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Introduction

At the time of writing this introduction, i.e. late 2020, it is hard not to start with a specific application of the
fluid-structure interaction (FSI) problems: modeling of the human respiratory system. Since the beginning
of the year the topic became discussed not only by scientists but it also commonly appears in the public
discussion. The most thought-provoking are oxygen and carbon dioxide exchange rates in presence of an
obstacle in front of the face [1]. The efficiency of filtration of inhaled and exhaled gases through permeable
membranes is similarly popular [2]. Growing public interest in the topic even led to its emergence in the
political discussion, including the first US presidential debate. The awareness of micro-flow characteristics
and well-recognized advantages of the N-95 filtering devices may be linked to its shortages in the first half of
the year.

Let us fix the definition, by fluid-structure interaction problem we mean the mathematical model of physical
phenomena involving both structure and fluid interacting with each other. The coupling between structure
and fluid usually occurs at the interface. The structure, also referred to as the solid, could be a point mass,
rigid body, elastic body or any other kind of solid model. The fluid is usually considered as continuous
medium but other models are possible. The coupling between solid and fluid usually occurs at the interface.
The FSI problems fall into the class of the so-called multi-physics problems, where two or more physical
models are combined. The other examples of such problems are magneto-hydrodynamics [3, 4] where
electrically conducting fluids are studied or magneto-thermodynamic where temperature change is caused
by exposing the material to a changing magnetic field. A common misconception in the last one resulted in
several arsons of 5G transmitters in UK.

Back to the FSI applications, the N-95 masks operate on three principles [2, 5]. The particles typically 1 micron
or larger slam into the mask fibers. The particles smaller than 0.1 micron undergo Brownian motion and
get stuck into the material. Finally, the particles between 0.1 and 1 micron are filtered out by electrostatic
attraction to charged polymer fibers. The first two ones could be studied using a proper FSI model, while the
third additionally requires taking the electrostatic forces into account.

The other well-recognized incident this year that could be modeled as a FSI problem was the explosion
of ammonium nitrate stored at the port of Beirut. The vast amount of gas produced by the explosive
decomposition of the nitrate caused a shock wave and as the result, a significant part of the city was destroyed
while the port alone was turned into a crater roughly 124 m in diameter and 43 m in depth. As a typical
illustration of the damage of a structure due to aerodynamic forces is Tacoma Narrows Bridge. The recording
from its collapse is a reminder of devastating potential of harmonic resonance. The bridge collapsed during
winds occurring seasonally in that area (of just 68 km/h) which unexpectedly produced aeroelastic flutter
that matched the bridge’s natural frequency.

Among the spectacular examples of applications of FSI problems in civil engineering is design of tall building
such as Burj Khalifa, that is currently the world highest building with the tip at 828 m above the ground. The
wind-induced vibrations of the tall structures may have a destructive effect. In case of the Burj Khalifa this is
resolved by corner modifications of the cross-section and tapering along the height [6]. This ensures different
vortex shedding frequency at each part of the building and prevents resonance. A similar effect is used to
suppress the vortex-induced vibrations by adding helical strakes at offshore structures, such as riser [7] that
is the main connection between the offshore platform and the subsea wellheads. A similar phenomena is also
exploited in the benchmark problem commonly used for testing FSI solvers [8].

Decarbonization of the energy generation system is considered the only way to stop advancing climate
changes. Among the renewable energy sources, wind turbines currently are becoming more efficient and
cheaper. Rotor blades of diameter exceeding 120 m are being designed and built for better performance.
The arising engineering challenges must be addressed through research and development, which also
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involves large-scale simulations, in particular solving the FSI problem [9-11]. Similar problems arise in the
aerodynamic optimization of aircraft wings.

The simulation of FSI problems are also applied in biology and medicine. Heart valve dynamics [12, 13] is
one of the fundamental problems in understanding human cardiovascular system. According to WHO [14],
the heart attack is currently the number one cause of death globally, taking an estimated 17.9 million lives
each year. Developing better models and computational tools may help to save some of those lives.

A notable example of the FSI problem at the micro-scale is hydrodynamic lubrication [15, 16] that could be
observed in mechanical devices such as bearings or piston engines. Seemingly simple lubrication problem
usually results in attention-grabbing two-phase flow as the occurrence of cavitation is common for this
type of problems. In this case, the fluid is modelled by the Reynolds lubrication equation usually with a
modification for handling two-phase flows.

The FSI problems may be an interesting physical phenomenon by itself. A noteworthy example is the
dynamics of groups of particles falling in the fluid may exhibit quasi-periodic motion. The phenomena were
studied both experimentally and numerically at low Reynolds numbers [17, 18].

Finally, at the nano-scale the FSI problems could be applied to model filtration of particles, the problem
that we addressed in the fist paragraph. Also motion of particles or filaments suspended in fluids is studied
to provide a better understanding of cell movements, dynamics of proteins, DNA and other biological
polymers [19]. The advances in this field may also allow improvements in tissue engineering and drug
delivery methods.

1.1 State of the art

Currently, the research in the FSI problems covers a wide range of problems, we referred to some of them
in the previous section. Three collective volumes [20-22] on the subject have been published, as well as at
least two monographs: Bazilevs [23] and Richter [24]. Depending on the application, various models and
computation method could be employed, here we only consider problems with both solid and fluid modeled
as a continuous medium. In this setting, a FSI problem leads to a system of partial differential equations, that
is usually solved by a appropriately chosen numerical method. We will focus on applying the Finite Element
Method [25], but let us first note that other approaches could be more suitable in some cases. For instance,
for a single spherical particle falling in a viscous fluid with very small Reynolds, the analytical solution is
known, for groups of particles, the fundamental solutions of the Stokes problem could be exploited to obtain
a numerical solution [17, 18, 26].

The Finite Element Method requires introducing triangulation of the domain. The triangulation, also called
mesh, consists of polyhedrons (called elements), the solution in each element is approximated by a polynomial.
In case of FSI problem, the solid boundaries may coincide with the elements boundaries. If not, the method is
referred as non-matching. Both approaches have their advantages and disadvantages and the choice should
be done taking into account the specific application.

1.1.1 Non-matching methods

A quite straightforward non-matching method could be obtained by formulating both solid and fluid models
in the Eulerian description [24, 27]. This approach overcomes the problems associated with variable geometry
but raises several issues. Tracking of the solid, especially the fluid-solid interface, becomes non-trivial. The
accurate representation of the interface is hard to obtain. The last issue could be resolved by introducing
adaptive refinement of the grid. Additionally, the solid stress typically depends on the deformation gradient
that also becomes challenging to compute.

The solid and fluid problems could be separated and then recoupled by introducing Lagrange multipliers.
This idea is the underpinning of the fictitious boundary methods also known as immersed finite element
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methods, introduced by Glowinski [28] followed by numerous works, for example [29-32]. The approach
allows a convenient description of the solid in the Lagrangian formulation while the fluid could be described
in the Eulerian frame of reference. The main downside of the immersed method is interface tracking.
Although its position could be straightforwardly determined, the intersection with the fluid elements has to
be computed. This could be a challenging problem by itself, especially in parallel computations [33].

Overcoming implementation issues could be highly rewarding as the method offers great versatility. Less
restrictions on the topology of the fluid domain together with a convenient formulation of the solid in its
natural frame of reference paved this approach a way to numerous application in FSI problems with solid
contact occurring. Among them, we can mention haemodynamics of heart valves or helicopter dynamics [32,
34, 35].

As an interesting application-oriented example of the immersed method, we recall the stimulation of
suspended particles [36]. In this case, particles are considered as rigid bodies to reduce complexity of the
problem.

1.1.2 Arbitrary Lagrangian Eulerian formulation

The mesh matching the moving solid boundaries may be obtained by deforming the initial mesh. In this
approach usually the solid motion is traced in Lagrangian frame of reference, while the fluid is described
in an arbitrary coordinate system, hence the name Arbitrary Lagrangian-Eulerian (ALE) [37-41]. If possible,
this approach is preferable, as it offers convenient Lagrangian formulation of the solid. On the other hand,
the ALE methods require existence of a smooth enough and non-degenerate transition between any two
configurations, that could not always be guaranteed. As a consequence, the ALE formulation could not be
applied to problems where changes in topology are expected. Moreover, a severe deformation could result in
deterioration of mesh. Using a meshless method [42] or mesh regeneration [43] may resolve some of those
problems.

Despite those limitations, the ALE gained popularity. With numerous applications such as simulation of blood
flow in elastic vessels [44-46] or gas flow in human respiratory system [47]. With some further adaptations
rotating structures like wind turbines [10, 11, 48, 49] have been considered. Consequently, there is an intensive
development of dedicated computational methods for this formulation [23].

Mesh deformation

It is not hard to guess that a proper choice of mesh deformation algorithm is a crucial element affecting the
applicability of the ALE formulation. In some time integration schemes, the mesh deformation is a part of a
(possibly nonlinear) system of equations solved at each time step, in others, like the one presented in this
thesis, it is decoupled from the system. In both cases, simple mesh deformation methods are usually chosen
to reduce the complexity of the discrete problem.

A mesh deformation could be computed by solving an auxiliary problem, that could be seen as pseudo-
elasticity of the mesh. As an example, the biharmonic equation could applied as in [50]. This approach is
capable of handling large deformations relatively well, but comes at the cost of increased computational
expense. The biharmonic problem could be a bit tricky to solve when concerning parallel computations.

A popular physical analogy applied as mesh deformation is elasticity. The resulting equation is less
computationally demanding, but it requires proper choice of elastic parameters to avoid problems with
invalid elements. An interesting review of mesh deformation methods could be found in [51]. The impact of
the mesh deformation algorithm on the results can be found in [52].
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Time discretization

As in most time-dependent problems, when choosing a time discretization scheme one should balance
between stability, and cost of a single time step. The stability offered by the implicit schemes usually comes at
the high computational cost of a single time step. Although some implicit time schemes are unconditionally
stable, accuracy also comes into play limiting the time step size. Explicit schemes are usually on the other
side of the spectrum by offering relatively cheap time step, but fall behind the implicit ones in terms the
stability. To find the sweet spot between those methods, semi-implicit schemes are constructed mixing the
two approaches.

In the case of FSI problem involving incompressible fluid, fully explicit schemes are considered unstable due
to problems with added-mass effect [53]. On the other hand, implicit schemes lead to a system of non-linear
equations to be solved at each time step.

The most complex computational scheme yet most stable is the fully implicit scheme [54], where the whole
problem is treated implicitly. As a result, a coupled system of equations arising from fluid motion, displacement
of solid and domain geometry is obtained.

Solving such nonlinear problem is not necessarily needed, a stable integration scheme could be obtained
by using explicit methods to first determine the deformed domain and then use an implicit scheme to
compute the flow and deformation. This idea lies behind the geometry-convective explicit (GCE) scheme [55-57].
Additionally, the computational complexity could be reduced by explicitly treating some non-linear parts of
the Navier-Stokes equations. As a result, when considering linear elasticity, the system of equations becomes
linear. In this work we will use a modification this concept, adapted to handle incompressible hyperelastic
solids. In [58] similar approach is studied and stability of finite element formulation of FSI problem is
shown.

Solving a possibly nonlinear problem at each time step is yet another issue. A popular segregated approach
could be used, that is to alternately solve flow problem and deformation equations until a convergence
criterion is met. In this choice the existing solvers could be reused, greatly reducing the implementation work
required. The convergence could be effectively sped up by employing a special technique as in [59].

However, the use of Newton’s method to the entire system of equations (monolithic method) appears to be
more efficient [60, 61]. A clear drawback of this approach is no possibility to reuse existing fluid or solid
solvers, thus the development of highly specialized code is needed but the effort may pay off in the long run.
The main bottleneck of this approach is to solve a large system of linear equations.

1.1.3 Linear solvers for the FSI problems

Regardless of the chosen time discretization method, the time integration algorithm for the FSI problem
typically requires solving a system of partial differential equations at each time step. Its spatial discretization
brings the problem to solving a system of algebraic equations. This comes down to solving a linear problem,
possibly repeatedly inside the Newton method or other chosen fixed-point procedure.

The direct methods, suitable for smaller problems, become inefficient with growing problem size due to poor
parallel scaling. Therefore, direct methods are not considered in the case of high-performance computations.
Instead, dedicated iterative solvers based on Krylov space are used.

Due to the different properties of the fluid and solid, the system matrix is ill conditioned. The number of
iterations required for reducing the initial residual by certain factor directly depends on condition number
of the matrix [62]. The remedy for that is applying handpicked preconditioner. Therefore, the design of
problem-specific preconditioner is crucial for efficiency. In the general case of jump-coefficient problems,
domain decomposition [63] or multigrid [62] seem to be a promising choice.

For the FSI problems, existing preconditioners exploit block structure of matrix [64], based on inexact
block LU factorization [65]. In [66] FSI is formulated as a saddle-point problem and augmented lagrangian
[67] preconditioner is developed. There are also preconditioners based on domain decomposition [68],
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algebraic multigrid methods [69] or geometric multigrid [37]. In [70] a review of existing methods have been
presented.

Relatively recently first attempts of theoretical analysis of FSI have appeared, proving the well-posedness of
the linear problem solved in each time step and optimality of block preconditioners based on saddle point
formulation for fluid-structure interaction [66]. Methods presented in [66] have been extended and applied
to simulate rotating structure immersed in fluid in [71]. While the preconditioners in [66] were designed with
inexact block solvers in mind, the experimental results were provided only for direct block solvers. On the
other hand, algebraic multigrid preconditioned GMRES solvers were used in [71] to solve the blocks, but no
results concerning the performance of the preconditioner were provided.

The choice of solver behind each block may be challenging. From our experience, it follows that popular
choices like algebraic multigrid or incomplete LU fail. For this reason, in this work, we propose a multilevel
preconditioner acting on the entire system and then exploit the block structure of the problem at each level.

Matrix-free solvers

An efficient implementation is undoubtedly a key part of any high-performance solver. A poorly organized
data handling may kill the performance of any solver, while the efficient management of available resources
could result in significant speedups. For some methods, it may be easier to optimize the data flow inside the
program, while for others the architecture-dependent optimizations are hard to implement if possible at all.

An advantageous feature of modern processors are Single Instruction, Multiple Data (SIMD) instructions
allowing operations on multiple floating point values, so-called vectors of data. To be used effectively, the data
flow inside that program have to be well-organized so that other bottle-necks do not appear. In particular,
minimizing stored data becomes crucial, as the retrieving it from the memory may cause delays.

In the finite element method one typically ends up with a linear system to be solved. The system matrix
entities, associated with integrals over individual element, are typically pre-computed, and the matrix
together with the right-hand side vector is passed to solving procedure. The matrix is usually sparse, allowing
its storage in dedicated structures. The downside of this concept is a hard to regularize data flow.

To avoid that, one may not assemble the system matrix. Instead, the matrix-vector product are computed
by calculating integrals over element each time. In this way, we minimize data stored but increase the
number of calculations. However, the latter can be effectively sped up by vectorization, resulting in an overall
performance boost [72].. Additionally, the time spent on matrix assembly is almost entirely saved, as the
matrix-free operators are initialized significantly faster. For detailed insights we refer to deal.II library
manual [73] (in particular step-37) and work by Kronbichler and Kormann [72].

This approach requires special linear solvers since the individual matrix entities could be no longer directly
accessed. In this case, Krylov subspace iterative methods become a natural choice since they only require
implementing a matrix-vector multiplication. A well-designed preconditioner is crucial for the performance,
while it also has to be matrix-free compatible. One of possible choices is the multigrid method with suitable
smoother. A simple Jacobi smoother requires a diagonal, that is just a single vector, which can be efficiently
pre-computed, stored, and used in the computations. The smoother could be further enhanced by employing
polynomial Chebyshev operator [74, 75], considered to be the parallel equivalent of Gauss-Seidel smoother.

Matrix-free solvers for FSI There exist few matrix-free FSI solvers. The most relevant case was studied in
[76], where the partitioned solver was implemented. The FSI problem involving compressible fluid with finite
volume discretization was considered in [77]. By introducing artificial viscosity in [78] a projection method
has been utilized to develop a matrix-free solver for the FSI problem involving a rigid solid.
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1.2 Scope of the thesis

A variety of choices of preconditioners for the FSI problems exist in the literature, however, a great majority
of them have not been designed to support matrix-free computations. Among a few [76-78] works where a
matrix-free implementation was considered none uses a monolithic formulation. The coupling at each time
step is enforced by a fixed-point method, that requires multiple solutions of both fluid and solid equations
alternately.

The problem formulation and resulting preconditioner proposed by [66] seem to have simple enough form to
try adopting it to matrix-free computations. We claim, that it could be done, but still it is far from being trivial
since a new preconditioner is required. Another drawback of this formulation is the use of linear elasticity,
that is inadequate if considering a case with large deformations.

With all that said, let us settle the scope of this thesis.

In this work, we consider numerical methods for solving interaction between an incompressible
hyperelasetic solid and Newtonian incompressible fluid in a range of small to moderate Reynolds
numbers. The problem is formulated in the ALE frame of reference. We restrict ourselves to
monolithic time integration scheme combined with finite element methods. We also discuss the
solution method of the system of linear equations arising from finite element discretization.

We propose a time integration schemes based on first- and second-order BDF [79], extending the GCE scheme
with several modifications. We derive the velocity formulation similar to the one from [56], where velocity
and pressure are the main unknowns while the solid displacement is recovered separately.

Concerning the solid model, there are a variety of results for FSI problems involving hyperelastic solids, but the
ones for the incompressible solids are limited [58]. As we will later show, problem involving incompressible
solid has its own issues that have to be addressed. On the other hand, its usage pays off by resulting in
simplified equations. We expect that our method could be adopted to other solid models without greater
problems. We consider incompressible Mooney-Rivlin solid, for the compressible Mooney-Rivlin we refer to
[61].

Our time integration scheme consists of several substeps, among them the most computationally demanding
one involves the solution of a generalized Stokes problem with discontinuous coefficients. We propose a new
matrix-free preconditioner, that combined with Krylov subspace methods is robust with respect to problem
size and coefficient jumps.

The goal of this work is to develop a a parallel monolithic matrix-free solver for FSI problems.
To achieve it, a time integration scheme is proposed, generalizing the GCE scheme together with
a new linear solver.

We implement our solver within the framework of an established finite element library deal.II [73, 80],
widely exploiting its support for parallel computations. In particular, our design choice to base the solver
building blocks on the matrix-free paradigm, not only allows for low level speed and memory optimizations,
but also promotes parallel and extends constructs available in deal.II. We note that a different monolithic
FSI solver based on deal.II already exists [81], but it is based on a direct solver.

The deal.II library itself is a well-recognized open-source library widely used in many academic and
commercial projects. For its creation, its principal authors have received the 2007 ]. H. Wilkinson Prize for
Numerical Software.

1.2.1 Structure of this thesis

In the next chapter we define the fluid-structure Interaction problem, starting from domain description, and
then reformulate the governing equations from Eulerian frame of reference to arbitrary Lagrangian-Eulerian
one. We also define there the fluid and solid models, additionally introducing minor modification that does
not affect the solution of a continuous problem while is beneficial when considering time-discrete problems.
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In Chapter 3 we introduce time and space discretization, and formulate the linear problem that is the main
bottleneck of the time integration algorithm. We intend to solve the system with the Krylov subspace solver,
thus the preconditioner is crucial for efficiency. In Chapter 4 we propose a new multilevel preconditioning
method based on the one proposed by Braess-Sarazin [82] and refined by Zulehner [83]. We provide a
separate introduction there, including a review of the state of the art concerning variable coefficient Stokes
problem. In Chapter 5 we test each part of the implementation, heading towards solving the FSI problem in
Chapter 6. Bringing things to an end, in Chapter 7 we conclude the thesis.






Formulation of the fluid-structure interaction
problem

Let us consider domain Q ¢ R? , the initial (reference) configuration, consisting two non-overlapping
sub-domains: fluid domain ) r C Q and solid domain Qs ¢ Q, O = Q, U ¢. As time advances, one can
expect changes in configuration, we denote the actual domain at time ¢ € [0, T] by C(t), with the convention
that Q(0) = Q. The deformed solid occupies the domain Q5 (t), while the fluid domain, Q¢(t), is the remaining
part of Q(t).

Due to a deformation, each individual point £ of the undeformed solid is moved to its current position x(f) at
time ¢ (Figure 2.1). We define the solid deformation ®;(#) : Qs - Q(t) c R as Dy(t; £) = x, displacement
ils(t, X) = D4(t; X) — X and velocity 05(t, x) = %ﬁs(t, x). In the deformed configuration Q(t) we define solid
velocity vs(t, x) = 9(t, £), fluid velocity v, and densities ps and py of the solid and the fluid. For brevity, we
will skip the time and space dependence of the variable if possible.

Note that the motion of the domain is unknown and thus it is a part of the solution. Let us set that aside and
first discuss the FSI model.

