
Available online at www.sciencedirect.com

u

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 398 (2022) 115307
www.elsevier.com/locate/cma

Probabilistic deep learning for real-time large deformation
simulations

Saurabh Deshpandea, Jakub Lengiewicza,b, Stéphane P.A. Bordasa,∗

a Department of Engineering; Faculty of Science, Technology and Medicine; University of Luxembourg, Luxembourg
b Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland

Received 27 December 2021; received in revised form 26 June 2022; accepted 27 June 2022
Available online xxxx

Graphical Abstract

Abstract

For many novel applications, such as patient-specific computer-aided surgery, conventional solution techniques of the
nderlying nonlinear problems are usually computationally too expensive and are lacking information about how certain can

∗ Corresponding author.
E-mail address: stephane.bordas@alum.northwestern.edu (S.P.A. Bordas).
https://doi.org/10.1016/j.cma.2022.115307
0045-7825/© 2022 Published by Elsevier B.V.

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2022.115307
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2022.115307&domain=pdf
mailto:stephane.bordas@alum.northwestern.edu
https://doi.org/10.1016/j.cma.2022.115307

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307

a
i
a
d

v
l
d
s
i
i
H
c
d

t
w
e
f
a
f
f
i
D
fi
t
i
t
t

e
D
m
d
O
w
(

we be about their predictions. In the present work, we propose a highly efficient deep-learning surrogate framework that
is able to accurately predict the response of bodies undergoing large deformations in real-time. The surrogate model has a
convolutional neural network architecture, called U-Net, which is trained with force–displacement data obtained with the finite
element method. We propose deterministic and probabilistic versions of the framework. The probabilistic framework utilizes
the Variational Bayes Inference approach and is able to capture all the uncertainties present in the data as well as in the
deep-learning model. Based on several benchmark examples, we show the predictive capabilities of the framework and discuss
its possible limitations.
© 2022 Published by Elsevier B.V.

Keywords: Convolutional neural network; Bayesian inference; Bayesian deep learning; Large deformations; Finite element method; Real-time
simulations

1. Introduction

Reliable and computationally efficient models are crucial in the design, optimization, or control for various
pplication domains, including aerospace engineering, robotics, or bio-medicine. For instance the increasing interest
n biomedical simulations [1–5] may require having real-time responses. Finding convenient trade-offs between the
ccuracy and response time of such computational models is currently an active area of research in the context of
igital twins, and is also one of the motivations for the research presented in this work.

When accuracy is important, the most general and widely used methodology in engineering for solving boundary
alue problems is the finite element method (FEM) [6]. This accuracy, especially when it comes to highly non-
inear or history-dependent problems, may require a significant computational effort. The advancements in hardware
evelopment and software optimization enabled to some extent speeding up FEM computations, which involves
pecialized solution strategies to take advantage of high-performance computing architectures. A notable example
s the class of Finite Element Tearing and Interconnecting (FETI) methods [7]. In these methods, the global domain
s partitioned into a set of disconnected sub-domains, which are computed in parallel on different processors/nodes.
owever, in many applications, it is not possible to meet real-time responses on the hardware available for industrial

onsumers. This is due to a limited number of available cores and a significant communication burden that
eteriorates the overall time performance of such solution strategies.

There are various specialized FEM-based approaches to cut down the solution time at the cost of sacrificing
he accuracy, see, e.g., [8]. An important class of such approaches is the model order reduction (MOR) methods,
ith Proper Orthogonal Decomposition (POD) being one of the notable examples. The general concept of POD,

.g., applied to a discretized FEM formulation, is to find a low dimension subspace in order to approximate the
ull space at an acceptable loss of accuracy. This potentially enables controlling the trade-off between accuracy
nd computation time. POD was adapted to work within the large-deformation regime, see, e.g., [9], which was
or instance applied to simulate and control soft robotic arms [10] or to reduce computational costs in nonlinear
racture mechanics problems [11]. However, the efficiency of POD deteriorates in high non-linear regimes since
t relies on a linear combination of few basis vectors and thus oversimplifies the model [12]. Proper Generalized
ecomposition (PGD) is another MOR technique, in which the solution of the complete problem is computed as a
nite sum of separable functions. The compact solution, though not optimal, in general, provides a very light format

o store the solution in the form of a meta-model, thereby speeding up the solution times. Niroomandi et al. [13]
mplemented PGD based approach for computationally efficient simulations of hyper-elastic responses. However,
he accuracy of PGD methods decreases when the separation of variables assumption cannot respect the problem
o solve [14].

Importantly for the present work, we distinguish yet another family of FEM-based approaches, in which the
xpected speedups and approximation capabilities originate from underlying Deep Neural Networks (DNNs) with
eep Learning (DL) techniques used to train these networks. Generally, DL approaches make an important part of
achine learning techniques and have allowed to solving highly complex problems that had eluded scientists for

ecades. In particular, DL-based methods have also been developed to efficiently solve problems in engineering [15].
ne of the popular approaches utilizes the idea of the so-called Physics Informed Neural Networks (PINNs), in
hich both the data (either synthetic or experimental) and the assumed governing Partial Differential Equations
PDEs) are incorporated in the training phase; for early traces of these see, e.g., [16–18], and for a recent study

2

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307

a
t
t
h
r
p
n
s
m

u
o
O
a
t
m
U
r
m
i
t
s
t
d
I

u
w
p
t
C
o
a

p
p
m
t
i
d

2

t
d
s

see, e.g., [19,20]. One of the benefits of this approach is that possibly much less data is needed for training, which
can be an important factor for many data-driven applications. Note, however, that even if the physics is not explicitly
enforced in the training phase (non-PINN case), it can still be recovered in the trained model by implicitly following
a large amount of training data (synthetic or experimental). In the case when all training data are synthetically
provided from FEM simulations, see, e.g., [21–23], we will refer to it as the direct FEM-based approach.

In this work, we propose a framework that falls into the above-mentioned class of direct FEM-based DNN
pproaches. The framework is based on a particular DNN architecture – the U-Net architecture [24] – which in
urn can be viewed as a type of Convolutional Neural Networks (CNNs); further explanations are provided later in
his work. Originally, the U-Net architecture has been developed for the purpose of biomedical image segmentation,
owever, it turned out to be also suitable for other applications. In particular, the present work is inspired by the
ecent results of [22], in which the authors demonstrate quite accurate real-time non-linear force–displacement
redictions done by U-Nets trained on FEM-based data. It has been noticed, see [25,26], that this good accuracy is
ot accidental but can be possibly linked to the strong resemblance of U-Net architectures and multi grid solution
chemes [27]. Such a point of view makes the U-Net approach less of a brute-force black-box approximation and
ore of a suited solution scheme, which makes this line of research very promising.
An equally important aspect that is studied in the present work is the capabilities of DNNs to quantify

ncertainties. This is motivated by the fact that in many real-life applications, such as surgical simulations [5]
r autonomous driving [28], it is crucial to produce reliable uncertainty estimates in addition to the predictions.
therwise, model predictions can lead to harmful consequences in these critical tasks. Deterministic neural networks

re usually certain about their predictions, and this overconfidence is especially evident when facing data far from
he training set. Generally, uncertainties can be categorized as those associated with the misfit of neural network

odels (epistemic uncertainties) and those that refer to the noise in training data (aleatoric uncertainties) [29,30].
ncertainties can either fall within or outside the training data region (interpolated and extrapolated regions,

espectively). Within the data region, the prediction uncertainties are caused both by noisy data and by the model
isfit, which can be captured and quantified in many ways, the Maximum Likelihood Estimation (MLE) method

s one of the most straightforward [30] to do so. However, for the extrapolated region we have no data support,
herefore, no direct quantification can be done there. What we can only reasonably assume is that the uncertainty
hould generally increase when moving away from the data region. To achieve this, in this work, we will extend
he idea proposed in [31–33] which relies on converting a neural network to its stochastic counterpart by replacing
iscrete parameters with probability distributions and using a special training technique that is based on Bayesian
nference.

Bayesian approaches have been already considered in the context of FEM models; for instance in [34]
ncertainties are quantified for hyperelastic soft tissues by incorporating stochastic parameters in the FEM model,
hile in [35,36] a thorough tutorial on using Bayesian Inference to solid mechanics problems is provided. In the
resent work, however, we focus on Bayesian Inference and related Bayesian Neural Networks (BNNs). Here, in
he context of deep networks with millions of parameters, the application of widely used Markov Chain Monte
arlo (MCMC) type of methods would be computationally intractable. For that reason, in this work we use one
f the well-known methods for approximate Bayesian inference – Variational Inference (VI) [37] – in which an
pproximate distribution is used instead of the true Bayesian posterior over model parameters.

To sum up, the scope of the present work is to study the applicability of U-Net deep learning architectures to
erforming real-time predictions for large-deformation problems with uncertainties, where synthetic training data is
rovided by FEM simulations. The organization of the paper is the following. In Section 2 we present the general
ethodology applied to a deterministic version of U-Net. In Section 3 we introduce the extension of the framework

o the Variational Bayesian Inference case. Then, in Section 4, an extensive study of the proposed framework
s performed, which is based on several 2D and 3D benchmark examples. The conclusions and future research
irections are outlined in Section 5.

. General FEM-based U-Net methodology

The proposed approach can be divided into two main phases. The first phase involves finite element simulations
o prepare necessary datasets. The second phase consists of building and training deterministic/probabilistic U-Net
eep neural networks, using the training datasets generated in the first phase. The trained U-Nets are then used as
urrogate models.
3

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307

b
t
c

2

p
f

c
e

w

w
p

e

w
(
o

w
o

Fig. 1. Schematic of the framework (a) Continuum problem is discretized by FEM mesh (b) Training/testing examples are generated
y applying random point forces on Neumann boundary. (c) The U-Net is trained on the generated dataset (d) Trained U-Net predicts
he deformation for a test force (blue mesh). FEM solution (red) is used for cross-validation. Gray dashed meshes indicate undeformed
onfigurations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

.1. FEM-based deep learning approach

As a problem to be solved, we consider the boundary value problem of a hyperelastic solid, with a constant
rescribed Dirichlet BC. Large deformations exhibit non-linear stress–strain behavior when applied with external
orces, hence one needs to consider hyper-elastic constitutive laws for simulating such systems.

