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ABSTRACT: We present a new computational model for predicting the effect of blast 
loading on structures. The model is based in the adaptive coupling of the Finite Element 
Method (FEM) and the Discrete Element Method (DEM) for the accurate reproduction of 
multifracturing and failure of structures under blast loading. In the paper we briefly describe 
the basis of the coupled DEM/FEM technology and demonstrate its efficiency in its applica-
tion to the study of the effect of blast loading on a masonry wall, a masonry tunnel and a 
double curvature dam.

1 INTRODUCTION

The paper presents a procedure for modelling and simulation of the effect of blast loading 
on structures via the adaptive coupling of the discrete element method and the finite element 
methods. The theoretical formulation of the discrete element method using spherical or cylin-
drical particles is briefly reviewed. The finite element equations for structural dynamics are 
integrated using a standard explicit time integration scheme. The formulation of an adaptive 
multiscale DEM/FEM model employing the DEM and FEM in different subdomains of the 
same body is presented. An overlap zone in the DEM and FEM domains is introduced adap-
tively in order to provide a smooth transition from one discretization method to the other. 
Coupling between the DEM and FEM overlapping subdomains is provided by kinematic 
constraints imposed via a penalty function method. The efficiency of the new DEM/FEM 
method is demonstrated in its application to the study of the effect of blast loading on a 
masonry wall, a masonry tunnel and a double curvature concrete dam.

2 DISCRETE ELEMENT METHOD FORMULATION

The discrete element method (DEM) is widely recognized as a suitable tool to model geo-
materials. This procedure can also be effectively used to model multifracture in “continuum” 
structures modelled as a collection of discrete elements. Formulation of spherical discrete 
elements following the main assumptions of Cundall (Cundall & Strack 1979 & Cundall 
1988) has been developed by Oñate & Rojek (2004) & Rojek & Oñate (2004, 2007) and imple-
mented in an explicit dynamic formulation. The DEM assumes that the solid material can be 
represented as a collection of rigid particles (spheres or balls in 3D and discs in 2D) interact-
ing with each other in the normal and tangential directions at the contact points. Material 
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deformation is assumed to be concentrated at the contact points. Appropriate contact laws 
allow us to obtain desired macroscopic material properties. The contact law used takes into 
account cohesive bonds between rigid particles. Cohesive bonds can be broken, thus allowing 
to simulate fracture of material and its propagation.

2.1 Equations of motion

The translational and rotational motion of rigid spherical (3D) or cylindrical (2D) elements 
(particles) (Fig. 1a) is described by means of the standard equations of rigid body dynamics. 
For the i-th element we have
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where u is the displacement of the element centroid in a fixed (inertial) coordinate frame 
X, ω–the angular velocity, m—the element mass, I—the moment of inertia, F—the result-
ant force, and T—the resultant moment about the central axes. Vectors F and T include all 
external forces and moments applied to the i-th element, contact forces due to interactions 
with neighboring element and other obstacles, as well as forces resulting from damping in 
the system.

The equations of motion (1) are integrated in time using an explicit central difference 
scheme. For the ith element this gives:
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The first two steps in the integration scheme for the rotational motion are identical to those 
given by Equation (2):
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The vector of incremental rotation Δθ = {Δθ
x
Δθ

y
Δθ

z
}T is calculated as Δ Δθi i t+n 21/ .

Knowledge of the incremental rotation suffices to update the tangential contact forces. It 
is also possible to track the rotational position of particles, if  necessary. The rotation matri-
ces between the moving frames embedded in the particles and the fixed global frame are 
updated incrementally using a multiplicative scheme (Oñate & Rojek 2004 & Rojek & Oñate 
2004, 2007).

2.2 Contact search algorithm

Changing contact pairs of elements during the analysis process must be automatically 
detected. The simple approach to identify interaction pairs by checking every sphere against 
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Figure 1. (a) Motion of a rigid particle. (b) Decomposition of contact force in normal and tangential 
components. (c) Model of the contact interface.
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every other sphere would be very inefficient, as the computational time is proportional to n2, 
where n is the number of elements. In our formulation the search is based on quad-tree and 
oct-tree structures. In this case the computation time of the contact search is proportional to 
n ln n, which allows to solve large frictional contact systems.