2.1 The fluid-structure interaction model

We derive the model from the conservation of momentum and mass. That is in Eulerian coordinates we have
the system of equations [24, 84] for the fluid

Do

pror =Veoy =8 1)
L4V (pvs) =0 -
ot pof

in Q¢(t), and for the solid

s -V. s =&
£ o ~Vios =g 2.2)
pq +V- (PUS) =0

in s, where g is given external force, oy and o5 are Cauchy stress tensors. We assume that there is no
external torque field and, as the consequence of conservation of angular momentum, both Cauchy stress
tensors are symmetric. The operator V denotes the spatial derivatives with respect to the coordinates x in the
deformed configuration and the material der1vat1ve ;- of a vector field « is defined as

Dx &

= — \% 2.
Dr 8tK+ K 0. (2.3)

The solid stress tensor usually depends on the displacement that is related to velocity:

0s(t, x) = 0 us(t x). (2.4)

Figure 2.1: Initial domain Q and deformed domain Q(t). Solid marked with gray, fluid marked with dots, lines represents transformation
of material points by ®;(t)
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Attheboundary I' = JQ) partitioned into Neumann I'y and Dirichlet I'p parts, we set the boundary conditions

Vs =vponIpnN 0Q),

vf = UB onl'p N 3Qf, 2.5)
Of - nf =T}0nl"NﬁQf,

0s-ns  =1yonI'nyNQ;.

where n f and n, denote unit outer normal of fluid and solid domains respectively. Finally, the initial
conditions for this system
vs(t=0,x) =0 in Qs
is(t=0,%) =0 (2.6)
vf(t =0, x) :v} inf)f.

On the interface between the fluid and the solid I'; = Q¢ N Qg we set coupling conditions, the so-called
kinematic continuity condition
Vf =0s onlj, (2.7)

and the balance of traction
ofng+osns =0 onTj. (2.8)

Continuity of velocity. The non-slip condition at the fluid-solid interface I'; (2.7) is equivalent to the
continuity of velocity. Thus, we define a single velocity field for both solid and fluid

vs(x) xe€eQ
v(x) = +(0) ’ (2.9)
vr(x) x € Q.
Note that there is no guarantee of any higher smoothness. In fact, in general case the gradient of velocity is
discontinuous across the fluid-solid interface due to discontinuity of material parameters.

To close the system we need the relationship between the stress tensors 0 f and o and velocity or displacement,
that is the constitutive equations. For that we will need proper description of domain deformation.

2.2 Arbitrary Lagrangian-Eulerian formulation

Let A(t) : O — R? be an arbitrary diffeomorphism mapping point X in reference domain Q to point
x(t,X) = A(t; ¥) on deformed domain Q(t). We assume that A(t) is a sufficiently smooth (in both time and
space) homeomorphism and in initial configuration A(0) = Idg. The popular choice of A is a continuous
extension @ of the solid deformation, i.e. A(t) = @(t) in Q5. We will also follow this way [24], but let us first
derive the domain deformation description for an arbitrary mapping.

We change the primal unknowns in Equation (2.1) and Equation (2.2) to velocity 9(t, X) and density p(t, X)
defined on domain {) and define v and p by using mapping A. That is
o(t,x) =v(t, x(t, %)) = 0(t, X) (2.10)
since
x(t,X) =A%),  x(t,x)=A'(tx). (2.11)

The bar over the symbol is used to distinguish the result of mapping A~! from the (inverse) material motion
of the solid specified by @;!. Then, using the chain rule, we compute the time derivative of v(t, x(%, t)) for
fixed X € (), denoted by %v:

%v(t, x(t, X)) = g—f(t, x(t, X)) + Vo(t, x(t, X)) 3_;5(,5, %) o
= g—zt](f/ x(t,%)) + Vo(t, x(t, X)) Da(t, X).
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The operator V denotes the gradient with respect to coordinates x, i.e:
Jo(t,x) _ Jo(t, X) dx

dx  Jdx Jx’
In Equation (2.12) 94(¢, X) is the frame velocity of point ¥, and v (¢, x) is the corresponding velocity defined
on Q, viz.

Vi(t, %) = (2.13)

dx(t,x)  JA(t, x)

Da(X,t) = Fraiai and va(t, x) := a(t, (t, x)) = Ba(t, A7 (¢, x)). (2.14)
By rearranging (2.12), we obtain the relation:
00,2, %) = St x(t, 1)~ Volt, x(t, D) 0alt, (0, 9) @15)
or in short 5 4
v v
Sl Vo v4. (2.16)

Here and in the following, the explicit dependence on x, ¥ and f is omitted for brevity. It is thus (implicitly)
understood that quantities with a superimposed bar are defined on Q and depend on ¥ (and time), e.g.,
v = 0(%, t), while those without a bar are defined on Q and depend on x (and time), e.g., v = v(x, t). We
rewrite the material derivative in new setting

Dv do

o= art Vo (v —104), (2.17)

substitute it to (2.1) and (2.2) and obtain

Pk + pkVo (v —va)-V-0r =g,

J

T+ V- (pv) =0
for A(t, ¥) € Qk(t), where k = f,s. We will consider incompressible solid and fluid, thus %Pk =0 and we
do not need to deal with the time derivative of density.

(2.18)

Let us expand the momentum balance from Equation (2.18) to obtain the formulation on the fixed domain Q.
By substituting Equation (2.13) to Equation (2.18) we obtain:

d_ . _ do(t,x)dx ,_, _. _ - Jd dx _ -
pkav(tl x) +Pk7§ (U(t,X) UA([',X)) (ﬁa) ‘0 = g(x(t/ X)), (219)
2.2.1 Choice of arbitrary mapping
Let us introduce a pseudo-displacement related to A
iialt,x) = A(t;X) — X = x — X. (2.20)
so that the frame velocity
_ d_
A = EMA. (2-21)

Eulerian setting The trivial choice iig = 0 (A(t) = Idg) corresponds to the fully-Eulerian setting [27, 38]
illustrated in Figure 2.2. In particular, this strategy does not have any other restrictions on domain deformation
than Q(t) = Q, and, in case of finite element computations, simplifies mesh generation, but raises several
problems. Most notable among them, interface tracking method is required, or loss of accuracy is encountered
in case of some numerical methods. For more details see [85-87].

Arbitrary Lagrangian-Eulerian In many FSI problems, the mapping ®;(#) can be extended to a sufficiently
smooth mapping ®(t) defined on the whole domain Q), that is

o(t): Q - Q(t),
(1)l = Ds().
In those cases the choice A = ©, or equivalently
ita = Ext(ils) (2.23)

(2.22)
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]
™~

Q Q(t)

Figure 2.2: Eulerian frame for fluid-structure interaction problem. Grid represents stationary frame of reference while the lines indicate
material points motion.

where Ext(#;) : O—>Risa sufficiently smooth extension of #i; onto Qis possible. This leads to the
Lagrangian description of the solid, hence approach is called Arbitrary Lagrangian-Eulerian (ALE). The
problems with interface tracking are automatically resolved. Additionally, a simpler application of higher-
order accuracy methods is possible. The main limitation of the approach is the existence of a smooth enough
extension of @ for all times. In particular, this implies no topology changes of {)s. Moreover, in the case of
numerical computations, the mesh distortion may occur especially if severe deformations are considered. In
particular, with the ALE framework, one will not be able to resolve FSI problems involving contact. Despite
this, numerous problems could be solved in this framework, applications may be found in [46, 47, 71].

Having this in mind, we decide to stick with ALE formulation. From this point on, we will use “hat” -
variables instead of “bar” ~ ones as those fields are identical (0 = 9, il = i, ila = fi4 and so on). To give an
idea how the extension of ii; could be obtained let us briefly discuss some possible choices. We will go into
details for a specific case in Section 5.4.

ALE mapping

Picking a suitable extrapolation of @; is crucial for the method’s applicability. One of the methods is solving
an auxiliary equation. As an example, the so-called pseudo-elastic equation may be used[24]:

{VA (uae(ia) =0 nQy, 02
iia =1 1inQs.
with, possibly variable, coefficient 114. This choice is preferable due to its simplicity, but might result in a
clumsily deformed mesh, especially if the solid is severely deformed. The key part of this extrapolation
technique is the distribution of the parameter 4. We consider also the biharmonic equation [24, 50] as an
auxiliary equation

A’y =0 inQ,

fia =1 inf; (2.25)
Viig-n =0 ondQ

that does not require any additional tuning, but is more computationally demanding.

2.3 Weak formulation in space

2.3.1 Momentum balance

We will first define the Sobolev space on domain w

Hl(w)={v e H(w)! :v=00nTp Ndw}, (2.26)
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multiply momentum balance equations (Equation (2.18)) by test function ¢p € H llj(Q), integrate by parts and
obtain

/pf%-¢dx+‘/ofzv¢dx— / afnf-qbds:/g'cpdx V¢ € Hp(Q),
O

Qf ((QQfﬁrN)Ur,' Qf (2 27)

d

/psd—zt)~cpdx+/as L Ve dx — / asns-qbds:/g-(pdx Vo € HL(Q),
Qs Qs (0Qs NI\ )UT; Q)

where ¢ : 7 denotes the scalar product of tensors ¢ and .

Elimination of interface traction conditions First we will refer to density without distinguishing between

solid and fluid
Q
p(x) = pelx) x e, (2.28)
pr(x) x€Qy,

as well as the traction at boundary

. e I'y NIJQY,
“(x) = Ti(x) TE NI (2.29)
Tf(x) x € 'y N9y,
and the pressure
Q;,
pla) = {Po0) ¥EO (2.30)
pr(x) x€Qf

that we will needed in the next section. Note that we do not assume any continuity of p or p at the interface.

We add Equations (2.27) and observe that the balance of the normal traction at the interface (2.8) implies

/Ofnf-(pds=—/asns-qbds (2.31)

T Ti

and thus the integrals over I'; cancel out. The momentum conservation in weak form becomes:

/Pj—f.cpdﬁ/of:wdﬁ/as;v¢dx=/g-¢dx+/“¢d5 Y9 €HH - (339
Q o FN

Qf Qs

2.3.2 Conservation of mass

For the mass conservation we will use test function q € L,(€2). We multiply the equation

Ip
% V- (p) =0 (2.33)
by g and obtain
9
/ (a—f LV (pv)) gdx=0  VgeL,(Q) (2.34)
Q

2.4 Constitutive equations

2.4.1 Fluid model

We will consider classic incompressible Newtonian fluid:

of =2use(vs) +prl, (2.35)
where p; is the fluid pressure, yif is the viscosity and I is the identity tensor. The operator € denotes the
symmetrized gradient: e(v) = %(VU + VoT). The density of the fluid is constant, thus all its derivatives are

zero and the mass conservation leads to
V-vr =0, (2.36)
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or in the weak form:
/q (V-v)dx=0 VgelL*Q) (2.37)
Qg

Stress-related integrals For the fluid we expand stress-related integral and use the fact that o is symmetric,
thus o7 : Vg = o5 : €(¢) and

/af : Ve dx = /2pfe(v) ce(p) dx + / prV - ¢ dx. (2.38)

Qr Qr Qf

2.4.2 Solid model

We will consider the Mooney-Rivlin solid model. We also discuss the Neo-Hookean model as a special case
of Mooney-Rivlin model as it is a popular choice. We will need the gradient with respect to coordinates £ on
the reference domain €, that for an arbitrary vector & field is defined as

AL Ok
Ur =28 (2.39)
9%
and the deformation gradient
E=Vo, =1+ Vi, (2.40)
F= (@cps) o, (2.41)

The general rule is that the “hat” variables are related to fields on the domain Q) while the variables without
the hat are mapped via A(t) (that is equal to @ on ;) onto deformed domain Q.

We consider an incompressible material thus let us deal with the constraints first.

Conservation of mass and incompressibility constraints In our case p; = const and the mass conservation
leads to
V-vs =0. (2.42)

or
J=1, (2.43)

where f = det L.

Mooney-Rivlin solid

The Cauchy stress in case of Mooney-Rivlin solid [88, 89] can be expressed using the left Cauchy-Green
deformation tensor
B =FFT (2.44)

as follows

0 =wB-wB ! +pl, (2.45)

where 11 > 0 and up > 0 are material parameters and pj; is a Lagrange multiplier, related to solid pressure,
which enforces incompressibility. Let us simplify Equation (2.45). First, we expand (2.40) using formula for
the derivative of inverse function:
F= (%@s) o7l = (V(@7h) . (2.46)
Then, the inverse deformation gradient is
F' =V (o), (2.47)

For £ € O, x € Q, so that £ = @;1(t; x) from the definition of the solid displacement
Us(t, %) = Ds(t; ) - £ (2.48)
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it follows
©F! (x) = D5t DT (t; ) - A (t, BT (1 %) (249)
X u(t,x)
and thus
(I);l(x) =x — ug(f, x). (2.50)
The inverse of the deformation gradient is
F' =V (0;') =1-Vus, (2.51)
and by substituting it into Equation (2.45) we obtain:
0 = wFFT + uy (2e(us) — (Vus) Vus = I) + piI (2.52)
With term u3 FFT we will deal in the weak form. Let us consider the stress-related integral:
/ 05 : Vo dx = / (i FET + up (2e(us) = (Vu)'Vu = 1) + p2I) : Veps dx. (2.53)

Q Q,
By changing the coordinates to £ = ®;(¢; x) in the integral:
/ FFT : V¢ dx = / FET . VHE Jdz

Qs A

s

we obtain:
/ FFT: V¢ dx = / (JEETET) .V df = / F:Vdz (2.54)

where f =1 (Equation (2.43)) and thus the stress integral becomes:

/os V¢ dx = /ylﬁ :V dz + / (42 (2e(us) = (Vi)' Vu = 1) + piI) : Vs dx. (2.55)

Qg oX Qg
In case of undeformed solid, i. e. #i; = 0 the deformation gradient F = I and the stress integral becomes:
/05 Ve dx = /yll Ve df - / (ual + p2I) : V d5. (2.56)
Qs Qs Qs

If there is no stress in the solid o5 = 0 and p; = p1 — Up. This is inconsistent with the fluid model, where the
zero stress implies ps = 0, thus we will use the shifted Lagrange multiplier:

Ps = p; — + Ua. (257)

In case of y; = 0 we obtain the neo-Hookean solid model. Moreover, in 2D problems incompressible
Mooney-Rivlin solid is equivalent to neo-Hookean one with shear modulus p5 = g + . In the following we
restrict ourselves to the case 11 = 0. This choice allows us to simplify our derivation and implementation
as well. The second one is important for us since we are developing a matrix-free solver. Implementing
integration in both ()5 and Qs is possible, but requires additional work.

With that said, with y; = 0 and uy = s the integral involving stress is transformed as follows:

/as : Vo dx =/2ys €(us): Vo dx — / s (Vus)'Vu : Vop dx + /psV - ¢pdx = (2.58)
Q Q Qs Q
:/Zps €(us) : e(¢) dx —/ys (Vus) Vg - e(¢) dx + /pSV - ¢pdx (2.59)
Qs Qs Qs

Volumetric damping

The divergence of velocity corresponds to local production of mass

d
V- (psvs) = — ai

. (2.60)
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Thus, the constraint (Equation 2.42) guarantees that the time derivative of the volume is zero
dps
ot
with initial a density ps(0, x) = pso. If for whatever reasons, the density is disturbed it will remain unchanged
through the rest of the time. This is an issue in the numerical solution of the problem, since the volume may
change as a result of the numerical errors. Let us replace the right-hand side of the Equation (2.61)

d 1
Ps - _ TPy (2.62)
ot v Pso
so that the solution would approach the density p; o regardless of what is the starting point is. The numerical
parameter 1y controls the rate of density correction. The fraction ps/pso could be expressed by using the

deformation gradient

=0 (2.61)

Ps _ ger(f). (2.63)
Pso
Substituting Equations (2.60) and (2.63) into the Equation (2.62) leads to the the new constraint for the solid

with volumetric damping

1 ~
V- (psv) = ——(det(F) - 1). (2.64)
nv
For the weak form, we multiply this equation by a test function g € L*(Q2) and integrate over Q
1 A
/q (V-v)dx = —/ —(det(F) - 1)gdx Vg € L*(Q). (2.65)
Qs Q w
By changing the coordinates in the right-hand side integral we obtain
1 ~
/q (V-v)dx = —/ —(det(F) - 1)§Jd& Vg € L*(Q) (2.66)
Qs a v
or equivalently
/q (V-v)dx = - / ni(det(ﬁ) -1)§df Vg eL*Q), (2.67)
v
Qs a

since | = 1.

2.5 Complete weak formulation with ALE

Let us summarize the results from this chapter by presenting the weak form of the FSI problem in ALE frame
of reference. Before that, let us unify the incompressibility constraints into the single equation. We exploit the
fact that in case of both fluid and solid the mass conservation has the same form in the domains Q) and Qg
correspondingly. By adding equations (2.67) and (2.37) we obtain

/q (V-v)dx = —/ i(det(ﬁ)@ df Vg e L*(Q). (2.68)
Q O, v
We also introduce (-, -),,, the L?(w) scalar product
P, o = / p - gdx. (2.69)

and forms
0, 0) = (Pl S0 + Vo (0 = 04)], B + (2use(o) : ()
+ Quse(u), (o, — (VT Vity, (), (2:70)
b(U, 4) = (V - v, Q)Q,
3(9) = (3, P
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Then, the FSI problem is to find for all times t € [0, T]: v € H(Q), p € LX(Q), fis € HL,(Qs)?, fi4 € H (Q)*
such that:

a(0,6) +b(,p) =g(9) Vo e H},

b(o,q) =~ (et -1,3),  voelXQ),

i, — oA (2.71)
fia = Bxt(fly),

A =1Id + fia.

The subdomains Qs and )¢ appearing in integrals in Equation (2.70) are defined as image of undeformed
ones: Qs = A(CQs) and Q¢ = A(C)f). The extension of the solid displacement Ext(il; ) is defined by an auxiliary
equation as discussed in Section 2.2.1. Additionally, the following initial conditions have to be met:
vs(t=0,x) =0vin Qs,
is(t=0,%) =u; (2.72)
vf(t=0,x) = v} in f)f.
Our weak formulation is similar to the ones appearing in literature [23, 56, 66, 81]. The first difference is the

right-hand side of the continuity equation, arising from the reformulated solid constraints. Secondly, we
formulated the problem on the unknown domain €2 to simplify derivation of the time integration scheme.






Time and space discretization

In this chapter, we gradually move from the weak form of the FSI problem to its discretization. We first define
discrete set of points in time interval referred as time steps. At each time step, we introduce an approximation
of the time derivative, eliminate the solid displacement to obtain a velocity-based formulation with decoupled
displacement. We then proceed to the space discretization, we introduce the finite element discretization by
restricting the test and trial function spaces to the finite-dimensional one. Finally, we formulate the system of
linear equations.

3.1 Time discretization

We consider the uniform time discretization, i.e. we replace the time interval [0, T] with the set of discrete
points {t°, ..., tN} where t" = nAt, with the time step size At = T/N.

3.1.1 Time-discrete fields

At the n-th time step t", we define 0", i and il as an approximation of 0, ils and 7i4 respectively, i.e.
o(t", %) = 9"(%),
i (t", %) = 01 (%), (3.1)
BAt",2) ~ 21(2),
The approximate displacement defines the approximation of the solid deformation at time #":

O, (t", %) ~ OIR) = £+ 01 (R), £el (3.2)
and therefore the solid domain .
Qs(t") = QF = DL (Qs). (3.3)
The pseudo-displacement defines the approximation of the mapping A:
A", 2)~ A"(R) =% +100(%) £eQ (3.4)
and therefore the domains
Q") Q" =AMQ), Q") ~ Qf = A™(CYy). (3.5)

At the time step n, the relation between point x, € (3" and point ¥ € Q is defined by mapping A", i.e:
xn(X) = A"(%), (3.6)
and the inverse relation between point x € Q" and point X,, € @)
En(x) = (A") 7} ().
This leads to definition of spatial derivatives of arbitrary vector field x defined on QO". The gradient and
symmetric gradient are defined as:
vee L ey IO

dx 2
where x = x,(%) is defined by (3.6). That is, the spatial derivatives are associated with transformation A".

Since A" is defined by pseudo-displacement, those derivatives are implicitly defined by via ii’;.

(3.7)

In the subsequent derivations, we are going to replace A" with its approximation A*. Note that this
approximation also affects the derivatives.
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3.1.2 Time derivative approximation on a moving domain

We approximate the time derivative of arbitrary field & defined on QA x[0,T] by the backward differentiation
formula (BDF) [79] of order k, that is the following stencil

ok(X,t) k i
— a; k"7 (X) (3.8)
FI yA =
where the coefficients ag = 1 and
y=1 a;=-1 fork=1 (3.9)
and 5 . ,
)/: 5, (25} :—5, a2:§ fork:2. (310)

As a consequence of the second Dahlquist barrier [90], any linear multistep method of order greater than 2 is
not A-stable. On the other hand, the governing equation on the solid domain is a stiff hyperbolic equation,
hence the unconditional stability is crucial for us. We have to admit that we learned it in a hard way, that is by
implementing the 3rd order scheme and finding out that it is only stable if the time step size is insanely low.
What is even worse, the maximum time step size went down with mesh refinement. For this reason, we do
not consider any higher-order method.

