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Abstract Dynamic cellular systems reprogram gene expression to ensure appropriate cellular
fate responses to specific extracellular cues. Here we demonstrate that the dynamics of Nuclear
Factor kappa B (NF-kB) signalling and the cell cycle are prioritised differently depending on the
timing of an inflammatory signal. Using iterative experimental and computational analyses, we
show physical and functional interactions between NF-kB and the E2 Factor 1 (E2F-1) and E2 Factor
4 (E2F-4) cell cycle regulators. These interactions modulate the NF-kB response. In S-phase, the
NF-kB response was delayed or repressed, while cell cycle progression was unimpeded. By
contrast, activation of NF-kB at the G1/S boundary resulted in a longer cell cycle and more
synchronous initial NF-kB responses between cells. These data identify new mechanisms by which
the cellular response to stress is differentially controlled at different stages of the cell cycle.
DOI: 10.7554/eLife.10473.001

Introduction
One of the most important functions in a cell is the accurate interpretation of the information
encoded in extracellular signals leading to context-dependent control of cell fate. This is achieved
via complex and dynamic signal transduction networks, through which gene expression is re-pro-
grammed in response to specific environmental cues (Barabási et al., 2011). Many signalling sys-
tems are subject to temporal changes, involving dynamic alterations to the states of their
constituent genes and proteins, with time scales ranging from seconds (Calcium signalling [Ber-
ridge, 1990; Schmidt et al., 2001]), to hours (DNA damage response [Lahav et al., 2004], inflam-
matory response [Ashall et al., 2009]), to days (circadian clock [Welsh et al., 2004], cell cycle
[Sakaue-Sawano et al., 2008]). Although previous studies have indicated interactions between pro-
teins associated with different dynamical systems (Wilkins and Kummerfeld, 2008; Bieler et al.,
2014; Feillet et al., 2014), how and when signalling systems are dynamically integrated to deter-
mine important cell fate decisions is not well understood.

Nuclear Factor kappa B (NF-kB) is an important signalling system, implicated in many diseases
including autoimmune diseases and cancer (Grivennikov et al., 2010). Inflammatory cues such as
Tumour Necrosis Factor alpha (TNFa) can trigger the nuclear translocation of the NF-kB RelA sub-
unit and activation of target gene transcription (Hayden and Ghosh, 2008). Nuclear NF-kB activates
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feedback regulators, including the inhibitory kappa B alpha (IkBa) and epsilon (IkBe) inhibitors (Are-

nzana-Seisdedos et al., 1997; Kearns et al., 2006; Paszek et al., 2010), which bind and transport

NF-kB back into the cytoplasm. In response to TNFa, this system shows nuclear-cytoplasmic (N:C)

oscillations in the localization of the NF-kB complex associated with out-of-phase cycles of degrada-

tion and re-synthesis of IkB proteins (Nelson et al., 2004; Ashall et al., 2009; Lee et al., 2009;

Sung et al., 2009; Tay et al., 2010; Turner et al., 2010; Ruland, 2011; Hughey et al., 2015).

Through systems biology and experimental approaches, the frequency of these oscillations has been

proposed to be a key parameter that regulates the pattern of downstream gene expression

(Ashall et al., 2009; Lee et al., 2014; Williams et al., 2014).
NF-kB signalling has also been suggested to have a role in controlling cell division through a

number of different mechanisms (Perkins and Gilmore, 2006). Many NF-kB family members have

been characterised as oncoproteins (e.g. c-Rel and Bcl-3 [Hayden and Ghosh, 2008]). Also, a num-

ber of cell cycle control proteins have been shown to be NF-kB transcriptional targets, including

Cyclin D, (Guttridge et al., 1999; Sée et al., 2004) and p21, an inhibitor of Cyclin Dependent Kinase

(CDK) activity (Hinata et al., 2003).
Although interactions between NF-kB and the cell cycle have been reported (Kundu et al., 1997;

Phillips et al., 1999; Perkins and Gilmore, 2006); observing the dynamics of such interactions is

challenging via traditional biochemical techniques, which often fail to capture the heterogeneity in a

cellular population. Analysis of cell-to-cell heterogeneity has revealed novel regulatory mechanisms

for diverse cellular processes (Pelkmans, 2012) and it has been suggested that this is a fundamental

property of the NF-kB response (Paszek et al., 2010).
The E2 Factor (E2F) proteins are differentially expressed during the cell cycle to control cell prolif-

eration (Bertoli et al., 2013). They are a family of transcription factors that play a key role in the G1/

S cell cycle checkpoint. Previous studies have provided preliminary evidence for physical interaction

between NF-kB and E2F proteins (Tanaka et al., 2002; Lim et al., 2007; Garber et al., 2012) In the

current study, a combination of single cell imaging and mathematical modelling was applied to

eLife digest Investigating how cells adapt to the constantly changing environment inside the
body is vitally important for understanding how the body responds to an injury or infection. One of
the ways in which human cells adapt is by dividing to produce new cells. This takes place in a
repeating pattern of events, known as the cell cycle, through which a cell copies its DNA (in a stage
known as S-phase) and then divides to make two daughter cells. Each stage of the cell cycle is
tightly controlled; for example, a family of proteins called E2 factors control the entry of the cell into
S phase.

“Inflammatory” signals produced by a wound or during an infection can activate a protein called
Nuclear Factor-kappaB (NF-kB), which controls the activity of genes that allow cells to adapt to the
situation. Research shows that the activity of NF-kB is also regulated by the cell cycle, but it has not
been clear how this works. Here, Ankers et al. investigated whether the stage of the cell cycle might
affect how NF-kB responds to inflammatory signals.

The experiments show that the NF-kB response was stronger in cells that were just about to
enter S-phase than in cells that were already copying their DNA. An E2 factor called E2F-1 –which
accumulates in the run up to S-phase – interacts with NF-kB and can alter the activity of certain
genes. However, during S-phase, another E2 factor family member called E2F-4 binds to NF-kB and
represses its activation. Next, Ankers et al. used a mathematical model to understand how these
protein interactions can affect the response of cells to inflammatory signals.

These findings suggest that direct interactions between E2 factor proteins and NF-kB enable
cells to decide whether to divide or react in different ways to inflammatory signals. The research
tools developed in this study, combined with other new experimental techniques, will allow
researchers to accurately predict how cells will respond to inflammatory signals at different points in
the cell cycle.
DOI: 10.7554/eLife.10473.002
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investigate reciprocal co-ordination of the NF-kB response and cell proliferation driven by dynamic
interactions between RelA and E2F proteins.

Results

The NF-kB response depends on the cell cycle phase
We investigated the effect of cell cycle timing on the NF-kB response in HeLa cervical cancer and
SK-N-AS neuroblastoma cells. SK-N-AS cells showed repeated oscillations in response to TNFa stim-
ulation that were more damped than those seen in HeLa cells (see Appendix 1—figure 1 for longer

time course data [Nelson et al., 2004; Ashall et al., 2009]). In previous studies it was observed that
when SK-N-AS cells were treated with a saturating dose of TNFa (10 ng/ml) the initial response of

NF-kB (i.e. immediate RelA nuclear translocation) was relatively synchronous between cells
(Nelson et al., 2004; Ashall et al., 2009; Turner et al., 2010) (Figure 1A; Appendix 1—figure 1).
However, these data showed a variation in timing and amplitude when cells were treated with a

lower dose of 30 pg/ml TNFa, even though this was functionally close to a saturating dose that gave
a strong population-level NF-kB response (Turner et al., 2010) (Figure 1B). In common with treat-
ment of SK-N-AS cells at 30 pg/ml, HeLa cells showed greater heterogeneity in their initial response

at a saturating 10 ng/ml dose of TNFa, with some cells showing little or no response and others
showing a variable delay (Nelson et al., 2002; 2004) (Figure 1C). This is in agreement with data
showing heterogeneity of the initial response in other cell types (Tay et al., 2010; Zambrano et al.,

2014). HeLa cells showed no significant translocation in response to 30 pg/ml TNFa (Figure 1D),
suggesting that these cell types have differential dynamic NF-kB responses at varying TNFa doses.

We hypothesised that this cell-to-cell heterogeneity in response might be a consequence of cell
cycle phase. To test this hypothesis, we investigated the role of cell cycle in both the HeLa and SK-
N-AS cells, as these show different dynamic responses to TNFa that are typical of the profile of a

wide range of cell lines (Tay et al., 2010; Turner et al., 2010; Zambrano et al., 2014;
Hughey et al., 2015). Initially, HeLa cells were treated with 10 ng/ml TNFa at various stages of the
cell cycle (Figure 1E–H), as they could be easily synchronized at late G1 by a double thymidine block

(see Appendix 1—figure 2). When endogenous RelA was examined using immunocytochemistry,
HeLa cells treated with 10 ng/ml TNFa in S-phase displayed a reduced nuclear localization, com-

pared to those treated in late G1 (Figure 1E). These results were confirmed using time-lapse imag-
ing of synchronised HeLa cells transiently transfected with RelA-DsRedxp. Cells treated in late G1
showed a strong synchronous translocation of RelA, whereas cells treated in S-phase showed

reduced RelA translocation (Figure 1F,G). These cell cycle-dependent differences following TNFa
treatment of synchronized cell populations were supported by alterations in the extent of IkBa deg-
radation and RelA Serine536 phosphorylation at different stages of the cell cycle as measured by

western blot (Figure 1H).
To further investigate the effect of cell cycle on the NF-kB response, unsynchronized populations

of HeLa and SK-N-AS cells were followed by time-lapse imaging through successive cell divisions.

30 hr after the start of this time-course, HeLa cells were stimulated with 10 ng/ml TNFa. Cells were
assigned to different cell cycle phases based upon their mitosis-to-mitosis and mitosis-to-treatment

timings (Figure 2A and B).
To ensure the accuracy of the inferred cell cycle stage in these experiments, the cycle timing of

cells at the point of TNFa treatment was calibrated through control experiments using Fluorescent

Ubiquitin-based Cell Cycle Indicators (FUCCI) in both HeLa and SK-N-AS cells (Figure 2—figure sup-
plement 1A–B). The crossing point of Red and Green FUCCI reporters was determined, and defined
as the G1/S checkpoint. The average and distribution of the cell cycle duration in populations of

HeLa and SK-N-AS cells was also measured (Figure 2—figure supplement 1C).
The resulting data suggested that HeLa cells treated with TNFa in late G1 (inferred to be G1/S)

showed an increase in the translocation amplitude compared to the unsynchronized population aver-

age (Figure 2C). By contrast, cells treated in S-phase appeared to show a damped or delayed
response (Figure 2C), with markedly reduced amplitude of nuclear NF-kB translocation. In G2 phase

the NF-kB response appeared to be restored. Analysis of the complete data set confirmed that
there was statistically significant higher nuclear translocation amplitude in HeLa cells at G1/S and sig-
nificantly reduced amplitude in S-phase, compared to G1 and G2 (Figure 2—figure supplement 2).
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A smaller data set from SK-N-AS cells treated with 30 pg/ml TNFa, showed once again a statisti-
cally reduced translocation in S-phase compared to G1-phase. Visually the data are consistent with

increased translocation in late G1 and a restored level of translocation in G2- compared to S-phase.