2.3 Evaluation of contact forces

Once contact between a pair of elements is detected, the forces occurring at the contact 
point are calculated. The interaction between the two interacting bodies can be represented 
by the contact forces F

1
 and F

2
, which by the Newton’s third law satisfy the following 

relation:

 F
1
 = −F

2
 (4)

We take F = F
1
 and decompose F into the normal and tangential components, F

n
 and F

T
, 

respectively as F = F
n
 + F

T
 = F

n
n + F

T
, where n is the unit vector normal to the particle surface 

at the contact point (Fig. 2b).
The value of the contact forces F

n
 and F

T
 is obtained using a constitutive model formulated 

for the contact between two rigid elements. The contact interface in our formulation is char-
acterized by the normal and tangential stiffness k

n
 and k

T
, respectively, the Coulomb friction 

coefficient μ, and the contact damping coefficient c
n
 (Fig. 1c). For details see Oñate & Rojek 

(2004) & Rojek & Oñate (2004, 2007).

3 FINITE ELEMENT FORMULATION

In the present work the so-called explicit dynamic formulation of the finite element equations 
of structural dynamics is used. The discretized equations of motion in the current configura-
tion have the following form:

 
M u F FF Fu FFext
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where M
F
 is the mass matrix, r

F
 is the vector of nodal displacements in the finite element 

mesh, FFFFext  and FFFFint  are the vectors of external loads and internal forces, respectively. The 
global matrices and vectors,M

F
 FFFFext  and FFFFint ,  are assembled from the respective elemental 

matrices and vectors, M
e
, feff

ext  and feff
int ,  defined as follows:
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where ρ is the mass density, σ is the Cauchy stress tensor, b are the body forces, t is the 
surface traction, N is the matrix of interpolation (shape) functions and B is the linear 
strain-displacement operator matrix (Rojek & Oñate 2005). 

Figure 2. Schematic representation of DEM, FEM and DEM/FEM overlapping domains.
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Similarly to the DEM algorithm (Equation (2)), the central difference scheme is used for 
time integration of Equation (5):
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Use of a diagonalized mass matrix yields a decoupled set of equations, and eliminates the 
necessity of matrix inversion in Equation (7.1). This leads to a very efficient solution for each 
time step. For details see Oñate & Rojek (2004) & Rojek & Oñate (2004, 2007).

4 COMBINED DEM/FEM MODEL

The coupling of DEM and FEM techniques leads to a powerful scheme for analysis of mul-
tifracture problems in solids. Successful attempts to develop a coupled DEM/FEM algorithm 
have been reported by Oñate & Rojek (2004) & Mujinza et al. (1995, 2004). The adaptive 
DEM/FEM multiscale model used in this work is obtained by combining the discrete element 
and finite element methods in different subdomains of the same body. The coupling algo-
rithm used here follows the concept presented by Xiao and Belytschko (2004) for molecular 
dynamics coupling with a continuous model. The DEM and FEM subdomains can overlap 
each other. In this way a transitory zone between the microscopic-scale zone (discrete ele-
ments) and the macroscopic-scale zone (finite elements) is introduced. In the overlapping 
zone contributions of each of the two methods to the overall stiffness vary gradually. This 
allows us to avoid or minimize unrealistic wave reflections at the interface between the DEM 
and FEM domains.

The total domain Ω is split into two subdomains: Ω
F
, discretized with finite elements and 

Ω
D
, modelled with discrete elements. Domains Ω

F
 and Ω

D
 can overlap with each other over a 

region Ω
DF

 (Fig. 2). The virtual work (VW) in the total domain Ω (δWΩ ) is written as a linear 
combination of the virtual work in the subdomains Ω

F
 and Ω

D
, i.e.,

 δWΩ = αδW
F
 = (1−α)δW

D
 (8)

where α is a parameter that takes a zero value on Ω
D
, a unit value on Ω

F
 and it varies linearly 

between 0 and 1 on the overlapping region Ω
D−F

.
Subdomains Ω

F
 and Ω

D
 are coupled in the overlapping region Ω

D−F
. Coupling is introduced 

via kinematic constraints relating the displacements (u), velocities  and accelerations (ü) 
of the nodes of the finite element mesh and the discrete elements belonging to Ω

D−F
. The 

kinematic constraint can be generically written as
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where (·)
Di

 and (·)
F
 respectively denote values at the discrete element i and the finite element 

mesh nodes and N
F
 are the standard FEM shape functions. The constraints (9) are applied 

on the overlapping region Ω
D−F

 only.
The constraints (9) are introduced in the VW equation via a penalty function method. 

For details see Rojek & Oñate (2007).

