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A B S T R A C T   

The size dependent free transverse vibration of the micro- and nanocantilever mass sensors is 
studied. The general case of a sensor with an arbitrary number of attached particles is considered. 
The domain is divided into different segments at the cross-sections where the particles are 
located, and the displacement fields are described based on the Bernoulli-Euler beam theory. The 
size effect is introduced into the formulation by assuming the constitutive equation of the stress- 
driven nonlocal theory of elasticity. The eigenvalue problem is generated by solving the equation 
of motion in each segment of the sensor and imposing the variationally consistent and higher- 
order constitutive boundary and continuity conditions. The natural frequencies and their sensi-
tivity to the attachment of a small mass are analyzed analytically. It is shown that the frequency 
shifts resulting from attachment of a small mass can be explicitly defined as a function of the 
frequency and mode shape of the unloaded sensor. The model is used to numerically study the 
natural frequencies of sensors loaded by one to three particles. Comprehensive results are pre-
sented on the effect of the size dependency on the frequency shifts of the first four modes of 
vibration. It is revealed that neglecting the size effect may result in wrong detections of the 
masses of the attached particles.   

1. Introduction 

Micro- and nanoelectromechanical systems (MEMS and NEMS) are important devices with many applications in different fields of 
science and technology. Miniaturized sensors are one of the basic components of MEMS and NEMS. In the case of mass detection, the 
sensor is usually a cantilever micro- or nanobeam. The cantilever-based mass sensors can detect ultrasmall biological and chemical 
entities with high resolutions [1]. The mass detection in these devices is based on the natural frequency shifts after the attachment of 
the entities. Experiments on the free transverse vibration of micro- and nanomechanical mass sensors have been conducted in several 
works, but often without the consideration of size dependency. Many of these experimental investigations are discussed in the seminal 
review articles in [1,2] as well as the recent ones in [3,4]. It is well-known that the structural response of small scale beams is size 
dependent. Therefore, it is necessary to account for the size effect in the design and modeling of the micro- and nanomechanical mass 
sensors. 

Although the atomistic models (e.g. [5]) can accurately simulate the mechanical response of the micro- and nanobeams, they are 
complex in formulation and computationally expensive in implementation. One efficient methodology for capturing the size de-
pendency in the structural response of the miniaturized beams is based on the strain-driven nonlocal theory proposed by Eringen [6,7], 
which belongs to the nonclassical continuum mechanics-based theories. Unlike the beam theories based on the classical continuum 
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mechanics which employ local constitutive relations, the constitutive equations of the strain-driven beam theories have a nonlocal 
nature. For instance, when dealing with the Bernoulli-Euler beam formulation, the bending moment at each cross-section depends on 
the elastic curvature of all the cross-sections of the beam. The dependency is defined through a convolution integral in terms of a kernel 
function, which weights the contributions of the long-range interactions. The nonlocal formulations based on Eringen’s theory are used 
by many scientists to study the size dependent behavior of miniaturized structures, e.g., [8,9]. Assuming a special class of kernels, the 
integral form of the nonlocal constitutive equation can be converted into a differential form subjected to a set of higher-order 
constitutive boundary conditions in terms of the bending moment. These higher-order boundary conditions may be in contrast to 
the equilibrium conditions in some cases, such as a micro- or nanocantilever subject to a transverse end load [10]. An innovative idea, 
namely the stress-driven nonlocal theory, is proposed in [11] to overcome the ill-conditioning of the strain-driven beam theories by 
switching the role of the bending moment and elastic curvature in the nonlocal constitutive law. Therefore, the beam formulations 
based on the stress-driven nonlocal theory are always well-posed since their constitutive boundary conditions are in terms of the elastic 
curvature and do not contradict the global equilibrium of the beam. The stress-driven beam models predict that the beam becomes 
stiffer as its dimensions reduce, which is in agreement with the experimental observations in [12]. In [13,14], the applications of the 
stress-driven nonlocal theory of elasticity are extended to the problems with internal discontinuities, e.g., the miniaturized beams with 
edge cracks, loading discontinuities, or attached masses. For this purpose, the beam is divided into different segments at the cross- 
sections where the discontinuities are located and a set of mathematically consistent higher-order continuity conditions associated 
with the integral form of the constitutive equation are derived. These constitutive continuity conditions are used in [15,16] to study 
fracture problems in nanobeams, and in [13] and [17] to study the free transverse vibration and buckling of the miniaturized cracked 
beams. 