However more cells would be required for a statistical analysis of possible differences between these

cell cycle phases. (Figure 2—figure supplement 3).

The effect of NF-kB signalling on cell cycle timing
We also measured the effect of TNFa treatment on HeLa cell cycle duration (Figure 3). It was found

that mean cell cycle duration for cells treated with TNFa showed a small, but statistically significant

increase of 1.9 hr ( ~ 10%) compared to untreated cells, with the variability in the total population

increasing by ~ 2-fold (Figure 3). Within this TNFa-treated population, cells treated in late G1 were

more susceptible to cell cycle elongation with a cell cycle duration that was ~1/3 longer than the

untreated population average. TNFa treatment in S-phase had no statistically significant effect on

the timing of mitosis. These data suggest a potential direct or indirect role for the NF-kB system in

controlling cell cycle duration through an unknown mechanism at the G1/S phase of the cell cycle.

E2F-1 levels control the dynamics of the NF-kB response
The mechanism for alteration of NF-kB responses between the late G1- and S-phases of the cell

cycle was sought. Previous studies had suggested that E2-Factor-1 (E2F-1) could physically associate

Figure 1. NF-kB dynamics following TNFa treatment in HeLa and SK-N-AS cells: Mapping the NF-kB response over the cell cycle in synchronized HeLa

cells. (A,B,C and D) The dynamics of RelA-dsRedxp following 10 ng/ml TNFa treatment in transiently transfected SK-N-AS (A), or following 30 pg/ml

TNFa treatment in SK-N-AS, and 10 ng/ml TNFa treatment in HeLa cells (C), and at 30 pg/ml for HeLa (D) cells (n=30 cells analysed per condition). (E)
The localization of endogenous RelA in different cell cycle phases, observed by immunocytochemistry at 2 hr (G1/S transition), 4 hr (mid S-phase), post-

release from double thymidine block and with 15 min TNFa treatment. (F and G) The dynamics of RelA-dsRedxp in transiently transfected HeLa cells

synchronized by a double thymidine block, following 10 ng/ml TNFa treatment at G1/S (F), or passing through S-phase (G) (n=20 cells analysed per

condition). (H) Western blot of Ser536phopho-RelA (p-RelA), IkBa, and cyclophilin-A (cyclo-A) levels in synchronized HeLa cells harvested at 1 hr time

intervals over the G1/S transition following 15 min treatment with TNFa. Also shown are asynchronous, non-stimulated (ASY NST) and asynchronous,

stimulated (ASY ST) controls, harvested at t=0.

DOI: 10.7554/eLife.10473.003
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with RelA, and/or its major dimer partner p50 (Kundu et al., 1997; Tanaka et al., 2002; Lim et al.,

2007). E2F-1 is the key transcriptional regulator of the cell cycle transition between G1- and S-phase

(Tsantoulis and Gorgoulis, 2005), where its expression is highest. In the presence of ectopically-

expressed EGFP-E2F-1, we observed a reduction in the activity of a NF-kB-regulated luciferase

reporter (Figure 4A). Moreover, the ability of NF-kB to induce endogenous mRNA levels of IkBa

and IkBe was impaired in cells co-expressing EGFP-E2F-1 and RelA-DsRedxp, compared to cells

expressing RelA-DsRedxp alone (Figure 4B). E2F-1 target gene transcription was also impaired by

RelA expression, as indicated by a reduction in the activity of a Cyclin E luciferase reporter

(Figure 4C) and in the mRNA level of E2F-1 itself (Figure 4D). These data support the reciprocal

and coordinated control of transcription by E2F-1 and NF-kB.
In transient transfection experiments, a predominantly cytoplasmic localization of RelA-DsRedxp

was observed when expressed alone, whereas in cells co-expressing EGFP-E2F-1, both proteins

were predominantly nuclear (Figure 4E). In addition we also found that the steady-state cytoplasmic

localisation of RelA was restored in cells transiently expressing IkBa-AmCyan in addition to EGFP-

Figure 2. Mapping the NF-kB response over the cell cycle through virtual synchronization. (A) Selected images from time-lapse imaging of RelA-

dsRedxp transiently expressing Hela cells treated with 10 ng/ml TNFa. (B) Virtual synchronization of HeLa cells treated with 10 ng/ml TNFa. Cells were

imaged through two successive divisions (M) allowing correlation of cell cycle timing of TNFa treatment (parameter 1) to RelA dynamics (parameters 2,

3 and 4) and cell cycle duration (parameters 1 plus 5). (C) Representative cells of RelA-dsRedxp dynamics following TNFa treatment in asynchronous

cells, then virtually synchronized into G1 (n=115), G1/S (n=32), S (n=52) and G2 (n=38) phases.

DOI: 10.7554/eLife.10473.004

The following figure supplements are available for figure 2:

Figure supplement 1. Analysis of cell cycle duration and G1/S timing in HeLa and SK-N-AS cells.

DOI: 10.7554/eLife.10473.005

Figure supplement 2. Statistical analysis of NF-kB translocation in HeLa cells at inferred cell cycle stages following 10 ng/ml TNFa stimulation.

DOI: 10.7554/eLife.10473.006

Figure supplement 3. Statistical analysis of NF-kB translocation in SK-N-AS cells at inferred cell cycle stages following 30 pg/ml TNFa stimulation.

DOI: 10.7554/eLife.10473.007
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E2F-1 and RelA-dsRedxp. These data suggest the hypothesis that IkBa and E2F-1 may compete for

the same binding site on RelA, with IkBa perhaps having the higher affinity. Time-series experiments

in both SK-N-AS and HeLa cells showed that a decrease in EGFP-E2F-1 expression over time was

associated with a re-localization of RelA-DsRedxp from the nucleus to the cytoplasm (for SK-N-AS

cells, Figure 4—figure supplement 1A–B; for HeLa cells, Figure 4—figure supplement 2A–C).

Quantitative analysis showed a strong correlation between the EGFP-E2F-1 decay half-life and the

delay in RelA-DsRedxp translocation back into the cytoplasm (for SK-N-AS cells, Figure 4—figure

supplement 1C; for HeLa cells, Figure 4—figure supplement 2D). Initial mathematical modelling of

this interacting system (for details of the model see Appendix Section B) was able to recapitulate the

main features of the observed correlation between E2F-1 levels and RelA localization in silico (Fig-

ure 4—figure supplement 1D–E).

Physical and functional interaction between RelA and E2F-1
These data supported a direct interaction between E2F-1 and RelA. Therefore, the physical interac-

tions between E2F-1 and NF-kB proteins in cells were investigated. Co-localization of E2F-1 and

RelA had previously been shown through fluorescence imaging experiments (see Figure 5A). A clear

physical interaction between fluorescently labelled E2F-1 and RelA in the nucleus of living cells was

evident using Förster Resonance Energy Transfer (FRET), in conjunction with acceptor photobleach-

ing as a qualitative indicator of intermolecular interaction (Figure 5D), and Fluorescence Cross-Cor-

relation Spectroscopy (FCCS) (Figure 5C).
In order to further support the interaction between the endogenous proteins, we used co-immu-

noprecipitation (Co-IP) of endogenous E2F-1 and RelA in HeLa cells that had been synchronized in

late G1, when E2F-1 levels were at their peak (Figure 5B). These data confirmed a physical interac-

tion between E2F-1 and RelA, in agreement with previous studies (Tanaka et al., 2002; Lim et al.,

Figure 3. Cell cycle length and variability is modified by TNFa addition at G1/S. Analysis of the timing and

variability of mitosis (parameter 1 plus 5 from Figure 2B) following 10 ng/ml TNFa treatment of asynchronous

untransfected HeLa cells, compared to subsets of those cells stimulated at late G1- or S-phase. Mean durations

were analysed using nonparametric Anova analysis with Dunn correction for multiple comparisons. Variability in

the data was analysed using Levene’s test for equality of variance.

DOI: 10.7554/eLife.10473.008
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2007; Garber et al., 2012). We were not able to observe a positive co-IP in asynchronous cells (see
Appendix 1—figure 4), suggesting that this interaction was only detectable in HeLa cells at G1/S
when E2F-1 was at its highest level. Considered together, all of these different measurements sup-
port a significant interaction between these proteins. These data suggest the hypothesis that the

interaction between RelA and E2F-1 in the nucleus of G1/S cells, which have been subjected to an
inflammatory stimulus, may coordinate differential regulation of NF-kB target gene transcription.

In-silico modelling and prediction of NF-kB interaction with E2F-4
In order to understand and further investigate the dynamic behaviour of TNF-a-mediated NF-kB
activation in the presence of E2F-1 (at the G1-S transition), an ordinary differential equation-based
mathematical model of the NF-kB system (Ashall et al., 2009) was extended to include the interac-
tion with E2F-1 (see Appendix Section B). In this model, E2F-1 was assumed to compete with IkBa
for binding to free NF-kB, but had no effect on the localization of RelA bound to IkBa. Simulations
(of nuclear NF-kB levels over time from transfection experiments) using this model, supported the
hypothesis that E2F-1 might temporally control the duration of RelA nuclear occupancy through a
combination of binding to RelA in the nucleus and inhibition of RelA-dependent IkBa transcription
(as suggested by data shown in Figure 4). E2F-1 degradation could allow NF-kB to re-activate IkBa,
which in turn could restore RelA to a cytoplasmic localization.

Figure 4. Physical and functional interaction between NF-kB and E2F-1 systems. (A) NF-kB-dependent transcription was assessed by luciferase reporter

assay (NF-luc), in SK-N-AS cells (n=3, +/- s.d) expressing EGFP-E2F-1, RelA-dsRedxp or both. (B) IkBa and IkBe mRNA levels in SK-N-AS cells (n=3, +/-

s.d) following transient expression of EGFP-E2F-1, RelA-DsRedxp or both. (C) E2F-1-dependent transcription as assessed by luciferase reporter assay

(CyclinE-luc), in SK-N-AS cells (n=3, +/- s.d) expressing EGFP-E2F-1, RelA-dsRedxp or both. (D) E2F-1 mRNA levels in SK-N-AS cells (n=3, +/- s.d)

transiently transfected with RelA-dsRedxp. (E) Representative SK-N-AS cells transiently expressing EGFP-E2F-1 (green), RelA-dsRedxp (red), both

fluorescent fusion proteins at different levels, or EGFP-E2F-1, RelA-dsRedxp and IkBa-AmCyan (blue).

DOI: 10.7554/eLife.10473.009

The following figure supplements are available for figure 4:

Figure supplement 1. E2F-1 modulates NF-kB dynamics in the absence of stimulus in SK-N-AS cells.