Consider a boundary value problem in continuum mechanics in the domain Ω , Dirichlet and Neumann boundary
onditions are applied on ΓD , ΓN respectively. Neglecting the body forces, the virtual work principle for nonlinear
lastostatic equation reads∫

Ω

P(u) · ∇δu dV −

∫
Γt

t̄ · δu d S = 0 ∀δu, (1)

here u and δu belong to appropriate functional spaces, u = ū and δu = 0 on Γu , and P(u) is the first Piola–
Kirchhoff stress tensor. The required constitutive relationship will be defined through the (hyper-)elastic strain energy
potential W (F) as

P(F) =
∂W (F)

∂ F
(2)

here F = I + ∇u is the deformation gradient tensor. (The particular form of W , used in this work, will be
resented in Section 4.1.1.)

After standard FE discretization, the problem expressed by Eq. (1) will take the form of system of non-linear
quations

R(u) = fint(u) − fext = 0, (3)

hich expresses the balance between external and internal nodal forces. By solving the system of equations (3)
e.g., with the Newton–Raphson method) for a given external force vector fext = f we obtain a solution in the form
f nodal displacements u.

External forces can be applied to a selected region on the surface described by Γt . For the current framework,
e consider a single FE discretization of a given domain Ω . As described in Fig. 1, we apply a prescribed family

f load distributions, given by vectors of force fi on the nodes present in Γt to generate nodal displacements ui .

4

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307

l

Fig. 2. A schematic of exemplary U-Net architecture for 2D domains, (nx, ny) stand for number of nodes in x, y direction of 2D domain.
Boxes indicate U-Net layers (colors indicate different types of layers), first step contains ’c’ channels.

This creates a dataset D = (fi , ui)N
i=1 of corresponding pairs of nodal force and displacement vectors, which is then

used as input to train DNNs. Thus the input of the neural network is a vector of nodal forces, and the predicted
output is a vector of nodal displacements.

2.2. U-Net deep neural network architecture

As motivated in the introduction, we use a specific family of CNN, U-Nets [24]. They owe their name to a
specific U-shape of the architecture diagram, e.g., see Fig. 2, which is an effect of applying cascades of max
pooling operations, followed by cascades of upsampling operations.

At its input, the layer d0, the U-Net network, U , accepts the vector of external forces, f, in the original mesh
format nx × ny × nz × 3, where nx , ny , nz are the dimensions of the structured 3D mesh (for 2D problems the
format is nx × ny × 2). The output displacements, in the layer dL , are in the analogous mesh format. The model
parameters θdet are all weights (kernel k and biases b) of the neural network (see below for details).

For the sake of clarity, below we will introduce the idea for a 2D case only, which can be straightforwardly
transformed into a 3D case. For 2D problems, we use architecture as described in Fig. 2. To a given input mesh,
we first add double zero padding in each spatial direction (this is done to avoid the loss of information of corner
nodes). There are two layers in each encoding and decoding phase. To the padded input, we apply two convolutions
with batch normalization followed by rectified linear unit activation (ReLU), see Eq. (4). In the encoding phase,
at each step, 2 × 2 Max Pooling layers are applied which decrease spatial dimensions by half, and we multiply
the number of channels by 2 (c=128 for the first level). In decoding steps, 2 × 2 Up-sampling layers are applied
which increases the spatial dimension by two and the number of channels is halved. At each level, encoding and
decoding outputs are concatenated together. In the end, 1 × 1 convolution is applied with linear activation to get the
output.

In order to better understand the idea of convolution operator, the 3 × 3 × c operator in 2D on the first U-Net
evel can be imagined as a filter window that is applied to a nx × ny × c mesh. For a two-dimensional domain, the

input tensor is of the dimension nx × ny × 2, which is identical to the FEM mesh. Here 2 stands for the number
of channels of input convolutions, nx , ny stands for the number of nodes in the x , y direction, respectively. To best
leverage the CNNs, we keep x&y-dofs in separate channels. We operate a convolutional filter on a local region and

then is slid along spatial directions x, y with a stride of 1 as illustrated in Fig. 3.

5

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307
Fig. 3. x and y dofs are stored in different channels, 3 × 3 convolutional filter (gray) acts locally along the channel direction and it slides
along with the step of 1 in both horizontal and vertical directions (red).

An example of a non-restrictive convolution operation (in 2D), between subsequent U-Net layers l and l +1, for
the filter size 3 × 3 × cn reads

d l+1
p,r,β = A

⎛⎝bl+1
β +

3∑
i=1,

3∑
j=1,

cl∑
α=1

d l
p+i−2,r+ j−2,αkl+1

i, j,α,β

⎞⎠ , (4)

where d l+1
p,r,β are neural network nodes at layer l + 1, the weights kl+1

i, j,α,β are parameters of the convolution operator,
the weights bl+1

β are biases at a layer l + 1, and A(·) is an activation function (ReLU). Indices i, j stand for the
components of the convolutional filter (3 × 3 in our case) and the indices p, r are related to nodes in a 2D grid
of the output layers. They directly refer to the underlying structured FEM mesh. In our case, we add zero pad in
each dimension of input before applying the convolution, to ensure the same size of the input and output. Indices
1 ≤ α ≤ cl and 1 ≤ β ≤ cl+1 represent the channel number. Note that the number of channels in subsequent layers
need not be equal, i.e., in general cl

̸= cl+1. Note also that in the first and in the last layer, the number of channels
correspond to the spatial dimension of the problem (2D or 3D).

Max-pooling operation is responsible for reducing the spatial dimensions of its input, channel dimensions are
unaffected by it. It reads as follows

d l+1
p,r,α = max

2p−1⩽i⩽2p
2r−1⩽ j⩽2r

d l
i, j,α (5)

Upsampling operator can be seen as the reverse of max pooling, it increases the spatial dimensions of the input
without affecting the channel dimension. As showed in Fig. 2, in the decoder phase, outputs of up-sampling are
concatenated with respective layers from the encoder phase of the U-Net (in case of symmetric U-Nets, the lth layer
is concatenated with the (L − l − 2)-th layer, where L is the index of output layer in a U-Net). The up-sampling
with concatenation read

d l+1
p,r,α =

{
d l

⌊p/2⌋+1,⌊p/2⌋+1,α , 1 ⩽ α ⩽ cl

d L−l−2
p,r,(α−cl) cl

+ 1 ⩽ α ⩽ cl
+ cL−l−2

(6)

The final 1 × 1 convolution operation reads

d L
p,r,β = bL

β +

cL−1∑
α=1

d L−1
p,r,αkL

α,β, β = 1, 2. (7)

For the 3D version of U-Nets, the operations given by Eqs. (4)–(7) are straightforwardly extended by one
additional dimension. This results in adding one index to nodes’ and biases’ specifications, d and b, respectively,

and two indexes to 3 × 3 convolution weights, k. For 2D/3D cases, trainable parameters of the deterministic U-Net

6

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307

U
a
E

f

are

θdet =

L⋃
l=1

{kl , bl
}. (8)

(f, θdet) is defined recursively (the forward propagation), starting from the input layer d0
= f, then subsequently

pplying appropriate transformations given by one of Eqs. (4)–(6), and finally applying the transformation given by
q. (7), see also Fig. 2. Finally the prediction of the deterministic U-Net is

U(f, θdet) = dL (9)

For a given training dataset D = {(f1, u1), . . . , (fN , uN)}, the deterministic U-Net is trained by minimizing the
ollowing mean squared error loss function

Ldet(D, θdet) =
1
N

N∑
i=1

∥U(fi , θdet) − ui∥
2
2 (10)

which gives the optimal parameters

θ∗

det = arg min
θdet

Ldet(D, θdet). (11)

A particular training strategy, used in this work, is introduced in Section 4.1.2.

Remark: The current framework (as well as all other neural-network based approaches mentioned in the introduction)
requires retraining a network when changing the FE discretization. Recently proposed operator-based learning
approaches, called neural operators [38–40], promise to overcome this disadvantage.

3. Probabilistic U-Net framework

There are various sources of uncertainties linked to engineering systems. These can be broadly categorized
as noises in the observation (aleatoric uncertainty or data uncertainty) and uncertainty in the assumption of our
model (epistemic uncertainty or model uncertainty) [30]. Aleatoric uncertainty is inherent to the data and it cannot
be reduced, whereas epistemic uncertainty can be reduced by providing more training data. An important part
of epistemic uncertainty is being able to tell that the more data we have, the more certain we are about the
predictions. This uncertainty is expected to be high while doing predictions on inputs away from the training
region. Deterministic U-Nets explained in Section 2.2 fail to account for these uncertainties. In order to capture
these effects, in this work, we propose the Bayesian approach, which is introduced in this section.

3.1. Variational Bayesian inference

Bayesian methods provide an approach to quantify the uncertainty of prediction in deep neural networks. To
do so, in this framework, we replace the deterministic parameters with probability distributions [31]. Originally
this idea was only used to prevent overfitting, but was observed to also increase the variability of outputs in the
extrapolated region. In order to suitably control the level of introduced perturbations to parameters, we use Bayesian
Inference. This gives us a formal theoretical framework, allowing us to apply suitable computational techniques (VI)
to efficiently train networks and predict results. The input of a network remains the same, but some of the model
parameters become probability distributions (stochastic), and for that reason also the output of the network becomes
a distribution over possible outputs. As per the standard Bayesian approach, we specify a prior distribution P(w)
over parameters, we consider D = {(f1, u1), . . . , (fN , uN)} as the given training dataset, then for a new vector ftest,
prediction utest is given by

P(utest
|ftest,D) =

∫
P(utest

|ftest, w)P(w|D)dw (12)

The Bayesian inference involves the calculation of true parameter posterior P(w|D) conditioned over the training
data. As mentioned in the introduction, variational inference (VI) is used to approximate true posterior densities in
Bayesian neural networks [37], i.e. true posterior is approximated by a variational posterior q(w|θ), parameterized by
7

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307
θ . Variational learning finds optimal parameters θ∗ by minimizing the Kullback–Leibler divergence (KL-divergence)
between true and variational posteriors, as per the following equation:

θ∗
= arg min

θ
KL

[
q(w|θ) ∥ P(w|D)

]
= arg min

θ

∫
q(w|θ) log

q(w|θ)
P(w)P(D|w)

dw

= arg min
θ

KL[q(w|θ) ∥ P(w)] − Eq(w|θ)[log P(D|w)].

(13)

The resulting cost function is the loss function for training the neural network. It consists of two parts, first is the
prior dependent part represented by the KL-divergence term, it can be referred to as model complexity cost; it tells
how close approximate posteriors are to priors. And later is the data-dependent part which can be referred to as
likelihood cost, it tells how well the network fits the data. Bayesian neural networks with prior distributions are
well known to induce regularization effect [41]; in particular, using Gaussian priors is equivalent to weight decay
(L2 regularization) [42].

