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Abstract

The paper deals with the problem of modelling & thoving mass patrticle in numerical computation by
using the finite element method in one dimensioveate problems in which both the displacement arglean
of the pure bending are described by linear shapetibns. The analysis is based on the Timosheerlamb
theory. We consider the simply supported beam,ramge of small deflections with zero initial cotaiis.
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1. Introduction

Rail and road transport development needs a closer understanding of phenomena
accompanying travelling load. Most applications can be found in the interaction
between railway wheels and rail or track, the effect of a moving vehicle on a bridge,
interaction between rail power collector and traction power network, as well as
magnetic rail, aerospace technology, automotive industry, and robotics. Despite of
the wide interest in moving loads for more than a century, still many issues remain
unresolved. In the case of non-inertial loads, for example the gravitational force or
forces described by harmonic functions, complete analytical solutions in the series
are known [1, 2]. Solutions differ in the case of inertial loads. A moving inertial
load problem can not be solved fully analyticaly, except special cases such as the
massless string [3]. There are semi-analytical solutions [4, 5, 6] which take into
account the influence of a mass particle moving along the structure.

Modelling of the moving forces does not take into
account the inertia of a moving point and is relatively
simple. In practice it reduces to the modification of
the right-hand-side vector at each time step. Inclusion
of the inertia of a moving load requires the modifica-
tion of the inertia, damping and stiffness matrices at
every time step. A simple modification of the diagonal Figure 1: Ad hoc mass
of the inertia matrix (Fig. 1), is incorrect and results  Jymping in nodes.
in divergence of the solution. Errors, due to incorrect
modeling, increase with increasing speed of a moving inertial load. According to the




Renaudot formula [7] the acceleration of the material point moving with a constant
speed v, is composed of three elements:
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We can show the components corresponding to transverse acceleration, Coriolis
acceleration and centrifugal acceleration.

There are numerous publications on numerical modelling of inertial moving load
using the finite element method [8, 9, 10]. In most of them displacements and
rotations are approximated as cubic functions. They can be applied to all the terms
of the equation (1). In the case of wave problems in a string or the Timoshenko
beam we have to use linear shape functions to describe independently displacements
and rotations in pure bending. It entails mathematical consequences. We can not
compute the second derivative of the displacement x. In such a case we should have
to neglect the effect of centrifugal acceleration of the moving material point in the
formula (1). It leads to incorrect solution.

Below we present recent results which enables us to solve the problem of a moving
mass travelling on the Timoshenko beam with an arbitrary velocity. Numerical
examples prove the efficiency of the proposed method.

2. Timoshenko beam theory

Let us consider the Timoshenko beam with the length [, mass density p, cross-
sectional area A and moment of inertia I, subjected to the mass particle m accom-
panied by the force P, moving with the constant speed v. Denoting the transverse
displacement by w(z,t) and the pure bending angles by v (x,t), the kinetic energy
of the Timoshenko beam and moving material point with mass m is expressed by
the equation

1 LTow(z,t)]? 1 [flow(x,t)]? 1, 1 [dw(tt)]?
(2)

The potential energy of the Timoshenko beam and a moving gravitational force is
described as follows

1 LT oy(x,t)]? 1GA ['[Ow(z,t) 2

FE is the elastic modulus, G is the shear modulus and k is the cross-section shape
ratio. Based on the second kind Lagrange equation, we determine two coupled
equations describing the motion of the Timoshenko beam subjected to a moving
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load
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The equations (4) can be transformed into one equation of motion. It depends only
on displacements or rotations. Let us consider displacements first
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where the external load is given by the formula
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c1 = \/G/(kp) is the shear wave speed and co = \/E/p is the bending wave speed.
We assume a simply supported beam

0%w(w,t) 0?w(w,t)
w(0,2) =0, w(l,t) =0, "o |, 0, "o |, 0, (7)
with zero initial conditions
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Equation (5) is a partial differential equation of the fourth order with respect to
time. Its solution requires additional initial conditions
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3. Semi-analytical solution

We can develop displacements of the beam into the sine Fourier series in a finite
interval, which fulfil boundary conditions (7)

w(zt) = 3 Qi(t)sin ? . (10)

i=1



By substituting the series (10) to the equation (5) we obtain a set of ordinary
differential equations of the form
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This method lead us to the system of differential equation of variable coefficients
(11) solved by the Runge-Kutta 4 order method. We compute numerically the
vector Q and then insert it to the resulting series (10).

4. Numerical solution by the finite element method

Let us consider the finite element of the length b of the Timoshenko beam. The
element carries the inertial particle of the mass m, travelling with a constant velocity
v. The equation of the virtual work which describes the influence of the inertial
particle can be written in the following form

b 2
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We impose the linear shape function describing the transversal displacement in finite
element nodes

w(z,t) = (1 - %) wi (t) + %wg(t) . (13)

Equation (1) describes the acceleration of a moving material point. It can be ex-
pressed in the form
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The third term of (14) is developed into the Taylor series in terms of the time
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Upper indices indicate time in which respective terms are defined. We assume the
backward difference formula (a=1). In this case we have
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The energy (12), with respect to (14) and (16) allows us to write the results in the
matrix equation, after classical minimisation
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with the coefficient x = (zo+vh)/b, 0 < r < 1.It determines the force equilibrium
of the mass travelling over the finite element of a Timoshenko beam. Matrix factors
M,,, C,., and K, can be called mass, damping, and stiffness matrices, since they
have similar forms to matrices derived for pure finite element of the Timoshenko
beam. The last term e, describes nodal forces at the beginning of the time interval
[0; h]. We must emphasise here that matrices (18) and the vector e contribute only
the moving inertial particle effect. Pure classical matrices of the finite element of a
string must be added to the global system of equations.

5. Examples

We choose the steel beam of the rectangular cross-section A=0.015m? and the
length [=2m. We assume other data: p=7860kg/m?, 1=0.0000281 m*, m=200kg,
P-mg, g—9.81m/s?, E2.1-10° MPa, G—8.1.10* MPa, k—1.2. Fig. 2 shows a com-
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Figure 2: Trajectories of a mass particle travelling along the Timoshenko beam at
the speed v—30m/s (left picture) and v—60m/s (right picture).

parison of the results obtained by semi-analytical method presented earlier, and the



finite element method using matrices describing the moving material point of mass
m. The obtained results confirm the correct way of modelling a moving mass par-
ticle.

6. Conclusions

The paper deals with the problem of vibrations of the Timoshenko beam subjected
to a moving inertial particle. The presented approach allows accurate modeling of a
mass particle travelling with a constant velocity in numerical computation by using
finite element method. These matrices can be applied to every wave problem, where
the displacement and rotations of the pure bending are described by linear shape
functions.
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Metody numeryczne analizy drgan belki Timoshenki pod inercyjnym
obcigzeniem ruchomym

Praca omawia problem modelowania numerycznego poruszajacej sie czastki masowej metoda,
elementow skoriczonych w zadaniu jednowymiarowym. Przemieszczenia i obroty opisano
liniowymi funkcjami ksztaltu. Analize oparto na teorii belki Timoshenki.



