
XXI ICTAM, 15–21 August 2004, Warsaw, Poland

DSA FOR ELASTIC-PLASTIC FINITE ROTATION SHELLS UNDER DYNAMIC LOADS
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Summary The paper describes a constitutive DSA algorithm for elastic-plastic finite rotation shells and explicit dynamics, by which
design derivatives are calculated w.r.t. material parameters. The paper shows that despite a great complexity of the solution algorithm
for the finite-rotation elastic-plastic shells, it is feasible to compute analytical design derivative of this algorithm, and the yielded
sensitivities are of very good accuracy.

CONSTITUTIVE DSA FOR HUBER-MISES PLASTICITY

Derivative w.r.t. material parameters.
In the paper we consider the constitutive model consisting of Hooke’s elasticity and Huber-Mises plasticity with nonlinear
isotropic hardening of the saturation type,κ(ēp) = σy0 + κ′1 ēp + (σy1 − σy0)(1 − e−aēp

), and a linear kinematic
hardening functionHα(ēp) = H0 +H

′
ēp. Hence, the set of material parameters ism .= {E, ν, σy0, κ′1, σy1, a}. For

a design parameterh and material parametersm depending onh, i.e. m = m(h), we have Dh( · ) = Dm( · ) Dhm,
where Dhm is specified additionally, and it suffices to consider derivatives w.r.t.m, only. For some A(m, B(m)),
the total design derivative ofA with respect tom is written as DmA = ∂mA+A,B DmB, where ∂m(·) is the explicit
derivative.

Update of design derivatives of state variables.
Let us denote bys the state variables which are updated incrementally, stored and retrieved as constitutive history data,
s = {Σ, ēp, αp

R, εp, ε33, ψR}, where ψR are rotational parameters of the constitutive algorithm. The algorithm for
sn+1 can be written assn+1 = sn+1(m, sn(m), qn+1(m), qn(m)), and upon differentiation w.r.t.m we obtain the
update formula

Dmsn+1 =
∂sn+1

∂m
+

∂sn+1

∂sn
Dmsn +

∂sn+1

∂qn+1

Dmqn+1 +
∂sn+1

∂qn

Dmqn. (1)

The derivatives, Dmsn and Dmqn are known as they are history variables, andDmqn+1 in explicit dynamics is
predicted. The derivatives,∂sn+1/∂m, ∂sn+1/∂zn, ∂sn+1/∂qn+1, ∂sn+1/∂qn, must be explicitly calculated. This
update includes the design derivative of back-rotated Kirchhoff stressΣ which belongs tos.

Design derivative of stress update algorithm for finite rotation shells.
The algorithmic approach to plasticity for finite-rotation shells follows this of [1], i.e. the constitutive equations are written
for the back-rotated Kirchhoff stressΣ, and equations analogous to those for the small deformation case are used. The
constitutive model is the 3D Huber-Mises material with nonlinear isotropic/linear kinematic hardening. The plane stress
constraints are directly incorporated into constitutive equations, as in [3] or [2], i.e. the deviatoric stress is parameterized
by the plane stress components. The resulting yield surface is ellipsoidal, and not a radial return algorithm but a return
map algorithm, with a constitutive Newton loop, must be used. This model is applied to shell laminas.

The algorithm to calculate the 2nd Piola-Kirchhoff stressS can be written asSn+1 = Sn+1(m, sn(m), qn+1(m), qn(m))
and upon differentiation w.r.t.m we obtain

DmSn+1 =
∂Sn+1

∂m
+

∂Sn+1

∂sn
Dmsn +

∂Sn+1

∂qn+1

Dmqn+1 +
∂Sn+1

∂qn

Dmqn, (2)

where
{
Dmsn, Dmqn+1, Dmqn

}
are known, and the derivatives,

{
∂Sn+1/∂m, ∂Sn+1/∂sn, ∂Sn+1/∂qn+1, ∂Sn+1/∂qn

}
can be explicitly calculated.

DESIGN DERIVATIVE OF EXPLICIT DYNAMICS ALGORITHM

The equations of dynamics for shells are complicated due to rotational inertia terms and parametrization of rotations (we
use the canonical rotation vector). The design differentiation of the explicit dynamics algorithm yields, among others, the
following equation

Dmq̈n+1 = M−1[−Dmfn+1 −Dmc(ω)−C Dmq̇n+1/2], (3)

whereq = {x0I , ψI} and ψI is a canonical rotation vector. The design derivative of the internal forcef is as follows

Dmf .=
∂

∂m

∫

V

BT SdV =
∫

V

(
DmBT S + BT DmS

)
dV, (4)



where S is the 2nd Piola-Kirchhoff stress,E is the Green strain. The kinematical operatorB .= ∂E/∂q depends on
q for finite rotation shells, hence its design derivative is

DmB =
dB
dq

dq
dm

= B,q Dmq, (5)

where B,q = ∂2E/∂q2 is a(ns × ndof × ndof ) matrix, and ns is a number of strain components.

Design derivative of inertial term.
The inertial term c(ω) = Iρω × (Πω) depends onψn+1 and ψ̇n+1/2, becauseω ≈ T(ψn+1) ψ̇n+1/2. Hence,
the design derivative of it is computed as follows

Dhc(ω) =
∂c

∂ψn+1

Dhψn+1 +
∂c

∂ψ̇n+1/2

Dhψ̇n+1/2. (6)

NUMERICAL EXAMPLE: ELASTIC-PLASTIC COMPRESSION OF RECTANGULAR RAIL

This example tests the DSA procedure in a realistic example of compression of a steel thin-walled rail, a quarter of which
is shown in Fig. 1. To avoid contact modelling and enable clear conclusions regarding accuracy of the DSA, computations
are performed for first few milliseconds only.
The load is a 270 kg mass with the initial velocityv3 = −7.7778 m/s, applied at the rail endx3 = 370 mm. The
material dataE = 210000, ν = 0.3, σy1 = 250, σy0 = 250, H

′
= 2000, a = 1, H

′
kin = 0, thicknessh = 1.47.

The shell element is a 4-node bilinear with 6 dofs/node, based on Reissner’s kinematics. The drilling rotation is included
on use of the drilling RC-equation by the penalty method. The rotations are parameterized by a canonical rotation vector.
The Green strain and 2nd Piola-Kirchhoff stress are used as a work-conjugate pair. For the transverse shear the ANS
(Bathe, Dvorkin) approximation is used. A numerical integration with 2x2 Gauss points in lamina, and 5-point Simpson
rule over thickness is used.
Design derivatives are computed analytically and by FD method; the derivatives of rotation at point P w.r.t. yield stress
σy0 is given in Fig. 1b. As it can be seen, the finite-difference DSA results coincide with the analytical DSA results,
which proves that, despite a substantial complexity of the algorithms, the analytical DSA equations are correct.
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Figure 1. Elastic-plastic compression of rail: (a) geometry, (b) design derivatives of rotation at point P w.r.t. yield stressσy0.
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