During the forward pass, weights are sampled from the variational posterior q(w|θ). Now, during the backprop-
agation, the issue is that one cannot get a gradient of the sampled points, because the sampling operation cannot
be differentiated. To avoid this issue, the following reparameterization trick is used [43]. A sampled weight, w, is
obtained by sampling a parameter-free distribution (the unit Gaussian), which is then scaled by a standard deviation
σ and shifted by a mean µ. We parameterize the standard deviation point-wise as σ = log(1 + exp(ρ)) to have
σ always non-negative. Thus the sample is w = µ + log(1 + exp(ρ)) ⊙ ϵ, where ⊙ is point-wise multiplication,
ϵ is drawn from N (0, I). Hence the variational posterior parameters are θ = (µ, ρ) [31]. In our framework we
use Gaussian priors with its parameters being (µ p, σ p). For the reasons mentioned in Section 3.3, we include prior
means (µ p) in training procedure.

3.2. Maximum likelihood estimation

In addition to the Bayesian approach, we also introduce the Maximum Likelihood Estimation (MLE) method—a
popular frequentist approach. We do it to compare both methods in their capabilities to quantify uncertainties.
Parameters of the MLE model are deterministic, but we take the double number of outputs compared to the
deterministic counterpart. They stand for means and non-constant (heteroscedastic) standard deviations [33], thus
yielding distributions as the outputs. These non-constant standard deviations can only capture the noises in the
data, MLE inherently fails to account for uncertainties in the extrapolated region. The loss function for MLE can
be recovered from Eq. (13) by removing the KL divergence part (since we do not have distributions on parameters
of the MLE model), and the MLE model is trained on the Gaussian negative log-likelihood loss:

θ∗

MLE = arg min
θMLE

− log P(D|θMLE). (14)

3.3. Trainable priors: Use of Empirical Bayes

Since NN parameters are latent variables of the model, it is very difficult to make a proper choice of priors. If
one sets the priors far from their true values, then the posterior may be unduly affected by such choice. To overcome
this, we incorporate Empirical Bayes (EB) approach [44], a method that uses the observed data to estimate the prior
hyperparameters. In our approach, in the training phase, we update the prior means, keeping the prior standard
deviation constant. Hence we minimize the loss function by also considering gradients with respect to the prior
means. This treatment enables us to obtain a good fit to the data, while at the same time giving high prediction
uncertainties in the region where little or no data is available.

3.4. Loss functions for probabilistic U-Net

We modify the deterministic U-Net architectures by replacing their layers with probabilistic layers, as a result,
the output of the network is a probability distribution itself. We choose Gaussian distributions to represent priors and
approximate posteriors of probabilistic layers. For the Bayesian U-Net, we use loss function as given in Eq. (13).
8

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307

q

w

(
h
p
o
f
θ

v

Expectations of Eq. (13) are approximated by M Monte Carlo samples drawn from the approximate posterior
(w|θ) as referred below

LVB = KL[q(w|θ) ∥ P(w)] − Eq(w|θ)[log P(D|w)]

≈

M∑
i=1

log q(w(i)
|θ) − log P(w(i)) − log P(D|w(i))

(15)

If we substitute Gaussian probability density functions, the expression in the RHS of Eq. (15) turns out to be
as given in Eq. (16). We consider ’G’ probabilistic parameters (Gaussian distributions) for our Bayesian U-Net,
where every distribution is parameterized by its mean and standard deviation values. Since the standard deviations
σ must be positive, we first train the network on untransformed standard deviations ρ which are later transformed
to σ through soft-plus function. Also, for the reasons discussed in Section 3.3, we involve prior means, µ p, in the
training procedure as well. Hence parameters to be learned in the training procedure are θVB = (θ , µ p). Finally,
the loss function for the Variational Bayes is given as follows

LVB(D, θVB) ≈

M∑
i=1

⎡⎢⎣ G∑
j=1

⎛⎜⎝− log
(√

2π σ
(i)
j

)
−

(
w

(i)
j − µ

(i)
j

)2

2
(
σ

(i)
j

)2 + log
(√

2π σp

)
+

(
w

(i)
j − (µp)(i)

j

)2

2σ 2
p

⎞⎟⎠
−

N∑
k=1

F∑
l=1

⎛⎜⎝− log
(√

2π d (l)
σ (f(k), w(i))

)
−

(
u(k)

l − d (l)
µ (f(k), w(i))

)2

2
(

d (l)
σ (f(k), w(i))

)2

⎞⎟⎠
⎤⎥⎦

(16)

here
d (l)

σ (f(k), w(i)) = log(1 + exp(d (l)
ρ (f(k), w(i)))),

w
(i)
j = µ

(i)
j + σ

(i)
j ϵ

(i)
j , ϵ

(i)
j ∼ N (0, 1),

σ
(i)
j = log(1 + exp(ρ(i)

j)).

(17)

dµ(f, w), dρ(f, w)) are the outputs at the penultimate layer of the Bayesian U-Net, which stand for means and
eteroscedastic (non-constant) standard deviations. And the last output layer is a distribution layer with the same
arameters. Since (dµ(f, w), dρ(f, w)) are variables in themselves, in order to get the prediction one needs to sample
ver this output distribution. N ,F are total number of training examples and dof per problem respectively. σp stands
or the standard deviation of each the prior, which is kept constant in the training procedure. Optimized parameters,
∗

VB = (θ∗, u∗
p, for the Variational bayes case are obtained by minimizing the above loss function:

θ∗

VB = arg min
θVB

LVB(D, θVB) (18)

Once the optimized parameters are computed, we replace the true posterior P(w|D) in Eq. (12) with the
ariational posterior q(w|θ∗) to get the predictive distribution:

P(u|f,D) =

∫
P(u|f, w)P(w|D)dw ≈

∫
P(u|f, w)q(w|θ∗)dw (19)

The resultant predictive distribution can be approximated by Monte Carlo integration of Eq. (19) by sampling
weights over optimized distributions, w̃t ∼ q(w|θ∗). At last for a given input force array, f , probabilistic
displacement prediction is obtained as an output. We represent this output distribution by the mean Uµ(f, w) and
the standard deviation Uσ (f, w) of the prediction, P(u|f,D). This is done by taking mean and standard deviation of
T stochastic forwarded passes for the same input as follows:

Uµ(f, w) ≈
1
T

T∑
t=1

P(u|f, w̃t)

U2
σ (f, w) ≈

1
T

T∑
P(u|f, w̃t)T P(u|f, w̃t) − Uµ(f, w)TUµ(f, w)

(20)
t=1

9

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307

m
l

w

4

4

4

N
ν

w

w
r

W
f
t
v
e

Fig. 4. Schematics of three benchmark examples (a) 2D beam, (b) 2D L-shape and (c) 3D beam. The parts of top surfaces marked in red
color indicate the nodes at which random nodal forces are applied to generate training datasets.

In case of MLE, we do not place distributions over parameters, and they are discrete like in the case of the
deterministic network, as in Eq. (8). In the penultimate layer, we take (dµ(f, w), dρ(f, w)) outputs standing for

eans and heteroscedastic standard deviations, which are then used to form the final Gaussian distribution output
ayer. Optimal parameters of the network are computed by minimizing the following loss function

LMLE(D, θMLE) ≈ −

N∑
k=1

F∑
l=1

⎡⎢⎣− log
(√

2π d (l)
σ (f(k), θ)

)
−

(
û(k)

l − d (l)
µ (f(k), θMLE)

)2

2
(

d (l)
σ (f(k), θMLE)

)2

⎤⎥⎦ , (21)

here

d (l)
σ (f(k), θMLE) = log(1 + exp(d (l)

ρ (f(k), θMLE))). (22)

At last, optimal parameters of MLE U-Net models are computed by minimizing the loss functions as

θ∗

MLE = arg min
θMLE

LMLE(D, θMLE) (23)

. Results

.1. The numerical experiment procedure

.1.1. Generation of training data from hyperelastic FEM simulations
Two 2D and one 3D benchmark problems are considered in this work, as schematically shown in Fig. 4. The

eo-Hookean hyperelastic material model is used, with Young’s modulus E = 0.5 kPa and the Poisson’s ratio
= 0.4. We use the following version of Neo-Hookean strain energy potential

W (F) =
µ

2
(Ic − 3 − 2 ln J) +

λ

4
(J 2

− 1 − 2 ln J), (24)

here the invariants J and Ic are given in terms of deformation gradient F as

J = det(F), Ic = tr(FT F), where F = I + ∇u, (25)

hile µ and λ are Lame’s parameters, which can be expressed in terms of the Young’s modulus, E , and the Poisson’s
atio, ν, as

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E
2(1 + ν)

. (26)

As introduced in Section 2.1, for a given discretized problem, the training/testing dataset is constructed as follows.
ithin nodes occupying a prescribed region of the boundary (in red color in Fig. 4), a particular family of external

orce distribution is considered. Each loading case consists of a single excited node, while for the remaining nodes
he external forces are 0. For a given training/testing example, a single node is chosen for which the external force
ector is generated randomly, component-wise, from a uniform distribution within a given range of magnitude. The
xample is then solved with FEM, and the entire vector f of prescribed nodal external forces (including unloaded
10

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307

t

e

d
N
l

R
i
d
i
d
O
t
T

m

4

o
l
c
c
s
a

T
u
1
f
d
l
U

Fig. 5. Extra nodes with zero force/displacement are added to convert the data to a structured format. Node numbers are mapped accordingly
o follow the assumed order of U-Net architecture.

Table 1
FE datasets. The number of DOFs with the asterisk refers to the zero-padded 2D L-Shaped mesh. 2D beam# is
an additional dataset used for analyzing probabilistic U-Nets in Section 4.3.

Problem N.of FEM DOFs (F) Force component range [N] Dataset size N+M

2D beam 128 −2.5 to 2.5 5700 + 300
2D beam# 128 −1 to 1 3800 + 200
2D L-shape 160 (256∗) −1 to 1 3800 + 200
3D beam 12 096 −2 to 2 33688 + 1782

nodes) and the vector u of computed nodal displacements are saved. The procedure is repeated for all N + M
xamples, which creates the training/testing dataset D = {(f(1), u(1)), . . . , (f(N+M), u(N+M))}.

