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We introduce the concentrated information of tripartite quantum states. For three parties Alice, Bob, and
Charlie, it is defined as the maximal mutual information achievable between Alice and Charlie via local
operations and classical communication performed by Charlie and Bob. We derive upper and lower bounds
to the concentrated information, and obtain a closed expression for it on several classes of states including
arbitrary pure tripartite states in the asymptotic setting. We show that distillable entanglement,
entanglement of assistance, and quantum discord can all be expressed in terms of the concentrated
information, thus revealing its role as a unifying informational primitive. We finally investigate quantum
state merging of mixed states with and without additional entanglement. The gap between classical and
quantum concentrated information is proven to be an operational figure of merit for mixed state merging in
the absence of additional entanglement. Contrary to the pure state merging, our analysis shows that
classical communication in both directions can provide an advantage for merging of mixed states.
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Introduction.—Correlations between parts of a composite
system are crucial to dictate its collective behavior and to
determine its usefulness for functional tasks involving the
correlated components. This is true both for physical models
in condensed matter and statistical mechanics [1], and for
complex systems in the biological, engineered, and social
domains [2]. In classical and quantum systems, correlations
between two parties are generally quantified by mutual
information. In a thermodynamic context, mutual informa-
tion quantifies the amount of work required to erase all the
correlations established between two parties [3]. In the
context of quantum communication [4], mutual information
plays a fundamental role in describing the classical capacity
of a noisy quantum channel connecting the two parties [5].
Maximizing themutual information between, say, Alice and
Charlie, within a larger system potentially involving other
cooperative or competitive players, ensures that a reliable
communication channel is established between the chosen
sender and receiver, so that Alice andCharlie can implement
quantum cryptography or quantum state transfer protocols
with high success [6].
In this Letter we introduce and study a quantum

informational task that we call information concentration.
We consider a general communication scenario involving
three parties, Alice, Bob, and Charlie, who initially share an
arbitrary mixed quantum state. Our main question can then
be formulated as follows: “How much can Charlie learn
about Alice by asking Bob?” To answer this question we
analyze the task of maximizing the mutual information
between Alice and Charlie via a cooperative strategy by
Charlie and Bob only relying on local operations and
classical communication (LOCC). The corresponding

maximal mutual information between Alice and Charlie
is termed concentrated information (CI).
In the classical domain this quantity coincides with the

total mutual information between Alice and the remaining
two parties, since in this case Bob can share all his knowl-
edge with Charlie via a classical channel. However, the
situation changes completely if quantum theory is applied.
As we will show, the CI is, in general, below the maximal
value achievable in the classical case. We derive upper
and lower bounds to the CI which depend on classical and
quantum correlations in different partitions of the original
tripartite state. Remarkably, when the three players share
asymptotically many copies of an arbitrary pure state, we
obtain a closed expression for the CI, only depending on the
initial entropic degrees of Alice’s and Charlie’s subsystems.
The CI can be further evaluated exactly in some classes
of mixed states. The broad relevance of the concept is
underlined by showing that distillable entanglement [7],
entanglement of assistance [8], and quantum discord [9,10]
can all be expressed in general as exact functions of CI.
Finally, we study the usefulness of the CI in the context

of quantum state merging [11,12]. We extend state merging
to the realistic case of mixed states, and show that for this
generalized task classical communication in one direction is
strictly less powerful than general LOCC. Furthermore, by
exploiting recent breakthrough results on conditional mutual
information [13,14], we prove that the CI yields a faithful
figure of merit for LOCC quantum state merging (LQSM), a
variant of state merging operating on mixed states without
additional entanglement. The results of this Letter provide
fundamental and practical advances for quantum information
theory and its applications in a multipartite scenario.

PRL 115, 030505 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
17 JULY 2015

0031-9007=15=115(3)=030505(5) 030505-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.115.030505
http://dx.doi.org/10.1103/PhysRevLett.115.030505
http://dx.doi.org/10.1103/PhysRevLett.115.030505
http://dx.doi.org/10.1103/PhysRevLett.115.030505


Concentrated information: Setting and definitions.—We
consider three parties, Alice, Bob, and Charlie, sharing a
quantum state ρ ¼ ρABC. The aim of Bob and Charlie is to
concentrate their mutual information with Alice on Charlie’s
sidevia LOCC.To this aim,Charliemakes useof an auxiliary
quantum register R, so that the total initial state is given by