Displacement Let us approximate the time derivative of the displacement according to (3.8)

k

~ = Z an=i(x). (3.11)

t=t" i=0

iyt )
ot

Velocity The derivative of Ve10C1ty 70", x(t", X)) is computed for the fixed X = £(t", x), therefore

d—zt)(t,x(t,f)) - 8—?(t,£(t",x)) e Sx0" ~ : At Z @B (R (1)) (3.12)
For time step ", we introduce the velocity 9"~/ mapped by A" on Q"
o™ (x, (F7, %)) = 9" 7H(R). (3.13)
Note that the following relation between v" and v~/ holds
0" () = 0" (i (£ (1)) (314)
or equivalently
" =" o A" o (A" (3.15)

This allows us to compute approximation of the velocity derivative in domain " [24, 55, 66]:

k

60" = W i=0 " (£a(x)) = Z a;iv™(x). (3.16)

Frame velocity We obtain the approximate frame velocity by applying stencil (3.8) as follows

13 :
oA(t",X) = —uA(t” %) ~ 05 (%) = — Z a; il (%), (3.17)
t=tn YAt 5
and
k
== Z(; aifii ™ (R(x). (3.18)
1
Similarly to formula (3.13), we introduce the displacement ﬁ;"_i mapped by A" on (0"
wly' (x) = 247 (£ (x)), (3.19)
or equivalently, ' .
Wit =t o A" o (AT, (3.20)
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3.1.3 Time integration scheme

We replace the derivatives %v and %ﬁ in Equation (2.71) by their approximates 64" (Equation (3.11)) and
0xv" (Equation (3.12)) correspondingly to obtain the fully implicit time integration scheme.

Fully implicit scheme

In the fully implicit scheme with 9°, 712, 1% (Equation (2.72)) defined by the initial conditions, the following
problem is to be solved, for every n > 0 such that nAt € [0, T] find 0" € H'(Q)?, p" € L*(Q"), 4 € H}, Q)
iy eH Il)(f))d such that

a(v,¢) +b(¢,p) =g(p) Vo €Hp,

b(e", ) =~ (et -1,3),  vgelXQ), -
Oxiil =907,
nn = Ext(l"),
where
G, §) = (poi" +pVo* v°, o + Cppe(o") : 9oy

+Quse(u]), e(P))ar — (us(Vus)" Vull, e(9)) ar, (3.22)
b@",q) = (V-0",9)q,
and the velocities v* and v; in the advection part are

v° =0" -0},
— (3.23)
Notice that in Q5 we have v" = v, and v° = 0. The problem (3.21) is nonlinear, thus it could be solved
by Newton method [37, 60, 61] or another fixed-point method. It could be also linearized without greater
impact on stability [58]. We will propose a fixed point method, however our experiments show that one or 2

iterations are enough.

We fix the time step number 7 and modify the scheme by replacing some of the quantities with their explicit
approximations to end up with a linear problem at each time step. We expect that it may have some effect on
stability, however, as it follows from our experience, this is not an issue since the main limiting factor of time
step size remains the accuracy (details in Section 6.4).

We first linearize the part related to the domain motion and solid stress, then deal with the advection.

Explicit scheme for the geometry

Let us the decouple domain deformation dependence from the integrals in the form a(:, -) according to
Geometry-Convective Explicit (GCE) scheme [55, 57, 66]. We redefine the approximate solid deformation @} as

DY(R) = % + al(%), (3.24)

where 71 is an explicit approximation of the solid displacement #1”. According to the BDF scheme the solid
displacement is

k
a6 =y At} = > aifil (3.25)
i=1
We replace the velocity 97 by its approximation 0¥ to obtain:
k
0t =y Aol - > aidll ™. (3.26)
i=1
#

For now, we will use 0% = 07", we later propose a better approximation by introducing a predictor. Using
the BDF-like formula in (3.26) may seem inappropriate. Replacing it with a more suitable linear multistep
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method such as the Adams-Bashford scheme may seem like a better idea. However, this is exactly the solution
we tried at first and, unfortunately, it turns to have poor stability properties even if considering solid part
only. In fact, we did not manage to find a time step size small enough for the scheme to be stable. On the other
hand, we did not experience any stability issues when (3.26) was used, while it produces the meaningful
results as presented in Section 5.3 (solid dynamics) and Chapter 6 (FSI problem).

ALE mapping We consider the ALE setting, that is
i’y = Ext(ilg). (3.27)
We will approximate the new pseudo-displacement at each time step by using the extension of %:
i ~ 0 = Ext(df).
The pseudo-displacement defines the associated mapping A* which in turn defines the domain Q = AHQY)

that is an approximation of Q". The approximation of the fluid domain is defined as Q" \ QF. We also redefine
the fields specified on Q" in Section 3.1.2: §;xv" and v} (x) by replacing mapping A" with A*.

Spatial derivatives The pseudo-displacement ﬁj; defines the arbitrary mapping A* : O — QF, which in
turn defines the derivative operators V and €(-). Both derivative operators appear only inside integrals over
the corresponding domains, therefore it should be clear to which transformation we refer to. In particular, we
apply the following approximation

(p oxv™ + pVo* v°, p)ar = (p 650" + pVo* v°, P)qs (3.28)
where the quantities and derivatives on the left-hand side are defined on (2" while the ones on the right-hand
side are defined on Q*. We will replace all remaining terms involving A" with A* in Section 3.1.3.

Frame velocity The frame velocity is obtained by substituting Equation (3.27) for the displacements from
previous time steps to Equation (3.17), and we obtain:

1 L ;
on = — 2"+ Ext(D) ™) |. 3.29
A y At ( ; a;BX ( s )) ( )
We will consider two methods of computing the extension, in both cases the operator Ext() is linear and thus
the frame velocity in our case is

" = Ext(0f). (3.30)

In the implementation, computing the extrapolation of velocity may be handier, as we will see later.

Solid stress linearization

In the system (3.21) there are three solid-related non-linear forms: volumetric damping and two integrals
arising from the stress. For the first one we do not require higher-order accuracy, we only need effective
damping of excess volume with the lowest possible impact on stability. We set

det(F) ~ det(F"") = det(I + Va'™1) (3.31)
that corresponds to applying the forward Euler method to Equation (2.62). In the quadratic part of the solid
stress we use the extrapolation of displacement 71

((Vu;‘)T vul, e(gb))m ~ ((Vuf)T Vu?, e(gb))m . (3.32)
Finally, we approximate the bilinear form (2use(u{'), €(¢))qr with a semi-implicit formula as follows:
(2use(y), e(@)) ar ~ (2use(uy), e(P)) o (3.33)

Notice that in Equation (3.32) and Equation (3.33) derivatives on the left-hand side are defined by the
transformation A", while the ones on the right-hand side are defined by A*. In Equation (3.33) we additionally
replaced i7" o (A")™! with " o (A#)_l.

Before proceeding to the advection, let us rearrange the solid part of the problem.
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Velocity formulation Following [56, 66]we use the relation between the displacement and velocity —

k ,
Equation (3.11), and, by substituting i = yAto] — ¥ a0}~
i=1

k .
ps(e(uy), e(@)gr = psy At (€(vy), e(¢)) g — is (e (Z ajuy ”) ,e(dJ)) (3.34)
i=1 o
implicit part
explicit part

we decoupled the displacement from the system (3.21).

Semi-implicit advection

The advection term consists of two “velocities”: v° and v*. We set the first one as explicit extrapolation [91]

v =p™ - N fork=1,
o n,1 n n,2 n,1 (3'35)
v° =2(0"" —0vy)— (0" -v,") for k = 2.
As v* we consider two choices, the explicit advection
v* = ol fork =1, (3.36)
o* =20" —0"?  fork=2 '
and the semi-implicit advection
v* =0". (3.37)

The scheme with the explicit advection for the Navier-Stokes equation is also known as IMEX [92] method.
The main advantage of the explicit scheme is the symmetric form a,(:, -) (that will be defined later on),
while the semi-implicit one offers better stability. For further discussion we refer to work by Dong [93] or
Turek [92].

3.1.4 Predictor-corrector scheme in ALE setting

Let us first conclude all the manipulation we have done to the fully implicit scheme. The problem we solve at
the time step 7 > 0 is to find 0" € H'(Q")?, p" € LX(QF), 21! € H] ()7, i} € H(Q) so that

ay(v, ) +b(P,p") = guo(p) V¢ € HL(Q),

b(v,9) =gp(q)  VqelXQ,
iy = Ext(df), (3.38)
al = YAl — Zk] (Xiﬁg_i,
i=1
where:
a,(v, ¢) = (p 650" + pVo* v°, P)os + (nye(v?) : e(qb))ﬂﬁ + sy At (e(vg), e(qb))Qg , 539
b(”zﬂ) = (V'UH,Q)Q#/ .
and
k
$o(9) = (g, P)a — s (e (Z aiui"k) ,e(qb)) + Us (V (uf)" vuf, e(cﬁ))m ,
= of : (3.40)

1 &an—1y A
&p(g) =— (—(det(I + Vil 1)/61)
nv

Qs

Notice that in Equation (3.38) we defined the problem on the domain Q" instead of Q as in Equation (3.21).
The quantities on the reference domain are obtained by remapping the ones form domain Q" to €) via the
inverse of mapping A*. Let us tidy up the formulation and present the time-stepping algorithm.

Having in mind that operator Ext(:) is linear with respect to boundary condition implied by the solid
displacement, let us rearrange the last two equations in Equation (3.38) to facilitate the implementation. We
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first define the unified displacement
" = Ext(1}) (3.41)

so that the equation 6,17 = 07 is replaced by
Orfi" = Ext(9). (3.42)
The extrapolated domain displacement ﬁi according to Equation (3.29) is

k
% = yAtd* - > ait"! (3.43)
i=1
where 9% = Ext(6") = ZA)gxt. Then, the system in Equation (3.38) could be solved in few steps as demonstrated
in the Algorithm 1. Note that the extension of velocity 0f, , from time step 7 is used twice: in step 4 of time
step n and in step 1 of time step n + 1.

Algorithm 1: Geometry-explicit scheme

Data: 41, o1 pn-l fin-1

A JAS >
Result: i1}, 0", 0f , 71"
begin
|
ngt T ngt
A A k A
¥ = y At} - Elaiu”‘k < Explicit step
6:‘1} = Z'>g><’c
A* =1d + 1, Qf = A*(Q) < New geometry
Find 0" € H(Q) and p" € Ly(Q) so that: < Implicit step
ay(0", ) + b(P, p") = gu(¢) VYo € HL(QF),
b(v",q) =gp(q) V¥q€LXQY).
vp = Ext(v") < Extension
k
i = yAtog - % a; ik < Recover displacement
L i=1

Predictor-corrector scheme

As we promised while discussing the GCE scheme, we can replace the simple approximation 9 = $2~1 with
a more accurate one. We compute the prediction of the velocity 0¥ by taking v from Algorithm 1 and then
repeat the process to obtain the corrected velocity v". We demonstrate the process in Algorithm 2. Note that
this is close to applying two iterations of a fixed-point method to the fully implicit scheme. However, the
advection term in the first and second iteration may be defined differently. In particular, there is no need to
use semi-implicit advection in the predictor.

Advection The explicit advection offers a symmetric form a,(:, -) that is preferable for the linear solver
(presented in the next chapter) while the semi-implicit one results in better stability of the scheme. Since we
intend to amend the velocity anyway in the corrector step, we use the explicit advection in the predictor. We
set:

v° =™l — 9 fork =1,
v° = 20" —0") — ("% - o1 fork=2 (.44
= A A =<

and
v*=0"'  fork=1,

3.45
v* = 20" — "2 for k = 2. (3.45)
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In the corrector step we use the implicit scheme, that is:
o _ o0 _ a0
0T =0 —Upy (3.46)

and
v* =", (3.47)

This scheme could be seen as an attempt to solve nonlinear problem arising from the fully implicit scheme
by using two fixed-point iterations. For this reason we will refer to it by GCEg(2). The previous scheme —
Equation (3.38), i.e. without the corrector is in this convention GCE(1).

Algorithm 2: Predictor-corrector GCE((F) scheme

nn=-1 _n-1 an-1 nAn-1
Data.uA SO, Uy U

Result: LA‘Z/ o", Of ., 1"
begin
AO . An-1
Z)Ext Z)gxt
forj=1toF do
k
ﬁj = yALOR  — % a; itk < Explicit step
i=1
A0 . a0
U4 = Upx
A* =1d + 0¥, Qf = AH(Q) < New geometry
Find o™ € H'(Q*) and p" € Ly(Q) < Implicit step
a, (07, ) +b(¢, p") = gu(¢) Vo € HL(QH),
b(0", q) =gp(q) V¥q € LA(QY).
B z“)g(t := Ext(d5) < Extension
v" =00 ﬁgxtk: 65@
" .= yAtz?Ext -3 afi"k < Recover displacement
L i=1

3.2 Spatial discretization

Let us now introduce the fully discrete approximation of the fluid-structure interaction problem. We consider
triangulation 9 of domain Q with characteristic element size of 4. In our case, triangulation 9 consists of
quadrilateral (2D) or hexahedral (3D) elements. We consider a matching grid, i.e assume that the initial
fluid-solid interface does not intersect with any element. With sets of polynomials %, () of order p on each
element 7, we define the finite element spaces on triangulation F

V= {o e HY(Q) : v]; € Pp(7) VT T},

Qi = {9 € H(Q) : glc € Ppy(1) VYT e T},
where p; and p; are the orders of finite elements for the velocity and pressure, respectively. We first discretize
the solid displacement {i; € V), and the pseudo-displacement i € V;, that defines discrete mapping A*. We
then define the triangulation of QO as a transformed triangulation F;, by mapping A*. Note that triangulation
9}, is a matching triangulation of O i.e. the solid-fluid interface does not intersect with any element. The
finite element spaces on domain Q" are defined as:

Vy ={vo (A#)_l 1 VE \A/h}d,

Qn=A{go A" qe @h}
We assume that Vj, and Q, satisfy the Ladyzhenskaya-Babuska—-Brezzi condition [94]. Will use Taylor-Hood
finite element pair, thatis p; =2 and p, = 1.

(3.48)

(3.49)
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3.2.1 Fully discrete scheme

Let us now define the finite element approximation of the problem solved at each time step — Equation (3.38).
For every time step n > 0 we need to find v" € V;, p" € Qy, il €'V, 122 €V, so that

ay(0, §) +b(¢p, p") = gu(P) VP eV,

b(v, q) = - (Feta+9a,3),  Voes,

i = Ext(@?), | (350
k .

al = YAt — 3 a0,
i=1

with forms a,(-,-) and b(-, -) defined by Equation (3.39). As we demonstrated in Algorithm 1 the system
(3.50) could be solved in several sub-steps. In the next section we will focus on the implicit step that is to find
v" €V, p" € Qy such that

av(vn,(f))+b(¢,p) zgv(¢) Yo €V,

2An_1y A 3.51
b(o", q) = (L (det(1 + az1), ) 32D

a Vq € Qy.
This is the most computationally demanding part of both Algorithm 2 and Algorithm 1. We note, that another
system of linear equations appears in those algorithms when computing extension of velocity. We will discuss

this step when assembling the FSI solver in Section 5.4.

Let us separate bilinear forms from linear one, that is move part of 650" to the left-hand side. The continuity
equation from (3.51) remains unchanged, while the first one in case of semi-implict advection becomes

k
ay (0", ) + b(¢, p) = go(9) = (X 0™, P)r Vo € Vi, (3.52)
i=1

where
ay(v", ) = (—Z 0", qb) +(pVo* 0%, P)ar + Qupe(v}) 1 €(P))ey + sy At (€(vF), €(¢)) o -
7/ t O f S

We also define the right-hand side functions:

k
fol@) = go(P) = O aiv™, ¢
i=1
and

Qs

£(0) = - (niv«ietu o, a)

In the case of explict advection, the term (ﬁ ", qb) also has to be moved to left-hand side and becomes part
of the f,. Finally, the problem (3.51) is

{av(v”, P)+b(p,p) = fol@) VPeV, (3.53)

b(v", q) =fp(q)  Vq€Qy

Streamline-upwind stabilization

The above problem is actually an advection-diffusion problem with a divergence constraint on the velocity.
We define the Pecelet number as .

pe = 12IIE (354

bf

where L is the length scale of the domain. It characterizes the kind of equation we are dealing with, if
Pe > 1 the problem is advection-dominated, otherwise the problem is diffusion dominated. For the explicit
advection Pe = 0, while using the semi-implicit advection the Pecelet number is proportional to Reynolds
number. Having in mind application of the method to flows with moderate and high Reynolds number, we
expect the advection dominated problem. A straightforward finite element discretization typically results in
oscillatory solutions [95].
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This issue could be resolved by introducing additional stabilization to the form a(-, -). Among the many
possibilities we choose the streamline upwind /Petrov-Galerkin (SUPG) method [95]:
avs(v, ¢) =ay(v,d) +(—eAv +v° - Vo - f,, rv° - V) (3.55)
where 1 is a cell-wise constant stabilization parameter. Unfortunately the stabilization requires computing
the second-order derivatives that, in case of matrix-free implementation, is signifficantly more complex than
the first-order ones. In particular, this feature has not been yet implemented in the deal.II matrix-free
framework, that is the base of our implementation. As a replacement we use the stabilized form a(, -):
ay,s(v, ¢) =av(v,P)+ (v° - Vo, rv° - Vo). (3.56)
The stabilization parameter inside cell K is [95, 96]:
. h:  coth(Pe;) — 1
2ll°llpr Per
where /1, is the diameter of cell T and the Pecelet number Pe; computed with respect to the cell size is
hr

2upr
In cells where Pex < 1 we set r = 0 to avoid problems with floating-point arithmetics.

(3.57)

Pe; = [|v°|]

(3.58)

The linear problem and the system matrix

Finally, in numerical computation we will be operating on real vectors. The spaces V;, and Q), could be
equivalently defined as linear span of a chosen bases:

Vi = span{¢1, ..., Om}, (3.59)
Qy = span{&y, ..., én} (3.60)
where m = dim V;,(w) and n = dim Qj(w).

The spaces Vj, and Q, are isomorphic to real vector spaces

Vv, = R™
(3.61)
Q, =R"
via isomorphisms Y : V, = V;, and W : Q;, — Qy, that are defined by their action on unit vectors
Y(ei) =i,  Wle)=qi. (3.62)

Thus, the implicit step corresponds to the linear problem in R™*". Both operators operators ay (-, -) and
b(-, ) are linear, thus we define matrices A and B

ulAv = ay <(Y(u), Y(v)) Vu,v €V,

T (3.63)
9 Bu=b(Y(u),¥(q)) VueVhqeQy,
vector f,
uTfv = (f(Y(v), Y(u)) Yu,v €V, (3.64)
and vector f,
p'fea = (f,(Y(v), W(u))  Vp,veQn. (3.65)
In this setting, solving the problem appearing in the implicit step corresponds to solving the linear problem
A BT v f,
ERNIHN e
Relevance to variable coefficient generalized Stokes problem
Let us recall Equation (3.53) with explicit advection:
ay(©", P)+b(¢,p) = fulg) VPeV, (3.67)
b(q,0) =fp(@)  VqeQy.
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where
90 = (o) @y o) @)y + (2 €07, )y + 0V 0, 0
04 )
If we introduce unified the apparent "viscosity":

and the apparent density:

the system (3.67) becomes

(ﬁvn, Qb)Q” + (ﬁ e(vn), €(¢))Q# + (PVU" v°, ¢)Q# + (P/ V- QD)Q” = fv(f{b) V(P €V,

(q,V-v)q = fp(9) Vq € Q.
which is a generalized Stokes problem with piece-wise constant coefficients. Note that At 5 is typically bigger
than s by several orders of magnitude. In the next chapter, we propose a new multilevel method based on
[83] and [82] that is capable of solving such a problem. We note that in case of semi-implicit advection, the
term (pVv* v°, )¢ together with stabilization would appear on the left-hand side. To cope with that, we
will add a minor modification of the preconditioner in Section 5.2.

(3.68)



The multilevel preconditioner

As mentioned in Section 3.2.1 the GCE scheme requires the solution of a generalized Stokes problem in every
time step of the algorithm. In the case when the advection is treated explicitly, it reads:

{(ﬁv, o+ ([e@),c(@)g+ PV P =fo(@)  VYoel,
(q,V-v)a =fp(¢) Vg€ Q.
For the simplicity of the presentation, we shall assume that the time step is fixed, and we seek (v, p) defined
on prescribed Q = O, where also the corresponding finite element spaces Vj, and Qj, are defined. We also
assume non-distorted mesh, i.e. A" = I.

(4.1)

This generalized Stokes problem is of interest in its own. Such systems appear not only in fluid-structure
interaction, but also in mantle convection problems [97, 98], simulations of two-phase [99] or viscoelastic
fluids flows [100]. Since its finite element discretization leads to a large, sparse symmetric system of linear

equations with a 2 X 2 block matrix,
A BT|[V] _|[F
5 oJFl- 1 w

with the positive-definite block A, the system has to be solved approximately, usually with a Krylov iterative
method. Since the convergence speed of Krylov methods depends on the spectral properties of the matrix,
which in our case can be adversely affected by both the huge number of unknowns or high the contrast in i,
an efficient preconditioner is vital for the overall performance.