5 ADAPTIVE DEM-FEM SCHEME

An adaptive DEM/FEM solution procedure has been developed based on the progressive 
introduction of discrete elements in zones of the finite element mesh where cracking and 
multifracture occurs. This optimizes the use of discrete elements to zones where they can be 
more effective which considerably simplifies the contact search process.
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In essence, the adaptive DEM/FEM procedure operates as follows:

1. Start with a discretization of the analysis domain using a finite element mesh only 
(i.e., °Ω ≡ °Ω

F
).

2. At each time instant (t) check the stress and strain levels at each element. For linear trian-
gles and tetrahedra this simple implies computing the strains and stresses at the element 
centroid.

3. Evaluate the threshold of failure (fracture) of each element. This can be done via proce-
dures based on the point-wise value of the stresses (or the strains), or using an adequate 
energy norm. In our work a simple Tresca failure model has been used to define the onset 
of fracture at the element mid-point.

4. Introduce a collection of discrete elements within the finite elements that have exceeded 
the failure threshold. In our work this occurs when the stresses at the element mid-point 
reach 90% of the Tresca failure stress. At this moment, the continuum region previously 
occupied by finite elements is now modelled with a collection of discrete elements.
 The introduction of discrete elements will create an overlapping between the new dis-
crete elements and the finite elements remaining in the mesh. Overlap DEM/FEM regions 
are treated as explained in the previous section.

5. Solve for the displacements, velocities and accelerations of the regions occupied with finite 
elements (Ω

F
) and discrete elements (Ω

D
) at t + Δt using the explicit schemes (2) and (7) 

with the constraints (9).
6. The introduction of additional discrete element regions on the finite element mesh evolves 

in time in an adaptive manner accordingly to the evolution of the stress and strain fields 
in the analysis domain.

For blast problems the transition of the finite element mesh to the discrete element region 
occurs quite rapidly, as the fracture zone progresses almost at the blast speed on the whole 
analysis domain. However, the adaptive DEM/FEM procedure is still effective in these cases 
as the time increment for the explicit solution is very small and the delay in introducing dis-
crete elements leads to considerable savings in computing time.

6 EXAMPLES

6.1 Failure of a vertical wall due to blast loading

This relatively simple 2D example shows the failure of a vertical masonry wall induced by 
a blast loading due to an explosive placed within a concrete box modelled with discrete ele-
ments (Fig. 3a). The effect of the explosive is simulated as a peak pressure load of 600 MPa 

Figure 3. Masonry wall under blast loading induced by an explosive within a concrete box. (a) Concrete 
box and explosive model simulated by an impulse pressure load (P

max
 = 600 MPa). (b) Geometry of box 

and wall.
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acting the center of the box. The explosion induces the multifracture of the box in many 
fragments that impact the adjacent wall inducing its instant failure (Fig. 4).

The cylinder wall has been initially discretized with a mesh of finite elements. The discrete 
elements have been progressively introduced in the wall using the adaptive DEM/FEM cou-
pling algorithm. The evolution of the discrete element region in the wall is shown for three 
time instants in Figure 5.

Figure 6 shows a similar 2D problem for a masonry tunnel under the same type of blast 
loading.

Figure 4. Masonry wall under blast load. Deformation of the wall at three time instants.

Figure 5. Detail of adaptive DEM/FEM procedure on the masonry wall at three time instants.

Figure 6. Masonry cylinder under internal blast load induced by an explosive within a concrete box. 
Deformation of structure at three time instants.
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6.2 Analysis of the fracture of a double curvature dam due to blast loading

The final example is the study of the fracture induced by a blast load on a double curvature 
concrete dam. The load is induced by an explosive placed at the top of the central section, 
reproducing the effect of the explosion of a vehicle circulating over the dam top. The region 
adjacent to the explosion has been modelled with discrete (spherical) elements while the rest 
of the dam has been modelled with standard 4-noded tetrahedral elements.

Figure 7 shows the evolution of the fracture at the dam top due to the explosion and the 
final fractured zone.

7 CONCLUDING REMARKS

The adaptive DEM/FEM procedure presented in this work is an effective technique for the 
modelling and simulation of the progressive multi-fracture and failure of structures due to 
blast loading. The adaptive DEM/FEM scheme allows the optimal use of DEM and FEM in 
different parts of the structure as the failure region evolves.

The adaptive DEM/FEM technique can be combined with the Particle Finite Element 
Method (PFEM, www.cimne.com/pfem) to model the flow of water through fractured zones. 
Research on this topic is under development at CIMNE (Oñate et al., 2011a, b).
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Figure 7. Effect of a blast load an a double curvature dam. The explosive load has been modelled 
as a peak pressure load of 600 MPa acting at the center of the dam top.
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