The problem of size dependent vibration of the small scale mass sensors has been studied in several papers using the nonlocal 
elasticity theories, e.g. in [18]. A nonlocal Bernoulli-Euler beam model is used in [19] to study the effect of the distributed added mass 
on the natural frequencies of the carbon nanotube-based mass sensors. In [20], a nonlocal Kirchhoff-Love plate theory is used to study 
the frequency shifts of a single-layered graphene sheet due to the attachment of particles in the presence of a magnetic field. The 
vibration of a carbon nanotube-based mass sensor embedded in the nonlocal elastic foundation is studied in [21] through a nonlocal 
finite element model. The vibration of nanobeams and nanorods carrying a single point mass [22] and distributed mass [23,24], are 
studied using the modified strain gradient theory. The strain gradient theory is used in [25] to study Kirchhoff-Love nanoplates with 
point masses. The coupled axial-flexural vibration of cantilever mass nanosensors is investigated in [26] based on a two-phase local/ 
nonlocal elasticity. 

In addition to the facts that the stress-driven theory of nonlocal elasticity always results in a well-posed formulation and overcomes 
the inconsistent restrictions of Eringen’s theory, the theory has been recently shown in [27] to be able to well model the quasi-static 
and dynamic tests on the micro- and nanobeams. The applications of the stress-driven theory to the problems of mass sensors are very 
rare. The author is only aware of the recent work in [28], where the free transverse vibration of a Bernoulli-Euler nanocantilever with a 
tip point mass immersed in water is investigated. However, several particles can land simultaneously at different positions across the 
miniaturized sensor in practical applications. Therefore, it is fair to claim that there is a gap in the literature since the stress-driven 
theory of nonlocal elasticity has not been used previously to thoroughly study the size effect in micro- and nanomechanical mass 
sensors. This paper is aimed at extending the formulation in [28] to the micro- and nanocantilever mass sensors with multiple attached 
particles at arbitrary locations. To solve the problem, the sensor is first divided into segments at the cross-sections where the particles 
are located. Then, the variationally consistent governing equations and boundary and continuity conditions, together with the higher- 
order constitutive boundary and continuity conditions are solved to define the natural frequencies. Novel insightful results are pre-
sented confirming that neglecting size dependency may result in significant errors in mass detection. The shielding and amplification of 
the effect of the particles on the natural frequencies are also studied. In Sect. 2, the problem definition, assumptions, and model 
formulation are presented. An analytical formulation is presented in Sect. 3 to assess the natural frequencies and their sensitivity to a 
small mass. In Sect. 4, the model is applied to micro- and nanocantilever mass sensors with one to three attached particles, and the 
results are presented and discussed for different cases by varying the effective parameters. The concluding remarks are given in sect. 5. 

2. Problem definition and formulation 

Consider a homogeneous isotropic Bernoulli-Euler micro- or nanocantilever mass sensor with a rectangular cross-section under the 
plane stress conditions, as shown in Fig. 1. The sensor has the length, in-plane thickness and out-of-plane width of L, h, and b. A 

Fig. 1. Micro- or nanocantilever mass sensor with n attached point masses, divided into n + 1 segments.  
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Cartesian coordinate system x − z is placed at the mid-thickness with the origin at the left end of the sensor. Young’s modulus is E and 

the local elastic compliance C = 12/
(

Ebh3
)

. As it is shown in the figure, n different particles, numbered from left to right, with 

arbitrary masses Mi are attached to the sensor at locations xi for i = 1, …, n. The attached particles are assumed to be point masses (i.e. 
each particle is attached to the sensor at a point rather than over a line) and may represent biological and chemical entities. The 
eccentricity of the point masses with respect to the axis line of the sensor is neglected. This assumption, which eliminates the effect of 
the kinetic energy of the attached particles associated with the axial velocities, is common in the literature for studying the vibration of 
slender mass sensors, e.g., [29]. In addition, it allows for significantly simplifying the formulation since there will be no coupling 
between the flexural and longitudinal deformations. To study the free transverse vibration of the sensor, the domain is divided into 
n+1 segments at the mass locations. Throughout the formulation, the superscript (i) on the left of a quantity shows the association with 
the segment i, and F,xxx...x⏟̅̅̅ ⏞⏞̅̅̅ ⏟

i 

indicates the i-th derivative of the function F with respect to x. Also, a dot over a function shows the 

derivative with respect to time, t. 