4.1 State of the art

Preconditioning strategies for the Stokes problem with constant viscosity have been in active development
for several decades now. One of the difficulties lies in the divergence-free constraint, which makes the
system indefinite. While the Stokes problem turns positive definite in the divergence-free space, standard
construction of local divergence-free finite element basis leads to a linear system whose condition number is
much worse [101], so most efforts tackle the original system (4.2), of saddle-point type.

One of the most popular ways to improve the convergence rate of Krylov space methods on (4.2) is to use
block preconditioning, see e.g. [102-105]. These methods take advantage of the block structure of the matrix
and build the preconditioner from smaller, usually symmetric and positive definite ones, which in turn can
be solved with well-established methods, such as the domain decomposition [106] or the multigrid [107].

For the Stokes problem with discontinuous velocity with a single interface, Olshanskii and coworkers [108, 109]
developed and analyzed a MINRES method with block preconditioners whose performance was independent
of the size of the system and robust with respect to the contrast in i coefficient. The precondioner for the
Schur complement was based on the pressure mass matrix scaled by the inverse of the viscosity. Another
approach to the so called single sinker problem (where there is one island of high viscosity surrounded by low
viscosity fluid) was demonstrated by Aksoylu et. al. [110], who used a strong preconditioner for the velocity
part and a preconditioned conjugate gradient solve for the Schur complement.

The multiple inclusion case was investigated in [98, 111], where a hybrid (algebraic/geometric) multigrid
approximation for the velocity block and a weighted BFBT preconditioner for the Schur complement was
used. The BFBT components were approximated by a two step process, consisting first of a re-discretization
of a certain infinite-dimensional differential operator, and then, approximation of its inverse by a V—cycle
multigrid. In [111] it was shown that this method performs well on the multi-sinker benchmark problem, in

The ideas presented here have been proposed by the author of this thesis, while Dr Piotr Krzyzanowski has greatly improved large
portions of the text, based on a joint paper (in preparation).
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the case when discontinuities are replaced by a smooth function with steep gradients. It also indicated that
simplified approximation to the Schur complement, such as the weighted pressure mass matrix considered
in [112], is not robust when the contrast is high (see also [113]).

Another approach is to develop a multilevel method directly for (4.2). A multigrid method for the Stokes
equations (with i = 1) was proposed and analyzed by Braess and Sarazin [82]. Their smoother makes use
of the block structure of the problem, too, and includes a projection step on the discrete divergence—free
velocity subspace, requiring that a certain Schur complement problem is solved on each level. Zulehner [83]
generalized this method to cover block smoothers with inexact solves, and provided a set of conditions which
guarantee the convergence rate is independent of the the number of levels; however only constant [i was
considered. See also [114-117], and [118] where independence of certain equation parameters was investigated.
More recently, a class of block smoothers for the Stokes and Lamé problems were considered in [119], mixing
both block and multigrid approaches. Finally, in [120], the application of a multilevel preconditioner based on
Vanka-type smoother [121] was shown to perform well for the single-sinker problem with smooth, strongly
varying viscosity, however its performance degraded for steeper gradients.

When the system matrix is too big to be efficiently stored, or dealt with, it is typically stored in a sparse matrix
format. The other approach is to use a matrix-free method that does not need access to matrix elements:
rather, it replaces the matrix with a linear operator, whose action on a vector (substituting the usual sparse
matrix-vector multiplication) is given as a computer procedure only, offering potential for extensive memory
usage optimization. Usually, the data flow in matrix-free methods is regular enough to make it possible
to vectorize the code via single-instruction/multiple-data (SIMD) processor instructions. Among papers
mentioned above, matrix-free preconditioners for strongly variable Stokes problem were investigated in [112]
and [113]. Moreover, Bauer et al. [122] presented a highly scalable matrix-free preconditioner based on Uzawa
multigrid, introduced earlier in [123].

In this chapter, we propose and evaluate a matrix-free preconditioner, based on a multilevel scheme for (4.2)
under restriction that all blocks in (4.2), except the coarsest level, are provided as matrix-free operators. In
this respect our approach is similar to [112] and [113]. In contrast to [111, 113] we examine our method on
discontinuous, piecewise constant viscosities, as specified in Section 3.2.1. Our goal is to achieve robustness
of the convergence speed with respect to problem size and jumps in the coefficient, while keeping the list of
tuning parameters relatively short.

We define our preconditioner as a single iteration of the multigrid method with block constrained smoother
as in [83]. This choice again makes an approximate, matrix-free, Schur system solver key to the performance
and robustness of the preconditioner. We follow the ideas of Xu and Zhu developed in [62] for diffusion
problems with discontinuous coefficient, and apply the preconditioned Conjugate Gradient method (CG)
with a relatively simple multigrid preconditioner. Where applicable, we enhance the smoother blocks via
the Chebyshev iteration [74] which, while maintaining its matrix-free character is crucial for the overall
performance of the preconditioner. We also demonstrate that a simple approximation of Schur complement
based on Chebyshev iteration in most cases results in a similar convergence rate.

While the cost of our pressure smoothing block is higher than the corresponding cost of the Schur complement
preconditioner in [111], our method remains simpler to implement, building only on standard blocks available
in deal.II library; in particular, we neither resort to auxiliary operator discretizations [111], nor require other
than standard geometric multigrid methods.

It follows that the convergence speed of the FGMRES iteration [124, 125] with our preconditioner is only
weakly sensitive to the mesh size, contrast ratio or distribution of the discontinuities of the viscosity. In
particular, for structured grids, we observe that the convergence is independent of both problem size and
coefficient jump. Moreover, it follows from the experiments that the work and memory per degree of freedom
required to solve the linear system are bounded by a small constant.

In Section 4.1.1 we introduce finite element discretization of (4.2) on a family of nested grids. Next, in
Section 4.2, we describe the preconditioner in a top-down manner, beginning with the outer multigrid
iteration, its block smoother description, and ending with definitions of block solvers utilizing Chebyshev
smoothers and inner iterations. Finally, in Section 4.3 we demonstrate desired properties of the method,
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on both structured and unstructured grids in 2D or 3D, and with various values of p and arrangements of
discontinuities in fi.

4.1.1 Problem setting

We assume that each subdomain (), ()s is a sum of a finite number of (possibly disjoint) polyhedrons, and
that (4.1) is scaled properly so that

” 1=1 forx e Qy,

At = 1" / (43)
2 >1  forx € Q.

In the case of piecewise constant viscosity the contrast in the viscosity between subdomains €)s and Q¢ is

therefore [Jz/[Jl =y = 1.

For the simplicity of the presentation, we assume dQ is split into two disjoint parts of positive measure,
dQ =Tp UTy.OnI'p we impose homogeneous Dirichlet boundary condition, # = 0. On the other part of
the boundary, I'y = dQ \ I'p, we assume Neumann condition (pI + 3{i(Vu + VuT) - n = g, where n denotes
the unit outward normal vector to JQ.

To define a multilevel method, we consider a family of nested conforming quasi-uniform simplicial (or
rectangular) triangulations of (2,
JCTIhC...CY

such that Jj is obtained from Jj_; by uniform refinement. (For example, in 2D case, we can split each
quadrilateral into four smaller ones.) We will refer to index j as the refinement level. In particular, the mesh
parameter of J;, understood as the maximum diameter of elements in 7, equals h; = 277 hy. We assume that
the coarsest mesh correctly resolves the subdomains, that is, no element in 9 is crossed by the inner interface
I = dQf N Q.

We approximate (4.1) on the finest mesh, 97, with the finite element method, using inf-sup stable [101] finite
dimensional spaces V; C V and Q; C Q. (One possible choice could be the Taylor-Hood Q>-Q1 pair [25]
associated with 97 ). The discrete problem is then to find (1}, pj) € Xj = V; x Q such that

W@@WW@MWZLf@W+[S@%/

b(v I q ]) =0
for all (¢7,q;) € V; x Qj, where b(v,q) = (q,V - v)q . After choosing standard finite element basis in
Xj = V) x Q; we finally arrive at a system of linear equations with appropriately prescribed right-hand side
vector Fy, for unknown coefficients x;j

(4.4)

./”]JC] = F], (4.5)

whose matrix J/; is very large, sparse, symmetric and indefinite, and with a 2x2 block structure corresponding
to the splitting of the unknowns to the velocity and the pressure part:

PR BJ

]{& J'

We will focus on the practically important case when blocks in /(] are represented as matrix-free linear
operators. Since Jl; is ill-conditioned, with respect to both the number of levels | (in other words, the mesh
size, or the number of unknowns) [117] and to the contrast in the viscosity coefficient [62]. Therefore, in order
to solve (4.5) we apply a preconditioner % to the system,

FPyllyxy = FiE;
and solve the resulting left—preconditioned system by the FGMRES iteration [124, 125]. We need the flexible
variant of GMRES because inside the preconditioner we will use a few CG iterations that make the whole
operator non-linear.

The goal of this chapter is to develop and evaluate a multilevel preconditioner %; for (4.5), which is efficient
and robust with respect to both the mesh size (i.e., the number of levels ) and the contrast in the viscosity.
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Algorithm 3: One step of a generic multigrid V-cycle procedure. Matrix R; corresponds to standard
restriction operator from X; to X;_1.

Function y = MGM(Jl;, Fj, %;, m, x, j)

if j = 0 then
Solve Moy = Fo < Direct solve on the coarsest grid 9
return y
x0=x
fors =1tom do
L X =N+ H(F - Mxsh) < pre-smoothing
i1 =R; (P]- —J#ijm) < restriction to the coarser grid
ej-1 = MGM(M-1,7j-1,FKj-1,m,0,j — 1) < coarse correction; recursive call
ej :R],T_lgH < prolongation from the coarser grid
YO =x"+e;
fors =1tomdo
L ys = ]/S_l +%],(F], _ -/”jl/s_l) < post-smoothing
| return y"

Algorithm 4: n iterations of generic multigrid V-cycle method on level j

Data: F
Result: x = MG,(M, K, m, j) - F
x=0
fori =1tondo
L x = MGM(M, F,K,m, x, )

return x

4.2 Multilevel preconditioner

Note that the family of grids J;, j =0, ..., ], actually gives rise to a family of discrete problems (4.4) posed in
X; = V; x Q; (where the finite element spaces V; and Q; are defined on mesh J;), with corresponding block
matrices

AJ‘ BT]
I, (4.6)

M =
B 0
where A;, Bj are matrix representations of the bilinear forms a(-, ), b(-, -), respectively. For given j, we will
refer to such problem as the j-th level problem.

Our preconditioner %; will rely on the standard V-cycle multigrid method [82, 83], see Algorithm 3, with
suitably chosen smoothers ;. We define %] as the result of 7 iterations of the multigrid method on the finest
level ], starting from a zero initial guess:

95] = MGH('/M’]/ %]lmll)l (47)
where the action of the linear operator MG, (M, K, m, j) on a vector is formally described in Algorithm 4.

It is well known that the choice of appropriate smoothers F; is vital for the overall performance of ;. On
the j-th level, & is a smoother for the system with matrix /(; with block structure specified in (4.6). In this
chapter we make use of block smoothers proposed and analysed by Zulehner [83]:
A BT -
]
i

% = . .
] -1pT
Bj B;A;'B]-§

(4.8)

Let us mention that to apply ¥; to a vector [{2{ ] partitioned according to the block structure of ¥;, one has to

solve a block system of linear equations. It can easily be verified that this reduces to two solves with A jand
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Algorithm 5: Application of ¥; defined in (4.8) to a vector

Data: f, g

Result: [u} =X; [f}

ut = A],_lf < Solve Aju*=f
p= §].‘1(u" -9) <Solve Sip=u"—g
u= A]’l(f - B{p) < Solve Aju=f - Bjp

one with § j, as described in Algorithm 5. It should be stressed that in order to be able to apply &, one only
requires to be able to apply A\]_l and §]_1 to vectors: neither AA]_1 nor §]_1 have to be explicitly constructed, so

in this sense & is a matrix-free operator, provided A-'and é]_l are. Moreover, the very matrices A jand S i
are never used in the algorithm and never have to be formed.

The smoother ¥; is specified by the choice of two symmetric positive definite operators, A jand S j- One may
think about them as (sometimes crude) approximations to the velocity block A; and its Schur complement,

— A-1RpT
S; = BjAj B;, (4.9)
respectively. In particular, taking A j = diag(A;) and S j = §j, we recover the smoother developed by Braess

and Sarazin [82]. This choice, however, is computationally quite demanding, so already in [82] the authors
recommend to solve systems with S; only approximately — in other words, to replace Sj_1 with a cheaper

and more efficient S].’l.

The analysis of smoothers (4.8) in [83] assumes that of matrices A i S ir only one has to be a “good”
preconditioner. Since Algorithm 5 requires two solves with A j» whose dimension is larger than that of S jrit
is convenient to choose A j as simple as possible. In such a case, according to [83], it is sufficient that

Aj > A (4.10)
and 4
A AT o
Sj < B]'Aj B]- < gS]', (4.11)

where for symmetric matrices X, Y of equal size, by X < Y we mean there holds x” Xx < xTYx for all
nonzero vectors x. In order to satisfy assumption (4.11), one should carefully scale S j prior to plugging it into
F;. Let us remark though, that numerical experiments indicate that in certain cases such scaling may be not
necessary; see [83, Remark 5] or Section 4.3.1 below.

In the remaining part of this section we complete the definition of the preconditioner, providing a detailed
description of A~V and S7! or, rather, in accordance with the matrix-free framework, procedures for their
application to a vector.

4.2.1 Smoother building blocks

For clarity, in this subsection we suppress the level index j, assuming it is fixed. The construction of both A1
and S~! will be founded on Chebyshev smoothers, which we briefly describe below.

Chebyshev smoothers

In the matrix-free context, one should restrict only to smoothers which can be set up without direct access
to matrix entries, with the obvious exception of matrix diagonals, which are easy to compute. This is done
essentially by looping over all cells and discarding off-diagonal entries. This condition excludes Gauss-Seidel



34 4 A multilevel preconditioner

and other smoothers based on triangular matrix splittings, and promotes the use of Jacobi-type smoothers
which only need access to matrix diagonal. On the other hand, since diagonal smoothers are less efficient
than their triangular splitting relatives, a common practice to improve the properties of the former is to
supplement them with several iterations of the Chebyshev method [126]. Thus, following [74], we define the
Chebyshev smoother of order k for a generic linear system Mx = F as

Cheb(M, D, k) = P«(D™'M)D!, (4.12)
where Py is a prescribed polynomial of degee k and D is a cheap preconditioner for M (a usual choice is to
set D = diag(M)). In particular, the 0-th order Chebyshev smoother with diagonal preconditioner simplifies
to the (damped) Jacobi method. The polynomial Py is chosen to obtain smoothing in some desired range
[a, b], by utilizing the Chebyshev polynomial of the first kind Tj:

T, (ZX—b(_a;—b)I)

P(X) = —————.
Tk (—2_&?))

(4.13)

To act as a smoother, Cheb(M, D, k) should efficiently remove high frequency components of the error
which in our case are associated with the largest eigenvalues of the preconditioned matrix D~*M. Hence,
the smoothing range [4, b] is set to [Z—;/\ M, S1Aum], where Ay = Apax(D7IM) is the largest eigenvalue of
D~!M, with user selected parameters s; and s, > s;. In practice it suffices to compute an approximate value
of Amax(D™'M), e.g. by running a couple of CG iterations [72, 74], an approach which allows Chebyshev
operators to self-adjust to the choice of D. In order not to proliferate the parameters, we exclude s1, s, and
the number ncg of CG iterations used to approximate Aps from the formal parameters list in (4.12), treating
them rather as free constants, to be specified when necessary.

Construction of A1

We define A~ as the Chebyshev smoothing operator (4.12) with diagonal preconditioner:
A™' = Cheb(A, diag(A), k). (4.14)

By tuning the order of the Chebyshev operator k4, the user can balance its cost and smoothing properties.

Construction of 51

The design of $71 is more complex and turns out crucial for the final efficiency of the smoother, since
the geometric multigrid method alone may be inefficient for a high contrast coefficient (elliptic) problem
[62]. As already discussed, direct computation of the Schur complement matrix S defined in (4.9) — not to
mention its inverse — is usually prohibitively expensive. Because condition (4.11) assumes Sisa good enough
preconditioner for S, in the construction of this smoothing block we will exploit the self-adjusting property
of Chebyshev smoothers and thus avoid direct reference to matrix entries to stay within the matrix-free
framework.

We begin with a diagonally preconditioned Chebyshev smoother for S = BA’lBT,
S, = Cheb(S, diag (B(diag A)"'B") , ks), (4.15)

which will serve as a basis for the later definition of 5~1. This operator aims at providing effective smoothing
while maintaining flexibility in the choice of A, with no need for direct computation of all entries of matrix S.
The rationale for the above choice is as follows: If a 0-th order Chebyshev smoother was to be used as A1,
the diagonal of B(diagA)~! BT would be cheap to compute, even if both A and B were in a matrix-free format.
One can, therefore, expect that for a higher order smoother the diagonal of B(diagA)~'BT will still provide a
good enough approximation to diag(S).

Then, from the founding preconditioner MGCheb(ns, ks, mg) defined as
MGCheb(ns, ks, ms) = MGy (S, S}, ms, ), (4.16)

(cf. Algorithm 4), we propose three possible definitions of 5~
1. $71 = MGCheb(ng, ks, ms), or
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2. §°1 = MGCG(ns, ks, ms), ot
3. 851= ChebCG(ns, ks),

Here, for a given vector ¢ we define MGCG(ns, ks, mg) - g, ChebCG(ng, ks) - g as the result of ng iterations
of the preconditioned CG method applied to the system Sp = g with the following selection of the
preconditioner:

| 4 MGCheb(l, ks, ms), for MGCG(}’ls, ks, ms);
> S;Sl, for ChebCG(ns, ks),

and zero initial guess. Note that the two last choices of S-1 are not fixed linear operators, thus, as we
mentioned the use of flexible GMRES method is necessary.

We note that for the constant coefficient case the theory [83] only covers the first choice. The second one could
be considered as intuitive extension for the variable coefficient case, while for the third one we have only
numerical evidence.

4.2.2 Summary of user specified parameters

The preconditioner % is finally selected by the choice of nine parameters:

the number n of outer iterations and the number m of smoothing steps in (4.7),

the order k4 of the Chebyshev smoother defining Alin (4.14),

the number ng of inner iterations and the number mg of smoothing steps in (4.16),

the order ks of the Chebyshev smoother defining S ,:Sl in (4.15),

smoothing range parameters s1, s, and the number ncg of CG iterations used to compute Apyax for
Chebyshev smoothers, see Section 4.2.1. While in principle one can choose different values for each of
the two Chebyshev smoothers we employ, we decided to have a common set of these parameters for
both.

vVvyyyvyy

4.3 Numerical results

In this section, we investigate properties of the preconditioner designed in Section 4.2. All experiments were
implemented in the finite element library deal.II version 9.2.0 [73] using its matrix-free toolbox [72].

Our model problem is (4.1) on a unit square in 2D or unit cube in 3D, with the homogeneous Dirichlet
condition on the top face and zero Neumann condition elsewhere. We choose this a bit artificial setting, to
test the solver in settings that could be easily replicable. More realistic cases will be examined in Chapter 6.

Except Section 4.3.1, where continuous viscosity case, 1> = ui = 11is briefly treated, for the comparison with
baseline solvers; other experiments will consider high contrast test cases only, i.e. u»/p1 > 1, see (4.3). If

(a) 2D (b) 3D

Figure 4.1: Unstructured coarse grids Jy used for single inclusion problem. Light gray color marks regions where the viscosity ji = p1 = 1.
Region where fi = i1 is marked with a darker shade.
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Table 4.1: Number of degrees of freedom on 2D grids for varying number of levels |.

J 1 5 6 7 8 9 10

Structured 387 83,907 333,699 1,330,947 5,316,099 21,249,027 84,965,379
Unstructured 221 51011 203,395 812,291 3,246,595 12,981251 51,914,755

Table 4.2: Number of degrees of freedom, N, on structured grid used for the checkerboard problem in 2D, for varying number of levels J.

J 1 2 3 4 5 6 7 8
N 2,467 9,539 37,507 148,739 592,387 2,364,419 9,447,427 37,769,219

not specified otherwise, we then set y, = 10°. We treat two types of high contrast test problems: with single
inclusion located centrally in Q), cf. Figure 4.1, and with multiple inclusions with checkerboard distribution,
see Figure 4.2.

Since the case p = 0 turns out to be most computationally demanding, cf. Tables 4.7 and 4.10, in the
experiments we preset p = 0, unless explicitly specified otherwise.

We consider both structured Cartesian and unstructured grids obtained from uniform refinement of the
coarsest grid 9, which is always aligned with discontinuities of the viscosity. Examples of unstructured
coarsest grids in 2D and 3D are shown in Figure 4.1. For the checkerboard problem, we restrict ourselves to
Cartesian grids, as in Figure 4.2.