DOI: 10.7554/eLife.10473.010

Figure supplement 2. E2F-1 modulates NF-kB dynamics in the absence of stimulus in HeLa cells.

DOI: 10.7554/eLife.10473.011
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When the initial mathematical model was used to simulate the effect of E2F-1 on the responsive-
ness of NF-kB to TNFa, the in silico simulations predicted that TNFa would induce immediate oscil-

lations of free RelA (Figure 6A). In contrast, time-lapse live cell imaging of SK-N-AS cells stimulated

with TNFa, showed that in cells expressing RelA-DsRedxp and EGFP-E2F-1 (which initially had

nuclear RelA-DsRedxp), there was a delay before the onset of oscillations (Figure 6B and D). The

length of this refractory period was on average ~ 4-fold longer than the peak1:peak2 timing in cells

expressing RelA-DsRedxp alone (Figure 6B and [Ashall et al., 2009]). Altered model structures were

investigated in order to resolve this discrepancy between experimental data and model predictions.

One of the simplest altered models predicted that an E2F-1 target gene might stabilize IkBa (keep-

ing NF-kB in the cytoplasm during S-phase [Figure 6C]). In support of this prediction, TNFa treat-

ment of SK-N-AS cell populations transiently expressing EGFP-E2F-1 and RelA-DsRedxp led to

reduced levels of phospho-S536-RelA and stabilized levels of IkBa (Figure 6E). Simulations of the

response to TNFa from the revised model were consistent with the observed delay in oscillations in

single cells expressing ectopic EGFP-E2F-1 (Figure 6B and D) and also with the inhibition or delay in

the response during S-phase, but not during G1 or G2 (Figure 2C). Candidates for the E2F-1-regu-

lated component(s) predicted by the revised model were therefore sought.
Previous studies had shown strong structural homology between E2F-1 and other E2F family

members (Tsantoulis and Gorgoulis, 2005). E2F-4 is a transcriptional target of E2F-1 (Xu et al.,

2007) and can be cytoplasmic during S-phase (Lindeman et al., 1997). E2F-4 (together with E2F

family members) was therefore considered as a prospective candidate. We confirmed that ectopic

expression of E2F-1 in cells resulted in increased E2F-4 expression, consistent with E2F-4 being a

Figure 5. Interaction of E2F-1 with RelA. (A) Representative cell demonstrating co-localisation of E2F1-EGFP and RelA-dsRedxp upon transient

transfection. (B) Co-Immunoprecipitation of E2F-1 with RelA pull down in HeLa cells synchronized in late G1 (HeLa cells used for this experiment due to

their greater ease of synchronization). (C) FCCS assay between transiently transfected EGFP-E2F-1 and RelA-dsRedxp (red line) or empty-dsRedxp (blue

line) fluorescent fusion proteins in single live SK-N-AS cells (+/- s.e.m based on 10 measurements from 10+ cells per condition). (D) Qualitative FRET

assay between transiently transfected ECFP-E2F-1 and RelA-EYFP fluorescent fusion proteins in live SK-N-AS cells. First negative control between IkB-

ECFP and EYFP-E2F1, and second negative control between free ECFP and EYFP fluorophores expressed in an SK-N-AS cell (shown are average ECFP

and EYFP signals (+/- s.e.m based on 20 cells per condition normalised to pre-bleach intensity. p.b. indicates the time point at which photo-bleaching

occurred).

DOI: 10.7554/eLife.10473.012
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transcriptional target of E2F-1 in these cells (Figure 6E). The profile of E2F-4 expression was found

to be delayed relative to that of E2F-1 in the cell cycle, peaking in S-phase in synchronized HeLa cells

(Figure 6F).

E2F-4 and RelA physically and functionally interact
To further confirm the role of E2F-4 in the suppression of RelA translocation following TNFa treat-

ment during S-phase, the physical and functional interactions between E2F-4 and RelA proteins in

cells were investigated. When transiently expressed in either HeLa or SK-N-AS cells, both proteins

were located in the cytoplasm (Figure 7A). Following TNFa treatment, the timing of RelA-DsRedxp

translocation to the nucleus in both cell lines was delayed relative to the level of the fluorescent sig-

nal from EGFP-E2F-4 (Figure 7B for dynamic profiles and Figure 7—figure supplement 1 for analy-

sis). The physical interaction of endogenous E2F-4 and RelA proteins was supported by Co-IP from

HeLa cells synchronized in S-phase (Figure 7C). No pull-down was observed in cells synchronised in

late G1 phase (see Appendix 1—figure 4). This is the cell cycle stage when E2F-1, but not E2F-4 is

at its peak expression level. This interaction was confirmed by acceptor photo bleaching FRET and

FCCS data obtained from cells transiently expressing ECFP-E2F-4 and RelA-EYFP (for FRET) or RelA-

dsRedxp and EGFP-E2F-4 (for FCCS) fluorescent fusion proteins (Figure 7D and E respectively).

These data suggested that members of the E2F family have differing, but functionally linked, roles in

the regulation of NF-kB dynamics. The observed dynamics could be represented by a mathematical

model that recapitulates data (Figure 6C) from live cell imaging of the transient expression of the

appropriate fluorescent fusion proteins (Figure 5A and 7A, for details of modelling see Appendix

Section B).

Figure 6. Mathematical modelling predicts an additional key component for NF-kB - cell cycle interactions: E2F-4 identified as a putative candidate. (A)
Model simulations of RelA-dsRedxp dynamics when co-expressed with EGFP-E2F-1 in cells treated with TNFa. (B) Dynamics analysed in representative

SK-N-AS cells treated with 10 ng/ml TNFa expressing RelA-dsRedxp and EGFP-E2F-1 (C) Model simulation of experimental conditions in B,

incorporating interactions between NF-kB complexes and a putative E2F-1-induced target protein, subsequently proposed as E2F-4. (D) Analysis of
average timing to second peak of NF-kB translocation following TNFa treatment in SK-N-AS cells expressing RelA-dsRedxp alone or with EGFP-E2F-1

(n=20 cells per condition, error bars show s.d.) (E) Assessment of the extent of RelA Ser536 phosphorylation (p-RelA), E2F-4 and IkBa stability by western

blot compared to cyclophilin A (cyclo A) amounts in SK-N-AS cells either untreated or treated with 10 ng/ml TNFa and expressing combinations of

either untagged or fluorescent RelA-dsRedxp and EGFP-E2F-1. (F) Western blot of E2F-1 and E2F-4 in synchronized HeLa cells, where t=0 is late G1-

phase.

DOI: 10.7554/eLife.10473.013
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Analysis of the effect of the cell cycle on the NF-kB response at more
physiological expression levels of E2F-1
The majority of experiments described above utilised transient expression of the E2F and RelA

fusion proteins driven from a CMV promoter in a plasmid vector. Previous data had suggested that

RelA fusion proteins expressed in a knock-in mouse are functional and fusion protein expression

does not perturb the system (De Lorenzi et al., 2009). Our transcription analyses (Figure 4) sug-

gested that E2F-1 N- and C-terminal fusion proteins also retained functional activity. However, as

E2F proteins are normally expressed at specific stages of the cell cycle, ectopic expression from a

strong constitutive promoter could give rise to out-of-context expression at inappropriate stages of

the cell cycle (i.e. for E2F-1, stages other than late G1 and early S-phase). Therefore, expression of

fusion proteins from these vectors might potentially show interactions that are not physiologically

relevant. An additional complication in these experiments was that exogenous expression of E2F-1

(but not E2F-4) fluorescent fusion protein from a CMV promoter caused apoptosis when transfected

alone. Interestingly this effect was rescued by co-expression with RelA.
To further validate the functional link between the E2F and RelA proteins, we sought to achieve

more physiologically relevant levels and timing of the fluorescent fusion protein expression. To this

end, stable HeLa cell lines were generated, with integrated Bacterial Artificial Chromosomes

expressing E2F-1-Venus and RelA-DsRedxp under the control of their natural human gene

Figure 7. E2F-4 directly interacts with NF-kB and perturbs RelA dynamics in response to TNFa stimulation. (A) Single cell trajectories from groups of

HeLa cells expressing RelA-dsRedxp and different levels of EGFP-E2F-4 showing the dynamics of RelA-dsRedxp after 10 ng/ml TNFa treatment (n=60

cells). (B) HeLa cells synchronized in S-phase, co-immunoprecipitated with anti-RelA antibody and probed for E2F-4. Also shown are IgG negative

controls and whole cell lysate unsynchronized positive control (ctrl). (C) Representative SK-N-AS cells transiently transfected with RelA-dsRedxp and

EGFP-E2F-4. (D) FRET assay in live SK-N-AS cells expressing ECFP-E2F-4 and RelA-EYFP fluorescent fusion proteins (shown are average ECFP and EYFP

signals (+/- s.e.m) based on 20 cells per condition normalised to pre-bleach intensity. p.b. indicates the point of photo-bleaching). (E) FCCS assay in

cells transiently expressing EGFP-E2F-4 and RelA-dsRedxp (red line) or dsRedxp (blue line) fluorescent proteins in single live SK-N-AS cells (+/- s.e.m

based on 10 measurements in each of 10+ cells per condition).

DOI: 10.7554/eLife.10473.014

The following figure supplement is available for figure 7:

Figure supplement 1. Analysis of RelA-dsRedxp dynamics in HeLa and SK-N-AS cells co-expressing EGFP-E2F-4 following TNFa stimulation.