2.1. Problem formulation 

The equations governing the vibration of the generic segment i are [30,31]:  

• Variationally consistent equation of motion 

(i)Mmoment
,xx − I2

(i)ẅ,xx + I0
(i)ẅ = 0 (1) 

for i = 1, …, n + 1, where (i)w is the transverse displacement, and (Io, I2) =
(
m,mh2/12

)
with m being the mass per unit length of the 

cantilever. The bending moment is defined by (i)Mmoment =
∫

A
(i)σzdA, where (i)σ and A are the axial stress of the segment and the cross- 

section of the cantilever.  

• Variationally consistent continuity conditions: 

(i)w(xi, t)=(i+1)w(xi, t)
(i)w,x(xi, t)=(i+1)w,x(xi, t)

(i)Mmoment(xi, t)=(i+1)Mmoment(xi, t)
(i)Mmoment

,x (xi, t) − I2
(i)ẅ,x(xit) − Mi

(i)ẅ(xi, t)=(i+1)Mmoment
,x (xi, t) − I2

(i+1)ẅ,x(xi, t)

(2) 

for i = 1, …, n. The four conditions satisfy the continuity of transverse displacement, bending slope, bending moment, and shear 
force at the cross-sections where the particles are attached.  

• Variationally consistent boundary conditions: 

(1)w(x = 0, t) = 0
(1)w,x(x = 0, t) = 0

(n+1)Mmoment(x = L, t) = 0
(n+1)Mmoment

,x (x = L, t) − I2
(n+1)ẅ,x(x = L, t) = 0

(3) 

The case of a clamped–clamped mass sensor can be modeled by using (n+1)w(x = L, t) = (n+1)w,x(x = L, t) = 0 instead of the last two 
conditions in Eq. (3). The case of a micro- or nanocantilever mass sensor loaded by one particle at the free end is modeled by Eqs. (1)- 
(3) for x1 = L. The variationally consistent governing equations (1)-(3) depend on the bending moment and need to be expressed solely 
in terms of the transverse displacements, (i)w, using the constitutive equation. Since the mass sensor is a micro- or nanocantilever with 
size dependent mechanical response, the constitutive equation of the stress-driven nonlocal theory is used [13,14]:  

• Differential form of nonlocal constitutive equation 

(i)w,xx − L2
C

(i)w,xxxx = C (i)Mmoment (4) 

for i = 1, …, n + 1, with LC being the characteristic length parameter.  

• Higher-order constitutive boundary and continuity conditions 

(i)w,xxx(xi− 1, t) =
1

LC

[

(i)w,xx(xi− 1, t) −
∑i− 1

k=1

∫ xk

xk− 1

(
1

LC
e

ξ− xi− 1
LC

[
(k)w,xx(ξ, t) − L2

C
(k)w,xxxx(ξ, t)

]
)

dξ

]

(i)w,xxx(xi, t) = −
1

LC

[

(i)w,xx(xi, t) −
∑n+1

k=i+1

∫ xk

xk− 1

(
1

LC
e

xi − ξ
LC
[
(k)w,xx(ξ, t) − L2

C
(k)w,xxxx(ξ, t)

]
)

dξ

] (5) 
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for i = 1, …, n + 1. Note that the summation 
∑b

aF is equal to zero if a > b. The differential form of the nonlocal constitutive equation 
(4) and its constitutive boundary and continuity conditions (5) are derived in [13,14] by decomposing the integral form of the 
constitutive equation of the stress-driven theory. The derivation is purely mathematical and straightforward and can be found in 
[13,14]. 

