. Such unmodified coatings are widely deposited by using all the discussed
methods. However, the coating modification was less frequently applied during slurry
aluminizing. On the other hand, there is a general tendency to increase the service param-
eters of structural elements operating under aggressive conditions. Such trends enforce
the need to enhance the durability of coatings as well. Therefore, rare earth elements,
including zirconium [18–20], hafnium [21,60,66], palladium [46,66], rhenium [47,52,69] and
platinum [49,51,52,63,66,69–71], are frequently added to significantly extend the service
temperature of nickel-based superalloys up to 1300 ◦C. One can conclude that their addition
is extremely beneficial as not only the operating temperature increase but also the material
stability of the coating is improved.

It is clearly observed that recent research has focused on improving the deposition of
aluminide coatings on nickel-based superalloys to enhance their oxidation and corrosion
resistance at high temperatures. Researchers have explored various advanced deposition
techniques, such as pack cementation, electrochemical deposition, and chemical vapor
deposition (CVD), to improve the quality and properties of aluminide coatings on super-
alloys. Although these techniques have been used for many years, constant progress is
maintained due to the introduction of new materials. Th addition of other elements, such
as chromium, yttrium, and silicon, has been studied to improve the performance of the
coatings. The microstructure of aluminide coatings plays a crucial role in their performance,
so studies have also focused on controlling the grain size, morphology, and distribution of
phases in the coatings to improve their mechanical and protective properties. Apart from
conventional AC containing a top coat and interlayer, some new multi-layered aluminide
coatings, where different layers with varying compositions or structures are deposited on
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the superalloy substrate, are of great interest. These multi-layered coatings offer enhanced
protection against oxidation and corrosion, as well as improved adhesion to the substrate.
One should stress that recent studies on the deposition of aluminide coatings on nickel-
based superalloys have led to the improved performance and durability of these materials
in high-temperature applications, such as gas turbines, aerospace components, and power
generation systems.
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