DOI: 10.7554/eLife.10473.015
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promotors and associated regulatory elements (see Appendix Section C). HeLa cells were chosen for

this study based on their more consistent cell cycle timing (between cells) compared to SK-N-AS

cells (as shown in Figure 2—figure supplement 1).
Stable cell lines were generated with a human E2F-1-Venus BAC construct, and showed the same

pattern of synthesis and degradation of a transiently expressed FUCCI reporter for SCF (SKP-2)

activity, indicating normal cell cycle progression (see Figure 8—figure supplement 1). All viable

clones had relatively low expression of the E2F-1-Venus BAC, further suggesting that E2F-1 over-

expression was detrimental to cell survival. Following the generation of these stable clones, a single

clone was selected for the integration of a RelA-DsRedxp BAC into this cell line. This generated a

dual stable clone of E2F-1-Venus and Rel-A-DsRedxp (termed C1-1). This clonal cell line showed a

slight increase ( ~ 8%) in mean cell cycle length (with similar cell-to-cell variability) comparable with

wild type HeLa (see Appendix 1—figure 7). Similar to wild type cells, TNFa treatment in the C1-1

cell line increased the variability in cell cycle timing compared to that of resting cells.
The slight change in mean cell cycle duration ( ~ 20 hr) in the dual BAC stable clonal cell line C1-1

was taken into account for inference of the dynamics of RelA-DsRedxp translocation at different cell

cycle phases. The profile of E2F-1-Venus expression was used for assignment of the cell cycle stage

at the time of stimulation cells based upon the time of peak E2F-1-Venus expression (Figure 8—fig-

ure supplement 2). This provided an alternative and faster method of virtual synchronisation to that

used in Figure 2, allowing the assignment of G1, S and G2 phases to the data from the simulated

BAC stable cells. The level of RelA translocation (Figure 8B) was then quantified for cells from each

cell cycle phase. In agreement with data from the transiently transfected HeLa and SK-N-AS cells

(Figure 2, Figure 2—figure supplements 2 and 3), the cells treated in late G1/S-phase showed

higher amplitude RelA nuclear translocations, whereas Cells treated in S-phase showed a statistically

significant suppression in S-phase RelA translocation compared to cells in early G1- or G2-phases

(Figure 8 and Figure 8—figure supplement 3).
Expression of the RelA-DsRedxp and E2F-1-Venus fusion proteins in the stable cell line was quan-

tified through molecular counting of fluorophores via FCS (Figure 8—figure supplement 4). This

gave an estimate of 310,000 ± 120,000 molcules of RelA-DsRedxp per cell. This figure was compara-

ble to previous molecular estimates using FCS that had been obtained in stable cell lines generated

using lentivirus (Bagnall et al., 2015), and previous estimates of RelA concentration using analytical

chemistry (Martone et al., 2003; Zhao et al. 2011). RelA showed an approximate ratio of 3:1

ectopic to endogenous expression based on quantitative analysis of western blot data (see Fig-

ure 8—figure supplement 4A). By contrast, FCS analysis suggested that E2F-1-Venus expression

was lower (24,000 ± 9100 molcules of E2F-1-Venus per cell). Western blot analysis (Figure 8—figure

supplement 4B) suggested that there was an approximate ratio of 10:1 endogenous to ectopic lev-

els). This might suggest selective pressure during cloning, as over-expression of E2F-1 has been

reported to compromise cell viability (Crosby and Almasan, 2004). The apparent selective pressure

against higher E2F-1 fusion protein expression was also in agreement with our own data that sug-

gested that transient exogenous expression of E2F-1 fusion protein (but not E2F-4) alone caused

apoptosis, but that this was rescued by co-expression of RelA. In the same manner observed with

low EGFP-E2F1 expression from transient co-expression, the more physiological levels of E2F-1-

Venus expression in the stably transfected cells suggested that RelA-DsRedxp remained predomi-

nantly cytoplasmic in unstimulated cells.
The interaction between E2F-1-Venus and RelA-DsRedxp following TNFa stimulation was mea-

sured by Fluorescence Cross-Correlation Spectroscopy (FCCS). A strong cross-correlation was con-

firmed in the nucleus (Figure 8—figure supplement 4D) indicating that the interaction uncovered

by transient transfection with plasmids was not an artefact of over-expression, but was contextually

relevant in relation to the cell cycle and RelA activation. Analysis of the dissociation constant (by

FCCS) for the RelA-DsRedxp and E2F-1-Venus binding in the nucleus of TNFa–stimulated cells sug-

gested a dissociation constant (Kd) of 12 nM (Figure 8E).
The stable and physiological co-expression of E2F-Venus and RelA-DsRedxp facilitated fluores-

cently labelled proteins to be observed over the course of a full cell cycle. Cells were virtually syn-

chronized as previously described following stimulation with 10 ng/ml TNFa, and translocation of

RelA-DsRedxp was plotted against the nuclear expression of E2F-1-Venus (Figure 8—figure supple-

ment 2).
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We also investigated the consequences of knocking down both E2F-1 and E2F-4 using siRNA.
Imaging experiments showed E2F-1 knockdown did not prevent cell cycle progression, and did not

affect the heterogeneity of population response upon TNFa stimulation (data not shown), perhaps

indicating compensation by other E2F family members. In addition, our mathematical model pre-

dicted that knocking down E2F-1 might not substantially affect the repression of the NF-kB response

in S-phase, which was instead predicted to be due to the effect of E2F-4 expression. However,

knock-down of E2F-4 was found to be lethal to cells (Crosby and Almasan, 2004) preventing time

lapse analysis. A key additional consideration is the overlapping roles of other E2F family members,

Figure 8. Effect of cell cycle timing on RelA-dsRedXP translocation in dual BAC HeLa cells (C1-1 line) that co-express E2F-1-Venus fusion protein. (A)
Selected images from time-lapse experiment of dual BAC transfected HeLa stable clone 1-1 showing translocation of RelA-dsRedXP and E2F-1-Venus

expression at different cell cycle phases. Cells were treated with 10 ng/ml TNFa. (B) Analysis of the dynamics of initial RelA-dsRedxp translocation in

cells ordered at specific cell cycle times with respect to the peak of E2F-1 expression (n = 128). Data were analysed using nonparametric Anova analysis

with Dunn correction for multiple comparisons. Red lines indicate mean normalised amplitude of NF-kB nuclear translocation for different cell cycle

phases, and the population average (dotted red line). Analysis of nuclear RelA occupancy was assessed in virtually synchronised C 1-1 cells, based on

time from cell division and relative to peak E2F-1-Venus expression level. RelA-dsRedxp localization was visualized to allow quantification of

translocation, following treatment with 10 ng/ml TNFa. The dotted black line shows the spline fitted level of E2F1 at different times and cell cycle

stages (see also Figure 8—figure supplement 1 below). Statistical analysis showed a difference between G1 vs S, and G2 vs S with respect to

distribution of amplitude of the RelA translocation response. (C) RelA-dsRedxp dynamics following 10 ng/ml TNFa treatment in asynchronous cells (left

panel) and cells virtually synchronised into G1, G1/S, S and G2 phases. The data for each cell was normalised to the amplitude (N:C ratio) at t = 0 min.

DOI: 10.7554/eLife.10473.016

The following figure supplements are available for figure 8:

Figure supplement 1. Virtually synchronized HeLa C 1-1 cells.

DOI: 10.7554/eLife.10473.017

Figure supplement 2. Physiological and functional expression of E2F-1-Venus in stable BAC-transduced HeLa cells.

DOI: 10.7554/eLife.10473.018

Figure supplement 3. Analysis of the expression of E2F-1-Venus and RelA-DsRedxp translocation in single C1-1 HeLa cells stimulated with 10ng/ml

TNFa at different cell cycle phases.

DOI: 10.7554/eLife.10473.019

Figure supplement 4. Expression and interaction of RelA-dsRedxp and E2F-1-Venus.

DOI: 10.7554/eLife.10473.020
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which makes knock-down of individual E2F proteins unpredictable, due to potentially co-operative

and/or redundant functions.

Discussion
Biological timing plays a key role in the encoding and decoding of biological information. Of particu-

lar interest is the role of biological oscillators, which can have very different cycle periods. A key

question is how they may interact to robustly control essential biological processes. Here, we pro-

pose a reciprocal relationship between two oscillators, NF-kB signalling and the cell cycle.
TNFa stimulation in S-phase showed a suppressed and delayed translocation of RelA, with no

observable perturbation to cell cycle timing. In contrast, stimulation in late G1 showed strong trans-

location of RelA (Figure 2) and led to significant lengthening of the cell cycle (Figure 3). These data

suggest that cells use the G1/S checkpoint to prioritize between inflammatory signalling and the

onset of DNA replication prior to cell division (see schematic diagram in Figure 9). The presence of

a mechanism for prioritization between the important processes of cell proliferation and inflamma-

tion suggests that an inflammatory response during DNA replication might be detrimental to the

cell.
The data showing that TNFa stimulation alters cell cycle timing in a cell cycle phase-dependent

manner is intriguing (Figure 3). However, our data do not identify a specific mechanism by which

TNFa may regulate cell cycle length. The observation that the effect of TNFa stimulation on cell

cycle lengthening appears to be specific to G1/S- rather than S-phase suggests that this may occur

by delaying transition through the G1/S checkpoint. One hypothesis is that this might occur through

NF-kB modulation of E2F family transcriptional activity. At the same time, the system is more com-

plex as NF-kB is known to regulate the expression of other key cell cycle regulating proteins. Impor-

tant examples include Cyclin D (Guttridge et al., 1999; Hinz et al., 1999, Sée et al., 2004), and

p21waf1/cip1 (Basile et al. 2003). Therefore, there is undoubtedly a more complex set of interactions

between NF-kB and the control of cell proliferation and cancer (Perkins and Gilmore, 2006).
As well as a number of studies that suggest a physical interaction between E2F and NF-kB pro-

teins (Kundu et al., 1997; Chen et al., 2002; Tanaka et al., 2002, Shaw et al., 2008;

Palomer et al., 2011), there have been a few previous studies that have suggested that this interac-

tion might have functional importance. Araki et al. described an NF-kB-dependent mechanism for

growth arrest mediated by a dual mechanism. They suggested that E2F-1-dependent transcription

was inhibited by IKK activation and that E2F-4 was phosphorylated directly by IKK resulting in

increased activity of the E2F-4/p130 repressor complex (Araki et al., 2008). Their study did not

assume direct interactions between the E2F and Rel proteins and did not take into account protein

dynamics. Nevertheless, their conclusions are very complementary to the present study.
Another study by Tanaka et al. focused on the combined role of E2F-1 and c-MYC in the inhibi-

tion of NF-kB activity (Tanaka et al., 2002). This study demonstrated interactions between E2F-1

and both RelA and p50. Rather than focusing on cell division, their study showed that inhibition of

RelA activity by E2F-1 resulted in increased apoptosis. Since both the NF-kB and E2F families of

transcription factors have important roles in the control of apoptosis (Phillips and Vousden, 2001;

Kucharczak et al., 2003; Crosby and Almasan, 2004), it is therefore interesting to speculate that

the levels of different E2F proteins at different cell cycle stages may regulate cell fate decision mak-

ing in collaboration with signalling systems such as NF-kB.
One important conclusion of the current study is the physical interaction of RelA with E2F-1 and

E2F-4 proteins. It is however not necessary to assume strong binding and sequestration into differ-

ent cellular compartments. Instead, control of cross-talk could be a consequence of mutual control

of gene expression. We provide some data that suggests that E2F-1 and IkBa may compete for

binding to RelA (see Figure 4E). We suggest that control may be achieved through repression of

the IkBa feedback loop (and perhaps other negative feedbacks, such as A20). However, it might be

that other genes are differentially activated through the combined action of these transcription fac-

tors. In support of this, Garber et al. performed a study in dendritic cells where they studied a panel

of transcription factors by ChIP-Seq following LPS stimulation. Their data suggested that E2F-1 and

RelA are common transcription factor pairs that were bound together at a large set of functionally

important gene promoters (see data in Figure 3B of Garber et al., 2012). It therefore seems likely
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that these proteins mutually regulate patterns of transcriptional activity, controlling the expression

of downstream feedback genes, cell proliferation and apoptosis.
We describe a mechanism for E2F-1 that suggests competition with IkBa for NF-kB binding. This

was effectively described by the model (see also Figure 9), and was used to predict the role for an

E2F-1 target gene, upregulated in S-phase. Our data support E2F-4 as a candidate for this E2F-1 tar-

get gene. It should be noted however, that the E2F family of proteins may all play a role in this com-

plex system. A surprising characteristic of E2F-4 is its predominantly cytoplasmic localisation in some

cell types. As a result, we were unable to perform a competition localisation experiment (as for E2F-

1, Figure 4E). We cannot therefore comment on whether E2F-4 also competes with IkBa for RelA

binding. Therefore, the model (both mathematical model and schematic model in Figure 9) encode

E2F-4 binding as a ternary complex to RelA and IkBa together. We stress that this is only one possi-

ble mechanism, but we have used this formulation since it is the simplest model that is consistent

with all of our data. As described by Araki et al. (see above) there may be other components

involved such as IKK-mediated E2F-4 phosphorylation (Araki et al., 2003).