The finite element simulations have been performed with the AceGen/AceFem framework [45] (standard library
isplacement-based Neo-Hookean finite elements are used). The non-linear FE problems are solved with the
ewton–Raphson method, and an adaptive load-stepping scheme is used to avoid convergence issues for large

oad cases. A single quad/hexahedral FE mesh per problem is only considered.

emark: For 2D/3D beam examples the structured FE mesh is used, which is compatible with the U-Net architecture
ntroduced in Section 2.2. In the L-shaped example, the FE mesh is not structured, which makes it impossible to
irectly transform it to a compatible node numbering, with a possible consequence of accuracy drop, as explained
n Section 4.2.1. To correct this, a special zero-padding operation is applied to each f(i) and u(i) before using the
ataset for training/testing, see Fig. 5. Note here that unstructured meshes can be handled in several other ways.
ne way would be to embed a structured grid on the unstructured mesh and map the unstructured nodal values

o the structured nodes. Another promising approach would be to use recently developed graph networks [46,47].
hese more sophisticated approaches are, however, out of the scope of the present work.

The datasets are randomly split into training sets, N (95%), and testing sets, M (5%). The characteristics of FE
eshes and datasets for all three problems are provided in Table 1.

.1.2. Implementation and training of U-Nets
For the 2D cases, we use 3 level U-Net architectures as in Fig. 2, at each level, we apply two convolutional

perators with 3 × 3 filters with c=128 channels in the first level. For Bayesian U-Nets, we replace half of the
ayers with probabilistic layers (one layer out of two at each level is replaced with a probabilistic layer). For the 3D
ase, we use a 4 level U-Net architecture, we apply two convolutional operators with 3 × 3 × 3 filters with c=128
hannels in the first level. Additionally, for both cases, we use batch-normalization on each layer. This technique
tandardizes the inputs to a layer for each mini-batch [48]. This has the effect of stabilizing the learning process
nd dramatically reducing the number of training epochs required to train deep networks.

raining: Network is trained by minimizing loss function for the given training dataset, minimization is performed
sing Adam optimizer, a well-known adaptive stochastic gradient-descent algorithm. We set the learning rate to
× 10−4 and set other optimizer parameters as per recommendations [49]. For the Monte Carlo sampling of loss

unction (LVB) in Eq. (16), we use Flipout estimator [50] with its recommended parameter values. Trainings of
eterministic and probabilistic versions of U-Net are carried out using Keras [51] and Tensorflow-probability [52]
ibraries respectively. All the implementations are done on Tesla V100-SXM2 GPU, on HPC facilities of the
niversity of Luxembourg [53] using a batch size of 4 and 600/75 epochs for 2D/3D cases. All the experiments
11

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307

i

4

o
U
U

4

4

U

c
c
b

n
e
h
r
c
(
i
c
h

in this work are performed using a single-precision arithmetic (’float32’), which is the usual default choice for all
the deep learning libraries. The use of double-precision increased the memory requirements and the training time,
without any improvement in the accuracy, and hence is unnecessary. (For the 2D beam example, double precision
implementation took 4 times the training time that of the single-precision implementation.)

Since the prediction of Bayesian U-Net is a distribution, we take 300 stochastic forward passes for the same
nput to get the mean and uncertainty of the prediction (T = 300 in Eq. (20)).

.1.3. Validation metrics for the testing phase
For the test set {(f1, u1), . . . , (fM , uM)}, we use the following mean absolute error norm as the validation metric:

em =
1
F

F∑
i=1

|U(fm)i
− ui

m |. (27)

F is the number of dofs of the mesh. For mth test example, U(fm) is the deterministic network prediction and
um is the finite element solution. To have a single validation metric over the entire test set, we compute the average
mean norm ē and the corrected sample standard deviation σ (e) as follows:

ē =
1
M

M∑
m=1

em, σ (e) =

√ 1
M − 1

M∑
m=1

(em − ē)2. (28)

(Note: It is the standard deviation of averaged errors across the test set, not the standard deviation of all errors.)
In the case of Bayesian U-Nets, the output of the network is a probability distribution, for that reason, we sample

ver the output distribution by taking multiple forward passes as described in Eq. (20). Mean over these samples,
µ(f m), is taken as the mean prediction of the Bayesian U-Net, while the standard deviation of these samples,
σ (f m), gives us the confidence intervals of predictions. Now the error norm for mth test example is given as

e(Uµ(fm), um) =
1
F

F∑
i=1

|Uµ(fm)i
− ui

m |. (29)

Again the average error norm and the corrected sample standard deviation for all test examples is computed as

ē =
1
M

M∑
i=1

e(Uµ(fm), um), σ (e) =

√ 1
M − 1

M∑
m=1

(
e(Uµ(fm), um) − ē

)2
. (30)

.2. Deterministic U-Nets

.2.1. Advantages of the U-Net convolutional architecture

-Nets vs. fully-connected NNs
U-Nets leverage the fact that nearby nodes of the FEM mesh show strong local correlation, and provide

omputationally efficient topology that is able to capture non-linearities. However, if we had to use a fully
onnected neural network to capture these non-linearities, the number of latent parameters of this network would
e significantly larger as compared to that of the U-Net.

To show this effect, we consider the simplest fully connected network, with only input and output layers, without
o hidden layers nor activation functions, as a surrogate model for the 3D beam example (as in Fig. 4(c)). This
xample has 12096 dof, so the dimension of the input and output layer is 12096 each. Because of the absence of
idden layer/activation functions, this network is only able to capture a linear response of the force–displacement
elationship. In order to have the best-linearized approximation, we initialize trainable parameters of the fully
onnected network with the inverse of the FEM stiffness matrix. Table 2 shows that the fully connected network
which is an inaccurate assumption) has 1.5 more parameters than the deterministic U-Net, while the accuracy
s greatly reduced. In order to do a better (non-linear) approximation, one would need to use a multi-layer fully
onnected network, which would require even more parameters, and hence the training time would be significantly

igher. Hence, the choice of U-Nets makes complete sense, in particular for complex non-linear problems.

12

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307

t
n
b
t
T
w

4

i
t
a
r

Table 2
Comparison of U-Net vs. feed forward network for 3D Beam example.

NN type N. of trainable parameters ē [m] σ (e) [m]

Deterministic U-Net 94.1 E+6 0.6 E−3 0.3 E−3
Fully-connected 146.3 E+6 7.0 E−3 8.0 E−3

Fig. 6. Different node numbering strategies. (a) Numbering assumed by the TensorFlow (the preferred one; used in this work), (b) Gmsh
preprocessor numbering, and (c) random numbering.

Table 3
Error metrics for the preferred and randomly ordered case for the 3D
beam problem.

Ordering strategy ē [mm] σ (e) [mm]

Preferred ordering (as in Fig. 6(a)) 0.6 0.3
Random ordering (as in Fig. 6(c)) 5.4 2.8

Effect of DOF ordering
The topology of input FEM mesh plays a crucial role in the training of U-Nets, and it must be compatible with

hat of the U-Net architecture topology. However, different FEM pre-processors have different ways of numbering
odes. For instance, Gmsh [54], a popular FE mesh generator, first numbers corner nodes, then edge nodes followed
y internal nodes, see Fig. 6(b). This is not compatible with the expected U-Net input, which effects deteriorating
he predictive capabilities of the U-Net. A completely random ordering, see Fig. 6(c), performs even worse, see
able 3. To fully leverage the advantages of U-Nets, care has to be taken to order nodes properly. This is the reason
hy the zero-padding has been done to the L-shaped case, see the remark in Section 4.1.1, and Fig. 5.

.2.2. Prediction accuracy
Deterministic U-Nets are trained on FEM datasets generated as described in Section 4.1.1. Below, we analyze

n a more detail some selected test examples for each case, and compare their FEM and U-Net solutions. For all
he examples, we show the overlap of deformed meshes obtained using FEM and U-Net models. In Figs. 7–11
nd Fig. 13, gray, blue and red meshes represent undeformed configuration, U-Net solution and FEM solution,
espectively. In addition to that, we also present the interpolated node-wise L2 norm of the prediction error (the

error of the nodal displacement between FEM and U-Net.
In Fig. 7, we show a test example of the 2D-beam case. A point force is applied at the corner node of the

beam and the deformation of mesh is predicted using the deterministic U-Net. As we can see, the deformed mesh
predicted with U-Net is overlapping with the reference FEM solution. As explained above, we also plot the nodal
error field on the deformed mesh, one can observe that the error is relatively higher in the high displacement region,
i.e, near the free end. The relative error for the tip with respect to its displacement magnitude is only 0.6%.

Fig. 8 shows an example of the 2D L-shape case. Again the deterministic U-Net solution is overlapping with
the reference FEM solution. L2 error contour shows that a high error trend is observed near the free end again, the
relative error at the top corner node with respect to displacement magnitude is 0.4% only.
13

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307
Fig. 7. Deformation of 2D beam computed using the deterministic U-Net, for the point force at the free end. (a) Comparison of deformed
meshes, both blue mesh (U-Net solution) and red mesh (reference FEM solution) are overlapping. The magnitude of the tip displacement is
0.95 m. (b) L2 error of nodal displacements between deterministic U-Net and FEM solutions.

Fig. 8. Deformation of 2D-L shape computed using deterministic U-Net. (a) Initial and deformed meshes predicted using deterministic
U-Net(blue) and FEM(red), the magnitude of tip displacement is 2.39 m, and (b) L2 error of nodal displacements between deterministic
U-Net and FEM solutions.

We further take a look at two 3D-beam test examples, one with the force applied near the free end and another
with the force applied in the middle region of the 3D beam. For both cases, the deterministic U-Net solutions
are overlapping with the FEM solutions. Insets in Fig. 9 show that the U-Net is capable of predicting high local
non-linear deformations. For the first example in Figs. 9(a)–9(b), the error field shows high error region near the
point of application of the force. The relative error for the tip for this case is only 0.6%. Whereas, Figs. 9(c)–9(d)
shows an example with the force applied relatively near to the fixed end. In this case, a high error field is observed
at the point of application of force as well as near the free end. The relative L2 error of the tip for this example is
1.6%. From this, we can say that errors are usually higher near the nodes with higher displacement magnitudes.

Till now we looked at the prediction accuracy for individual examples, now we would like to judge the
performance of deterministic U-Net over the entire test sets (5% of the generated data is designated for testing
purposes). Table 4 provides such comparison in a form of averaged error over entire test sets. We can see that, on
average, the error is at a reasonably low level. To extend this analysis, in Fig. 10 we plot the mean error (e) of each
test example of the three benchmark problems. We sort these errors as per the increasing displacement magnitude
at the point of application of force. To get a relation between displacement and mean error (e), we do a least square
linear fit for all three cases. From Fig. 10, all the three examples show generally low sensitivity to the increase of
displacement magnitude.