2.2. Equations in terms of displacements 

The governing Eqs. (1)-(3) can be written solely in terms of the transverse displacements, (i)w, using the bending moment definition 
given by the constitutive equation (4): 

L2
C

(i)w,xxxxxx −
(i)w,xxxx +

Cmh2

12
ẅ,xx − Cmẅ = 0 (6) 

for i = 1, …, n + 1, 

(i)w(xi, t)=(i+1)w(xi, t)
(i)w,x(xi, t)=(i+1)w,x(xi, t)

L2
C
(i)w,xxxx(xi, t) − (i)w,xx(xi, t) = L2

C
(i+1)w,xxxx(xi, t) − (i+1)w,xx(xi, t)

L2
C

(i)w,xxxxx(xi, t) − (i)w,xxx(xi, t) +
Cmh2

12
(i)ẅ,x(xi, t) + CMi

(i)ẅ(xi, t) =

L2
C

(i+1)w,xxxxx(xi, t) − (i+1)w,xxx(xi, t) +
Cmh2

12
(i+1)ẅ,x(xi, t)

(7) 

for i = 1, …, n, and 

(1)w(x = 0, t) = 0
(1)w,x(x = 0, t) = 0

L2
C

(n+1)w,xxxx(x = L, t) − (n+1)w,xx(x = L, t) = 0

L2
C

(n+1)w,xxxxx(x = L, t) − (n+1)w,xxx(x = L, t) +
Cmh2

12
(n+1)ẅ,x(x = L, t) = 0

(8) 

The equations of motion (6) subjected to the variationally consistent continuity and boundary conditions (7) and (8), together with 
the constitutive boundary and continuity conditions (5) govern the size dependent free transverse vibration of the loaded miniaturized 
sensor. 

2.3. Solution technique 

The equation of motion (6) can be decomposed into a harmonic time-dependent and a spatial differential equation using the 
separation of variables technique and assuming (i)w = θ(t) (i)ψ(x): 

θ̈(t) = − ω2θ(t)

L2
C

(i)ψ ,xxxxxx −
(i)ψ ,xxxx + ω2

[

Cm (i)ψ −
Cmh2

12
(i)ψ ,xx

]

= 0
(9) 

for i = 1, …, n + 1. The solution to the harmonic time-dependent equation is, θ(t) = b1sin(ωt) + b2 cos(ωt), with b1 and b2 un-
known constants to be determined by imposing suitable initial conditions. The spatial equation can be represented in a dimensionless 
form using the following dimensionless parameters: 

(i)ψ =
(i)ψ
L

; x =
x
L
; h =

h
L
;ω = ωL2

̅̅̅̅̅̅̅
Cm

√
;Mi =

Mi

mL
; λ =

LC

L
(10) 

as: 

λ2 (i)ψ ,xxxxxx(x) −
(i)ψ ,xxxx(x)+ω2

[
(i)ψ(x) − h2

12
(i)ψ ,xx(x)

]

= 0 (11) 

for i = 1, …, n + 1. Similarly, the dimensionless variationally consistent continuity and boundary conditions are obtained from Eqs. 
(7) and (8) using the dimensionless parameters in Eq. (10) and the harmonic time-dependent differential equation: 
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(i)ψ(xi)=
(i+1)ψ(xi)

(i)ψ ,x(xi)=
(i+1)ψ ,x(xi)

λ2 (i)ψ ,xxxx(xi) −
(i)ψ ,xx(xi) = λ2 (i+1)ψ ,xxxx(xi) −

(i+1)ψ ,xx(xi)

λ2 (i)ψ ,xxxxx(xi) −
(i)ψ ,xxx(xi) −

ω2h2

12
(i)ψ ,x(xi) − Miω2ψ(xi) =

λ2 (i+1)ψ ,xxxxx(xi) −
(i+1)ψ ,xxx(xi) −

ω2h2

12
(i+1)ψ ,x(xi)

(12) 

for i = 1, …, n, and 

(1)ψ(0) = 0
(1)ψ ,x(0) = 0

λ2 (n+1)ψ ,xxxx(1) − (n+1)ψ ,xx(1) = 0

λ2 (n+1)ψ ,xxxxx(1) − (n+1)ψ ,xxx(1) −
ω2h2

12
(n+1)ψ ,x(1) = 0

(13) 