Figure 9. Schematic representation of NF-kB – E2F interactions. (A) Predicted mechanisms for NF-kB interaction with E2F proteins over the G1/S

transition (B) Model simulations of single cell behaviour.

DOI: 10.7554/eLife.10473.021
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Functional and context-dependent coupling between dynamic cellular processes (such as the cell
cycle, the circadian clock [Yang et al., 2010; Bieler et al., 2014; El Cheikh et al., 2014], or p53
[Toettcher et al., 2009]) is emerging as a common theme in intracellular signalling (Ankers et al.,
2008; White and Spiller, 2009; Spiller et al., 2010). The present study has characterized a dynamic
and functional interaction between NF-kB and the cell cycle systems, which each oscillate with differ-
ent periods. Coupling between cellular processes (e.g. at the G1/S commitment point) can have con-
trasting effects on cell fate. Such temporal communication between processes represents a way for
cells to gate their biological signals and coordinate and prioritize cell fate decisions in response to
changes in their environment. In a wider context, understanding how (and when) these dynamic
interactions occur could yield important therapeutic targets for fields such as cancer chronotherapy
(Choong et al., 2009; Lévi et al., 2010).

Materials and methods

Materials
Human recombinant TNFa was supplied by Calbiochem (UK). Tissue culture medium was supplied
by Invitrogen (UK) and Fetal Bovine Serum (FBS) was from Harlan Seralab (UK). All other chemicals
were supplied by Sigma (UK) unless stated otherwise.

Plasmids
All plasmids were propagated using E. coli DH5a and purified using Qiagen Maxiprep kits (Qiagen,
UK). NF-kB-Luc (Stratagene, UK) contains five repeats of an NF-kB-sensitive enhancer element
upstream of the TATA box, controlling expression of luciferase. Luciferase reporter CyclinE-Luc was
obtained from Peggy Farnham (University of Wisconsin-Madison, USA). EGFP-E2F-1 and EGFP-E2F-
4 contain the Enhanced Green Fluorescent Protein (EGFP) gene (Invitrogen, UK) fused to the N-ter-
minal ends of the human E2F-1 and E2F-4 gene fragments (kind gifts from Emmanuelle Trinh, BRIC,
Denmark). Similarly, ECFP-E2F-1 and ECFP-E2F-4 contain the Enhanced Cyan Fluorescent Protein
(ECFP) gene (Invitrogen, UK) RelA-DsRedxp contain the optimised DsRed Express protein (DsRedxp)
gene (Clontech, CA) fused to the c-terminal end of human RelA gene (described previously in
Nelson et al. (2002). RelA-EYFP contain Enhanced Yellow Fluorescent protein (EYFP) gene (Invito-
gen, UK) fused to the C-terminal end of human RelA gene.

Cell culture
SK-N-AS neuroblastoma (cat.no. 94092302) and HeLa cervical carcinoma (Cat. No. 93021013) cell
lines were obtained from European Collection of Authenticated Cell Cultures (ECACC). Cells were
cultured and frozen down to form a low passage working stock. Subsequent working stocks were
used for no more than 10 passages. Working stocks were screened to ensure the absence of myco-
plasma every 3 months using LookOut Mycoplasma PCR Detection Kit (Cat. No. D9307 Sigma, UK).
For confocal fluorescence microscopy and immuno-cytochemistry, SK-N-AS and HeLa cells were
plated on 35 mm glass-bottom dishes (Iwaki, Japan and Greiner, Germany) at 1x105 cells per dish in
3 ml medium. HeLa cells were plated at 5x104 cells per dish in 3 ml medium. 24 hr post-plating, the
cells were transfected with the appropriate plasmid(s) using Fugene 6 (Boehringer Mannheim/Roche,
Germany). The optimized ratio of DNA:Fugene 6 used for transfection of HeLa or SK-N-AS cells was
2 mg DNA with 4 ml Fugene 6 and 0.8 mg DNA with 1.2 ml Fugene 6 respectively.

For Co-IP assays, SK-N-AS cells were plated on 100 mm tissue culture dishes (Corning, USA) at
4.5x106 cells per dish in 10 ml medium. For western blotting, semi-quantitative and quantitative
PCR, HeLa and SK-N-AS cells were plated on 60 mm tissue culture dishes (Corning, USA) at 5x105

and 1x106 cells respectively per dish in 5 ml medium.

G1/S Cell cycle synchronisation via double Thymidine block
24 hr post-plating, 2 mM Thymidine was added to the culture medium. Following a 19 hr incubation,
cells were washed and fresh medium added. Following a 9 hr incubation, 2 mM Thymidine was again
added to the culture medium and the cells incubated for a further 16 hr. Cells were then washed
and fresh media added. Following release from Thymidine block, the G1/S-synchronized cells were

either imaged or incubated (at 37˚C, 5% CO2) for the indicated duration prior to cell lysis or fixation.
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Treatment of cells with TNFa
For confocal fluorescence microscopy, the cells were treated in-situ between imaging acquisitions

after an indicated pre-treatment incubation period (usually 24 hr post-transfection). For western blot-

ting and q-PCR experiments, the cells were treated with TNFa 24 hr post-plating. The cells were

imaged either immediately after treatment, or incubated (at 37˚C, 5% CO2) for the indicated dura-

tion prior to cell lysis or fixation.

Fluorescence microscopy
Confocal microscopy was carried out as described (Nelson et al., 2004) using either 20x Fluar 0.8

NA or 63x Planapochromat 1.4 NA objectives. CellTracker (Shen et al., 2006; Du et al., 2010) was

used for data extraction. For RelA fusion proteins, mean fluorescence intensities were calculated for

each time point for both nucleus and cytoplasm then nuclear:cytoplasmic (N:C) fluorescence inten-

sity ratios were determined. For time lapse microscopy, a modified version of the Autofocus macro

(an improved version of the Autotimeseries macro [Rabut and Ellenberg, 2004]) was used.

Analysis of cell cycle progression
The cell cycle duration and G1/S timing of SK-N-AS and HeLa cells was analysed using live-cell imag-

ing of successive cell divisions to determine typical cell cycle duration. In addition, the cell cycle

dynamics were quantified expressing Fluorescence Ubiquitin-based Cell Cycle Indicators (FUCCI,

[Sakaue-Sawano et al., 2008]) (Figure 2—figure supplement 1). The crossing point in fluorescent

levels from FUCCI markers of APC and SCF E3 ubiqutin ligase was used as an indication of G1/S

transition in the cells (Figure 2—figure supplement 1B). Mitosis to mitosis timings were determined

in non-transfected cells, as well as in cells transfected with RelA-dsRedXP and the dual BAC cell line

(Appendix 1—figure 7) For the BAC cell line that expressed E2F-1-Venus it was only possible to use

the single SCF FUCCI G1 vector (due to fluorescent protein spectral overlap).

Virtual synchronization
Cells were imaged for ~30 hr prior to TNFa treatment in order to capture each cell passing through

mitosis. The timing of TNFa treatment relative to mitosis for each cell was then calculated. Events

following TNFa treatment (i.e. the dynamics of RelA-DsRedxp translocation, or cell cycle duration)

could then be correlated to inferred cell cycle phase at the point of treatment. Dual BAC cell lines

were imaged for an entire cell cycle. Cells were aligned based upon normalised peak amplitude of

E2F-1-Venus, and virtually synchronised based upon alignment of peak E2F-1 expression and the rel-

ative timing of TNFa stimulation. Cell cycle boundaries were inferred through characterization of cell

cycle progression through transfection of FUCCI G1 phase marker construct (Figure 2—figure sup-

plement 1).

Flow cytometric DNA analysis
HeLa cells were cultured in 100 mm dishes. Following trypsinization, and resuspension in 1 ml of

medium the cells were stained by addition of 250 ml of 50 mg/ml propidium iodide, 0.15% TritonX-

100, and 150 mg/ml RNase A before analysis in an Altra flow cytometer (Beckman Coulter).

Förster resonance energy transfer (FRET) microscopy
FRET was carried out using a Zeiss LSM510 with ’META’ spectral detector mounted on an Axiovert

100S microscope with a 63x Planapochromat, 1.4 NA oil-immersion objective (Zeiss). ECFP and

EYFP (Karpova et al., 2003) were excited with 458 nm laser light, emitted fluorescence was col-

lected in 8 images each separated by 10 nm between 467 nm and 638 nm in lambda scanning

mode. Separation of ECFP and EYFP fluorescence spectra was carried out using the linear unmixing

algorithms of the Zeiss LSM510 software (Zeiss), using reference spectra taken from cells expressing

the ECFP or EYFP fusion proteins alone or untransfected cells. The fluorescence spectrum was sepa-

rated into ECFP, EYFP and background signals. FRET was assayed by acceptor (EYFP) photo-bleach-

ing. Bleaching was accomplished using 50 iterations of 514 nm laser light with no attenuation from

the acousto-optical tuneable filter (AOTF).
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Fluorescence correlation spectroscopy (FCS) and fluorescence cross-
correlation spectroscopy (FCCS)
FCS and FCCS was carried using either a Zeiss LSM780 or Zeiss 710 with Confocor 3 mounted on an

AxioObserver Z1 microscope with a 63x C-apochromat, 1.2 NA water-immersion objective. Zen

2010B software was used for data collection and analysis. EGFP fluorescence was excited with

488nm laser light and emission collected between 500 and 530 nm. DsRed-express was excited with

561nm laser light and emission collected between 580 and 630 nm. The protocols as outlined in Kim

et al. (Kim et al., 2007) were followed, with 10 x 10 s runs used for each measurement. FCS was

used to quantify the total number of fluorescent molecules per cell as previously described

(Bagnall et al., 2015). The confocal volume had previously been estimated at 0.59 ± 11 fL (mean ±

SD) using Rhodamine 6G of known diffusion rate, and WT HeLa cells in suspension were imaged by

confocal microscopy to give volume estimates of 1420 ± 490 fL and 6110 ± 3580 fL for nucleus and

cytoplasm respectively. (For FCCS controls see Appendix Section E).