Effect of changing the distribution of applied forces
Deterministic U-Net has been trained by using single point load examples only, but we would like to check

how it performs when multiple point load input is given for the prediction. Fig. 11 shows one such example where

random multiple forces are applied on the top edge, U-Net is able to closely follow the reference FEM solution.

14

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307

p
1

d
a
p
t

r
a
d
(
f

Fig. 9. Deformation of 3D beam computed using deterministic U-Net (blue) for two force cases, for comparison FEM solution (red) is
resented. (a)&(c) deformed meshes for both examples. The magnitude of tip displacement for the first case (force near the free end) is
.1 m and for the second case (force in the middle region) is 0.26 m. High localized deformations are shown in the insets. (b)&(d) L2

error of nodal displacements between deterministic U-Net and FEM solutions.

Table 4
Error metrics for 2D and 3D test sets for predictions using deterministic
U-Net. M stands for the number of test examples, and ē and σ (e) are
error metrics defined in Section 4.1.3.

Example M ē [m] σ (e) [m]

2D Beam 300 0.3 E−3 0.2 E−3
2D L-Shaped 200 0.8 E−3 0.4 E−3
3D Beam 1782 0.6 E−3 0.3 E−3

Fig. 11(b) shows the L2 norm of the error across the beam, it shows a different trend for this example. Though the
eformation is higher in the free end region and at the point of application of forces, a higher error is observed at
different location also. Solution accuracy of multiple point load cases can be improved by incorporating multiple

oint loads in the training phase. Also, the relative error for the tip with respect to its displacement magnitude for
his example is 0.6%.

In most engineering applications, we are interested in the cases where force is applied in a given prescribed
egion of interest (e.g., the Neumann boundary). Here, we would like to check how U-Net performs when this
ssumption is violated, i.e, we apply forces on the nodes which were not involved in the training procedure. To
o so, we use the same 2D beam case with the training set generated by applying point forces on the top edge
indicated by the red line in Fig. 4 in Section 4.1.1). What we change is the prediction phase, during which we apply
orces on nodes located on the vertical free edge of the beam (see schematics in Fig. 13). In the example, we apply
15

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307
Fig. 10. Mean errors (e) for all test examples of three benchmark cases. The regression lines y ∝ 0.0008 × x (2D-beam), y ∝ 0.0005 × x
(2D-L shape), y ∝ 0.001 × x (3D beam) show low sensitivity of the deterministic U-Nets to displacement magnitudes.

Fig. 11. Deformation of the 2D beam subjected to multiple point loads. (a) Comparison of deformed meshes predicted with deterministic
U-Net and FEM, the magnitude of tip displacement is 0.55 m. (b) L2 error of nodal displacements between deterministic U-Net and FEM
solution.

a vertical force of 1.5 N on each of the 4 nodes of the free edge of the beam. Fig. 13(a) shows that mesh (blue)
predicted with U-Net deviates more and more from the true FEM solution, as we move away from the training line.
The U-Net solution is much worse when the force is applied on the 4th node as compared to the 2nd, i.e. when the
point of force application is farthest from the training line. In Fig. 13(b), we plot the mean and maximum errors of
all 4 examples, and we can observe a significant accuracy drop reaching two orders of magnitude when predicting
outside the training region. Also, we can see that the errors are increasing when moving away from the training
dataset. This proves that the U-Nets extrapolate predictions poorly when moving away from the training range in
spatial directions.

Training convergence The choice of the amount of training data and the appropriate neural network architecture
are two important criteria in the case of neural network surrogate modeling. This is crucial to ensure that neither
underfitting nor overfitting is observed. For all the cases in this work, training convergence is ensured by observing
loss plots of training and validation errors, i.e., the training error does not decrease, and validation error does not
go higher with the number of epochs. For the reference, the loss plots for 2D cases are shown in Fig. 12.

4.3. Probabilistic U-nets

The goal of our probabilistic U-Net framework is to get reliable predictions and uncertainty associated with those
predictions. Further in this section, we will check this for the case of data and model uncertainties for selected

examples analogous to the deterministic case.

16

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307

G

4

o
p
u
B
c

u
p
L

d

Fig. 12. Mean squared error log-loss plots for (a) 2D beam and (b) 2D L-shape case.

Fig. 13. Application of point loads on the nodes away from the training region. (a) Deformed meshes obtained by FEM (red) and with
U-Net (blue) when point load is applied on 2nd or 4th node. (b) Mean error (e) and maximum error for each of the 4 point loads cases.

reen line shows the uncertainty prediction of Bayesian U-Net, for the node on which the force is applied.

.3.1. Prediction accuracy
We train the probabilistic U-Net framework on the same datasets as used in deterministic cases. Because the

utput of the network is a distribution, we make 300 stochastic forward passes to get the mean and uncertainty
redictions for a given input. Mean prediction of Bayesian U-Net is treated as the solution of the network, whereas
ncertainty predictions give information of credible intervals of predictions. Table 5 gives the error metrics for the
ayesian U-Net predictions over the entire test sets, for comparison we have shown the errors of deterministic
ounterparts as well.

Similar to the deterministic case, we do the analysis of the error metric (e) for all the test examples predicted
sing Bayesian U-Net this time. Fig. 14 shows errors sorted as per the increasing displacement magnitudes of the
oint of application of forces. We perform a least-squares line fit to the error data. Slopes for 2D-beam and 2D
-shape cases are small, proving a little sensitivity of errors to the displacement magnitudes.

Hereafter we focus on particular examples to get more insights on Bayesian U-Net predictions. Similar to the
eterministic cases, we take node-wise L norm of the error (Error of FEM and mean prediction of Bayesian U-Net)
2

17

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307

b

U
m

a
w

u
p
s

F
c

n
a
e
I

Table 5
Error metrics for 2D test sets using Bayesian U-Nets. D =
Deterministic, VB = Variational Bayes.

Example M ē [m] σ (e) [m]

2D Beam (VB) 300 1.3 E−3 1.3 E−3
2D Beam (D) 300 0.3 E−3 0.2 E−3

2D L-Shaped (VB) 200 5.3 E−3 3.7 E−3
2D L-Shaped (D) 200 0.8 E−3 0.4 E−3

Fig. 14. Mean errors (e) for all test examples of 2D cases, for predictions using Bayesian U-Net. The regression lines y ∝ 0.005 × x (2D
eam), y ∝ 0.006 × x (2D-L shape) show low sensitivity of Bayesian U-Net errors to displacement magnitudes.

Fig. 15. Deformation of 2D Beam predicted by the Bayesian U-Net, for the same example as in Fig. 7. (a) The error between Bayesian
-Net and FEM solution plotted on the deformed mesh. (b) Uncertainty of prediction obtained using Bayesian U-Net plotted on the deformed
esh.

nd also that of the uncertainty prediction from Bayesian U-Net. Both error and uncertainty values are interpolated
ithin the element to get respective fields, which are plotted on the deformed mesh obtained using Bayesian U-Net.
We consider the same 2D-beam test case as in Fig. 7, (as in deterministic case). This time we make the prediction

sing Bayesian U-Net. Fig. 15 shows the comparison of error and uncertainty associated with the prediction (we
lot single standard deviation values associated with the prediction of respective dof). One can see that both are
trongly co-related spatially.

A similar kind of analysis is done for the multiple point load case Figure, see 11, in the deterministic section.
ig. 16 compares the error and uncertainty fields obtained using the Bayesian U-Net, we can see that they are
orrelated and closely follow each other as well.

Force outside training range: Let us consider a test example in which a force of 5 N is applied on the corner
ode, which is far away from the training range (which is −2.5 to 2.5 N). Again we compare error and uncertainty
ssociated with the Bayesian U-Net prediction. For reference, the FEM solution is presented (red mesh) with the
rror contour plot. Both error and uncertainty are plotted on the deformed mesh predicted with the Bayesian U-Net.

n Fig. 17, one can see that both are strongly correlated, rather both values are close to each other across the spatial

18

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307
Fig. 16. Deformation of 2D Beam for multiple point forces using Bayesian U-Net, for the same example as in Fig. 11. (a) The error between
Bayesian U-Net and FEM solution plotted on the deformed mesh. (b) Uncertainty of prediction obtained using Bayesian U-Net plotted on
the deformed mesh.

Fig. 17. Deformation of 2D Beam using Bayesian U-Net for an input force outside the training range. (a) Error between Bayesian U-Net
and FEM solution plotted on the deformed mesh. (b) Uncertainty of prediction obtained using Bayesian U-Net plotted on the deformed
mesh.

dimensions of the beam. Thus, the uncertainty predictions can give us an idea about the error of U-Net predictions,
irrespective of whether an input is within or outside the training region.

For each of the above examples shown in Figs. 14–16, we can see that the U-Net solution is deviating from the
true FEM solution, which is given by the error contour, i.e., the U-Net model is not able to fit the data exactly. And
uncertainty prediction obtained using the Bayesian U-Net is able to capture this fitting error.

The example in Fig. 17 can be considered as a case of extrapolation in the sense of the magnitude of force being
outside the training range. One can also think of extrapolation in the sense of applying force on the nodes which
were not included in the training, i.e., extrapolation in the spatial dimensions of the geometry. To analyze such
cases we consider the same example as shown in Fig. 13 in the deterministic Section 4.2.2. In Fig. 13(b) we have
shown the uncertainty of Bayesian U-Net prediction (one standard deviation), for the node on which point load is
applied. As one can infer, Bayesian U-Net is not giving reliable uncertainty estimates when we move away from
the training region in spatial directions. Intuitively the predicted uncertainty should be more for the case when force
is applied on the farthest node from the training line, but on contrary, we observed a low prediction uncertainty
for this point. One possible explanation of this limitation is, gradients w.r.t the spatial dimensions are not available
neither in the data nor in the U-Net models. Hence there is no natural way of extrapolating information of solutions
or uncertainties.

Hereafter we focus on displacement prediction of a single dof with Bayesian U-Net. We do this to see how the
associated uncertainty varies with the value of input force, depending on whether the input is within or outside the
training range. In Figs. 18–21, we keep a constant direction of the input force, but gradually increase the magnitude

and study the displacement prediction using Bayesian U-Net. The output of the Bayesian U-net is the displacement

19

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307

o
d

Fig. 18. Outputs of Bayesian U-Net when a range of forces is applied on the corner node of the 2D Beam (see inset). (a) The magnitude
f Y-displacement of the corner node predicted with Variational Bayesian U-Net. (b) The uncertainty associated with the predictions of
isplacement solutions.