Also, the constitutive boundary and continuity conditions given in Eq. (5) are written in the dimensionless form: 

(i)ψ ,xxx(xi− 1) =
1
λ

[

(i)ψ ,xx(xi− 1) −
∑i− 1

k=1

∫ xk

xk− 1

(
1
λ
e

ξ− xi− 1
λ

[
(k)ψ ,ξξ(ξ) − λ2 (k)ψ ,ξξξξ(ξ)

]
)

dξ

]

(i)ψ ,xxx(xi) = −
1
λ

[

(i)ψ ,xx(xi) −
∑n+1

k=i+1

∫ xk

xk− 1

(
1
λ
e

xi − ξ
λ
[
(k)ψ ,ξξ(ξ) − λ2 (k)ψ ,ξξξξ(ξ)

]
)

dξ

] (14) 

for i = 1, …, n + 1. 
The dimensionless form of the equations given in Eqs. (11)-(14) define the size dependent free transverse vibration of the mini-

aturized sensor with multiple attached masses. The solution of equation (11) for the i-th segment of the cantilever depends on six 
unknown constants. Therefore, the transverse displacement of the miniaturized cantilever with n attached particles can be defined in 
terms of 6 × (n + 1) unknown constants. The solutions must satisfy 4 × n variationally consistent continuity conditions in Eq. (12), 4 
variationally consistent boundary conditions in Eq. (13), and 2 × (n + 1) constitutive boundary and continuity conditions in Eq. (14). 
The natural frequencies can be defined by solving the resulting eigenvalue problem. 

In general, it is difficult to find closed-form solutions for the frequencies of micro- and nanocantilever mass sensors. Nevertheless, 
an analytical formulation will be presented in the next section, which allows quantification of the natural frequencies and their 
sensitivity to a small mass. The numerical results will be presented in Sect. 4. 

3. Effect of a small mass on frequency shifts 

In this section, the frequency shifts induced due to the attachment of a small mass compared to the total mass of the sensor, i.e., 
M1 ≪ mL at the location x1, is considered. The case with multiple attached masses can be analyzed similarly and will be investigated 
elsewhere. The formulation presented in this section is based on the methodology developed in [22,25,32] and can stimulate further 
investigation on inverse problem of mass identification from frequency shifts associated with the stress-driven nonlocal formulation. 

The derivation starts with multiplying the equation of motion (11) by an admissible test function (i)φ for i = 1 and 2 which satisfies 
the clamped-free boundary conditions, (i)φ(x1)=

(i+1)φ(x1), and (i)φ,x(x1)=
(i+1)φ,x(x1), and integrating the resulting expressions over 

the entire length of the sensor. Then, applying integration by parts twice on the first and second terms, and once on the last term, result 
in the following equation: 

∑2

i=1

[(

λ2 (i)ψ ,xxxxx −
(i)ψ ,xxx − ω2 h2

12
(i)ψ ,x

)
(i)φ −

(
λ2 (i)ψ ,xxxx −

(i)ψ ,xx
)
(i)φ,x

]xi

xi− 1

+

+
∑2

i=1

∫ xi

xi− 1

[
(
λ2 (i)ψ ,xxxx −

(i)ψ ,xx

)
(i)φ,xx + ω2

(
(i)ψ (i)φ +

h2

12
(i)ψ ,x

(i)φ,x

)]

= 0

(15) 

Imposing the boundary and continuity conditions of (i)ψ given in Eqs. (12) and (13), as well as the characteristics of the test 
function (i)φ mentioned above, yield: 
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∑2

i=1

∫ xi

xi− 1

(
(i)ψ ,xx − λ2 (i)ψ ,xxxx

)
(i)φ,xx =

ω2

[

M1
(1)ψ(x1)

(1)φ(x1) +
∑2

i=1

∫ xi

xi− 1

(
(i)ψ (i)φ +

h2

12
(i)ψ ,x

(i)φ,x

)] (16) 

The associated Rayleigh’s quotient is: 

R(φ) =
∑2

i=1

∫ xi
xi− 1

(
(i)φ,xx − λ2 (i)φ,xxxx

)
(i)φ,xx

M1[ (1)φ(x1) ]
2
+
∑2

i=1

∫ xi
xi− 1

(
[ (i)φ]2 + h

2

12

[
(i)φ,x

]2
) (17) 

and the square of the frequencies are given by: 