Co-immunoprecipitation
HeLa cells synchronized at G1/S or S-phase were washed with room temperature PBS and lysed with

modified RIPA buffer (50 mMTris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% NP-40) including a

1:100 dilution of Protease Inhibitor cocktail (Sigma, UK), PMSF and phosphatase inhibitor (Phos

Stop, Roche). Immunoprecipitation was carried out using Immunoprecipitation kit-Dynabeads Pro-

tein G (Invitrogen) with anti-RelA antibody (#3034, Cell Signaling, MA, USA). The samples were ana-

lyzed by western blotting using anti-E2F-1(Cell Signaling, #3742) or anti E2F-4 (Santa Cruz, C-20 sc-

866) antibodies.

q-PCR
The RNeasy Mini Kit (Invitrogen, UK) was used to extract mRNA from the cells following manufac-

turer’s instructions, using the primers: IkBa left TGGTGTCCTTGGGTGCTGAT right GGCAG

TCCGGCCATTACA, IkBe left GGACCCTGAAACACCGTTGT right CCCCAGTGGCTCAGTTCAGA,

E2F-1 left TGCAGAGCAGATGGTTATGG right TATGGTGGCAGAGTCAGTGG, cyclophilin A left

GCTTTGGGTCCAGGAATG right GTTGTCCACAGTCAGCAATGGT.

Luciferase reporter assay
Luciferase reporter assay were carried out as described in White et al. (1990), using a LUMIstar

plate reading luminometer (BMG, Germany).

Immuno-cytochemistry (ICC)
HeLa cells were prepared using combinations of the above techniques, typically involving synchroni-

zation and/or TNFa stimulation of cells seeded at appropriate density into 35 mm glass-bottomed

dishes. Dishes were subsequently washed three times with PBS and fixed with 1 ml 4% paraformal-

dehyde for 15 min. Dishes were then washed three times with PBS, and ‘blocked’ to prevent non-

specific antibody binding with the addition of 1–2 ml of 1% BSA, 0.1% Triton X-100 (in PBS) from

20 min up to overnight. The primary antibody (or antibodies for dual-staining), dissolved in Ab Buffer

(1% BSA, 0.1% Triton X-100 in PBS), were added to the dishes for 60/90 min at a 1:2000 dilution.

Dishes were then washed (3x1 ml) with Ab buffer for 10 min. Secondary Antibody(s) were subse-

quently added to the dishes (Cy3-anti-mouse, 1:200 dilution (Sigma), FITC Rabbit, 1:200 [AbCam])

for 30/45 min respectively, prior to 3 sequential washes of PBS blocking buffer (described above).

Following the addition of fluorescent secondary antibodies, dishes were covered in aluminium foil

and left in 2 ml PBS prior to imaging.

Western blotting
Whole cell lysates were prepared at the indicated times after stimulation. Membranes were probed

using the following antibodies: anti-IkBa (#9242, Cell Signaling, MA), anti-RelA (#3034, Cell Signal-

ing, MA), anti-phospho-RelA (Ser 536) (#3031, Cell Signaling, MA), anti-IkBa (#9242, Cell Signaling,

MA), anti-E2F-1 (#KH-95, Millipore Biotechnology, USA), anti-E2F-4 (sc-866, Santa Cruz), a-Tubulin

Antibody (#2144 Cell Signaling, MA), and anti-cyclophilin A (#07–313, Millipore Biotechnology,

USA).
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Appendix

Section A: Thymidine synchronisation and analysis

Appendix 1—figure 1. Oscillations in the NF-kB system. (A) Dynamics of RelA-dsRedxp in
transiently transfected SK-N-AS cells following 10 ng/ml TNFa stimulation, plotted over 450
and 150 min respectively. (B) Dynamics of RelA-dsRedxp in transiently transfected HeLa cells
following 10 ng/ml TNFa stimulation, plotted over 450 and 150 min respectively.

DOI: 10.7554/eLife.10473.022
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Appendix 1—figure 2. Use of double-Thymidine block to synchronize HeLa cells at G1/S. Flow
cytometric analysis of the distribution of DNA content of non-synchronized HeLa cells and cells
harvested at relevant times post-release from Thymidine block.

DOI: 10.7554/eLife.10473.023

Appendix 1—figure 3. Effect of Double-Thymidine block on tagged and endogenous RelA lev-
els HeLa cells. Endogenous RelA and tagged RelA-DsRedxp expression levels in unsynchronised
and synchronised WT-HeLa and double BAC stable cells. Synchronized fractions at 0, 2 and
4 hr post release of thymidine block. a-Tubulin used as loading control.

DOI: 10.7554/eLife.10473.024

Appendix 1—figure 4. Negative Co-IP. (A) Co-Immunoprecipitation of E2F-1 with RelA (pulled
down with a RelA antibody) in asynchronous HeLa cells showing no detectable band of E2F-1.
(B) Co-Immunoprecipitation of E2F-4 with RelA (pulled down with a RelA antibody) in HeLa
cells synchronized in late G1-phase cells showing no detectable band of E2F-4.

DOI: 10.7554/eLife.10473.025
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Section B: The NF-kB:E2F mathematical models
All modelling work was implemented using MATLAB2010 (MathWorks, USA), and simulated
using MATLAB ordinary differential equation solver ODE15s. Analysis of simulated time course
data was performed in both Microsoft Excel and MATLAB.

Model equations and parameters are shown in SI Appendix 1—table 2 and 3 respectively.
The deterministic model of TNFa-induced NF-kB signalling (Ashall et al. 2009), consisting of a
system of ordinary differential equations for species concentrations with respect to time, was
extended in two steps. Firstly, the physical interaction between E2F-1 and RelA was included.
It was assumed that E2F-1 competes with IkBa for binding of free NF-kB with similar affinity.
In addition, free IkBa actively disrupted the NF-kB:E2F-1 complex, while IkBa:NF-kB complex
was unaffected by free E2F-1. Secondly, the physical interaction between cytoplasmic NF-kB
complexes and E2F-4 was included. E2F-4 was modelled as an E2F-1 responsive gene which,
upon translation, forms complexes with NF-kB and NF-kB:IkBa, which were not targeted by
IKK. This reduced the system sensitivity to TNFa treatment for a prolonged period.

A typical simulation experiment involved three sequential stages: equilibration, transfection
and TNFa treatment (shown below):

1. The model was initialized by setting neutral IKK and cytoplasmic IkBa:NF-kB to 0.1 mM and
other variables to 0. The system was then equilibrated for 1000 min to reach the untreated
steady state.

2. Initial conditions from the end of the equilibrium stage were amended to mimic cell transfec-
tion. For example, in the case of E2F-1 and RelA co-transfection 0.1 mM cytoplasmic protein
was added to the respective initial conditions.

3. The equilibrated and transfected model was simulated for 800 min (with TR set to either 1 or
0 depending on whether treatment was simulated or not).

Simulations of the full model are shown below. Simulation protocols used throughout the
manuscripts are summarized below.

Appendix 1—figure 5. A typical simulation protocol of the NF-kB:E2F-1 mathematical model.
Simulation protocol of a live cell imaging experiment involving transfection and TNFa
stimulation.

DOI: 10.7554/eLife.10473.026
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Appendix 1—table 1. A Initial conditions for the NF-kB:E2F mathematical model.
Concentrations of NF-kB and E2F-1 added to mimic cell transfection are also included.

Species Biological name
Initial Conditions
Equilibration stage(mM)

Initial Conditions
TNFa stimulation
(mM)

NFkB Cytoplasmic RelA 0 0.004 (+0.1)

nNFkB Nuclear RelA 0 0.015

E2F1 Cytoplasmic E2F1 0 0 (+0.1)

nE2F1 Nuclear E2F1 0 0

tIkBa I!B" mRNA 0 1e-005

IkBa Cytoplasmic I!B" 0 0.017

nIkBa Nuclear I!B" 0 0.004

IKKn Neutral IKK 0.1 0.1

IKK Active IKK 0 0

IKKi Inactive IKKi 0 0

tA20 A20 mRNA 0 1e-005

A20 A20 0 0.001

pIkBa phospho-I!B" 0 0

pIkBaNFkB phospho-I!B" RelA complex 0 0

NFkBE2F1 cyto. RelA E2F-1 complex 0 0

nNFkBE2F1 nuclear RelA E2F-1 complex 0 0

IkBaNFkB cyto I!B" RelA complex 0.1 0.091

nIkBaNFkB nuclear I!B" RelA complex 0 0.001

tE2F4 E2F-1 target E2F-4 mRNA 0 0

E2F4 E2F-1 target E2F-4 0 0

E2F4NFkB E2F-4 RelA complex 0 0

E2F4IkBaNFkB E2F-4 I!B" RelA complex 0 0

DOI: 10.7554/eLife.10473.027

Appendix 1—table 2. NF-kB:E2F-1 model equations Symbol ‘n’ denotes nuclear variables,‘t’
denotes mRNA transcripts, ‘p’ denotes phosphorylated form of IkBa. Symbols denoting
cytoplasmic localisation were omitted.

d
dt
NFkBðtÞ ¼$ka1a % IkBaðtÞ % NFkBðtÞþ kd1a % ðIkBa :NFkBÞðtÞ$ ki1 % NFkBðtÞ

þke1 % nNFkBðtÞþ kt2a % ðpIkBa :NFkBÞðtÞþ c5a % ðIkBaÞðtÞ
þkd2e % ðNFkB : E2F1ÞðtÞ$ ka2e%E2F1ðtÞ%NFkBðtÞþ c8ne%ðNFkB : E2F1ÞðtÞ

$ka3e%NFkBðtÞ%E2F4ðtÞþ kd3e%ðE2F4 :NFkBÞðtÞþ c4x%ðE2F4 :NFkBÞðtÞ

ð1Þ

d
dt
nNFkBðtÞ ¼þka1a% nIkBaðtÞ% nNFkBðtÞþ kd1a%ðnIkBa : nNFkBÞðtÞ

þki1% kv%NFkBðtÞ$ ke1% kv% nNFkBðtÞ
þkd2e%ðnNFkB : nE2F1ÞðtÞ$ ka2e% nE2F1ðtÞ% nNFkBðtÞþ c9ne%ðnNFkB : nE2F1ÞðtÞ

ð2Þ

d
dt
E2F1ðtÞ ¼$kie%E2F1ðtÞ$ kee% kv% nE2F1ðtÞ$ c6e%E2F1ðtÞ

þkd2e%ðNF kB : E2F1ÞðtÞ$ ka2e% nE2F1ðtÞ%NF kBðtÞ
þkdis%ðNF kB : E2F1ÞðtÞ% IkBaðtÞ

ð3Þ

Appendix 1—table 2 continued on next page
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d
dt
nE2F1ðtÞ ¼þkie% kv%E2F1ðtÞ$ kee% kv% nE2F1ðtÞ$ c7e% nE2F1ðtÞ