Fig. 19. Uncertainty intervals for the Y-displacement of the corner node of the 2D beam (see inset), predicted using the Bayesian U-Nets
trained on different training sets. Uncertainty reduces with the increase of force range in training data.

solution and the uncertainty associated with it, in Figs. 18–20 we provide separate plots for both of these outputs.
Whereas in Fig. 21 we only study the prediction uncertainties for noisy data cases.

2D Beam: We apply multiple vertical forces varying from −8 N to 8 N on the corner node of the beam and predict
its displacements using the Bayesian U-Net. Fig. 18(a) gives the prediction of displacement magnitude, as one can
see prediction matches with test FEM solution within the training region. Outside the training region, Bayesian
U-Net prediction deviates from the FEM solution. For reference, we provide deterministic U-Net solutions as well,
even they deviate from FEM solutions outside the training range. Whereas Fig. 18(b) gives confidence intervals
associated with these predictions. One can see that network has very little uncertainty i.e. it is confident in the
region of training data (−2.5 to 2.5 N) but as one moves away, the uncertainty of the prediction increases. We can
also see that 95% confidence is able to capture the error of Bayesian U-Net predictions outside the training region,
for reference, errors of deterministic U-Nets are presented as well.

In this paragraph, we compare uncertainty intervals for Bayesian U-Nets trained on two different datasets. In
addition to the existing 2D beam dataset (force range: −2.5 to 2.5 N), we consider another training dataset with a
lower force range this time (force range: 1 to 1 N). Fig. 19 shows the comparison of uncertainty intervals for these
20

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307

m
p

t
a

i
h
B
m
w
p
t

4

a
n
e
T
U

1
f
d
n
f
u
r

a
v
c
b
m

Fig. 20. Outputs of Bayesian U-Net when a range of forces is applied on the inner corner node of the 2D L-shape (see inset). (a) The
agnitude of X-displacement of the inner corner node predicted with Variational Bayesian U-Net. (b) The uncertainty associated with the

redictions of displacement solutions.

wo cases, as the range of input force in the training set is decreasing, Bayesian U-Net tends to get more uncertain
bout its predictions in higher force ranges, which follows the common intuition.

2D L-shape: This training dataset was created by applying point forces in the range of −1 N to 1 N as shown
n Table 1. In order to see how prediction uncertainty varies with the input forces, we apply multiple forces in a
orizontal direction varying from −6 N to 6 N on the inner corner of the L-shape and predict its displacements using
ayesian U-Net. Fig. 20(a) shows how displacement magnitude changes with applied force values. As we start to
ove away from the training region, the Bayesian U-Net solution deviates from the FEM solution. For reference,
e have plotted the deterministic U-Net solutions as well. Fig. 20(b) gives the uncertainty associated with the
rediction. Again the network is very confident in the training data region. But as the force value goes outside the
raining range, uncertainty tends to increase, for the reference, errors of deterministic U-Nets are presented as well.

.3.2. Noisy data case
In all the cases above, the U-Net models have been trained with numerical FEM datasets which can be regarded

s noiseless. However, in many practical applications, especially when working with experimental data, the data
oises exist and can originate from various sources, such as measurement errors, errors associated with tools, human
rrors, etc. In this section, we would like to demonstrate that our framework is capable of capturing these data noises.
o show that, we add random noises to our existing FEM datasets, and check how MLE- and Variational Bayes
-Nets perform in capturing these noises in terms of the predicted uncertainties.
For both 2D beam and 2D L-shape cases, we modify the existing datasets (of the input force range −1 N to

N as shown in Table 1) by incorporating random noises to displacement values. When the magnitude of applied
orce is less than 0.7 N, we add a random noise (from a continuous uniform distribution) within 20% of the real
isplacement solutions, i.e., when ∥ f ∥2 ⩽ 0.7 we set u → (1+γ)u, where γ ∼ U(−0.2, 0.2). Now, the probabilistic
etworks (MLE and Variational Bayes) are trained using these noisy datasets. In the prediction phase, we apply
orces to a single chosen corner node in a single d−4 N to 4 N (see insets in Fig. 21). Then we analyze the predicted
ncertainties associated with displacements of respective nodes to which the force has been applied, and how they
elate to the level of input force noises.

Figs. 21(a) and 21(c) show that the MLE approach is able to capture the noises in the training data region,
lthough it fails to produce reliable uncertainty estimates outside that region (extrapolated region). The network is
ery confident in predictions even though we move away from the training region, and the prediction errors there are
learly visible. Whereas from Figs. 21(b)–21(d), we can see that the Variational Bayes approach is able to capture
oth effects: the effect of noises in the data, as well as the desired effect of gradually increasing uncertainty as we

ove away from the training region.

21

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307
Fig. 21. Uncertainty predictions for noisy data cases using probabilistic U-Nets. For the 2D beam case (upper row), prediction is done for
the Y-displacement of the corner node. For 2D L-shape (lower row), prediction is done for the X-displacement of the inner corner node
(see insets). (a)&(c) Uncertainty predictions using MLE approach. MLE fails to capture the uncertainty outside the training region. (b)&(d)
Uncertainty predictions using Variational Bayes approach. VB is capable to capture the uncertainty outside the training region.

4.4. Prediction and training times

Prediction Times
Although networks are trained on Graphical Processing Units (GPU), predictions are computationally inexpensive

on user end Central Processing Units (CPU) as well. Also, since recent years, GPU cloud computing is easily
accessible, one can leverage GPU support over the internet. All these factors make our framework easily deployable
to the user end. Table 6 gives the comparison of prediction times for different examples on GPU as well on CPU.

For some of the force values in the testing set, the FEM solution took more than 3s. Hence under identical
computational resources, deterministic U-Net gave 31 times speedup. Another important point to mention here is,
both deterministic and Bayesian U-Net, individually take the same time for prediction irrespective of the value of
the input (applied force). In the case of the FEM, solution time evolves with the value of applied force. This is
because we use an iterative solver and adaptive load-stepping scheme to avoid convergence issues for large load

cases. Hence on local, we can expect much more speedup than 31 times when we go towards the higher input force

22

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307

a
f
t
B

T

m
h
i

p
d
t
b
e

E

o
a
a
w

u
a

Table 6
Prediction times of deterministic U-Net on CPU, GPU. Under similar computational resources on CPU, U-Net shows 31 times
speedup, which can be even more depending on the boundary conditions. Whereas GPU shows nearly 350 times speedup.

Type dof t_femCPU [s] tCPU [s] tGPU [s] t_femCPU
tCPU

t_femCPU
tGPU

2D Beam 128 0.123 0.005 0.001 25 123
2D L-shape 256 0.120 0.007 0.001 17 120
3D Beam 12 096 3.1 0.1 0.009 31 345

Table 7
U-Net training times, ttrain. D = Deterministic, VB = Variational Bayes.

Example Dataset size, N ttrain [min] N. of trainable parameters

2D Beam (D) 5700 131 7.5 E+6
2D Beam (VB) 5700 226 15.1 E+6

2D L-Shaped (D) 3800 78 7.5 E+6
2D L-Shaped (VB) 3800 143 14.6 E+6

3D Beam (D) 33 688 1060 94.1 E+6

values. Deterministic U-Nets gave nearly 350 times speed up when predictions were done using GPU. Even with
the high dimensional 3D examples, U-Net did not take more than 10 ms, thus satisfying the real-time constraint.

The time of prediction of Bayesian U-Net is the time of sampling over output distribution, which is as long
s 300 stochastic forward passes in our case. For the above example (for both 2D beam and 2D L-shape), 300
orward passes for a single test example took 0.1 secs. Compared to the deterministic case, the average time for
he prediction of single-pass is less (0.3 ms) because of the efficient utilization of batch prediction. Hence even
ayesian inference takes very little time in the prediction phase.

raining Times
For any neural network, the training phase of the model is the most resource-intensive task. Hence modern

achine learning open source libraries such as Tensorflow, Keras, PyTorch are optimized to work with GPUs. GPU
as a parallel structure that offers faster computing and increased efficiency compared to the user end computer with
ts CPU. Table 7 gives GPU training times for different datasets for both deterministic and probabilistic U-Nets.

Bayesian U-Nets have more parameters to be trained, additionally, we need to sample over the approximate
osterior as described in Section 3.4. Hence training times for Bayesian U-Nets are significantly higher than for the
eterministic counterparts. As the size of the problem grows, training time proportionally increases as well. Hence
he training time for the 3D beam case is higher compared to 2D cases. Note however, that this time can be reduced
y opting alternate topologies of U-Nets, and one way of doing so is keeping a constant number of channels in
ach U-Net level instead of increasing it (which will be analyzed below).

ffect of number of channels
The training time of U-Net can be reduced by decreasing the number of trainable parameters of the model, and

ne of the ways to achieve this is to decrease the number of channels at each U-Net level. This can have, however,
side effect on prediction accuracy (intuitively, channels are partially responsible for capturing nonlinearities). We

nalyze these competing effects by performing a case study for the deterministic 3D-Beam case for architectures
ith different constant (not variable) number of channels, c.
Table 8 shows a comparison of training times and prediction errors. As we can see, as compared to the architecture

sed in Section 4.2.2, the use of 64 channels at each level gave comparable error values, while the training time is
bout three times lower. We can also observe that an excessive increase in the number of channels (c = 128) results

in deterioration of not only training time but also the prediction accuracy, which can be interpreted as a well-known
effect of overfitting. For reference, we have provided GPU prediction times for these networks as well.

5. Conclusions

In this work, we have proposed a deterministic/probabilistic neural network framework that is capable of

accurately predicting large deformations in real-time. Although in the present work we only used artificially

23

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307

e
F
p
b
o

c
i
p
s

F
s
a
i
i
(
c

D

h

D

A

Table 8
Error metrics, and training and predicting times for different deterministic U-Net architectures
trained on the 3D dataset. A constant number of channels, c, is used in each level of U-Net. The
use of 64 channels is optimum to achieve error and computational time trade-off. Standard 3D
U-Net architecture took 1060 minutes to train on the identical dataset.

N. of channels, c ē [m] σ (e) [m] ttrain [min] tGPU [ms]

16 1.6 E−3 0.9 E−3 272 6
32 1.1 E−3 0.7 E−3 293 6.5
64 0.8 E−3 0.5 E−3 348 7.5
128 3.5 E−3 3.3 E−3 646 9

generated data for training, the framework can naturally assimilate experimental data as well. Because of these
factors, our framework has the potential for data-driven applications requiring very fast response rates, such as
patient-specific computer-aided surgery of soft human tissues.