The discrete system (4.5) comes from standard Taylor-Hood Q>-Q; element [25] on the finest grid Jj.
Tables 4.1, 4.2 and 4.3 list the sizes of the discrete problems for various types of meshes and discretization
levels |. In particular, the first column (J = 1) corresponds to the size of the coarsest problem, posed on .

In Section 4.3.1 we investigate the convergence speed of the FGMRES method preconditioned with &%y defined
in Section 4.2, while in Section 4.3.2 we discuss its performance. Throughout the experiments we fix n =1,
m =2, mg = 2 (cf. Section 4.2.2 for their description), focusing on the influence of k4, ks and ns — i.e. the
parameters defining the smoothing block operators — on the performance of the method. The cost of &,
increases with the growth of each of these parameters, therefore it is important to choose them as small as
possible. We also fix s1 = 1.2, s, = 15, ncg = 10, which are the default settings in deal.II [72,73].

If not specified otherwise, in our experiments we set

S§1= MGCG(ns, kg, ms),
because in our preliminary tests it proved more efficient than MGCheb(ns, kg, ms). While ChebCG in many
cases offers even better performance, sometimes its convergence is slower than MGCheb or may require
selection of specific parameters. If not prescribed explicitly, we set ng = 1 in ChebCG(nsg, ks).

4.3.1 Convergence

We measure the convergence speed of the method by reporting the number of iterations required to
reduce the Euclidean norm of the residual by a factor of 1078. The right hand side function is f(x) =
(= cos(x) cos(y), — sin(x) sin(y)) in 2D and f(x) = (- cos(x) cos(y), — sin(x) sin(y), 0) in 3D. We always start
from a zero initial guess. We declare the method fails to converge and mark this in the tables with a dash if
the number of iterations exceeds 100.

Table 4.3: Number of degrees of freedom on 3D grids, for varying number of levels |.

Ji 1 2 3 4 5 6

Structured 2,312 15468 112,724 859,812 6,714,692 53,070,468
Unstructured 4,606 34,876 273,220 2,166,724 17,265,796 137,870,596
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(a) 4 X 4 checkerboard (b) 8 x 8 checkerboard

Figure 4.2: Coarse grids 9 used for multiple inclusion problems in 2D. Light gray color marks regions where the viscosity i = 1 = 1.
Regions where [i = 1 are marked with a darker shade.

Table 4.4: Dependence of the number of iterations on the choice of preconditioner parameters ks, 115, k4 in the constant viscosity case
Uz = 1 = 1and with p = 0,in 2D. The bottom line corresponds to the smoother by Braess and Sarazin. Structured grid with | = 9 levels.

ks ns kA
1 2 3 4
1 1 8 7 6 19
1 2 8 6 5 5
2 1 8 6 5 5
4 1 8 6 5 5
§Bs 8 6 5 5

In order to compare our approach to the smoother analyzed by Braess and Sarazin [82], in this section we
additionally include results for the case when S i=85;= B]TA‘lB j- Indeed, if k4 = 0, so A = diag(A), this
choice corresponds to the base setting from [82], with slightly different relaxation. We refer to this choice
as SBS. Let us mention that S8° does not lead to a matrix-free method, because S j have to be constructed
and then solved on each level j = 0, ..., ]. So, when dealing with S BS in our testing framework, which is
confined to matrix-free tools, we solve systems with S; by (obviously very inefficient in terms of timings) the
CG method iterated until the error is reduced by a factor of 1078, in order to simulate the effect of applying a
direct solver.

Constant viscosity case

Setting v, = 1 we obtain classical Stokes problem, with constant viscosity over entire domain . Then, for
both structured and unstructured grids in 2D with fixed | = 9, we investigate the influence of k4, ks and ng
on the convergence speed. The results are presented in Tables 4.4 and 4.5. As expected, the preconditioner
behaves much better on the structured mesh, driven by the superior performance of the geometric multigrid
which appears in several places inside &.

Table 4.4 reveals the preconditioner works very well on structured grids even when its parameters k4, ks, ns
are very small. It is also worth noticing that for other choices of k4, ks, ns we get essentially the same
performance as with “exactly” solved smoother by Braess and Sarazin. It is also interesting that, starting
from a quite low threshold, increasing the order of Chebyshev smoothers does not lead to improvement in
the convergence speed.

This picture looks a bit different for the unstructured grid, see Table 4.5. In general, the number of iterations
is larger than for the structured grid (even though in the latter, the number of degrees of freedom is almost
twice as large, cf. Table 4.1), a phenomenon already observed in [83]. On the unstructured mesh, k4 = 1
produces A;l which is too weak to make the preconditioned iteration convergent, with the notable exception

of the Braess and Sarazin smoother. It turns out that in order to match the number of iterations of SB° for
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Table 4.5: Dependence of the number of iterations on the choice of preconditioner parameters kg, s, k4 in the constant viscosity case
Uz = p1 = 1 and with p = 0, in 2D. The bottom row corresponds to the smoother by Braess and Sarazin. Unstructured grid with | =9
levels.

k S ns k A
1T 2 3 4
1 1 — — 27 16
1 2 — 19 14 12
2 1 — 20 14 12
4 1 43 18 13 12
§Bs 33 18 13 12

Table 4.6: Dependence of the number of iterations on the number of levels ] both in the constant viscosity (u2 = 1) and the high contrast
(u2 = 10°) case on structured and unstructured meshes in 2D, with p=0,ka=ks=2,ns=1.

Uz ]
5 6 7 8 9 10

1 6 6 6 6 6 6
Structured 106 10 10 11 11 11 11
1 16 17 19 21 23 24

Unstructured 106 19 20 22 23 26 26

fixed k4 > 1, one has to prescribe sufficiently large ks, ns. Moreover, the larger k4, the smaller kg, ng are
sufficient to obtain good convergence rate.

In the next series of experiments, we keep the viscosity continuous and constant, and fix some parameters of
the preconditioner: k4 = ks = 2, ng = 1 (justified by results above; see also Figure 4.9). In such conditions,
we test the dependence of the convergence speed on the number of levels | and nonzero density p. As
previously, we consider both structured and unstructured grids in 2D. We present the numbers of iterations
in Tables 4.6 and 4.7. For the structured grid the number of iterations is clearly independent of mesh size,
but for the unstructured one the number of iterations is larger and slowly growing with the number of
levels, similarly as observed in [83]. The corresponding results for the structured grid in 3D are presented in
Table 4.8 and Table 4.10.

Discontinuous viscosity problem with single inclusion

In this, and the next subsection, we investigate the case when i, > u1, so the viscosity is discontinuous.
Following the results of the previous section we fix p = 0 throughout this and the following subsections, as
this results in the largest number of iterations.

Here, we focus on the single inclusion problem, when ), is simply a box centrally located inside €2, as
depicted in Figure 4.1.

First, let us investigate the influence of k4, ks and ns on the convergence speed in 2D, this time only for
the more demanding unstructured grid case, with fixed | = 9. We report the iteration count in Table 4.9.
The overall pattern of the behaviour is quite similar to this obtained in the constant coefficient case. The
number of iterations is slightly larger than that in Table 4.5, because of the presence of the inclusion. Similar
conclusions can be drawn when inspecting Table 4.6. Quite surprisingly, the method behaves even better in
3D, see Table 4.10, with the number of iterations essentially independent of | and somewhat smaller than in
2D. On the other hand, for the high contrast problem in 3D, the performance degrades roughly twice as
compared to the constant viscosity case. In the case of ChebCG and unstructured mesh we had to use higher
order smoother, because in case of k4 = ks = 2 the method failed to converge in 100 iterations.

It is also enlightening to track the convergence history for several choices of k4 and ks, see Figure 4.3. For
small values of k4 or kg, the convergence is not only slower, but it also is delayed during the first two or three
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Table 4.7: Dependence of the number of iterations on the number of levels ] both in the low density (p = 1) and high density (p = 10%) case
with fixed viscosity u» = 10° on structured and unstructured meshes in 2D, with k4 = kg = 2, n5 = 1. Upper part: MGCG(ns, ks, ms);
lower part: ChebCG(ng, ks).

kAksp ]
5 6 7 8 9 10

1 11 11 11 11 11 1
1 6 6 7 7 7 7

1 19 19 20 20 20 21
108 12 11 11 11 11 1

0 12 12 13 13 14 15
1001 11 11 1 12 1
0 14 17 17 19 21 19
100 11 12 12 10 10 10

Structured 2 2

Unstructured 2 2

Structured 2 2

Unstructured 4 4

Table 4.8: Dependence of the number of iterations on the number of levels | both in the low viscosity (u2 = 1) and high contrast
(u2 = 10°) case on structured mesh in 3D, with p=0ka=ks=2,n5=1

12 /
2 3 4 5 6
1 5 5 5 5 5
Structured 00 5 5 5 5 13

iterations, when the residual essentially stagnates. As we shall see later, this stagnation phase gets prolonged
with the increase of the number of inclusions. This seems to correspond well with the findings of [62].

Finally, let us explore the dependence of the number of iterations on the contrast in the viscosity for a wider
range of 1. In this test, we consider the structured grid in 2D with | = 9, and in 3D, with | = 4. We keep
ka = ks = 2 as before, but vary ng, see Table 4.11. The iteration count shows interesting behavior. It grows
very modestly for a range of py, starting from p, = 1. However, for certain, very large, values of i, the
method breaks down. The magnitude of p1» above which the breakdown occurs, clearly depends on ns. It
seems that for those huge i, the system we solve when applying SA]_1 is so ill-conditioned, that the CG
iteration used inside struggles.

We tested the solver in 3D using unstructured grid with number of levels | = 2,...,5. The number of
iterations grows with problem size, see Table 4.12. For small |, k4 = 2 is better in terms of the overall cost
(similar number of iterations while each iteration is cheaper), for | > 4 k4 = 4 dramatically outperforms
ks = 2. It turns out that, in comparison to MGCG, ChebCG-based smoother requires higher values of k4 and
ks to obtain similar convergence rate.

Influence of the scaling of $71 on the convergence rate As mentioned before, in the constant viscosity
coefficient case Zulehner already noticed [83] that the multigrid method works well even if assumption (4.11)
is not satisfied. Our experiments presented so far also show that our preconditioner SA]’1 works well “as is”,
without any prescaling.

It is nevertheless interesting to investigate how the scaling of §]_1 influences the convergence rate of our

method, eventually relating Zulehner’s observation to the high contrast case (we fix here 1, = 10°). Let us
define the average convergence rate as
1
Rz(nrnnz) W)

[I7oll2
where 7; is the residual after i-th iteration and n is number of iterations required to meet the stopping
criterion. For the unstructured mesh in 2D with | = 9 and with fixed k4 = ks = 2 and ng € {1, 2} we compute
R for the iteration with S]._1 replaced with ﬁS]._l where § € [0.8, 6.25]. Of course, the original preconditioner
is recovered for § = 1.
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Figure 4.3: Convergence history for various choices of smoother parameters.

Table 4.9: Dependence of the number of iterations on the choice of preconditioner parameters ks, 115, k4 in the 2D high contrast
(42 = 10, p = 0) case. The bottom row in the left table corresponds to the smoother by Braess and Sarazin. Unstructured grid with ] = 9
levels.

(a) Unstructured, MGCG (b) Structured, ChebCG (c) Unstructured, ChebCG
ks ng ka ks mng ka ks ng ka
1 2 3 4 1 2 3 4 1 2 3 4
1 1 — — 23 17 1 1 — 14 12 10 1 1 — — — 50
1 2 — 21 17 14 1 2 29 13 11 10 2 2 — — 23 16
2 1 — 21 17 14 2 1 25 14 12 12 2 1 — — 69 19
4 1 41 21 17 14 4 1 — 12 10 9 4 1 — — 25 21

§Bs 25 19 16 14

Table 4.10: Dependence of the number of iterations on the number of levels | both in the constant viscosity (i2 = 1) and high contrast
(u2 = 10°) case with various densities on structured mesh in 3D, with k4 = kg = 2, ng = 1.

U2 P J
2 3 4 5 6
1 0 5 5 5 5 5
100 0 7 8 9 9 9
Structured 100 1 5 5 5 5 5
106 108 5 5 5 5 5

Table 4.11: Dependence of the number of iterations on coefficient contrasts on single inclusion problem. Structured grid with | =9
levels (in 2D) and | = 4 levels (in 3D), with k4 = ks =2, p = 0.

ns 2
10° 10" 10 10* 10° 10® 100 107 10™

1 6 8 11 11 nm 83 — — —
2D 2 6 8 11 11 11 1 13 84 —
3 6 8 11 11 1 1 1 11 —
1 5 7 9 9 n — — — —
3D 2 5 7 9 9 9 9 15 — —
3 5 7 9 9 9 9 9 9 11
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Table 4.12: Dependence of the number of iterations on the choice of preconditioner parameters ks, k4 with fixed ng = 1 for the 3D
single inclusion problem on unstructured grid.

(@) MGCG (b) ChebCG
k A k S ] kA kS ]
2 3 4 5 2 3 4 5
5 2 23 29 36 — 4 2 15 20 34 —
4 23 28 32 55 4 14 16 19 40
4 2 14 17 19 21 6 2 12 15 19 49
4 14 17 19 20 4 12 13 14 16
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Figure 4.4: Average convergence rate of the preconditioned FGMRES, as a function of 1. Single inclusion problem with y» = 10° on
unstructured grid, | = 9.

The experiment shows that for 37! € (0.5, 1.17) the convergence rate does not degrade by more than 10% as
compared to its minimal value (approximately equal to 0.3), indicating that the method remains effective for
a range of scalings, cf. Figure 4.4. Moreover, choosing the smoother without scaling (8 = 1) seems to result in
a nearly optimal convergence rate.

Spectrum analysis Finally, we examine the clustering of the eigenvalues of the preconditioned matrix
Py, which is known to influence the convergence speed of Krylov space methods. Since, in turn, our
preconditioner relies on the quality of S;l which in principle acts as a preconditioner to Sy, see Table 4.9, we

also inspect the eigenvalues of §]_15 7. Because the operator MGCG(ns, ks, ms) is not linear, for the spectral

analysis we switch to §]_1 = MGCheb(ng, ks, ms). In order to assess the clustering of the spectrum, we
investigate both ends of the spectrum, i.e. the eigenvalues largest and smallest by magnitude. To make the
experiment computationally feasible, we restrict ourselves to the 2D problem on unstructured grid with
J=3,...,6withy;=1and yp = 10°. We fix the usual set of preconditioner parameters: k4 = kg = 2 and
ns =1, and compute 100 smallest and 100 largest eigenvalues using ARPACK [127] with tolerance set to 107°
and Arnoldi space size equal to 1000.

Figure 4.5 shows extreme eigenvalues of &P} .(;. It turns out that for ] = 3 a few of the computed eigenvalues
have small imaginary part (Figure 4.5b); otherwise, they are real. Significant differences between eigenvalues
of the preconditioned system for the constant viscosity case and the discontinuous coefficient case are visible
in the rightmost part of spectrum (Figure 4.5a), where several eigenvalues are larger for the variable coefficient
case than for the constant coeficient. Interestingly, the use of exact Schur complement changes the structure
of this end of the spectrum, but the largest eigenvalue remains nearly unchanged. This seems to explain
the increase in the convergence rate after the first 2-3 iterations, cf. Figure 4.3, when the corresponding
components of the residual have been eliminated.

Figure 4.6 shows the distribution of the eigenvalues of §]‘15 7 which cluster around the unity with no outlying
eigenvalues. When the problem size increases, the spread of the eigenvalues grows, which may explain slight
deterioration in the efficiency of S]_1 as reported in Table 4.6.
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Figure 4.5: Eigenvalues of Pj.l; for single inclusion problem on unstructured grid with ] = 3,..., 6 levels. The first 100 eigenvalues
(numbered 1-100) and last 100 eigenvalues (numbered 101-200).
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Figure 4.6: Eigenvalues of $71s for single inclusion problem on unstructured grid with | = 3,..., 6 levels. The first 100 eigenvalues
(numbered 1-100) and last 100 eigenvalues (numbered 101-200), see text.

Discontinuous viscosity problem with multiple inclusions in 2D

Next, we investigate if the number of high contrast inclusions influences the convergence rate of the methodLet
us first consider two 2D test problems with checkerboard distribution of p;: 4 X 4 and 8 X 8. Both problems
are then discretized on a grid Jj derived from the uniform refinement of the same coarsest level Cartesian
grid 9y, see Figure 4.2 (note that this grid is finer than the grid induced by discontinuities in the viscosity). In
Table 4.13 we compare the number of iterations for both problems with ] =2, ..., 8 and several choices of
parameters k4, ks and ns. It follows that the number of iterations slowly grows with both problem size and
the number of inclusions. For fine enough grids, the increase in the number of iterations is greater when there
are more inclusions in the domain. On the other hand, it also follows from Table 4.13 that a partial remedy is
to employ higher order smoothers (that is, to increase k4, ks) and do more internal CG iterations ng which,
however, increases the overall cost of the iteration. As presented in Table 4.13 in the case of ChebCG, the
number of iterations grows with the number of levels for both 4 X 4 and 8 X 8 checkerboard problems. Note
that despite using 3 CG iterations in ChebCG, we ended up with a higher number of iterations than for
MGCG.

It follows from Figure 4.7 that the reason for increased iteration counts is the initial plateau in the convergence
history, which was not present in constant viscosity case. The length of the plateaus increases with the
number of inclusions which can clearly be seen in both Figure 4.3 (when it was very short for the single
inclusion case) and in Figure 4.7, when more, and longer plateaus are observed in the 8 X 8 case.

We illustrate the quality of the Schur complement approximation by solving the linear equation Sx = y with
MGCheb(ns, ks, ms), ns = 1 and ms = 1 used as a preconditioner. As the right hand side vector y we use a
vector filled with 1. We report the number of PCG iterations required for reducing residual by a factor of
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Table 4.13: Dependence of the number of iterations on the number of levels J in 2D checkerboard problem with various k4,ks and ng.
Upper part: MGCG(ng, ks, mg); lower part: ChebCG(ng, ks).

ns ka ks J
2 3 4 5 6 7 8
1 2 2 6 19 21 22 26 29 32
A4 4 4 18 18 24 25 23 26 27
2 2 2 13 15 18 21 23 25 26
4 4 1 13 16 18 20 22 23
1 2 2 12 15 18 22 29 41 47
8% 8 4 4 27 15 16 17 21 27 45
2 2 2 12 15 18 22 29 41 47
4 4 10 13 15 19 25 36 43
4x4 3 4 4 9 11 15 20 26 31 34
8x8 3 4 4 100 13 17 25 30 40 52
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Figure 4.7: Checkerboard domain problem, | = 6: convergence history of the FGMRES iteration for various choices of smoother
parameters. Continuous lines: §] = MGCheb(ng, kg, ms); dashed: SA]"1 = MGCG(ng, kg, mg), cf. Table 4.13. mgs = 1.

1078 starting from a random initial guess. In this test, we consider mesh with | = 2 and | = 6 levels with the
selected sets of smoother orders. The required numbers of PCG iterations are shown in Table 4.14. Except
for the case ks = 0, the difference between the numbers of iterations on the coarse and the fine problems
is insignificant. Also, the differences between 4 X 4 and 8 X 8 checkerboards are minor. This indicates that
already for kg = 2 the quality of Schur complement is satisfactory.

Spectrum analysis For further understanding of preconditioner properties, we numerically analyze the
spectrum of preconditioned system matrix %yJl; with S= MGCheb(ng, ks, ms) where ng =1, ms = 1 and
ks =2, and consider k4 = 2 and k4 = 4. We use the same grid as previously with a fixed number of levels
J = 6. For As in single inclusion problem, we are interested in both ends of the spectrum. The eigenvalues
were computed using ARPACK as in Sec. 4.3.1.

Figure 4.8a indicates that the great majority of eigenvalues are located close to 1, with distorted both ends of
the spectrum. One can observe that the left end of the spectrum mostly depends on number of subdomains.
The differences between parameters settings are minor except several smallest eigenvalues. In case where
ka =2, ks = 0 the smallest eigenvalue is positive close to zero. In case where k4 = 4, ks = 2 the negative
eigenvalues appear. The number of outlying eigenvalues in the right end of spectrum grows with the decrease
of polynomial smoothers degree. For k4 = 2, ks = 0 the real part of last 33 eigenvalues exceeds the plot
range.

The imaginary part of eigenvalues (Figure 4.8b) is significantly greater in case of 8 X 8 checkerboard,
especially in case of k4 = 2. In this cases the convergence of FGMRES was significantly improved by using
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Table 4.14: Dependence of the number of iterations of PCG for Sx = y with preconditioner MGCheb(kg, 1) on the number of levels ] in
checkerboard problem for various k4, ks, ng = 1.