þkd2e%ðnNF kB : nE2F1ÞðtÞ$ ka2e% nE2F1ðtÞ% nNF kBðtÞ
þkdis%ðnNF kB : nE2F1ÞðtÞ% nIkBaðtÞ

ð4Þ

d
dt
tIkBaðtÞ ¼þc1a% nNFkBhðtÞ

nNFkBhðtÞþkh
$ c3a% tIkBaðtÞ ð5Þ

d
dt
IkBaðtÞ ¼ kd1a%ðIkBa :NFkBÞðtÞ$ ka1a% IkBaðtÞ%NFkBðtÞþ c2a% tIkBaðtÞ
$c4a% IkBaðtÞ$ ki3a% IkBaðtÞþ ke3a% nIkBaðtÞ$ kc1a% IKKðtÞ% IkBaðtÞ
$kdis%ðNFkB : E2F1ÞðtÞ% IkBaðtÞ$ ka3e%ðNFkB : E2F4ÞðtÞ% IkBaðtÞ

þkd3e%ðE2F4 : IkBa :NFkBÞðtÞ

ð6Þ

d
dt
nIkBaðtÞ ¼ kd1a%ðnIkBa : nNFkBÞðtÞ$ ka1a%NIkBaðtÞ% nNFkBðtÞ

$c4a% nIkBaðtÞþ ki3a% kv% IkBaðtÞ$ ke3a% kv% nIkBaðtÞ
$kdis%ðnNFkB : nE2F1ÞðtÞ% nIkBaðtÞ

ð7Þ

d
dt
IKKnðtÞ ¼ kp%ð kbA20

kbA20þTRA20%A20ðtÞÞ% IKKiðtÞ$TR% ka% IKKnðtÞ ð8Þ

d
dt
IKKðtÞ ¼ TR% ka% IKKnðtÞ$ ki% IKKðtÞ ð9Þ

d
dt
IKKiðtÞ ¼ ki% IKKðtÞ$ kp% kbA20

kbA20þTRA20%A20ðtÞ % IKKiðtÞ ð10Þ

d
dt
tA20ðtÞ ¼þc1% nNFkBhðtÞ

nNFkBhðtÞþkh
$ c3% tA20ðtÞ ð11Þ

d
dt
A20ðtÞ ¼ c2% tA20ðtÞ$ c4%A20ðtÞ ð12Þ

d
dt
pIkBaðtÞ ¼ kc1a% IKKðtÞ% IkBaðtÞ$ kt1a% pIkBaðtÞ ð13Þ

d
dt
ðpIkBa :NFkBÞðtÞ ¼ kc2a% IKKðtÞ% ðIkBa :NFkBÞðtÞ$kt2a%ðpIkBa :NFkBÞðtÞ ð14Þ

Appendix 1—table 2 continued on next page
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d
dt
ðNFkB : E2F1ÞðtÞ ¼ ka2e%E2F1ðtÞ%NFkBðtÞ$ kd2e%ðNFkB : E2F1ÞðtÞ

$kine%ðNFkB : E2F1ÞðtÞþ kene%ðnNFkB : nE2F1ÞðtÞ$ c8ne%ðNFkB : E2F1ÞðtÞ
$kdis%ðNFkB : E2F1ÞðtÞ% IkBaðtÞ

ð15Þ

d
dt
ðnNFkB : nE2F1ÞðtÞ ¼ ka2e% nE2F1ðtÞ$ nNFkBðtÞ$ kd2e%ðnNFkB : nE2F1ÞðtÞ

þkine% kv%ðNFkB : E2F1ÞðtÞ$ kene% kv%ðnNFkB : nE2F1ÞðtÞ
$c9ne%ðnNFkB : nE2F1ÞðtÞ$ kdis%ðnNFkB : nE2F1ÞðtÞ% nIkBaðtÞ

ð16Þ

d
dt
ðIkBa :NFkBÞðtÞ ¼ ka1a% IkBaðtÞ%NFkBðtÞ$ kd1a%ðIkBa :NFkBÞðtÞ

$c5a%ðIkBa :NFkBÞðtÞþ ke2a%ðnIkBa : nNFkBÞðtÞ
$kc2a% IKKðtÞ% ðIkBa :NFkBÞðtÞþ ðkdisÞ% ðNFkB : E2F1ÞðtÞ% IkBaðtÞ
$ka3e%ðIkBa :NFkBÞðtÞ%E2F4ðtÞþ kd3e%ðE2F4 : IkBa :NFkBÞðtÞ

þc4x%ðE2F4 : IkBa :NFkBÞðtÞ

ð17Þ

d
dt
ðnIkBa : nNFkBÞðtÞ ¼ ka1a% nIkBaðtÞ% nNFkBðtÞ$ kd1a%ðnIkBa : nNFkBÞðtÞ

$ke2a% kv%ðnIkBa : nNFkBÞðtÞþ kdis%ðnNFkB : nE2F1ÞðtÞ% nIkBaðtÞ ð18Þ

d
dt
tE2F4ðtÞ ¼þclx% nE2F1hðtÞ

nE2F1hðtÞþkh
$ c3x% tE2F4ðtÞ ð19Þ

d
dt
E2F4ðtÞ ¼ c2x% tE2F4ðtÞ$ c4x%E2F4ðtÞ$ ka3e%NFkBðtÞ%E2F4ðtÞ

þkd3e%ðE2F4 :NFkBÞðtÞ$ ka3e%E2F4ðtÞ% ðIkBa :NFkBÞðtÞ
þkd3e%ðE2F4 : IkBa :NFkBÞðtÞ

ð20Þ

d
dt
ðE2F4 :NFkBÞðtÞ ¼ ka3e%NFkBðtÞ%E2F4ðtÞ$ kd3e%ðE2F4 :NFkBÞðtÞ

$c4x%ðE2F4 :NFkBÞðtÞþ c5a%ðE2F4 : IkBa :NFkBÞðtÞ
$ka3e%ðNFkB : E2F4ÞðtÞ% IkBaðtÞþ kd3e%ðE2F4IkBaNFkBÞðtÞ

ð21Þ

d
dt
ðE2F4 : IkBa :NFkBÞðtÞ ¼þka3e%ðIkBa :NFkBÞðtÞ%E2F4ðtÞ

$kd3e%ðE2F4 : IkBa :NFkBÞðtÞ$ c5a%ðE2F4 : IkBa :NFkBÞðtÞþ
ka3e%ðNFkB : E2F4ÞðtÞ% IkBaðtÞ$ kd3e%ðE2F4 : IkBa :NFkBÞðtÞ
$c4x%ðE2F4 : IkBa :NFkBÞðtÞ

ð22Þ

DOI: 10.7554/eLife.10473.028

Appendix 1—table 3. Model reactions and associated parameters.
Reaction Symbol Value References

Spatial parameters

Total cell volume tv 2700 mm3 Measured

C:N ratio kv 3.3 Measured

Appendix 1—table 3 continued on next page
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Appendix 1—table 3 continued

Reaction Symbol Value References

Conversion to nuclear volume nv %(kv+1) -

Conversion to cytoplasmic volume cv %(1/kv+1) -

Initial concentration

Total NF-kB NF 0.08 mM Initialized as cytoplasmic I!B"'NF-!B

Total IKK - 0.08 mM Initialized as IKKn

Complex formation & dissociation

IkBa + NF-kB fi IkBa'NF-kB
nIkBa + nNF-kB fi nIkBa'NF-kB

ka1a 0.5 mM-1s-1 (Hoffmann et al., 2002)

IkBa'NF-kB fi IkBa + NF-kB
nIkBa'nNF-kB fi nIkBa + nNF-kB

kd1a 0.0005 s-1 (Hoffmann et al., 2002)

NF-kB + E2F (1 or 4) fi NF-kB'E2F
nNF-kB + nE2F fi nNF-kB'nE2F

ka2e 0.5 mM-1s-1 fitted, same as I!B" + NF-!B

NF-kB'E2F fi NF-kB + E2F
nNF-kB'nE2F fi nNF-kB + nE2F

kd2e 0.0005 s-1 fitted, same as I!B" + NF-!B

NF-kB'E2F1 + IkBafi IkBa'NF-kB +
E2F1
nNF-kB'nE2F1 + nIkBa fi nIkBa'NF-kB
+ nE2F1

kdis 0.001 s-1 fitted

Transport

NF-kB fi nNF-kB ki1 0.0026 s-1 Measured fitting range:
Average 0.0026 ( 0.0018s-1

nNF-kB fi NF-kB ke1 0.000052 s-
1

ki1/50 (Carlotti et al., 2000)

E2F1fi nE2F1 kie 0.0026 s-1 fitted, same as NF-!B

nE2F1 fi E2F1 kee 0.000052 s-
1

fitted, same as NF-!B

IkBa fi nIkBa ki3a 0.00067 s-1 Measured fitting range:
Average 0.00043 ( 0.00024 s-1

nIkBa fi IkBa ke3a 0.000335 s-
1

ki3a/2 (Carlotti et al., 2000)

nIkBa'nNF-kB fi IkBa'NF-kB ke2a 0.01 s-1 Fitted

NF-kB'E2F1 fi nNF-kB'nE2F1 kine 0.0026 s-1 fitted, same as NF-!B

nNF-kB'nE2F1 fi NF-kB'E2F1 kene 0.000052 s-
1

fitted, same as NF-!B

Protein synthesis & degradation

nNF-kB fi nNF-kB + tIkBa
Order of hill function, h=2
Half-max constant, k=0.065h(fitted)

c1a 1.4%10-7

mM-1s-1
Fitted (constrained):
1.07%10-7 – 8.2%10-7mM-1s-1

(Femino et al., 1998);
(Cheong et al., 2006)

tIkBafi tIkBa + IkBa c2a 0.5 s-1 (Lipniacki et al., 2004)

NF-kB'IkBafi NF-kB c5a 0.000022 s-
1

(Pando and Verma, 2000;
Mathes et al., 2008)

nNF-kB'nIkBafi nNF-kB - 0 s-1 Assumed (O’Dea et al., 2007;
Mathes et al., 2008)

nNF-kB fi nNF-kB + tA20
Order of hill function, h=2
Half-max constant, k=0.065h

c1 1.4%10-7

mM-1s-1
Assumed to be the same as I!B"

nE2F1 fi nE2F1 + tE2F4
Order of hill function, h=2
Half-max constant, k=0.065h

c1x 9.8%10-7

mM-1s-1
Fitted

tA20fi tA20 + A20 c2 0.5 s-1 -

Appendix 1—table 3 continued on next page
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Appendix 1—table 3 continued