R(ψ) = ω2 =

∑2
i=1

∫ xi
xi− 1

(
(i)ψ ,xx − λ2 (i)ψ ,xxxx

)
(i)ψ ,xx

M1[ (1)ψ(x1) ]
2
+
∑2

i=1

∫ xi
xi− 1

(
[ (i)ψ ]2 + h

2

12

[
(i)ψ ,x

]2
) (18) 

The sensitivity of the square of natural frequencies to the small mass M1 can be estimated by taking the derivative of Eq. (18) with 
respect to M1. In general, the mode shape changes when the mass is added to the system. Here, the derivative of the mode shape with 
respect to the mass of the attached particle is not taken into account. This is an acceptable assumption for small masses attached to long 
sensors and for lower modes of vibrations, as will be shown later in this section (see Fig. 2). In addition, this assumption leads to the 
solution which is in agreement with the results presented in the literature, e.g., [22,25,32], and allows drawing general conclusions 
important for inverse problem of mass identification from frequency shifts. Under this assumption, the derivative of Eq. (18) with 
respect to M1 reads: 

∂ω2

∂M1
= − ω2

[
(1)ψ(x1)

]2

M1[ (1)ψ(x1) ]
2
+
∑2

i=1

∫ xi
xi− 1

(
[ (i)ψ ]2 + h

2

12

[
(i)ψ ,x

]2
) (19) 

The relation given in Eq. (19) agrees with the results obtained in [22,25,32], and implies that no frequency can be increased due to 
the attachment of the mass. 

The validity of the results predicted by Eq. (19) is checked against the numerical results obtained by solving the eigenvalue problem 
defined by Eqs. (11)-(14) for a cantilever micro- or nanosensor with a mass at x1 = 0.5. The thickness to length ratio of the sensor is h =

0.1 and λ = 0.5.The first three modes of vibration are considered. An error function is defined as: 

Error (%) = 100
δMω2 − ∂ω2

∂M1

δMω2 (20)  

where δMω2 =
(
ω2

loaded − ω2
unloaded

)/
M1, with ω2

loaded and ω2
unloaded being the square of natural frequencies of the sensor with and 

without the attached mass, determined by solving the eigenvalue problem. The remaining term, ∂ω2/∂M1, is defined by Eq. (19) using 
the frequency and mode shape of the loaded sensor obtained from the eigenvalue problem. The values of the Error function are 
presented in Fig. 2 by reducing the mass of the attached particle, for the first three modes of vibration. 

As evident from the figure, the error rapidly decreases when reducing the mass, indicating that for a small mass, the prediction of 
Eq. (19) converges to the derivative of the square of natural frequencies with respect to the mass, limM1→0δMω2. Additionally, the 
results in Fig. 2 demonstrate that the accuracy of Eq. (19) is higher for the lower modes of vibration. 

Fig. 2. Error function defined in (20) for different values of attached mass at x1 = 0.5. Results are presented for the case with h = 0.1 and λ = 0.5.  
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For a small attached mass, the first order approximation of the natural frequency is obtained by the Taylor series expansion and Eq. 
(19): 

ω2
loaded = ω2

unloaded − M1ω2
unloaded

[
(1)ψ(x1)

]2

∑2
i=1

∫ xi
xi− 1

(
[ (i)ψ]2 + h

2

12

[
(i)ψ ,x

]2
) (21) 

The relation presented in Eq. (21) is derived based on the stress-driven nonlocal theory of elasticity, and emphasizes a significant 
observation: the frequency shifts induced by a small mass are uniquely determined and can be explicitly expressed in terms of the 
frequency and mode shape of the unloaded sensor. This is in agreement with the results obtained in [22,25,32] for small-scale 
structures based on other types of nonclassical continuum mechanics-based theories. Another observation is that when the mass is 
attached to a node point of the vibration mode, its impact on the frequency disappears. Additionally, since the nonlocal parameter 
significantly influences the frequency and mode shape of the unloaded sensor (see for instance [13]), it also affects the frequency shifts 
caused by the attachment of particles. The formula depicted in Eq. (21) serves as the starting point for addressing the inverse problem 
of mass identification, which will be explored in future studies. 