(@)4x4 (b) 8% 8
ks kA I kS kA ]
2 6 8 2 6 8
0 0 15 26 30 0 0 16 28 33
2 24 32 35 2 26 35 39
5 2 15 16 16 ’ 2 18 19 20
4 17 18 18 4 20 21 22
3.0 0.2
x dxd k=2, k=2
dxd: ky=2, k=2
o 8x8:ky=4, k=2
o 8x8:ky=4, k=2 - 0l
B g + 8x8:ky=2, k=2
E} 8x8: ky=2, k;=2 = -
o g o 8x8:ky=2, k=0
g 8x8: ky=2, k=0 B ! A
lé E 00] s : :
E—OJ .
‘ -02 :
0 50 100 150 200 0 50 100 150 200
Eigenvalue number Eigenvalue number
(a) Real part (b) Imaginary part

Figure 4.8: Eigenvalue distribution of preconditioned matrix Jl for checkerboard domain problem: 100 smallest and 100 largest by
magnitude eigenvalues. | = 6. The first 100 eigenvalues (numbered 1-100) and last 100 eigenvalues (numbered 101-200).

MGCG(ns, ks, 1) as Schur complement approximation (cf. Figure 4.7b). Also, the number of PCG iterations
needed for convergence of Schur complement problem is largest — Table 4.14.

Multiple inclusions in 3D: a sinker problem

Let us consider the n-sinker problem, cf. [112], with sharp edges — in contrast to [111, 113] who consider
smooth viscosity with large gradient transition layer between the inclusions. In the unit cube with uniform
Cartesian coarse grid and element size & = 27> we randomly pick 7 disconnected coarse cells and consider
them as inclusions with viscosity i, = 10°. We then uniformly refine the coarse mesh to J levels; in this way
all discontinuities are resolved on all relevant grids. In this case, we consider two sets of boundary conditions:
the first is the default one, while the second set we set uniform zero Dirichlet boundary condition. The second
case requires additional constraint on the pressure, so we fix the first pressure unknown to 0.

With various numbers of levels | = 2...5 and solver parameters k4 = ks = 2, n; = 1 we illustrate the solver
convergence for the number of inclusions 7 equal to 8 or 16, reporting the number of iterations in Table 4.15.
This test reveals the interesting property of the solver, the number of iterations seems to be independent of
the number of inclusions and are identical as in the single inclusion case. Similarly to 2D case, the ChebCG is
robust with respect to problem size and converges in a bit larger number of iterations than MGCG.

4.3.2 Implementation, performance and scalability

The multilevel preconditioner defined in Section 4.2 was designed to allow straightforward implementation
within any matrix-free framework. In our case, we used the matrix-free toolbox [72] of deal.II library [73] to
implement the method and all tests. This same library also provided its built-in implementation of Chebyshev
smoothers used by the preconditioner, together with a generic multigrid framework. The implementation
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Table 4.15: Dependence of the number of iterations on coefficient contrasts in 3D n-sinker problem with mixed Dirichlet-Neumann
boundary conditions (Mixed) and pure Dirichlet boundary conditions (Uniform Dirichlet). Structured grid with | levels, with fixed
parameters ka4 = ks = 2 and ng = 1. Upper part: MGCG(ns, ks, mg); lower part: ChebCG(ng, ks).

Boundary J
conditions

2 3
Mixed 8 8
Uniform Dirichlet 8 8
8 8
8 8

Mixed
Uniform Dirichlet
8 Mixed 1 11 11 10
16 Mixed 1 11 10 10

with 32-bit indexing of degrees of freedom limited the size of our test, the largest considered problem
consisted of over 421 million unknowns.

The required diagonals of matrices A; and Bj(diagA j)‘lB].T were precomputed once by using formulae

TA . ,. T pc,.
e; Aje; ZeiA e;

ceg

eiTB]-(diagAj)_lB]Tei => eiTB]C.(diagAj)_l(B]C.)Tei,
ceT
where A (and similarly B]C.) denotes contribution of cell ¢ € Jj on j-th level grid (so-called cell, or local,
operators) to the global matrix A;. Note the components of those sums are nonzero for the cell ¢ only if i-th
degree of freedom is associated with cell c¢. Thus, both diagonals may be computed by summing up each cell
individual contribution.

To solve the problems on the coarsest level, we assembled the matrices corresponding to 9y grid and used the
MUMPS [128] direct sparse solver. This was the only part of the implementation that required assembling
matrices, of relatively small size.

Let us define the overall efficiency E of the method as

E=T/N,
where T is the wall clock time (in seconds) required by the solver to satisfy the stopping condition and N is
the number of unknowns.

We carried efficiency tests of the method on a cluster using two nodes each one equipped with 2 Xeon
8160 processors at 2.10 GHz resulting in total 96 cores. We used 24 MPI ranks, so multi-threading, SIMD
vectorization of loops and cache memory optimizations were among the main factors which influenced the
timings, because the deal.II library takes advantage of both shared and distributed memory parallelization,
when available. The single inclusion problem on a structured grid in 2D or 3D, described in detail Section 4.3.1,
was used as a benchmark, with the remaining free preconditioner parameters setto k4 = 2, ks =2and ng = 1.
Figure 4.9 indicates that solver’s efficiency E levels off for sufficiently large problem size N. The reason that
for smaller problems the performance suffers is probably related imbalance of deal.II mesh partitioning, a
similar issue was present in [113]. The simple Schur approximation without inner MG (571 = ChebCG(1,2))
outperforms the one with inner MG (§ 1 = MGCG(1,2,1)). The speedup at the finest 3D mesh is over
twice.

The same deal.II matrix-free framework was used by Clevenger and Heister [113] to implement block
preconditioner for the Stokes problem (p = 0). The obtained timings could be directly compared, as the
hardware configuration seems to be the same. Our solver with inner MG cycle seems to require roughly
30%—40% more time than GMG matrix-free solver from [113] to solve the system with the same number of
unknowns. On the other hand, the robustness of the preconditioner used in [113] with respect to contrast is
limited. The block preconditioner suitable for higher contrast case would be BFBT [111], that is significantly
less efficient.
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Figure 4.9: Efficiency of the solver, as a function of problem size. Single inclusion, structured grid, k4 =2,ks =2,ns =1

Table 4.16: Peak memory usage in single inclusion problems

2D 3D
Structured Unstructured Structured  Unstructured
N 84,965,379 51,914,755 53,070,468 17,265,796
Number of iterations 11 21 13 21
Memory used [KB] 59,664,668 58,433,252 33,693,900 30,217,736
Memory used
———— [B] 719.1 1153 650.1 1792

N

Let us finally say a few words about memory consumption requirements of the solver, as matrix-free
computations allow extensive memory usage optimization. In our case, a workstation with 64 GB of RAM
was capable to handle tests discussed above with the problems consisting of 84,965,379 or 53,070,468 degrees
of freedom (in 2D or 3D, respectively), see Table 4.16 for peak memory requirements. For problem of fixed
size, it shows direct dependence of the amount of memory required by the solver per degree of freedom on
the number of iterations. This has to be attributed to FGMRES, whose auxiliary vectors storage requirements
grow with the number of iterations.

4.4 Conclusions

The method presented in this chapter mixes multilevel and block solver approaches, resulting in a precondi-
tioner which is matrix-free and capable of efficiently solving the Stokes problem with highly discontinuous
viscosity. The design principle of the method does not depend on any special type of finite element
discretization and is relatively simple to implement.

Numerical experiments show that for suitably chosen free parameteres of the method, the convergence rate
degrades only weakly with the increase of the viscosity contrast, up to a threshold of order 10'? (depending on
method parameters). Moreover, its convergence speed seems independent of the problem size on a structured
grid, while on unstructured grids the number of iterations grows slowly with the number of unknowns.

The preconditioner presented here has been designed as a genuinely matrix—free method, thus enabling
extensive memory and speed optimizations, including potential for the parallelization. For example, our
implementation in deal.II is able to handle large parallel computations or solve routinely problems with
more than 80 million unknowns on a PC with 64 GB of RAM. One of the key design choices which made the
method robust with respect to viscosity contrast and mesh type and size, while preserving its matrix—free
character, was the extensive use of the auxiliary Chebyshev smoothers (together with an inner multigrid
iteration) inside a very efficient block smoother of [83].

For a single inclusion high contrast problem (so called “sinker problem”) the convergence speed of the
method is comparable to other methods, cf. [110, 120], and is much better than reported in [108]. Note however
that further study would be required to make fair and detailed comparison of their convergence rate (due to
variations in stopping criteria and other fine details) not to mention efficiency as defined in Section 4.3.2.
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For multiple inclusions in 3D, our approach provides robust covergence rate with respect to number of
inclusions, coefficient contrast, and problem size. Notably, while our method deals directly with sharp
interfaces, many other methods [111, 113, 120] were tested assuming a blurred interface; in [120] it turned out
that the performance of that method was sensitive to the thickness of the interface region.

Since the cost of our method strongly depends on the cost of application of 5~! to a vector (which is relatively
high, as compared to other methods mentioned above), it is crucial to use as small values of solver tuning
parameters ms = ks = ng (see Section 4.2.2) as possible. Our experiments suggest that in most cases the
break-even point between the precondtioner quality and iteration cost, resulting in lowest (or close to lowest)
computation time corresponds to the following set of preconditioner parameters: m = mg = ks = ng = 2 and
n = 1. In 2D it was enough to take k4 = 2, while in 3D setting k4 = 4 if the mesh is not structured seemed a
better choice. It is also worth mentioning that choosing MGCG to solve approximate Schur complement led
to an improvement in the efficiency as compared to MGCheb. For a structured mesh, the cheaper variant of
the operator 57!, that is, ChebCG, can be used resulting in further speedup. In the case of the unstructured
grid, the variant with ChebCG may also lead to a reduction of the total solution cost, but on the other hand it
requires fine tuning of its parameters. This issue requires a further investigation.

A downside of the method which needs further research is that its performance in 2D depends moderately
on the number of high contrast inclusions, which are responsible for a plateau phase in the convergence
history. Numerical evidence indicates that the length of this phase is affected by the number of inclusions.






Towards solving the fluid-structure interaction
problem

In this chapter we finally proceed to solving the FSI problem. We build the solver step-by-step and validate
and illustrate every step by solving a benchmark problem. We begin with the demonstration of incompressible
flow solver and structural solver separately. Then we discuss and compare two approaches to the mesh
deformation, both of them were briefly mentioned in Section 2.2.1. Finally we test the application of both the
biharmonic equation and the pseudo-elastic equation as a mesh deformation technique.

5.1 Preliminaries

In most of the tests, we will adhere to the benchmarks proposed by Turek and Hron in [8]. In all those tests a
2D channel with a rigid cylindrical obstacle is considered — as illustrated in Figure 5.1. The exact dimensions
of the channel are described by several parameters, we place their values in Table 5.1. The domain Q is
partitioned into ()5 — an elastic beam attached to the rigid cylinder and Q¢ — the remaining part of Q. The
left side of the channel is set as the inflow, the right side is set as the outflow, while the rest of boundaries
are considered as walls. The point A, located at the midpoint of the right end of the beam, will be used in
the test to compare results. We use the same coarse grid (depicted in Figure 5.2) for all those tests. The fine
mesh is obtained by refining the coarse one, so that we obtain a multilevel structure with | levels. This setting
allows us to apply the multigrid preconditioner described in the previous chapter. We use the variant with
S-1= MGCG(ng, ks, ms).

Table 5.2 lists the sizes of the discrete problems for various types of meshes and discretization levels J. In
particular, the first column (J = 1) corresponds to the size of the coarsest problem, posed on .

We note that in all simulations, we use the same implementation of GCE time integration scheme as described
in Algorithm 1. The purpose for that was to test the correctness of the Navier-Stokes solver used in the FSI
solver. The quantities in this and the next chapter specified without units are by default in SI units.

The implementation is based on deal.II 9.2 library[73]. As a coarse solver we use MUMPS [128] via Trilinos
library[129]. The we use OpenMPI implementation of MPI standard, the program was compiled with g++7.3.

5.2 Solving the Navier-Stokes equation

Our first step towards building the FSI solver is solving transient Navier-Stokes problem. As in Chapter 2, we
consider a domain ) with boundary partitioned into Dirichlet I'p and Neumann I'y parts. The problem

L

'/\I‘D: v=20

FD © U = Vinflow > S\ls f\rz Qf
k/» S~ h} H
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Figure 5.1: Geometrical setting for Turek benchmark problem [8].
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Figure 5.2: Coarse grid used in benchmark problems. The grid was provided by Prof. Luca Heltai.

Table 5.1: Geometry of Turek benchmark problem — list of parameters.

L H [ h GC. C r
25 041 035 002 02 02 005

itself is formulated in the domain Q:
pL +Vo (v) —div(3 u (Vo + Vo)) +Vp = f inQ,
divo =0 in Q,
where v is the unknown fluid velocity, p is density, p is viscosity and f is the external force. Additionally, v
has to satisfy the boundary conditions:

(5.1)

v =07 I'p,
p oD (5.2)
oc-n =tonly

with given v}, and 7. We solve the problem using the time integration scheme discussed in Chapter 2. Let us
shortly resemble it in the simplified form, the with steps connected to deformation handling omitted.

5.2.1 Time integration scheme

In this benchmark we use the semi-implicit scheme without corrector. Assuming that the velocities v,,_; and
Un—p at the times t,_; and t,,_, are known, we compute the velocity v, at time t,, by solving the equation

P (Un = 3041 + 305—2) + V" 0° —div(} (Vo + Vo)) + Vp =0, inQ
divo; =0. in Q

where v* = v, and velocity v° is extrapolated from previous time steps

(5.3)

v° = 20,1 — Vo,
In this case, we apply the GCE;(1) scheme. Steps that were omitted are in this case trivial operations, but
they were preformed in the simulation anyway.

5.2.2 Benchmark problem

As a benchmark problem we compute the flow around a cylinder in a channel. The flow is driven by boundary
conditions and external force is not present, i.e. f = 0. This is known as the Schéfer-Turek benchmark [130]
and was also suggested by Turek-Hron [8] (CFD2 and CFD3 tests) as a part of the test suite for FSI problems.
The channel is presented in Figure 5.1 with detailed geometrical data placed in Table 6.1. For this benchmark,
we ignore subdomains and consider whole the € as a fluid domain.

At the cylinder boundary, the lower and the upper wall of the channel we set the so-called no-slip boundary
condition, i.e. zero Dirichlet boundary condition. The right end of the channel is considered as outflow, that

Table 5.2: Geometry of Turek-Hron benchmark problem — list of parameters.

] 1 1 5 8 9
N 3736 223,424 889216 56,658,944 226,564,096
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Table 5.3: Solver settings

Parameter Value
Order of the Chebyshev smoother defining A™! kx4 4
Number m of outer smoothing steps m 2
Number of outer MG iterations n 1
Order of the Chebyshev smoother defining 51251 ks 2
Number mg of inner smoothing steps Mg 1
Number of inner MG iterations ng 1

is modelled by imposing a zero Neumann condition there. Finally, the left side of the channel is considered
as an inflow, modelled by setting the Dirichlet boundary condition:
. 3 4
Uinflow = EVW ﬁy(H - y)/ (5.4)
where Vj;, is the mean inflow velocity and H is the height of the channel. This results in a parabolic velocity
profile at the inlet. We use the Reynolds number computed using the mean velocity V and diameter of the
cylindrical obstacle:

Re = pV 2r ,
U

where 7 is the radius of the obstacle. In our tests, we set the fluid density p = 103, the viscosity 4 = 1 and
consider various Reynolds numbers. As initial condition we set velocity to zero. We note, that the inflow
boundary condition (5.4) enforces instantaneous acceleration of the fluid. This allows us to check the solver
ability to cope with advection in the first few time steps. The main problem with rapid acceleration of the
fluid is the artificial pressure jumps observed at the first few time steps. Originally in [8] the flow was slowly
accelerated, and thus, the initial flow in our case is different then presented in [8].

We derive the triangulation of the domain Q from the coarse grid, shown in Figure 5.2, by uniformly refining
it ] — 1 times, so that | mesh levels are created. The problem at each time step is discretized using the
finite element method, as discussed in Section 3.2. The system of linear equations is solved using FGMRES
with multigrid preconditioner described in Chapter 4. A minor modification of the smoother is required to
handle a non-symmetric problem, the inner Schur complement operator MGCG is replaced by multigrid
preconditioned BiCGStab[131]. The detailed list of smoother parameters is presented in Table 5.3, for detailed
description of each one we refer to Section 4.2.2. The solver tolerance is set to € = 107°, i.e. we claim
convergence if the L, norm of the residual drops below €.

5.2.3 Results

For the experiments we use the fixed mesh with | = 5 levels, i.e. the coarse grid was uniformly refined 4 times.
We run simulations with time step size At = 0.01 and Reynolds numbers equal to 200 (CFD3), 400 and 1000.
The obtained velocity fields are illustrated in Figures 5.3, 5.4 and 5.5. The detailed quantitative comparison
with the reference solution [8] requires computing lift and drag forces that have not been implemented
and therefore we are unable to provide it. Our excuse is that we are mainly interested in the linear solver
performance. Besides, the quantitative comparison will be done while demonstrating the complete FSI
solver.

In contrast to the problem considered in Chapter 4, here the advection term is non-zero. The problem in
no longer symmetric thus we are interested if the solver can deal with it efficiently. We illustrate the solver
performance measured in the number of iterations required for convergence in Figure 5.6. The solver is clearly
not robust with respect to the Reynold number, but the the numbers of iteration are still acceptable for us.
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Figure 5.5: Velocity magnitude in Schéfer-Turek benchmark, Re = 1000
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Figure 5.7: Grid with | = 3 levels used in CSM3 tests

5.3 Solving structural dynamics problem

By simulating dynamics of the solid we mean to solve the time dependent problem
p% +div(} p(Vu + VuT)) = div (Vu)'Vu) + Vp = f  inQ,

divo =0 in Q, (5.5)
% =3 in Q)

for the velocity v and the displacement #i;. The solid displacement ii also defines the transformation between
undeformed domain Q and deformed (current) domain Q, each point ¥ in Q is transformed to point
x = X + i(X) in Q. We approximately solve the problem by first introducing the time discretization, and then
using the finite element method for the space discretization as in Section 3. Notice that in this case (s = (),
the extrapolation of solid displacement is a trivial operation, therefore the obtained results does not depend
on used mesh deformation algorithm.

5.3.1 Benchmark problem

We verify the proposed method by providing a quantitative comparison with the reference solution of the
freely oscillating beam — the CSM3 benchmark from [8]. The beam geometry is exactly the same as in the FSI
benchmark problem, depicted in Figure 5.1. We fix the beam on the left side, while at the other boundaries
we impose a zero Neumann boundary condition. At the initial time, the beam is undeformed and the motion
is forced by the external force f = [0, —g]’. We consider the incompressible Mooney-Rivlin solid (Section
2.4.2) with parameters ps = 10% and p5 = 0.5 X 10°. The solid model is different from the referential one [8],
that is the compressible St. Venant-Kirchhof solid with ps = 10%, us = 0.5 x 10° and Poisson ration v = 0.4.
The coarse grid used in this benchmark (Figure 5.7) is a solid part of the one used for the FSI problem (Figure
5.2). The finer grids are obtained via uniform refinement of the coarse one.

We solve the linear system with FGMRES preconditioned with the multilevel method, the tolerance is
€ = 107°. In this test, we skip linear solver details as the problem solved at each step is a generalized Stokes
equation on a structured grid with no coefficient jumps. Those details could be found in Chapter 4, where
almost the same problem was considered.

5.3.2 Results

Using the mesh with | = 3 levels, we run a series of simulations with the second-order integration scheme
GCE;(1) with the time step sizes At = 0.1, 0.03, 0.01 and volumetric damping coefficient 5y = 0.1. We plot
the displacement of the point A over time — Figure 5.8. The time integration is stable for all considered time
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Figure 5.8: Displacement of the point A versus time in CSM3 test with various time step sizes. Grid with | = 3 levels, GCE(1) scheme
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Figure 5.9: Displacement of the point A versus time in CSM3 test with various time schemes. Grid with | = 3 levels, At = 0.03

step sizes. The time scheme itself introduces an artificial damping that decreases with the time step size. For
At = 0.01 the decrease of the beam amplitude after 10 second is unnoticeable.

For the time step size At = 0.03 we compare the results obtained with various schemes: GCE;(1), GCE,(1)
and GCE;(2) with vy = 0.1, and GCE;(2) with 1y = 0. The displacement of point A over time is illustrated
in Figure 5.9. The results for all second-order methods are nearly identical. In particular, we observe that the
introduction of the volumetric damping (v # o0) does not significantly affect the results. The benefits of the
volumetric damping will be visible in the FSI benchmark problem where the solid beam is wiggling in the
flow.

Next, we set the time step size to At = 0.001 and run the simulation using the grids with | = 3,4, 5 levels.
For the quantitative comparison with the reference solution, we note the motion parameters of the first
oscillation of the point A: the mean value, amplitude and frequency. We take the maximum and minimum
displacements u,(A) and compute the mean displacement and amplitude as follows

1 .
mean = 3 (max + min),

1
amplitude = 5 (max — min).

The frequency is computed as the inverse of the time of the first oscillation. We report the results in Table 5.4
together with referential ones. Both frequency and amplitude indicate that our beam is stiffer than the one in
[8]. That discrepancy could be expected since we used a different solid model. Overall, the obtained results
are close enough to the referential ones for the purpose of this work.