Reaction Symbol Value References

tE2F-4fi tE2F-4 + E2F4 c2x 0.5 s-1 -

tIkBafi Sink c3a 0.0003 s-1 Fitted (constrained): 0.00077-0.00029 s-1

(Blattner et al., 2000)

tA20fi Sink c3 0.00048 s-1 Fitted, constrained >tI!B"
turnover (Ashall et al., 2009)

tE2F4fi Sink c3x 0.00048 s-1 Fitted

IkBafi Sink c4a 0.0005 s-1 Fitted (constrained): 0.000105 – 0.002 s-1

(Pando and Verma, 2000; O’Dea et al.,
2007;
Mathes et al., 2008)

A20 fi Sink c4 0.0045 s-1 Fitted

E2F4 fi Sink c4x 0.00016 s-1 Fitted

E2F1 fi Sink c6e 0.00016 s-1 Fitted

nE2F1 fi Sink c7e 0.00016 s-1 Fitted

NF-kB'E2F1 fi Sink c8ne 0.00016 s-1 Fitted

nNF-kB'nE2F1 fi Sink c9ne 0.00016 s-1 Fitted

TNFa stimulation

TNFa TR 1/0 on/off (Lipniacki et al., 2004)

IKK parameters

IKKn fi IKKa ka 0.004 s-1 Fitted, as above

IKKa fi IKKi ki 0.003 s-1 Fitted, as above

IKKi fi IKKn kp 0.0006 s-1 Fitted

A20 inhibition rate constant kbA20 0.0018 Fitted, scales kp dependent on
receptor state kbA20%TR

IKKa + IkBa fi pIkBa kc1a 0.074 s-1 Assumed (0.037%2) (Heilker et al., 1999)

IKKa + IkBa'NF-kB fi pIkBa'NF-kB kc2a 0.37 s-1 Assumed (0.037%5%2)
(Heilker et al., 1999;
Zandi and Karin, 1999)

pIkBa fi Sink kt1a 0.1 s-1 Fitted

pIkBa'NF-kB fi NF-kB kt2a 0.1 s-1 Fitted

DOI: 10.7554/eLife.10473.029

Appendix 1—table 4. Simulation protocols used throughout the manuscript. TNFa stimulation
is invoked via TR=0/1. E2F refers to levels of ’transfection’ (in mM). E2F4 off/on refers to whether
its transcription is switched on or off.
Figure Model conditions

3E TR=0, E2F1= (0.05, 0.1, 0.15), E2F4 off

4A TR=1, E2F1 = 0.1, E2F4 off

4C TR=1, E2F1 = 0.1, E2F4 on

4I (G1, G2) TR=1, E2F1= 0, E2F4 on (but unaffected)

4I (G1/S) TR=1, E2F1 = 0.2, E2F4 on

4I (S) TR=1, NFkBIkBa = 0.1, E2F1 = 0, E2F4= 0.1

DOI: 10.7554/eLife.10473.030
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Appendix 1—figure 6. Simulations from the NF-kB:E2F model. Blue lines represent E2F1= 0,
TR= 1. Black lines represent E2F1= NFkB= 0.1 and TR=0. Red lines represent E2F1= NFkB=
0.1 and TR=1.

DOI: 10.7554/eLife.10473.031
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Section C: Generation of recombinant Bacterial Artificial
Chromosome (BAC)
Bacterial artificial chromosomes (BACs) containing the human E2F-1 gene with 98.7 kb 50

flanking DNA, 45.5 kb 30 flanking DNA (RP11-246G11) or the human RelA gene with 82 kb 50

and 15 kb 30 flanking DNA (CTD 2116H8) were identified using genome browser (http://
genome.ucsc.edu) and obtained from Invitrogen/Life technologies. The targeting strategy to
create BACs expressing fusion protein products were based on the seamless recombineering
technology developed by Warming et al. (2005), with minor modifications. Chimeric primers
to amplify the GalK gene tagged with homology arms corresponding to the 50–80 bp
immediately up and downstream of the stop codon of the gene were used to generate the
H-GalK-H recombination cassette for primary targeting. The length of GalK specific portion
of the primers was extended to increase Tm and thus the efficiency of the PCR using a two-
step PCR method (Phusion high fidelity enzyme, Finnzymes; primer sequences below). The
second targeting cassette was generated using chimeric primers with the same homology
arms but amplifying the desired fluorescent fusion protein, H-Venus-H for E2F1 or DsRedxp
for RelA. Recombination and selection was carried out according to routine protocols
(Warming et al., 2005) available at http://recombineering.ncifcrf.gov. Clone screening was
performed by pulsed field gel electrophoresis, Southern blots and sequencing to confirm in-
frame C-terminal insertion of the reporter gene.

Primers used (italics denote homology arm sequence):

E2F1-GalKF

TCAGAGACCTCTTCGACTGTGACTTTGGGGACCTCACCCCCCTGGATTTCCCTGTTGACAA
TTAATCATCGGCATAGTATATCG

E2F1-Galk R

TGCAGAGACAAGGTGAGCATCTCTGGAAACCCTGGTCCCTCCAAGCCCTGTCAGCACTG
TCCTGCTCCTTGTGA

E2F1-Venus F

CCACTTCGGCCTCGAGGAGGGCGAGGGCATCAGAGACCTCTTCGACTGTGAC
TTTGGGGACCTCACCCCCCTGGATTTCATGGTGAGCAAGGGCGAGGAG

E2F1-Venus R

CGGCCAGGGACAGGGGGCTCCAGGGCTGCAGAGACAAGGTGAGCATCTCTGGAAACCC
TGGTCCCTCCAAGCCCTGCTACTTGTACAGCTCGTCCATGCC

RelA-GalKF

ATGAAGACTTCTCCTCCATTGCGGACATGGACTTCTCAGCCCTGCTGAGTCAGATCAGC
TCCCCTGTTGACAATTAATCATCGGCATAGTATATCG

RelA-Galk R

CAGAATCCGTAAGTGCTTTTGGAGGGCTTCAATCCCCTGCAACCCAGTGCTC
TGGGGAGGGCAGGCGTCACCCCCTCAGCACTGTCCTGCTCCTTGTGA

RelA-DsRedxp F

ATGAAGACTTCTCCTCCATTGCGGACATGGACTTCTCAGCCCTGCTGAGTCAGATCAGC
TCCATGGCCTCCTCCGAGGACGTC

RelA-DsRedxp

RCAGAATCCGTAAGTGCTTTTGGAGGGCTTCAATCCCCTGCAACCCAGTGCTC
TGGGGAGGGCAGGCGTCACCCCCCTACAGGAACAGGTGGTGGCG

The BAC were initially transiently transfected into HeLa cells using ExGen500 transfection
reagent (Fermentas, UK) to confirm fluorescent protein function.
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BAC stable cell line generation
To generate stable cell lines it was necessary to retrofit the BAC with an appropriate
mammalian selection marker. Retrofitting constructs that could universally be applied to any
BAC were developed. As the same parent BAC vector construct, pBAC108L, was used to
derive the most common BAC vectors, pe3.6 (from the Roslin Park institute library) and the
pBeloBAC vector (from the California Institute of Technology) approximately 6kb of the
vectors had perfect sequence homology. Within this region the chloramphenicol resistance
gene was identified as a suitable target for replacement with a new selection marker as this
would not disrupt important bacterial sequences. Restriction site-tagged homology arms
300-400 bp in length were amplified from the BAC sequence using the primers (underlined
indicates enzyme site):

5’H KpnI F tgtcaaGGTACCGGCAGCCACATCCAG,

5’H EcoRI R ggtgccGAATTCTCAACGTCTCATTTTCGC,

3’H BamHI F aatgggGGATCCTGGACAACTTCTTCGCC,

3’H SacII R aatgggCCGCGGGCCGTCGACCAATTCTC

and cloned using the appropriate enzymes into the multiple cloning sites of pL451 (Liu et al.,
2003). This resulted in a recombination cassette containing H-pGK-pEM7-Kan/Neo-H.
Retrofitting was performed in the same SW102 strain hosting the BAC by heat induction of
the bacteria for recombination, transforming with the cassette and plating on LB containing
Kanamycin (25 mg/ml). Clones were screened by PFGE and >90% recombination efficiency
was observed.

Stable BAC transfection
BAC DNA was prepared by maxiprep (BAC100 Nucleobond kit, Macherey-Nagel, Germany)
and 1 mg or 3 mg used to transfect 106 cells in a 10 cm dish using ExGen500 transfection
reagent. Media was changed 3 days post transfection and supplemented with 500 mg/ml
G418. Media + antibiotic were refreshed every 3–4 days. Colonies formed 2–3 weeks after
culturing in selection containing media were ring cloned into individual wells of a 48 well
plate and sequentially scaled up to large culture vessels as necessary.

A HeLa cell line stably expressing the E2F-1-venus bacterial artificial chromosome (BAC), was
transiently transfected with a FUCCI marker for G1-phase. Shows two consecutive cycles of
HeLa cell division for a representative cell (Figure 8—figure supplement 1). Parent and
daughter cells showed cycles of E2F-1 expression, with a peak timing consistent with late
G1-phase.
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Section D: BAC characterisation

Appendix 1—figure 7. Cell Cycle length of Clonal HeLa BAC population. (A) Analysis of cell
cycle duration in populations of dual BAC stable cell line (C1-1) with wild type HeLa cells. (B)
Analysis of the effects of TNFa treatment in C1-1 and WT HeLa cells.

DOI: 10.7554/eLife.10473.032

Section E: Controls for FCCS
Physical interaction between RelA and IkBa was confirmed using FCCS in SK-N-AS cells co-
expressing RelA-DsRedxp and IkBa-EGFP. FCS exploits fluorescence-intensity fluctuations
caused by low numbers of diffusing labelled particles in a diffraction limited confocal volume
of light to analyse their concentration and mobility (Spiller et al. 2010). Fluctuations are
recorded as function of time and then statistically analysed by autocorrelation analysis. In its
dual-colour variant, FCCS, two spectrally distinct fluorophores (such as red and green) are
used and the cross-correlation amplitude in conjunction with the auto-correlation amplitudes
provides information on molecular binding as well as dynamic co-localisation. In contrast to
FRET, FCCS does not depend on the very close proximity of the interacting fluorescent
labels.

Appendix 1—figure 8. FCCS control. FCCS assays between transiently transfected RelA-
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dsRedxp and IkBa-EGFP (red line) and Empty-DsRedxp and Empty-EGFP (blue line) in single
live SK-N-AS cells (+/- s.e.m based on 10 measurements in each of 10+ cells per condition).

DOI: 10.7554/eLife.10473.033

Auto-correlation analysis was conducted to show comparable noise between measurements
and between controls for RelA/E2F-1 FCCS data

Appendix 1—figure 9. FCCS autocorrelation analysis. Autocorrelation lines for RelA/IkBa,
RelA/E2F-1 and RelA/E2F-4 FCCS studies in single live SK-N-AS cells (+/- s.e.m based on 10
measurements in each of 10+ cells per condition).

DOI: 10.7554/eLife.10473.034
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