σi ¼ ρABC ⊗ ρR: ð1Þ
In the concentration process, Bob and Charlie perform an

LOCC protocol which maximizes the mutual information
between Alice and Charlie (see Fig. 1). Noting that the total
system of Charlie consists of two subsystems C and R, the
maximal mutual information achievable in this process is
given by

IðρÞ ¼ sup
Λ
IA∶CRðσfÞ: ð2Þ

In the above expression, IA∶CR is the mutual information
between Alice’s system A and Charlie’s system CR, the
supremum is taken over all LOCC protocols Λ ¼ ΛB↔CR

between Bob and Charlie, and the final state σf ¼ σACRf is
the state shared by Alice and Charlie after the application of
the LOCC protocol Λ on the initial state σi:

σf ¼ TrB½Λ½σi��: ð3Þ
The quantity defined in Eq. (2) will be referred to as
concentrated information. We will also consider the case
of one-way LOCC where the classical communication is
directed from Bob to Charlie only. The maximal mutual
information in this case will be called one-way concentrated
information, and wewill denote it by I→. Wewill also study
the situation where a large number of copies of the state ρ
is available. The corresponding regularized CI is given as

I∞ðρÞ ¼ lim
n→∞

1

n
Iðρ⊗nÞ; ð4Þ

and its one-way version will be denoted by I∞
→.

At this point it is useful to note that the CI is never
smaller than its one-way version I→ and never larger than
the total mutual information IA∶BC:

I→ðρÞ ≤ IðρÞ ≤ IA∶BCðρÞ: ð5Þ

The first inequality is evident by observing that one-way
LOCC is a restricted version of general LOCC. The second
inequality represents the fact that Bob and Charlie cannot
concentrate more mutual information than is initially
present in the total state ρ. The proof follows by noting
that any operation acting on the systems of Bob and Charlie
cannot increase their mutual information with Alice [15],
and thus, IA∶CRðσfÞ ≤ IA∶BCRðσiÞ. Together with the fact
that IA∶BCRðσiÞ ¼ IA∶BCðρÞ this completes the proof of
Eq. (5). We remark that the CI has a natural interpretation
as the amount of information Charlie can obtain about
Alice by asking Bob, within the considered quantum
communication scenario.
Bounding the CI.—Having introduced the CI, we will

now show a powerful upper bound, which also relates I to
the distillable entanglementEd. As wewill also see below in
this Letter, the bound is tight in a large number of relevant
scenarios, including all pure states in the asymptotic limit.
Theorem 1.—CI is bounded above as follows:

IðρÞ ≤ min fIA∶BCðρÞ; SðρAÞ þ EAB∶C
d ðρÞg: ð6Þ

We note that the same bound also applies to the regular-
ized concentrated information I∞. The proof of the theorem
can be found in Sec. 1 of the Supplemental Material [16].
Because of Eq. (5), the above theorem also provides

an upper bound on the one-way CI. Similarly, any lower
bound on I→ is also a lower bound for I. We will now
show that I→ can be bounded below as follows:

I→ðρÞ ≥ max fIA∶CðρACÞ; IA∶BðρABÞ − δAjBðρABÞg; ð7Þ
where δ is the quantum discord [9,10], a measure of
quantumness of correlations (for more details and alternative
definitions, see also Refs. [22–27]). The inequality I→ðρÞ ≥
IA∶CðρACÞ can be seen by noting that this amount of mutual
information between Alice and Charlie is always achieved
if Bob and Charlie do not interact. On the other hand, the
inequality I→ðρÞ ≥ IA∶BðρABÞ − δAjBðρABÞ can be seen by
noting that erasing Charlie’s system cannot increase the CI:
I→ðρÞ ≥ I→ðρAB ⊗ j0ih0jCÞ. To complete the proof of
Eq. (7), we note that for states of the form ρAB ⊗ ρC the
CI and its one-way version coincide, and are given by [27,28]

IðρAB ⊗ ρCÞ ¼ I→ðρAB ⊗ ρCÞ ¼ IA∶BðρABÞ − δAjBðρABÞ:
ð8Þ

We note that both of the aforementioned quantities
bounding the CI, namely, the distillable entanglement
and the quantum discord, are usually difficult to compute
for an arbitrary state. However, closed expressions for both
quantities are known for many important families of states
[25,29]. For instance, the distillable entanglement can be
evaluated exactly for all maximally correlated states, and