In addition to the predictions, the proposed probabilistic framework is also capable of giving reliable uncertainty
stimates. Indeed, we showed that the predicted uncertainties correlate with the prediction errors (fitting errors to
EM solution). We also showed that the uncertainties rapidly increase in the extrapolated region, which is the desired
roperty that we expected to achieve. Additionally, we were able to capture the noises present in the data, which has
een validated with two probabilistic approaches (Maximum Likelihood Estimation and Variational Bayes). As such,
ur framework can be seen as a step towards making real-time large-deformation simulations more trustworthy.

To the best of our knowledge, this is the first time the state-of-the-art Bayesian Neural Networks are used in the
ontext of non-linear body deformations. We believe that this work can serve as a reference for further developments
n this emerging area of research. Due to its potentially high efficiency and accuracy, as well as due to its unique
robabilistic predictive capabilities, we believe that the presented framework will turn out to be useful in a wide
cope of novel engineering applications.

Besides showing promising results, we also demonstrated several important limitations of the current framework.
irstly, the convolution operations that are used in our U-Nets’ implementation require structured meshes. We
howed in the paper possible methods to extend our framework to unstructured meshes, which can be done with
moderate effort in the future. Secondly, we observed that the proposed novel technique to quantify uncertainties

n extrapolated regions does not always give reliable predictions. Bayesian U-Nets failed to give reliable credible
ntervals of predictions when we applied the force on the nodes which were not part of the training procedure
i.e. extrapolated data in the spatial dimensions). As discussed in the paper, it seems to be a more fundamental and
hallenging problem that needs a dedicated approach, which is left for future research.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
ave appeared to influence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant
agreement No. 764644. Jakub Lengiewicz would like to acknowledge the support
from EU Horizon 2020 Marie Sklodowska Curie Individual Fellowship MOr-
PhEM under Grant 800150. This paper only contains the author’s views and the
Research Executive Agency and the Commission are not responsible for any use
that may be made of the information it contains.
24

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307

L
H
f

R

Stephane Bordas and Jakub Lengiewicz are grateful for the support of the Fonds National de la Recherche
uxembourg FNR grant QuaC C20/MS/14782078. Stephane Bordas received funding from the European Union’s
orizon 2020 research and innovation programme under grant agreement No. 811099 TWINNING Project DRIVEN

or the University of Luxembourg.

eferences
[1] S. Cotin, H. Delingette, N. Ayache, Real-time elastic deformations of soft tissues for surgery simulation, IEEE Trans. Vis. Comput.

Graphics 5 (1) (1999) 62–73, http://dx.doi.org/10.1109/2945.764872.
[2] H. Delingette, S. Cotin, N. Ayache, A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery

training and simulation, in: Proceedings Computer Animation 1999, 1999, pp. 70–81, http://dx.doi.org/10.1109/CA.1999.781200.
[3] H. Courtecuisse, J. Allard, P. Kerfriden, S. Bordas, S. Cotin, C. Duriez, Real-time simulation of contact and cutting of heterogeneous

soft-tissues, Med. Image Anal. 18 (2) (2014) 394–410, http://dx.doi.org/10.1016/j.media.2013.11.001.
[4] J. Wu, R. Westermann, C. Dick, A survey of physically based simulation of cuts in deformable bodies, Comput. Graph. Forum 34

(2015) http://dx.doi.org/10.1111/cgf.12528.
[5] H.P. Bui, S. Tomar, H. Courtecuisse, S. Cotin, S.P.A. Bordas, Real-time error control for surgical simulation, IEEE Trans. Biomed.

Eng. 65 (3) (2018) 596–607, http://dx.doi.org/10.1109/TBME.2017.2695587.
[6] O. Zienkiewicz, R. Taylor, The Finite Element Method, ; Volume 2: Solid and Fluid Mechanics, Dynamics and Non-Linearity,

McGraw-Hill, 1991.
[7] C. Farhat, F. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, Internat. J. Numer.

Methods Engrg. 32 (6) (1991) 1205–1227, http://dx.doi.org/10.1002/nme.1620320604.
[8] D. Marinkovic, M. Zehn, Survey of finite element method-based real-time simulations, Appl. Sci. 9 (14) (2019) http://dx.doi.org/10.

3390/app9142775.
[9] P. Kerfriden, P. Gosselet, S. Adhikari, S. Bordas, Bridging proper orthogonal decomposition methods and augmented Newton–Krylov

algorithms: An adaptive model order reduction for highly nonlinear mechanical problems, Comput. Methods Appl. Mech. Engrg. 200
(5) (2011) 850–866, http://dx.doi.org/10.1016/j.cma.2010.10.009.

[10] O. Goury, C. Duriez, Fast, generic and reliable control and simulation of soft robots using model order reduction, IEEE Trans. Robot.
34 (6) (2018) 1565–1576, http://dx.doi.org/10.1109/TRO.2018.2861900.

[11] P. Kerfriden, O. Goury, T. Rabczuk, S. Bordas, A partitioned model order reduction approach to rationalise computational expenses
in multiscale fracture mechanics, Comput. Methods Appl. Mech. Eng. (2012) 169–188, http://dx.doi.org/10.1016/j.cma.2012.12.004.

[12] S. Bhattacharjee, K. Matouš, A nonlinear manifold-based reduced order model for multiscale analysis of heterogeneous hyperelastic
materials, J. Comput. Phys. 313 (2016) 635–653, http://dx.doi.org/10.1016/j.jcp.2016.01.040.

[13] S. Niroomandi, I. Alfaro, E. Cueto, F. Chinesta, Model order reduction for hyperelastic materials, Internat. J. Numer. Methods Engrg.
81 (2009) 1180–1206, http://dx.doi.org/10.1002/nme.2733.

[14] P. Allier, L. Chamoin, P. Ladevèze, Proper generalized decomposition computational methods on a benchmark problem: introducing a
new strategy based on constitutive relation error minimization, Adv. Model. Simul. Eng. Sci. 2 (2015) 17, http://dx.doi.org/10.1186/
s40323-015-0038-4.

[15] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, Cambridge, MA, USA, 2016, http://www.deeplearningbook.org.
[16] I. Lagaris, A. Likas, D. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural

Netw. 9 (5) (1998) 987–1000, http://dx.doi.org/10.1109/72.712178.
[17] I. Lagaris, A. Likas, D. Papageorgiou, Neural-network methods for boundary value problems with irregular boundaries, IEEE Trans.

Neural Netw. 11 (5) (2000) 1041–1049, http://dx.doi.org/10.1109/72.870037.
[18] K. McFall, J. Mahan, Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary

boundary conditions, IEEE Trans. Neural Netw. 20 (8) (2009) 1221—1233, http://dx.doi.org/10.1109/tnn.2009.2020735.
[19] M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse

problems involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707, http://dx.doi.org/10.1016/j.jcp.2018.
10.045.

[20] E. Samaniego, C. Anitescu, S. Goswami, V. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, T. Rabczuk, An energy approach to the
solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications,
Comput. Methods Appl. Mech. Engrg. 362 (2020) 112790, http://dx.doi.org/10.1016/j.cma.2019.112790.

[21] D. Lorente, F. Martínez-Martínez, M. Rupérez, M. Lago, M. Martínez-Sober, P. Escandell-Montero, J. Martínez-Martínez, S. Martínez-
Sanchis, A. Serrano-López, C. Monserrat, J. Martín-Guerrero, A framework for modelling the biomechanical behaviour of the human
liver during breathing in real time using machine learning, Expert Syst. Appl. 71 (2017) 342–357, http://dx.doi.org/10.1016/j.eswa.
2016.11.037.

[22] A. Mendizabal, P. Márquez-Neila, S. Cotin, Simulation of hyperelastic materials in real-time using deep learning, Med. Image Anal.
59 (2019) 101569, http://dx.doi.org/10.1016/j.media.2019.101569.

[23] V. Krokos, V. Bui Xuan, S.P.A. Bordas, P. Young, P. Kerfriden, A Bayesian multiscale CNN framework to predict local stress fields
in structures with microscale features, Comput. Mech. 69 (2022) 733–766, http://dx.doi.org/10.1007/s00466-021-02112-3.

[24] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: Medical Image Computing
and Computer-Assisted Intervention, MICCAI, in: LNCS, vol. 9351, Springer, 2015, pp. 234–241, (available on cs.CV), URL
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a.
[25] J. He, J. Xu, MgNet: A unified framework of multigrid and convolutional neural network, Sci. China Math. 62 (7) (2019) 1331–1354.

25

http://dx.doi.org/10.1109/2945.764872
http://dx.doi.org/10.1109/CA.1999.781200
http://dx.doi.org/10.1016/j.media.2013.11.001
http://dx.doi.org/10.1111/cgf.12528
http://dx.doi.org/10.1109/TBME.2017.2695587
http://refhub.elsevier.com/S0045-7825(22)00411-X/sb6
http://refhub.elsevier.com/S0045-7825(22)00411-X/sb6
http://refhub.elsevier.com/S0045-7825(22)00411-X/sb6
http://dx.doi.org/10.1002/nme.1620320604
http://dx.doi.org/10.3390/app9142775
http://dx.doi.org/10.3390/app9142775
http://dx.doi.org/10.3390/app9142775
http://dx.doi.org/10.1016/j.cma.2010.10.009
http://dx.doi.org/10.1109/TRO.2018.2861900
http://dx.doi.org/10.1016/j.cma.2012.12.004
http://dx.doi.org/10.1016/j.jcp.2016.01.040
http://dx.doi.org/10.1002/nme.2733
http://dx.doi.org/10.1186/s40323-015-0038-4
http://dx.doi.org/10.1186/s40323-015-0038-4
http://dx.doi.org/10.1186/s40323-015-0038-4
http://www.deeplearningbook.org
http://dx.doi.org/10.1109/72.712178
http://dx.doi.org/10.1109/72.870037
http://dx.doi.org/10.1109/tnn.2009.2020735
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.cma.2019.112790
http://dx.doi.org/10.1016/j.eswa.2016.11.037
http://dx.doi.org/10.1016/j.eswa.2016.11.037
http://dx.doi.org/10.1016/j.eswa.2016.11.037
http://dx.doi.org/10.1016/j.media.2019.101569
http://dx.doi.org/10.1007/s00466-021-02112-3
http://arxiv.org/abs/1505.04597
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
http://refhub.elsevier.com/S0045-7825(22)00411-X/sb25

S. Deshpande, J. Lengiewicz and S.P.A. Bordas Computer Methods in Applied Mechanics and Engineering 398 (2022) 115307
[26] F. Wang, A. Eljarrat, J. Müller, T. Henninen, R. Erni, C. Koch, Multi-resolution convolutional neural networks for inverse problems,
Sci. Rep. 10 (2020) 5730, http://dx.doi.org/10.1038/s41598-020-62484-z.