4. Results and discussion 

The formulation presented in Sect. 2 is used to investigate how size dependency affects the accuracy of the micro- and nano-
cantilever mass sensors. Cantilever sensors with one to three attached particles are considered under the assumption that the presence 
of the attached particles does not change Young’s modulus of the sensor. The effects of the masses and locations of the attached 
particles and the nonlocal parameter on the natural frequencies are investigated, also for higher modes of vibrations. The shielding/ 
amplification effects of the particles on the natural frequencies, which are controlled by the mass and spacing of the attached entities, 
are also studied. 

4.1. Sensor with single particle attachment 

To understand the effect of the size dependency on the accuracy of the miniaturized mass sensors, the frequency percentage 
changes of the first four modes of vibration due to the attachment of a mass with M1 = 0.1 at different locations are shown in Fig. 3 for 
the case with h = 0.1 by varying the nonlocal parameter, λ. Generally, if the curve corresponding to λ = 0 is placed below the curves 
with λ ∕= 0, neglecting the size dependency results in the underestimation of the attached mass, and if the curve for λ = 0 is placed 

Fig. 3. Changes in the frequency of the (a) first, (b) second, (c) third, and (d) fourth mode of vibration in a micro- or nanocantilever sensor due to 
the attachment of a mass with M1 = 0.1 at different locations. The results are presented for h = 0.1 by varying the nonlocal parameter, λ. 
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above the other curves, then neglecting the size effect results in the overestimation. In the first mode of vibration, neglecting the size 
dependency results in the underestimation and the overestimation of the mass attached at locations within the intervals approximately 
equal to, respectively, x1⩽0.8 and x1 > 0.8. The frequency shifts of the first mode of vibration due to the presence of the mass at x1 =

0.8 are almost independent of the size dependency. This can be seen in Fig. 3(a) where all the curves virtually intersect at x1 = 0.8. The 
behavior is more complex for the second, third, and fourth modes of vibration, and is controlled by the location of the attached mass. 
For instance, if the particle is attached at approximately x1⩽0.5 and 0.5 < x1 < 0.8, neglecting the size dependency results in, 
respectively, the underestimation and the overestimation of the mass based on the second mode of vibration. It can be seen in Fig. 3(d) 
that for a size dependent sensor, the presence of a mass at x1 = 0.4 or 0.7 has almost no effect on the natural frequency of the fourth 
mode of vibration. 

4.2. Sensor with multiple particles attachment 

The formulated model can be readily applied to investigate the natural frequencies of micro- and nanocantilever mass sensors with 
multiple particles attachment and to study the shielding or amplification of the effect of the particles on the natural frequencies. This 
behavior is controlled by the mass and spacing of the particles. The cases of sensors with two and three attached particles are 
considered in this section. 

The curves in Fig. 4 correspond to the dimensionless fundamental natural frequencies of a cantilever micro- or nanosensor with two 
attached masses at x1 = 0.8 and x2 = 1, and h = 0.1. The results are presented for the local and nonlocal sensors by varying the 
dimensionless mass of the first particle, M1, while the mass of the second particle is kept constant and equal to 0, 0.2, and 0.4. In the 
absence of the second mass, M2 = 0, the fundamental natural frequency is dependent on the mass of the first particle, and reduces by 
increasing M1. However, the effect of the first mass on the natural frequency is shielded when the second mass is added to the system. 
The shielding is more highlighted for higher values of the second mass, M2, and the nonlocal parameter, λ. 