FIG. 1 (color online). Concentrating information in tripartite
quantum states. (a) The initial situation: Alice, Bob, and Charlie
share a quantum state ρABC; additionally, Charlie has access to a
quantum register R. Bob and Charlie perform LOCC, aiming to
maximize the mutual information between Alice and Charlie. The
final state shared by Alice and Charlie is illustrated in (b).
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that quantum discord can be evaluated for any state ρAB of
rank two, if the subsystem A is a qubit. This renders the
bounds on the CI analytically accessible in several relevant
cases. Finally, we also mention that the bounds provided in
Eqs. (6) and (7) can be adapted to obtain alternative upper
and lower bounds on theCI,whichmay be easier to evaluate.
In particular, any upper bound on the distillable entangle-
ment (such as the logarithmic negativity [30–32], which is a
computable entanglement monotone related to the entan-
glement cost under operations preserving the positivity of
the partial transpose [33,34]) provides a (looser) upper
bound on the CI via Eq. (6). Similarly, (looser) lower
bounds can be derived from Eq. (7) by providing upper
bounds on quantum discord; since quantum discord is defi-
ned as a minimization problem, it is easy to provide compu-
table bounds also in this situation; see, e.g., Refs. [35,36].
Exact evaluation of CI.—Wenowshow that, impressively,

closed formulas for the CI can be obtained for a number of
relevant classes of states.We start by considering the situation
where Alice, Bob, and Charlie share a pure state jψi ¼
jψiABC. In this case, the one-way CI is given exactly by

I→ðjψiÞ ¼ SðρAÞ þ EaðρACÞ: ð9Þ
Here,Ea is the entanglement of assistancewhichwas defined
inRef. [8] as follows:EaðρACÞ ¼ max

P
ipiEdðjψ iiACÞ. The

maximum is taken over all decompositions of the state ρAC,
while the distillable entanglement of a pure state jψAC

i i is
equal to the von Neumann entropy of the reduced state [7]:
Edðjψ iiACÞ ¼ SðρAi Þ. For the proof of Eq. (9) we refer to
Sec. 2 of the Supplemental Material [16]. We will now
evaluate the regularizedCI for an arbitrary tripartite pure state
jψi ¼ jψiABC. Remarkably, in this scenario I∞ and I∞

→ both
coincide with the bound provided in Theorem 1; i.e., the
bound is tight for all pure states in the asymptotic setting.
Theorem 2.—For any pure state jψi ¼ jψiABC it holds

I∞ðjψiÞ ¼ I∞
→ðjψiÞ ¼ SðρAÞ þminfSðρAÞ; SðρCÞg: ð10Þ

This theorem provides a simple expression for the
regularized CI of pure states, and shows that one-way
LOCC operations suffice for optimal information concen-
tration in the asymptotic setting. For the proof of the
theorem see Sec. 3 of the Supplemental Material [16].
Finally, we consider an instance of mixed states, where

Bob is in possession of two particles B1 and B2, each of
them being correlated exclusively with Alice or Charlie. If
the state shared by Alice and Bob is pure, the scenario is
covered by states of the form

ρ ¼ jψihψ jAB1 ⊗ ρB2C: ð11Þ
As we show in Sec. 4 of the Supplemental Material [16],
the results presented in this Letter allow us to evaluate the
regularized CI for this set of states:

I∞ðρÞ ¼ SðρAÞ þminfSðρAÞ; EdðρB2CÞg: ð12Þ

Importantly, this implies that the bound provided in
Theorem 1 is asymptotically saturated for all states given
in Eq. (11).
CI as a unifying quantum informational primitive.—The

approach presented in this Letter allows us to unify three
fundamental quantities in quantum information theory:
distillable entanglement Ed [7], entanglement of assistance
Ea [8], and quantum discord δ [9,10]. As we will see in the
following, all these quantities can be traced to a common
origin, since all of them can be written in terms of the CI.
For Ea this can be seen by using Eq. (9), which implies

that the entanglement of assistance of a state ρAC is related
to the one-way CI as follows: EaðρACÞ¼ I→ðjψiÞ−SðρAÞ,
where jψi ¼ jψiABC is a purification of ρAC. The relation to
quantum discord δ is evident from Eq. (8), according to
which the amount of discord in a state ρAB can be expre-
ssed in terms of CI as follows: δAjBðρABÞ ¼ IA∶BðρABÞ−
IðρAB ⊗ ρCÞ, where ρC is an arbitrary state of Charlie’s
system C. Finally, the relation between CI and distillable
entanglement is given by Eq. (12), which implies that
EdðρB2CÞ ¼ I∞ðρÞ − log2dA, for an arbitrary state ρB2C,
with ρ ¼ jϕþihϕþjAB1 ⊗ ρB2C, jϕþiAB1 ¼ P