[27] S.C. Brenner, L.R. Scott, Finite element multigrid methods, in: The Mathematical Theory of Finite Element Methods, Springer New
York, New York, NY, 2008, pp. 155–173, http://dx.doi.org/10.1007/978-0-387-75934-0_7.

[28] R. McAllister, Y. Gal, A. Kendall, M. v. d. Wilk, A. Shah, R. Cipolla, A. Weller, Concrete problems for autonomous vehicle safety:
Advantages of Bayesian deep learning, in: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI-17, 2017, pp. 4745–4753, http://dx.doi.org/10.24963/ijcai.2017/661.

[29] T. Gawlikowski, C. Tassi, M. Ali, L. Lee, M. Humt, J. Feng, A. Kruspe, R. Triebel, P. Jung, R. Roscher, M. Shahzad, W. Yang, R.
Bamler, X.X. Zhu, A survey of uncertainty in deep neural networks, 2021, arXiv:2107.03342.

[30] A. Kendall, Y. Gal, What uncertainties do we need in Bayesian deep learning for computer vision? in: Proceedings of the 31st
International Conference on Neural Information Processing Systems, in: NIPS’17, Curran Associates Inc., Red Hook, NY, USA, 2017,
pp. 5580–5590.

[31] C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra, Weight uncertainty in neural network, in: F. Bach, D. Blei (Eds.), Proceedings
of the 32nd International Conference on Machine Learning, in: Proceedings of Machine Learning Research, vol. 37, PMLR, Lille,
France, 2015, pp. 1613–1622.

[32] Y. Gal, Uncertainty in deep learning, 2016.
[33] O. Duerr, B. Sick, E. Murina, Probabilistic Deep Learning: With Python, Keras and TensorFlow Probability, Manning Publications,

2020, URL https://books.google.co.in/books?id=-bYCEAAAQBAJ.
[34] P. Hauseux, J.S. Hale, S. Cotin, S. Bordas, Quantifying the uncertainty in a hyperelastic soft tissue model with stochastic parameters,

Appl. Math. Model. 62 (2018) 86–102, http://dx.doi.org/10.1016/j.apm.2018.04.021.
[35] H. Rappel, L.A.A. Beex, J.S. Hale, L. Noels, S.P.A. Bordas, A tutorial on Bayesian inference to identify material parameters in solid

mechanics, Arch. Comput. Methods Eng. 27 (2020) http://dx.doi.org/10.1007/s11831-018-09311-x.
[36] M. Zeraatpisheh, S.P. Bordas, L.A. Beex, BayesIan model uncertainty quantification for hyperelastic soft tissue models, Data-Centric

Eng. 2 (2021) e9, http://dx.doi.org/10.1017/dce.2021.9.
[37] A. Graves, Practical variational inference for neural networks, in: J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, K.Q. Weinberger

(Eds.), Advances in Neural Information Processing Systems. Vol. 24, Curran Associates, Inc. 2011, URL https://proceedings.neurips.
cc/paper/2011/file/7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf.

[38] L. Lu, P. Jin, G. Pang, Z. Zhang, G.E. Karniadakis, Learning nonlinear operators via DeepONet based on the universal approximation
theorem of operators, Nat. Mach. Intell. 3 (2021) 218–229, http://dx.doi.org/10.1038/s42256-021-00302-5.

[39] Z. Li, N.B. Kovachki, K. Azizzadenesheli, B. liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Fourier neural operator for parametric
partial differential equations, in: International Conference on Learning Representations, 2021, URL https://openreview.net/forum?id=
c8P9NQVtmnO.

[40] G. Wen, Z. Li, K. Azizzadenesheli, A. Anandkumar, S.M. Benson, U-FNO—An enhanced Fourier neural operator-based deep-learning
model for multiphase flow, Adv. Water Resour. 163 (2022) 104180, http://dx.doi.org/10.1016/j.advwatres.2022.104180.

[41] R. Neal, Bayesian Learning for Neural Networks, Springer-Verlag, Berlin, Heidelberg, 1996.
[42] M. Vladimirova, J. Verbeek, P. Mesejo, J. Arbel, Understanding priors in Bayesian neural networks at the unit level, in: K. Chaudhuri,

R. Salakhutdinov (Eds.), Proceedings of the 36th International Conference on Machine Learning, in: Proceedings of Machine Learning
Research, vol. 97, PMLR, 2019, pp. 6458–6467, URL http://proceedings.mlr.press/v97/vladimirova19a.html.

[43] D.P. Kingma, T. Salimans, M. Welling, Variational dropout and the local reparameterization trick, in: C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, R. Garnett (Eds.), Advances in Neural Information Processing Systems, Vol. 28, Curran Associates, Inc. 2015, URL
https://proceedings.neurips.cc/paper/2015/file/bc7316929fe1545bf0b98d114ee3ecb8-Paper.pdf.

[44] B.P. Carlin, T.A. Louis, Bayes and empirical bayes methods for data analysis, Stat. Comput. (1997) http://dx.doi.org/10.1023/A:
1018577817064.

[45] J. Korelc, Multi-language and multi-environment generation of nonlinear finite element codes, Eng. Comput. 18 (2002) 312–327,
http://dx.doi.org/10.1007/s003660200028.

[46] R. Hanocka, A. Hertz, N. Fish, R. Giryes, S. Fleishman, D. Cohen-Or, MeshCNN: A Network with an Edge, Vol. 38, (4) Association
for Computing Machinery, New York, NY, USA, 2019, http://dx.doi.org/10.1145/3306346.3322959.

[47] T. Pfaff, M. Fortunato, A. Gonzalez, P. Battaglia, Learning mesh-based simulation with graph networks, in: International Conference
on Learning Representations, 2021, URL https://openreview.net/forum?id=roNqYL0_XP.

[48] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, 2015.
[49] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2017, arXiv:1412.6980.
[50] Y. Wen, P. Vicol, J. Ba, D. Tran, R. Grosse, Flipout: Efficient pseudo-independent weight perturbations on mini-batches, 2018,

arXiv:1803.04386.
[51] F. Chollet, et al., Keras, 2015, GitHub, https://github.com/fchollet/keras.
[52] J.V. Dillon, I. Langmore, D. Tran, E. Brevdo, S. Vasudevan, D. Moore, B. Patton, A. Alemi, M.D. Hoffman, R.A. Saurous, TensorFlow

distributions, 2017, CoRR, arXiv:1711.10604.
[53] S. Varrette, P. Bouvry, H. Cartiaux, F. Georgatos, Management of an academic HPC cluster: The UL experience, in: Proceedings of the

2014 International Conference on High Performance Computing and Simulation, HPCS 2014, 2014, http://dx.doi.org/10.1109/HPCSim.
2014.6903792.

[54] C. Geuzaine, J. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Internat. J.
Numer. Methods Engrg. 79 (2009) 1309–1331, http://dx.doi.org/10.1002/nme.2579.
26

http://dx.doi.org/10.1038/s41598-020-62484-z
http://dx.doi.org/10.1007/978-0-387-75934-0_7
http://dx.doi.org/10.24963/ijcai.2017/661
http://arxiv.org/abs/2107.03342
http://refhub.elsevier.com/S0045-7825(22)00411-X/sb30
http://refhub.elsevier.com/S0045-7825(22)00411-X/sb30
http://refhub.elsevier.com/S0045-7825(22)00411-X/sb30
http://refhub.elsevier.com/S0045-7825(22)00411-X/sb30
http://refhub.elsevier.com/S0045-7825(22)00411-X/sb30
http://refhub.elsevier.com/S0045-7825(22)00411-X/sb31
http://refhub.elsevier.com/S0045-7825(22)00411-X/sb31
http://refhub.elsevier.com/S0045-7825(22)00411-X/sb31
http://refhub.elsevier.com/S0045-7825(22)00411-X/sb31
http://refhub.elsevier.com/S0045-7825(22)00411-X/sb31
http://refhub.elsevier.com/S0045-7825(22)00411-X/sb32
https://books.google.co.in/books?id=-bYCEAAAQBAJ
http://dx.doi.org/10.1016/j.apm.2018.04.021
http://dx.doi.org/10.1007/s11831-018-09311-x
http://dx.doi.org/10.1017/dce.2021.9
https://proceedings.neurips.cc/paper/2011/file/7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf
http://dx.doi.org/10.1038/s42256-021-00302-5
https://openreview.net/forum?id=c8P9NQVtmnO
https://openreview.net/forum?id=c8P9NQVtmnO
https://openreview.net/forum?id=c8P9NQVtmnO
http://dx.doi.org/10.1016/j.advwatres.2022.104180
http://refhub.elsevier.com/S0045-7825(22)00411-X/sb41
http://proceedings.mlr.press/v97/vladimirova19a.html
https://proceedings.neurips.cc/paper/2015/file/bc7316929fe1545bf0b98d114ee3ecb8-Paper.pdf
http://dx.doi.org/10.1023/A:1018577817064
http://dx.doi.org/10.1023/A:1018577817064
http://dx.doi.org/10.1023/A:1018577817064
http://dx.doi.org/10.1007/s003660200028
http://dx.doi.org/10.1145/3306346.3322959
https://openreview.net/forum?id=roNqYL0_XP
http://refhub.elsevier.com/S0045-7825(22)00411-X/sb48
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1803.04386
https://github.com/fchollet/keras
http://arxiv.org/abs/1711.10604
http://dx.doi.org/10.1109/HPCSim.2014.6903792
http://dx.doi.org/10.1109/HPCSim.2014.6903792
http://dx.doi.org/10.1109/HPCSim.2014.6903792
http://dx.doi.org/10.1002/nme.2579

	Probabilistic deep learning for real-time large deformation simulations
	Introduction
	General FEM-based U-Net methodology
	FEM-based deep learning approach
	U-Net deep neural network architecture

	Probabilistic U-Net framework
	Variational Bayesian inference
	Maximum likelihood estimation
	Trainable priors: Use of Empirical Bayes
	Loss functions for probabilistic U-Net

	Results
	The numerical experiment procedure
	Generation of training data from hyperelastic FEM simulations
	Implementation and training of U-Nets
	Validation metrics for the testing phase

	Deterministic U-Nets
	Advantages of the U-Net convolutional architecture
	Prediction accuracy

	Probabilistic U-nets
	Prediction accuracy
	Noisy data case

	Prediction and training times

	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