Table 5.4: Results for CSM3 benchmark problem with time step size At = 1073

T N uy(A) uy(A) Frequency
3 1171 —10.2164+10.216  —54.649+54.649 1.1961
4 4355  —-10.2574+10.257 —54.774+54.774 1.1933
5 16771 —10.2664+10.266 —54.801+54.801 1.1933
Reference[8] -14.3054+14.305 -63.607 + 65.160 1.0995
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5.4 Handling domain deformation

The last part of the solver that has to be tested before proceeding to the FSI problem is the domain deformation
handling method. The problem is to extend the solid displacement (or velocity) on the fluid domain so that
the quality of deformed mesh will not deteriorate significantly. The choice of the extrapolation algorithm is
crucial for the performance. If done incorrectly, the elements may become overly deformed, resulting in a
reduced linear solver performance, or, in the worst case, negative volume of elements leading to meaningless
results.

We consider two methods of computing extrapolation 4 of solid deformation: using the linear elasticity
equation

diV([JAE(ﬁA)) =0 in Qf,
iz =1 inQ (5.6)
fig =0 ondQ,

with possibly non-constant coefficient 114, and the biharmonic equation

AzﬁA,,‘ =0 in Qf,

fia,i =1ils; onlj, 57)
A i =0 ondQ, .
Iip

on - =0 on r,',

where 7 is outer normal of the domain Q. The problem is solved for each individual component ii; so that
extrapolation of il is obtained. We use the finite element method to solve both equations. The linear elasticity
equation appears as a part of a(-, -) on undeformed domain and its weak form was discussed in Section 3.2.
The weak form of the biharmonic equation, a forth order problem, is not straightforward.

5.4.1 Solving the biharmonic problem

Let us briefly recall the 6€° Interior Penalty Method (6°IP) proposed in [132]. The implementation is a
modified step-47 from deal.II library that presents a basic biharmonic solver. We improved it with adding
handling of parallel computations. We refer to the library manual for further details.

We apply the method similar to the discontinuous Galerkin method, and thus we will need so-called jump:

5 - S

ak71h|1<,
onk

and average

Hakvh ” _1{*oulk, N uplx
onk 112\ onk |, onk |,
operators for arbitrary scalar function v;, defined on domain ()s. The point e is at the interface between
cells K; and K_ (K_, K4 € 9), the normal n denotes a unit normal vector pointing from K, to K_. The |1
formulation of the biharmonic extrapolation problem is to find ii4 such thatiig = iI; onT;,fia =0 ondQ,
and

s(vi, fiai) =0 holds for all test functions v € V, (5.8)

for every component. The 6°IP discrete biharmonic operator is defined as

Aoy, up) := Z / D?vy, : D?uy, dx
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Figure 5.10: Distribution of coefficient 114. Solid marked in gray.

where D?v;, D2uy, are Hessian of v, and 1y, respectively, and [ is a set of all faces of cell inside. The penalty
parameter y is related to the degree of finite element, in our case y = 6.

Iterative solver and preconditioner

The linear system behind the biharmonic problem is solved by the preconditioned CG method. Choosing the
multilevel method as a preconditioner appears to be a natural choice, since we already have the multilevel
structures. Let us note that the choice of the smoother is not straightforward, although the problem is
symmetric and positive defined. For example, the Jacobi smoother is not suitable for this problem, mainly
because the matrix is not diagonally dominating.

Developing an efficiencient biharmonic solver is out of scope of this thesis and we do not intend to apply
an advanced method if not needed. Fortunately, the domain decomposition method turned out to work
well enough as a smoother. The concept we came up with is similar to the one presented in [133]. The
simple implementation was possible thanks to Trilinos library [129], especially the Ifpack2 package. In the
implementation the deal.II wrapper of this preconditioner was used (PreconditionBlockwiseDirect) with
the default settings.

5.4.2 Benchmark problem

We compare deformation extrapolation algorithms on the Turek-Hron benchmark problem [8]. As the solid
displacement we use

. 0
A= (x —0.25)2

that is intended to mimic the deformation of the beam while interacting with the flow. The deformation at
the beam tip is fi4(A) = 0.1232 that is far greater than the maximum value we expect in FSI benchmarks.
In the mesh deformation tests we use the mesh with | = 4 levels. This results in a fairly fine mesh, while
individual elements are still visible and any problem could be easily spotted. We consider three methods
of extrapolating the displacement: using the elastic equation method with both constant coefficient and a
pre-cooked coefficient distribution, and using the biharmonic equation. The distribution of the coefficient for
the elastic equation is given by the formula

pia =1+ 50exp (~800((x — 0.6)* + (y — 0.205)%))

so that the mesh is stiffest at the tip the beam and gradually becomes elastic with a distance from point A.

5.4.3 Results

The deformed mesh is depicted in Figure 5.11 and Figure 5.12. Without varying coefficient the elastic equation
provides an extrapolation with deteriorated elements at the tip of the beam. This issue is resolved by
introducing a variable coefficient. The biharmonic equation method leads to the least deformed elements,
while it is does not require problem-dependent tuning. On the other hand, the linear system is more
computationally demanding. Moreover, the second order terms in o rise further problems, making matrix-
free implementation significantly more challenging. In fact, at the time of writing this, the deal.II matrix
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(a) Elastic, uniform coefficient (b) Elastic, variable coefficient (c) Biharmonic

Figure 5.11: Comparison of mesh deformation algorithms
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(a) Elastic, uniform coefficient (b) Elastic, variable coefficient (c) Biharmonic

Figure 5.12: Comparison of mesh deformation algorithms — zoom at the tip

free framework does not support the integration of second order terms. For those reasons, we decided to
use the elastic equation based method with chosen a priori coefficient as a mesh deformation algorithm for
FSI. Before moving on to the FSI problem, let us provide a bit of details of the linear solver for biharmonic
equation.

Iterative solvers details

The construction of an efficient parallel iterative solver for a forth equation is a challenging problem itself,
but it is definitely out of the scope of this thesis. However, the used solver is simple yet effective enough
so let us provide a brief overview of its performance. The TrilinosWrappers::PreconditionBlockwiseDirect
operator from deal.II library is a block additive Schwarz method with partitioning based on the parallel
mesh partitioning. Thus, the number of MPI ranks is equal to the number of subdomains, that directly affects
with the preconditioner performance. When ran in serial, the preconditioner is in fact a direct solver, while in
parallel it represents a block-Jacobi operator with block size equal to the local matrix size. We combine it with
the Chebyshev iteration of order 4 and use it as a smoother.

To solve the elastic problem we use the CG method with multilevel preconditioner. As a smoother, we choose
Chebyshev operator of order 4, at each level we perform 1 smoothing step. Instead of solving the coarse
system directly, we perform 1 Chebyshev iteration of order 40. We estimate the eigenvalues using 20 CG
iterations and set the smoothing range to [1.2A1'3‘(‘)x ,1.2Amax] . This is a standard procedure for the Laplace
problem as demonstrated in deal.II [73] tutorial step-37.

We test the biharmonic solver and the elastic solver in the setting from the previous subsection on the serie of
grids with various number of levels and report the numbers of iterations and time required for convergence
in Table 5.5. The biharmonic solver was ran with 4 and 8 MPI ranks to illustrate its dependence from the
number of subdomains. The computations have been done on a PC with Intel i7-3770K CPU @ 3.50GHz. The
program also takes advantage of multi-threading so in all cases the number of floating point operations per
second is comparable.

Although the numbers of iterations in the biharmonic solver are comparable to the ones in the linear elasticity
solver, the timings are significantly worse. Moreover, the solve wall time does not include assembly of the
matrix and initialization of the preconditioner. The second one requires computing LU decomposition of
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Table 5.5: Performance of linear solvers inside the mesh deformation solvers. Numbers of CG iterations and wall times

N Linear elasticit Biharmonic
J  (per component) Y 4 MPI ranks 8 MPI ranks
2 6,368 13 (0.5253s) 7 (0.229s) 12 (0.464s)
3 25,024 15 (2.617s) 8 (1.652) 14 (2.346s)
4 99,200 16 (6.485s) 9 (10.11s) 17 (17.31s)
5 395,008 17 (18.86s) 12 (55.55s) 20 (81.59s)
6 1,576,448 17 (66.25s) 14 (329.9s) 27 (546.8s)

the block owned by each processor. As the result, the initialization is even more time consuming than the
solve itself. In case the FSI problem this is not an issue, since the initialization could be done only once per
simulation.

For those reasons, we have decided to use only the pseudo-elastic problem to compute the extension.



The fluid-structure interaction solver

With all building blocks tested we may finally proceed to test the FSI solver on the problems it was intended
to handle. We will first verify if it can provide a stable integration with the results close enough to the
referential ones. We will be comparing ourselves with the Turek benchmark problem with Re =100 (FSI2)
and Re =200 (FSI3). We do not expect a perfect match since our solid model is different than the one used in
[8]. We use the incompressible solid instead of a compressible one, thus we expect that the results will be
different, as we observed in CSM tests (Section 5.3). We test various time-stepping schemes and introduce a
simple modification to the predictor-corrector scheme exploiting the properties of the iterative solver. We
extend the results with the simulations of higher Reynolds numbers Re = 400 and Re = 1000 to demonstrate
the stability of the method. We then proceed to the main focus of this thesis — the linear solver behind the
momentum sub-step. We illustrate the performance measured in the number of iterations and time required
to solve the system.

6.1 The benchmark problem

The individual parts of the benchmark problem were present in the previous sections. Here we test the fully
coupled problem, i.e. the elastic beam attached to the cylindrical obstacle inside the channel is interacting
with the flow. We use the geometry described in Section 5.1 illustrated in Figure 5.1, with detailed geometrical
data presented in Table 5.1.

The boundary and initial conditions are the same as in Section 5.2. The cylinder, upper and lower sides of
the channel are considered as rigid walls and we impose no-slip boundary conditions there. At the right
end of the channel we set a zero Neumann boundary condition, the left side of the channel is considered as
inflow with parabolic velocity profile - Equation (5.4). As a parameter defining the flow we use the average
velocity at the inlet V;;, and the Reynolds number computed with respect to the obstacle diameter. In the
benchmark test, we consider Vi, = 1 or V;;, = 2 that corresponds to Re = 100 and Re = 200, respectively. In
the test withRe = 400 (FSI400) Re = 1000 (FSI1k) we set the viscosity to s = 0.5 and velocity to Vi, = 2 or
Vin =5, respectively.

At the initial time, the velocity v = 0 and the beam is undeformed. As in Section 5.2, due to boundary
conditions the flow is accelerated instantaneously while in [8] the flow gradually speeds up. This change allows
us to check the solver capabilities to handle a fully developed flow in the nearly undeformed configuration.
This provides a fixed geometry for the solver performance comparison that is especially important when
considering various time step sizes, as the solution at any fixed time might change with the time step size
due to method accuracy. On the other hand, it rises a problem with the artificial pressure jumps observed in
the first few time steps. From our observations, it follows that the pressure oscillations are damped in a few
initial time steps and have a negligible impact on the results.

Table 6.1: Parameters used in FSI benchmarks

FSI2 FSI3 FSI400  FSIik

ps  [E] 10* 103 103 103
pr B 10° 10° 10° 103
s [%} 05%105 2x10° 2x105 2x10°
uy [IETgS] 1 1 0.5 0.5
Vin [%] 1 2 2 5
Re 100 200 400 1000
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Table 6.2: Solver parameters in FSI benchmarks

Parameter Value
Predictor ~ Corrector
Order of the Chebyshev smoother defining AT kg 4 6
Number m of outer smoothing steps m 2 2
Number of outer MG iterations n 1 1
Order of the Chebyshev smoother defining 51:51 ks 4 2
Number s of inner smoothing steps M 1 1
Number of inner MG iterations N 1 1
Solver tolerance €p = 107® e, =107°

6.2 The linear solver settings

The implicit advection scheme results in the non-symmetric linear problem at the momentum step. We solve
the system with the FGMRES method preconditioned by the operator discussed in Chapter 4. Unlike the
Navier-Stokes problem from Section 5.2 and similarly to Section 4.3 here we deal with the problem with
strongly variable viscosity, that appears to be more challenging for an iterative solver. Because of that in
the FSI tests we will use a higher smoother orders, the specific values are provided in Table 6.2. The chosen
values are probably an overkill, and thus could be optimized for better timings. As in the previous chapter,
we use the Schur complement approximation S-1= MGCG(ng, ks, ms) (we replace CG with BiCG in case
of non-symmetric problem). We note that the variant without inner multigrid cycle also provides robust
convergence, but we came up with it too late to incorporate it in this chapter. Nonetheless, we present some
details in Appendix A. We claim the system is solved if the L, norm of residual is less than €, for predictor or
€. for corrector.

6.3 Comparison with the referential results

As the first test, we solve the benchmark problems FSI2 and FSI3 on the fixed grid with | = 5 levels. We use
the second-order implicit time integration GCE(2) with time step size At = 5 x 107°. The lower time step
size than in Section 5.2 was chosen for accuracy, we were not able to capture the beam oscillations in the FSI3
benchmark with At = 0.01. We use the volumetric damping coefficient 7y = 0.1, same as in 5.3. As a mesh
deformation handler we choose elastic equation method with the coefficient distribution from the previous
chapter.

To visualize the results we plot the velocity magnitude at various times, Figure 6.1 and Figure 6.2 for FSI2 and
FSI3, respectively. In both cases during the initial period the flow slowly develops building up the vortices
behind the obstacle while the beam is moving slightly. Then, due to vortex shedding, several unsteady
oscillation occur before the motion stabilizes and becomes periodic. This is best illustrated by plotting the
position of point A over time — Figure 6.3.

We report the amplitude, the average displacement and the period of the last computed oscillation in Table
6.3 and Table 6.4 together with the referential values [8]. The difference is almost imperceptible in the FSI2
benchmark, that is surprising if taking into account the increased stiffness of the beam observed in the CSM
test (Section 5.3). The only noticeable gap can be spotted in the oscillation frequency in the FSI3 benchmark.
To confirm our results we run another simulations with the time step At = 0.001. This time as a starting point
we choose the solution obtained in the previous tests at time ¢t = 7. We compute another 2 seconds of the
solution and complement Table 6.3 and Table 6.4 with data from the last oscillation. This time the amplitude
in the FSI2 benchmark is a bit lower than in referential results, confirming the intuitive guess.

In the FSI3 benchmark we observe 10% higher frequency than in reference results. We guess that in this case
the dominating factor defining the flow is the beam stiffness. Compared to FSI2 benchmark we have higher
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(a) t =5.08 (b) t =5.195

(o)t =5.315 (d) t =5.455

Figure 6.1: Velocity magnitude in the FSI2 benchmark problem

(o)t =5.375 (d)t =5.42

Figure 6.2: Velocity magnitude in the FSI3 benchmark problem
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Figure 6.3: Displacement of the point A versus time in the FSI benchmark problems. Grid with | = 5 levels, GCE>(2) scheme with
ny =0.1
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Table 6.3: Comparison of displacements and frequency in the FSI2 benchmark

ux(A) x 1073 uy(A) X 10~ Frequency

J=5,At =0.005, -14.85+12.89 1.25+80.8 2.00
J=5,At=0001 -14.34+12.19 1.10+78.5 1.99
Reference —14.58 +12.44 1.23 + 80.6 2.0

Table 6.4: Comparison of displacements and frequency in the FSI3 benchmark

ux(A) X107 u,(A)x 10~  Frequency

J=5,At=0.005 -2.79+2.46 1.47 +34.38 5.40
J=5,At=0.001 -2.73+2.57 1.55+34.68 5.52
Reference —2.69+253 1.48+34.38 5.3

stiffness to density ratio and thus the eigenfrequency of the beam is closer to the vortex shedding frequency.
Some near-resonant phenomena may also come into play in this case.

Having in mind that we use a different solid model, those results are satisfactory enough to claim correctness
of the FSI solver implementation. Unfortunately, we are unaware of any results for Turek benchmark problem
with an incompressible solid to compare with.

6.3.1 Influence of volumetric damping

In Section 5.3 we claimed that the volumetric damping does not have negative impact on the model, let us
now show that this newly introduced feature of the time integration scheme actually improves it. For that, we
repeat the FSI3 benchmark with (v = 0.1) and without (1 = co) the volumetric damping. We set the time
step size to At = 0.005 and run the simulations using the second-order time integration scheme using grid
with | = 5 levels.

To illustrate the results we plot the deformation at point A — Figure 6.4. The horizontal displacement 1,
reveals that the point A is slowly creeping (Figure 6.4a) and the motion of the beam is no longer periodic. To
visualize this effect we plot the deformed beam obtained without volumetric damping and compare it to the
one at the similar phase of oscillation obtained in the referential simulation with 14 = 0.1 — Figure 6.5. The
analogous effect also occurs in case of the first-order time integration scheme where the beam is gaining
volume. The introduction of volumetric damping clearly resolves this issue.

6.3.2 Importance of the corrector step

To test if the corrector step is crucial for the accuracy of the method we again run the FSI2 benchmark problem
using the mesh with | = 5 levels and ny = 0.1. This time we apply the GCE,(1) scheme with semi-implicit
advection. We choose the FSI2 benchmark for two reasons: the beam and thus also the domain deforms much
more than in the FSI3 benchmark, and secondly, the Reynolds number is lower reducing the time required to

0.004 0.06 — n4=0.1 — my=c0
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Figure 6.4: Displacement of the point A versus time in the FSI3 benchmark problems. Grid with | = 5 levels, GCE;(2) scheme.
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(a) Beam (b) Zoom at the tip

Figure 6.5: Comparison of beam deformation with (grey) and without (black wireframe) volumetric damping at time t = 7.53 and
t = 7.5 respectively.
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Figure 6.6: Comparison of GCE3(1) and GCE(2) schemes. Displacement of the point A versus time in the FSI2 benchmark problem.
Grid with | =5 levels.

obtain the results. As previously, we compare the results by plotting displacement of point A — Figure 6.6.
The results are fairly similar, but the solution obtained without the corrector seems to be falling behind the
ones obtained using the predictor-corrector scheme.

6.4 Modified predictor-corrector scheme

In our test we prefer the implicit time integration method for stability reasons. The time step size At = 5x 1073
is not small enough for the explicit time integration scheme to be stable, even in the FSI2 benchmark problem
(Re =100). From our experiments it follows that the largest time step size ensuring stable explicit integration
appears to be At = 5 x 10~ for the FSI2. For comparison, the implicit one is stable with the time step size
exceeding At = 1072 in both FSI2 and FSI3 benchmarks. With each implicit time step being more expensive
than the explicit one (details in the next section), the overall performance of the implicit scheme is significantly
better. With increasing Reynolds number the stability limit of the explicit time scheme deteriorates and usage
of the implicit time scheme becomes even more preferable. This, however, has its price, as the number of
FGMRES iterations also increases with Reynolds number.

On the other hand, the explicit time scheme could be used to compute the prediction of the solution at the
next time step. This provides a better approximation of velocity v° so that our implicit scheme could be
closer to the fully implicit one. In this setting, the implicit step is used as a corrector, and thus, the scheme
becomes a predictor-corrector scheme. Notice that the predicted velocity may be used as a starting point for
preconditioned FGMRES. In these settings, the iterative solver provides a gradual transition between the
explicit and implicit scheme. We exploit further this property by playing with the corrector solver parameters.
We keep the high accuracy of the predictor while we accept the solution with a higher residual norm in the
corrector. In this way, we hope to obtain a scheme with stability significantly better than the explicit one,
while the overall cost could be reduced.

Following this idea, we test the predictor-corrector scheme with tuned iterative solvers inside the momentum
steps. In the explicit predictor step we set the solver tolerance to €, = 10~® while in the implicit corrector step
we set the tolerance to €. = 0.1. We test our hypothesis on the FSI3 benchmark using grid with | = 4 levels,
and compare the obtained displacement ¢ 1(A) to 1119-s(A), obtained using €. = 107 — Figure 6.7. Since the
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Figure 6.7: Comparison of the schemes with various corrector tolerances. Displacement of the point A versus time in the FSI3 benchmark
problem. Grid with | = 4 levels, GCE;(2) scheme with gy = 0.1

differences are barely visible we also plot the difference — Figure 6.7c. It appears that the difference in not
growing over time and the displacement 19 1(A) lags behind 1119-s(A) by a small fraction of the time step.

Using the modified method we run the FSIlk test with Reynolds number Re = 1000 with At = 0.005
(€c = 1072) and At = 0.0025 (e, = 107!) to demonstrate its stability. We note that a larger time step
size required a higher precision inside the corrector step for stability. We close this section by presenting
visually-pleasing pictures of the obtained flow in a selected time steps — Figure 6.8. Notice the small wrinkles
in velocity field near the tip of the beam or downwind side of the cylinder. This type of artefact is a result
of the low corrector accuracy combined with a relatively large time step size, especially in comparison to
Reynolds number. We note that in this case less than 150 time-steps were done per one oscillation of the beam.
For integrating higher Reynolds number problem, either the time step size or the FGMRES convergence
threshold should be decreased.