ijiiiAB1=
ffiffiffiffiffi
dA

p
,

and dA ¼ dB1
¼ dB2

.
It is straightforward to extend the aforementioned results

to entanglement of formation Ef and entanglement cost Ec
by using the relation between quantum discord and
entanglement of formation [37–40], and recalling that Ec
is equal to regularized Ef [41]. It is thus reasonable to
expect that other important quantities might be also recast
in terms of the CI.
LOCC quantum state merging (LQSM).—We will now

show that the task of concentrating information presented
in this Letter is closely related to the task of merging
quantum states via LOCC, that we analyze here. In the
latter task, Bob and Charlie aim to merge their parts of the
total state ρ ¼ ρABC on Charlie’s side via LOCC, while
preserving the coherence with Alice. To this end, Charlie
has access to an additional register R, and the overall initial
state σi is again given by Eq. (1). It is instrumental to
compare this task to the standard quantum state merging as
presented in [11,12]. In contrast to that well established
protocol, in LQSM Bob and Charlie are not allowed to use
any additional entangled resource states, and the overall
state ρ is not restricted to be pure.
We now introduce the fidelity of LQSM as follows:

F ðρÞ ¼ sup
Λ
Fðσf; σtÞ; ð13Þ

with Uhlmann fidelity Fðρ; σÞ ¼ Trð ffiffiffi
ρ

p
σ

ffiffiffi
ρ

p Þ1=2. Here, the
desired target state σt ¼ σACRt is the same state as ρ ¼ ρABC

up to relabeling the systems B and R. The final state σf was
already introduced in Eq. (3), and the supremum is taken
over all LOCC operations Λ ¼ ΛB↔CR between Bob and
Charlie.

PRL 115, 030505 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
17 JULY 2015

030505-3



The relevance of the quantity defined in Eq. (13) comes
from the fact that it faithfully captures the performance of
the considered task. In particular, a state ρ admits perfect
LQSM if and only if F ðρÞ ¼ 1, while F ðρÞ < 1 otherwise.
As we will see in a moment, the fidelity is closely related to
the gap between quantum and classical CI, which can then
be regarded as a faithful figure of merit for LQSM on its
own right. In particular, we will find that perfect LQSM is
possible if and only if the CI is equal to the total mutual
information IA∶BC:

F ðρÞ ¼ 1⇔IðρÞ ¼ IA∶BCðρÞ; ð14Þ
while IðρÞ < IA∶BCðρÞ otherwise. This result implies an
operational equivalence between information concentration
and LQSM: a state admits perfect LQSM if and only if it
admits perfect information concentration, i.e., if all the
mutual information available in the state can be concen-
trated on Charlie’s side. To prove the statement in Eq. (14)
we will establish a link between F and I formalized by the
following theorem.
Theorem 3.—The fidelity of LQSM is bounded below as

F ðρÞ ≥ 2−ð1=2Þ½IA∶BCðρÞ−IðρÞ�: ð15Þ
The proof of the theorem is based on very recent results

fromRef. [13] and can be found inSec. 5 of theSupplemental
Material [16]. From this result it is evident that perfect
information concentration implies perfect LQSM:
IðρÞ ¼ IA∶BCðρÞ ⇒ F ðρÞ ¼ 1. The other direction follows
straightforwardly by continuity of the mutual information.
These results demonstrate that the gap IA∶BCðρÞ − IðρÞ

has an inherent operational meaning, quantifying the devia-
tion from perfect LQSM. Note that this gap is a genuinely
quantum feature, and vanishes for fully classical states.
In the classical domain all the mutual information available
in the state can be concentrated via classical communication.
Furthermore, we will provide another necessary con-

dition for perfect LQSM. In particular, Bob and Charlie
can perfectly merge their systems via LOCC on Charlie’s
side only if the state ρ ¼ ρABC satisfies the inequality
EAB∶CðρÞ ≥ EA∶BCðρÞ for all entanglement measures E.
The statement can be proven directly by using the fact that
any valid entanglement monotone E cannot increase under
LOCC [29]. This implies that any state ρwhich violates the
above inequality for some entanglement measure does not
allow for perfect LQSM.
Quantum state merging of mixed states.—Finally,wewill

show that the novel concepts of information concentration
and LQSM are also useful in the context of conventional
quantum state merging [11,12]. We first introduce the
asymptotic fidelity of LQSM, F∞ðρÞ ¼ limn→∞F ðρ⊗nÞ,
and note that a state ρ allows for perfect asymptotic LQSM
if and only if its asymptotic fidelity is F∞ðρÞ ¼ 1. As we
show in Sec. 6 of the Supplemental Material [16], perfect
asymptotic LQSM implies perfect asymptotic information
concentration:

F∞ðρÞ ¼ 1 ⇒ I∞ðρÞ ¼ IA∶BCðρÞ: ð16Þ
This result means that Bob and Charlie cannot merge their
state via LOCC even in the asymptotic scenario, if the
regularized CI is below the total mutual information IA∶BC.
The importance of this result lies in the fact that the regu-
larized CI can be evaluated exactly in a large number of rele-
vant scenarios, as was demonstrated previously in this Letter.
Using the tools presented above, we are now in position

to extend quantum state merging to mixed states in the
following way. For a given state ρ ¼ ρABC, we supplement
Bob and Charlie with additional entangled states
jϕi ¼ jϕiB0C0

. If we now adjust these states such that the
CI of the total state ρ ⊗ jϕihϕj becomes equal to the total
mutual information IA∶BC, the amount of entanglement in
jϕi provides a lower bound on the amount of resources
needed to merge the mixed state ρ. This shows how the
tools just developed can be used to gain new results in the
established framework of state merging.
In the next step we will demonstrate how results from

quantum state merging can be carried over to LQSM. In
particular, the results presented in Refs. [11,12] imply that
Bob and Charlie can asymptotically merge their parts of a
pure state jψi ¼ jψiABC via LOCC if and only if their
conditional entropy SðρBCÞ − SðρCÞ is not positive. This
result can be immediately extended to mixed states: if a state
ρ ¼ ρABC has nonpositive conditional entropy, it allows for
perfect LQSM asymptotically, i.e., SðρBCÞ − SðρCÞ ≤ 0 ⇒
F∞ðρÞ ¼ 1. Together with Eq. (16) this means that perfect
asymptotic information concentration is also possible in this
case. Note that the converse is not true in general: there exist
mixed states ρ which allow for perfect LQSM, but have
positive conditional entropy.
Finally, we will show that, in quantum state merging of

mixed states, general LOCC are strictly more powerful than
one-way LOCC. This is notable, since both procedures are
instead equivalent in the traditional quantum state merging
of pure states [11,12], for which classical communication in
both directions does not provide any advantage. In particular,
we will present a family of states allowing for perfect state
merging with general LOCC in the single-shot scenario, but
which cannot be merged via one-way LOCC even asymp-
totically. The following family of states has this property:

ρ ¼ 1

4
ðj0ih0jB ⊗ j00ih00jAC þ j1ih1jB ⊗ j10ih10jAC

þ jψihψ jB ⊗ j01ih01jAC þ jψ⊥ihψ⊥jB ⊗ j11ih11jACÞ;
ð17Þ

with mutually orthogonal states jψi and jψ⊥i such that
0 < jh0jψij < 1. Clearly, this state can be merged with
two rounds of classical communication already in the
single-shot scenario. The proof that the state cannot be
merged via one-way LOCC even asymptotically is strongly
based on the present framework of information
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concentration, and the details are provided in Sec. 7 of the
Supplemental Material [16].
Conclusion.—In this Letter we introduced the concen-

trated information of arbitrary tripartite quantum states,
provided upper and lower bounds to it, and an explicit
expression for all tripartite pure states in the asymptotic
setting and other families of mixed states. We also inves-
tigated LOCC quantum state merging, a variation of the
standard quantum state merging protocol where the merg-
ing procedure is performed on mixed states via LOCC only,
and proved that CI is a faithful figure of merit for this task.
We also proved that distillable entanglement, entanglement
of assistance, and quantum discord can all be expressed as
exact functions of CI, and demonstrated how the methods
developed here can be used to generalize standard quantum
state merging to mixed states, thus providing novel insights
on such communication primitive. We expect that further
investigation of the concepts developed here may lead to an
operational classification of multipartite quantum states,
different from what emerges from the notions of entangle-
ment and other quantum correlations known today.
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