The shielding or amplification of the effect of the particles on the natural frequencies depends also on the mode of vibration. This is 
shown in Fig. 5, where the natural frequencies of the first four modes of vibration of a cantilever micro- or nanosensor with λ = 0.4, 
two attached masses at x1 = 0.7 and x2 = 1, h = 0.1, and M1 = 0.05 are presented. The natural frequencies are normalized with 
respect to the natural frequencies of the sensor in the absence of the first mass, ωM2

Single. The results are presented by varying the 

Fig. 4. Dimensionless fundamental natural frequencies of a cantilever micro- or nanosensor with (a) λ = 0 (local model), (b) λ = 0.2, (c) λ = 0.4, 
and (d) λ = 0.6 , two attached masses at x1 = 0.8 and x2 = 1, and h = 0.1. The results are presented by varying the dimensionless mass of the first 
particle for three cases with the dimensionless mass of the second particle, M2, equal to 0, 0.2, and 0.4. 
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Fig. 5. Dimensionless natural frequencies of the first four modes of vibration of a cantilever micro- or nanosensor with λ = 0.4, two attached masses 
at x1 = 0.7 and x2 = 1, h = 0.1, and M1 = 0.05. The natural frequencies are normalized with respect to the natural frequencies of the sensor in the 
absence of the first mass. The results are presented by varying the dimensionless mass of the second particle, M2. 

Fig. 6. Dimensionless fundamental natural frequencies of a cantilever micro- or nanosensor with (a) λ = 0 (local model), (b) λ = 0.2, (c) λ = 0.4, 
and (d) λ = 0.6, three attached masses at x1 = 0.3, x2 = 0.6, and x3 = 1, and h = 0.1. The results are presented by varying the dimensionless mass 
of each particle while the dimensionless masses of other particles are kept constant and equal to 0.1. 
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dimensionless mass of the second particle, M2. As can be seen in the figure, the behavior of the sensor is highly dependent on the mode 
of vibration. For the first and the third mode of vibration, increasing the second mass shields the effect of the first mass on the natural 
frequency. The shielding phenomenon is more noticeable for the first mode of vibration. The interaction effect on the natural frequency 
of the second mode of vibration is of an amplification type, where increasing the second mass amplifies the effect of the first mass on 
the natural frequency. The presence of the first mass at x1 = 0.7 has almost no effect on the natural frequency of the fourth mode of 
vibration for any value of M2. 

The fundamental natural frequencies of a micro- or nanocantilever mass sensor with three attached masses at x1 = 0.3, x2 = 0.6, 
and x3 = 1, and h = 0.1 are presented in Fig. 6. The results are presented for the local and nonlocal sensors by varying the dimen-
sionless mass of each particle while the dimensionless masses of other particles are kept constant and equal to 0.1. The figure shows 
that the effect of the first particle on the natural frequency of the sensor is shielded by the presence of the other particles at further 
distances (solid lines). Moreover, the presence of the third mass at the free end shields the effect of the second mass on the natural 
frequency, as the change in the natural frequency due to the change in the mass of the second particle is almost negligible (dashed 
lines). The shielding of the effects of the first and second particles on the natural frequencies due to the presence of the third particle is 
more pronounced for the nonlocal sensors. The natural frequency of the mass sensor highly depends on the mass of the third particle 
and significantly reduces for higher masses (dotted lines). The dependency of the natural frequencies on the mass of the third particle is 
more noticeable for the sensors with higher values of the nonlocal parameter. 

5. Conclusions 

The size dependent free transverse vibration of a micro- or nanocantilever sensor loaded by an arbitrary number of attached 
particles has been studied through the variational approach and the stress-driven nonlocal theory of elasticity. The kinematic field at 
the segments of the sensor between each two attached particles has been defined using the Bernoulli-Euler beam theory. The natural 
frequencies have been obtained by solving the variationally consistent governing equations together with the higher-order constitutive 
boundary and continuity conditions. In cases where the attached particle has a small mass in comparison to the mass of the sensor, a 
first-order approximation of the natural frequencies has been derived solely based on the frequency and mode shape of the unloaded 
sensor. This formula, which agrees with previous findings in the literature, provides a foundation for future investigations into the 
inverse problem of mass identification based on the stress-driven nonlocal theory using minimal frequency data. The formulated model 
has been applied to numerically obtain the first four natural frequencies of the micro- or nanocantilever mass sensors with one to three 
attached particles. It has been shown that neglecting the size effect may result in a significant overestimation or underestimation of the 
mass depending on the location of the particles, and the mode of vibration. For the sensors with multiple attached particles, the model 
captures the shielding or amplification of the effect of the particles on the natural frequencies. It has been shown that the shielding and 
amplification effects are generally more highlighted when the size effect is considered in the modeling. 
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