6.5 The linear solver performance

Finally, we share selected insights into the multilevel preconditioner for the FGMRES. Majority of computations
were done using several nodes of Marconi supercomputer, each one equipped with 2 Xeon 8160 CPU@2.4GHz
(24 cores each) and 196 GB of RAM. All presented timings in this section were obtained using this machine.
The program utilizes both distributed (MPI) and shared memory (multi-threading) computing. Additionally,
as in Section 4.3.2, the underlying deal.II implementation of the matrix-free framework takes advantage of
SIMD vectorization.

First, we present a detailed breakdown of the computational time spent at the first time step of the FSI2
benchmark with At = 0.005 using 2 nodes (96 cores total, 24 MPI ranks) — Table 6.5. We have chosen the
FSI2 benchmark because the number of FGMRES iterations, in this case, does not vary with mesh refinement.
As we will later show, for higher Reynolds numbers the FGMRES surprisingly becomes more efficient after
exceeding a certain number of mesh levels. Note that Table 6.5 does not show differences in timings between
the predictor and the corrector that arise with Reynolds numbers. We will illustrate that using the number of
FGMRES iterations.



6.5 The linear solver performance 65

()t =2.05 (d) t =2.035

Figure 6.8: Velocity magnitude in the FSIlk problem

Table 6.5: Breakdown of wall time spent at the first time step of the FSI2 benchmark problem

J = 4 5 6 7 8
N = 223k 889k 3.5M 14.1M 56.6M
Predictor
Implicit step 44% 45% 44% 46% 48%
Extension 0.45% 0.93% 1.5% 1.7% 1.6%
Corrector
Implicit step 43% 45% 42% 40% 38%
Extension 0.63% 1.3% 1.7% 1.7% 1.7%
Output results 11% 5.2% 7.7% 7.9% 7%
Total 4.67s 8.68s 23.4s 85s 346s

Some less time-consuming operations such as right-hand side assembly have been omitted, thus the time
percentages do not sum up to 100%. Among the non-listed part of the time step is the computation of the
new geometry that is done by updating geometrical mapping stored inside matrix-free operators.

Our results also indicate that around 0.5 s of every implicit step is consumed on assembling the coarse
Schur complement matrix. This is because the assembly is done by multiplying unit vectors by coarse Schur
complement operator (implemented as a matrix-free object). This mainly impacts performance if the number
of levels is relatively low, the process is surely inefficient and should be optimized. Replacing it by a proper
assembly using matrix multiplication would greatly reduce this timing. This was not done since in the near
future we plan to improve the Stokes solver so that it would not require the inner MG cycle. A significant part
of the computational time is consumed on computing eigenvalues required for the Chebyshev smoothers.
This part could be also greatly improved by refreshing eigenvalues once per several time steps.

The most time consuming part is the solution of the linear system associated with the implicit part of the time
step, as it covers over 80% of the total computation time and the percentage increases with mesh refinement.
This is also the only part of the algorithm the computational cost of which may vary during the simulation.
Therefore we will focus on this step.
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Figure 6.9: Number of FGMRES iterations versus time in FSI benchmark problems. Grid with | = 5 levels, At = 0.05
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Figure 6.10: Comparison of solver performance: modified vs original scheme. FSI3 benchmark, At = 0.005, ] = 5

6.5.1 Preconditioned FGMRES performance

As a measure of performance of the preconditioned FGMRES solver we use the number of iterations 7
required to meet the stopping criterion, and convergence rate defined as

o= (Ilrnllz)” 61

[I7oll2
where r; is the residual after i-th iteration. In case of the corrector step that uses the semi-implicit advection
the number of iterations may vary in time as in Section 5.2.3. Additionally the variable geometry may also
induce some changes in convergence of FGMRES inside the predictor step.

We present the number of iterations by plotting it against time in Figure 6.9a (FSI2) and Figure 6.9b (FSI3).
The number of iterations in the predictor step is pretty much constant throughout the remaining part of
the simulation while in the corrector step we observe a clear time dependence. There are several reasons
behind this effect: the variable geometry, variable advection velocity and variable starting point of the solver.
We believe that two lasts are the main contributors to the effect since it appears also in the FSI3 benchmark
where the domain deformation is tamer. The rapid spikes of the number of iterations occur when the tip of
the beam is at the turning point. We suspect that the dynamically changing flow is the main contributor to
this effect. Besides we would also expect notable changes in the convergence of the predictor solver while it is
clearly not an issue here.

Modified predictor-corrector scheme

We introduced the modified time integration scheme to workaround the reduced linear solver performance
in the corrector step. Let us demonstrate the profit coming out of this by plotting the number of corrector
iterations versus time — Figure 6.10a. The numbers of iterations in the predictor step are unchanged (thus we
skip plotting them) while the corrector step requires much less effort.

Apart from stopping the FGMRES sooner, with the modified scheme we also exploit the relatively good
convergence rate in the first few iterations. To illustrate this, we compare the corrector convergence rates in
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Table 6.6: Number of FGMRES iterations required for convergence (¢ = 107) at the first time step for varying number of levels | with
fixed At = 0.005.

J= 4 5 6 7 8 9
N = 223k 889k 35M 14.1M 56.6M 226M

FSI2 Predictor 8 9 9 10 10 10
Corrector 15 13 11 10 9 9

FSI3 Predictor 11 11 12 12 12 12
Corrector 26 28 23 20 19 18
Predictor 11 11 1 12 12 12

FS1400 Corrector 28 33 32 30 25 23
FSIk Predictor 12 12 12 12 13 13
Corrector 43 51 168 174 82 52

the FSI3 benchmark problem — Figure 6.10b. The difference is conspicuous in the initial period when the flow
calmly builds up, hence the solution does not vary significantly between time steps.

We additionally include the numbers of iterations obtained in FSIlk test with At = 0.0025 to demonstrate the
solver ability to cope with higher Reynolds numbers — Figure 6.11.

6.5.2 Performance and scalability

To illustrate robustness with respect to problem size we measure the computational cost of solving the linear
system in a number of FGMRES iterations required to reduce the residual below the threshold € = 107°, the
obtained results are presented in Table 6.6. The number of iterations in the predictor step resembles the
results obtained in Section 4.3, as it grows insignificantly with problem size.

An intriguing effect is observed concerning the number of iterations in the corrector step. The ameliorating
convergence rate may seem counter-intuitive at first glance, however, it can be explained. Notice that the cell
Pecelet number (cf Section 3.2.1, equation (3.58)) abates at finer grids, therefore at the cell level the problem
shifts towards a diffusion dominated one. The point where this effect begins to be noticeable depends on the
Reynolds number that we observe in the obtained results. Unfavorably, the solver performance deteriorates
with increasing Reynolds number.

We also measure of solver efficiency, defined as wall time required for the solver to converge divided by
number of unknowns. We set the thresholds €, = 107® and €, = 107" and solve the first time step of the FSI2
benchmark. As Figure 6.12 reveals, the presented method is more efficient at larger problems, that resembles
the results obtained in Chapter 4. We refer to Appendix A for performance details of the solver without the
inner multigrid cycle.






Final remarks and conclusion

Let us shortly present our conclusions, observations and essential findings of this thesis. Here we focus on
the FSI solver as a whole, for the discussion of the generalized Stokes solver we refer to Section 4.4.

7.1 Possible extensions and improvements

Although the results reported in the thesis seem quite satisfactory, there is a lot of things that could be
improved. We already have some ideas on how to speed it up or to resolve some of the issues. Let us here
briefly discuss our vision of further advancement.

7.1.1 Improved Stokes solver

Following the timings provided in Chapter 6 we claim with no doubt that the variable coefficient generalized
Stokes solver is the most time consuming part of our implementation. When computing velocity extension
we solve a linear system with a comparable number of unknowns using the same matrix-free framework, but
the entire operation takes around 50 times less time than the implicit step. It is hard to compare the linear
elasticity equation with the generalized Stokes problem but we believe that a great majority of computational
time could be saved. Moreover, we have an idea of possible improvements.

The main difference between the smoother used in the generalized Stokes problem and the one in elasticity
equation is the inner multigrid cycle. This is probably the most time-consuming part of the algorithm, hence
avoiding it should greatly increase the performance. One way to achieve that is to consider the discontinuous
Galerkin formulation [134] and exploit its properties. For instance, the smoother presented in [114] falls
into the class of operators defined by Zulehner [83] with the exact inverse of Schur complement as in
[82]. Therefore, following our result, we expect at least similar robustness of this smoother with respect
to coefficient jumps. The efficient application of the preconditioner is challenging — the operator relies on
applying inverses of the local matrix to cells sharing one vertex (so-called vertex-patch). Combining it with
a matrix-free approach is far from straightforward, while the standard matrix-based implementation is
significantly less efficient than the solver we used in this work. We have a limited, but promising evidence that
the matrix-free implementation of the preconditioner based on vertex-patch smoothing could be implemented
in a matrix-free way. Our initial estimates suggest that the improved solver may greatly outperform the
current one. Still, a lot of work has to be done to achieve that.

We also consider replacing finite element method with a non-conventional method like Lattice-Boltzman
Method [135]. Since the most time consuming part of the scheme is similar to the one appearing in simulations
of non-Newtonian fluids, we believe it may be possible.

7.1.2 Known issues

Our implementation, written solely by the author of this thesis have been carefully tested. However, it is
surely long and complex enough to include some very special but unintended features, also known as “bugs”.
Location of some of them is known to us, about the rest we will probably learn via later surprises. In this
section, we humbly admit the ones we know of.
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Implementation of neo-Hooken solid

In Section 2.4.2 we discussed the neo-Hookean solid since it is a popular model. Initially, we intended to also
include this model in experiments, however it leads to form a,(:, -) with some integrals over undeformed
solid domain Q. This could be done with some manipulations of our implementation, but we failed to do
that correctly. As a result, we obtained expected beam oscillations in CMS3 benchmark only with absurdly
small time step size. Since the Mooney-Rivlin model is equivalent to neo-Hookean in 2D, and additionally,
does not require integration over Q; we decided to give up this idea.

Scalability limits

We have tested the implementation over 1000 MPI ranks. The first problem we have encountered was
associated with the direct solver at the coarse level. At around 1500 MPI ranks MUMPS refused to solve the
coarse problem, throwing an exception and crashing the program. Honestly to say, for now, we have no idea
how to trace the problem occurring only with so big numbers of MPI ranks. Thus, we are not even sure if
the problem is inside our implementation or its MUMPS internal issue. The 1000 MPI ranks, together with
mutithreading allows us to use 48,000 cores (one MPI rank per node), that is far more than we have currently
available at our disposal.

7.2 Conclusions

This thesis presents a complete monolithic FSI solver, that is capable of solving problems with at least
hundreds millions of unknowns. To achieve that, we employed the ALE formulation of the problem involving
interaction between incompressible hyperelastic solid and incompressible fluid. We then introduced a
predictor-corrector time integration scheme by improving the Geometry-Convective Explicit scheme. The key
ingredient to ensure the constant volume of the solid is volumetric damping proposed in this work. Our
semi-implicit scheme uses a formulation where velocity and pressure are the main unknowns, while the
other fields are computed as dependent variables. To solve the problem at each time step we used the Finite
Element Method in spaces satisfying the LBB condition. Moreover, the proposed time integration scheme is
relatively simple to implement.

The most time-consuming part of the algorithm is computing the solution of the generalized Stokes problem
with variable coefficients. This has to be done one or two times per each time step, depending on the variant of
the predictor-corrector scheme. To solve such a problem we used a preconditioned Krylov subspace method
with a dedicated preconditioner. We proposed the new preconditioner that mixes multilevel and block
solver approaches, which is capable of efficiently solving the Stokes problem with a discontinuous viscosity.
According to numerical experiments, the solver is robust with respect to both mesh size and coefficient jumps.
In the case of semi-implicit advection, the performance decreases with growing Reynolds number.

We tested our FSI solver on the benchmark problem. Although our solid model was different than the one
used in [8], we obtained a surprisingly close match. Unfortunately, we are not aware of any referential results
computed using a similar solid model to compare with.

The maximum time step size of the proposed scheme depends on the treatment of advection. We did not
encounter any stability issues if semi-implicit formulae were used but, in case of explicit advection, the
time step size is limited. We believe that the instabilities are not associated with the explicit geometry
treatment, since the maximum time step size depends mostly on Reynolds number and we did not observe
any geometry-related problems.

The entire FSI solver presented in this thesis was designed and implemented genuinely matrix-free, adding
our humble contribution to unleash the power of modern high-performance computers for solving FSI
problems. The main bottleneck of the program is solving the generalized Stokes problem. However, our
implementation is modular and any part could be easily replaced if any better substitute will be available.
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In this work, we did not consider any 3D FSI problem. Its lack may be disappointing, but we have several
reasons for that. First, the most commonly used 3D benchmark problem is a flow in an elastic cylindrical tube.
The problem is intended to mimic the dynamics of a blood vessel and requires pressure boundary conditions
at the inflow. This feature was not yet implemented. Secondly, even though the solver may seem efficient, 3D
computations require much more computing power than 2D ones. We note, that we did not encountered any
problem when testing our solver on 3D problems.

7.2.1 Original contributions of the thesis

» A new monolithic matrix-free FSI solver was developed

» The solver was implemented within the framework of the finite element library deal.II, exploiting its
ability to handle parallel computations

» Geometry-Convective Explicit scheme was extended to include incompressible hyperelastic Mooney-
Rivlin solid

» A new preconditioner for the generalized Stokes problem with discontinuous coefficients was proposed

» A volumetric damping was introduced in the solid part to improve conservation of volume

» A direct connection between the generalized Stokes problem with discontinuous coefficients and the
FSI problem was shown






Improved Stokes solver

At the final stage of preparing this thesis, we have found out that our multilevel preconditioner does not
require nested multigrid for Schur complement approximation. Instead, it is enough to perform 1 CG iteration
(BiCG in case of a nonsymmetric problem) preconditioned by a Chebyshev iteration. More precisely, we use
§ =5 (. Equation 4.15). This choice requires higher-order Chebyshev operator in case of the unstructured
grid.

In the meantime, we also replaced the eigenvalue estimation method: the maximum eigenvalue approximate
is now computed by 40 iterations of the power method. This allows us to use a better approximation of the
maximum eigenvalue, therefore we can lower the safety factor to s; = 1.05 (cf. Section 4.2.2) expecting an
improved solver performance. This solution, however, comes at a higher cost of eigenvalue estimation.

Below we tested the new variant of the solver in Section 4.3, here we demonstrate the differences by solving the
first time step of FSI2 benchmark problem using the settings from Table 6.2 and a reduced corrector accuracy
€c = 1071, We plot the efficiency versus the number of degrees of freedom — Figure A.1. For comparison, we
also place the timings from Section 6.5.1 (dashed lines). For all considered numbers of levels | = 2, ..., 8 the
predictor converged in 10 iterations while the corrector converged in 3 iterations. We note that the initial
residual norm at the corrector step is over 10* thus the solver reduced the residual by 5 orders of magnitude.
The speedup is between 2 to 4 times, depending on the mesh size. The possibility to skip the inner multigrid
cycle will also greatly reduce work required to implement the support for adaptively refined grids.
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Figure A.1: Efficiency of the solver, as a function of problem size N. FSI2 benchmark,e;, = 107%,e. = 107L.
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ABSTRACT

The solution of fluid-structure interaction (FSI) problems is required in vast applications, ranging from the
study of micro-scale biomechanics to design of offshore platforms. The complexity of phenomena requires
accurate computational methods, resulting in a growing problem size. The resulting problems may involve
billions of unknowns which can only be handled on massively parallel, distributed memory supercomputers.
For handling such large-scale problems special algorithms are required.

In this work, we develop a new method of solving time-dependent FSI problems using the Finite Element
Method in Arbitrary Lagrangian-Eulerian frame of reference. We derive the monolithic predictor-corrector
time integration scheme by adopting the Geometry-Convective Explicit scheme for the problem involving
interaction between incompressible hyperelastic solid and incompressible fluid. To improve conservation of
the volume of solid we modify the mass conservation equation by introducing volumetric damping. The
proposed algorithm consists of several sub-steps at each time step. Among them, the most time-consuming is
the solution of the generalized Stokes problem with discontinuous variable coefficients. This has to be done
one or two times per each time step, depending on the variant of the predictor-corrector scheme. We introduce
anew multilevel preconditioner, that is robust with respect to both problem size and coefficient jumps. We test
our implementation on the Turek-Hron benchmark problem. The design of all building blocks of the solver
is matrix-free, allowing both speed and memory optimizations. The implementation, based on deal.II li-
brary supports parallel computations, was tested on problem problems involving over 200 million unknowns.

Keywords: fluid-structure interaction, FSI, multigrid, matrix-free, monolithic, ALE, HPC.
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STRESZCZENIE

Rozwigzanie zagadnien oddziatywania ptyn-ciato state (ang. Fluid-Structure Interaction, FSI) jest wymagane
w rozleglym spektrum zastosowan, poczawszy od badar biomechaniki w nanoskali po projektowanie
platform wiertniczych. Ztozonos¢ tych zjawisk wymaga dokladnych metod obliczeniowych, co wigze sie z
rosngcym rozmiarem zadania. Nie sg rzadko$cig zadania z milionami czy nawet miliardami niewiadomych, w
przypadku ktérych samo rozwigzanie jest zbyt duze, by je przechowywac w pamieci pojedynczego komputera.
Do obstugi takich zadaf na duza skale potrzebne sg specjalne algorytmy, ktére mozna zaimplementowac na
maszynach masowo réwnolegtych.

W tej pracy rozwijamy nowa metode rozwigzywania zaleznych od czasu zagadnieni FSI sformutowanych
w arbitralnym ukfadzie odniesienia (ALE). Monolityczny schemat catkowania po czasie wyprowadzamy
przez adaptacje schematu GCE(geometry-convective explicit) dla zagadnienia interakcji miedzy nieéciliwym
hipersprezystym cialem statym i nieci§liwym plynem. Aby zapewni¢ stalg objetos¢ ciala statego, mody-
fikujemy réwnanie zachowania masy, wprowadzajac ttumienie objetosciowe. Zadanie na kazdym kroku
czasowym rozwigzywane jest za pomocg metody elementéw skoriczonych. Zaproponowany algorytm w
kazdym kroku czasowym wymaga jednego lub dwéch (w zaleznoéci od wariantu) rozwigzan uogélnionego
zagadnienia Stokesa o silnie zmiennych wspétczynnikach. Nastepnie wprowadzamy nowy wielopoziomowy
operator $ciskajacy (preconditioner), ktéry zapewnia zbiezno$¢ niezaleznie od rozmiaru zadania, jak i skokéw
wspotczynnikéw. Testujemy naszg implementacje na przyktadzie zaproponowanym przez Turka. Konstruk-
cja wszystkich elementéw sktadowych metody nie wymaga przechowywania macierzy (matrix-free), co
umozliwia optymalizacje czasu jak i uzycia pamieci. Implementacja, oparta na bibliotece deal.II, umozliwia
obliczenia réwnolegle i rozwigzywanie zadar z ponad 200 milionami niewiadomych.

Stowa kluczowe: Oddzialywanie ptyn-ciato state, FSI,multigrid, metoda wielosiatkowa, matrix-free, monoli-
tyczny schemat obliczeniowy, ALE, HPC






ORIGINAL CONTRIBUTION OF THE THESIS

» A new monolithic matrix-free FSI solver was developed

» The solver was implemented within the framework of the finite element library
deal.II, exploiting its ability to handle parallel computations

» Geometry-Convective Explicit scheme was extended to include incompressible hyper-
elastic Mooney-Rivlin solid

» A new preconditioner for the generalized Stokes problem with discontinuous coeffi-
cients was proposed

» A volumetric damping was introduced in the solid part to improve conservation of
volume

» A direct connection between the generalized Stokes problem with discontinuous
coefficients and the FSI problem was shown

ABSTRACT

The solution of fluid-structure interaction (FSI) problems is required in vast applications,
ranging from the study of micro-scale biomechanics to design of offshore platforms. The
complexity of phenomena requires accurate computational methods, resulting in a growing
problem size. The resulting problems may involve billions of unknowns which can only be
handled on massively parallel, distributed memory supercomputers. For handling such

large-scale problems special algorithms are required.

In this work, we develop a new method of solving time-dependent FSI problems using the
Finite Element Method in Arbitrary Lagrangian-Eulerian frame of reference. We derive
the monolithic predictor-corrector time integration scheme by adopting the Geometry-
Convective Explicit scheme for the problem involving interaction between incompressible
hyperelastic solid and incompressible fluid. To improve conservation of the volume of
solid we modify the mass conservation equation by introducing volumetric damping. The
proposed algorithm consists of several sub-steps at each time step. Among them, the most
time-consuming is the solution of the generalized Stokes problem with discontinuous
variable coefficients. This has to be done one or two times per each time step, depending on
the variant of the predictor-corrector scheme. We introduce a new multilevel preconditioner,
that is robust with respect to both problem size and coefficient jumps. We test our
implementation on the Turek-Hron benchmark problem. The design of all building
blocks of the solver is matrix-free, allowing both speed and memory optimizations. The
implementation, based on deal.II library supports parallel computations, was tested on
problem problems involving over 200 million unknowns.
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