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Abstract

This thesis covers three mathematical models of theoretical biology, more precisely of sig-

nalling pathways. Their common core is the mathematical tool applied to describe them:

they are all modelled by a Markov Chain with continuous time. The three parts focus

on a di�erent feature of the signalling pathways - as the titles of the three chapters sug-

gest it, I investigate: spatiality, inherent stochasticity, and the phenomenon of information

transmission.

In the �rst part we investigate spatial e�ects of a phosphorylation�dephosphorylation

cycle taking place on a biological membrane. The dynamics of such a network is governed

by reaction rates, which are strongly in�uenced by di�usivity of reactants, their subcellular

localization, and nonspeci�c molecular crowding. In particular, I analyse the dependence

of e�ective macroscopic reaction rate coe�cients on di�usion, and we found, among others,

that e�ective macroscopic reaction rates depend in a nontrivial manner on the di�usion

coe�cient. Generally, they decrease with decreasing di�usion and their formulae contain a

term linearly proportional to the di�usion coe�cient. However, there is the spatial e�ect

that complicats the analysis � in dense systems, especially at low enzyme concentration,

enzymes become encircled by converted substrates, which lowers substantially the e�ective

reaction rate. Additionally, steady states of (de)phosphorylated substrates are controlled by

molecular crowders which, mostly by lowering the e�ective di�usion of reactants, favour the

more abundant enzyme.

In the second part we highlight the importance of stochasticity underlying every process

that involves small numbers of elements. Using stochastic analyses of a bistable genetic

toggle switch, we developed a control strategy that maximizes the chances that a cell, chosen

among identical cells, will express one phenotype, while the rest express another. We restrict

to the strategies that irradiate all cells simultaneously with the same intensity, enhancing

protein degradation in all cells identically. Control of individual cells is made possible only

by monitoring stochastic protein �uctuations and applying UV control at favourable times

and levels. Such control is theoretically impossible if restricted to a deterministic setting.

Among other results, we showed that for two identical cells, our stochastic control law can

drive protein expression of a chosen cell above its neighbour with a better than 99% success

rate.

In the third part we model how information in a simple regulatory network is transmit-

ted. The analyzed models are simple regulatory circuits comprising of two binary random

variables. Mutual information measured between them is considered to quantify how much

information is transmitted in the system. The aim of this research was to �nd optimal

mutual information under constraints set on the energy (entropy production rate) available,

which is a function of the parameters de�ning the system. We compared and classi�ed the

models without feedback and with feedback, starting in the steady state or out of the steady

state, in terms of the amount of information transmitted and the energetic cost of this trans-
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mission. It turns out that if the system starts at steady state, feedback is bene�cial in terms

of optimal information, but the costs of optimal information are the same in both model

variants. In the case of the initial distribution subjected to optimization there is less dif-

ference in the optimal information, but the cost remains highly larger if there is no feedback.

Keywords: e�ective reaction rate, kinetic Monte Carlo, stochastic gene expression, genetic

toggle switch, mutual information, entropy production rate

AMS Classi�cation: 60J, 82D, 92C, 92C05, 92C40
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Streszczenie

Niniejsza rozprawa dotyczy trzech modeli zaczerpni¦tych z dziedziny biologii teoretycznej, a

konkrenie modelowania ±cie»ek sygnaª owych. Ich wspólnym rdzeniem jest narz¦dzie matem-

atyczne u»yte do opisu, a mianowicie �a«cuch Markowa z czasem ci¡gªym. W trzech cz¦±ci-

ach pracy skupiam si¦ na ró»nych aspektach modelowania: przestrzenno±ci, stochastyczno±ci

i przekazywaniu informacji.

W pierwszej cz¦±ci badamy efekty przestrzenne w cyklach fosforylacji�defosforylacji na

bªonie biologicznej. Dynamika takich sieci zale»y od staªych szybko±ci reakcji, które to z kolei

silnie zale»¡ od wspóªczynników dyfuzji reagentów, ich lokalizacji w komórce i zag¦szczenia

molekularnego. W szczególno±ci, przeanalizowali±my zale»no±¢ efektywnych makroskopo-

wych staªych reakcji od staªej dyfuzji i nasza analiza wykazaªa mi¦dzy innymi, »e efektywne

makroskopowe staªe reakcji zale»¡ nietrywialnie od wspóªczynnika dyfuzji. Ogólny wniosek

jest taki, »e malej¡ one wraz z malej¡c¡ dyfuzj¡, a wzory zawieraj¡ liniow¡ zale»no±¢ od

wspóªczynnika dyfuzji. Obliczenia komplikuje efekt przestrzenny � w zapeªnionych sieciach

(g¦stych ukªadach), szczególnie przy niskich st¦»eniach enzymów, te ostatnie zostaj¡ otoc-

zone przez subtrataty, które ju» weszªy z nimi w reakcj¦. To istotnie zmniejsza efektywne

staªe szybko±ci reakcji. Ponadto stacjonarne frakcje ufosforylowanych i zdefosforyzowanych

substratów zale»¡ od zatªoczenia molekularnego, które poprzez zmniejszenie efektywnych

staªych reakcji �sprzyjaj¡� temu enzymowi, którego jest wi¦cej.

W drugiej cz¦±ci badamy znaczenie stochastyczno±ci wpisanej w ka»dy proces, w którym

liczba rozwa»anych elementów (np. produkowanych cz¡steczek biaªka) jest maªa. Wyko-

rzystuj¡c stochastyczn¡ analiz¦ bistabilnego przeª¡cznika genetycznego, de�niujemy strate-

gi¦, która maksymalizuje prawdopodobie«stwo, »e jedna komórka, wybrana spo±ród identy-

czych komórek, b¦dzie miaªa inny fenotyp ni» reszta. U»ywan¡ strategi¡ jest na±wietlanie

wszystkich komórek jednakowo promieniowaniem UV, degraduj¡cym biaªka w komórkach.

Taka strategia dziaªa tylko wtedy, gdy wykorzystamy stochastyczne �uktuacje i wª¡czymy

promieniowanie w odpowiednich momentach i z odpowiednim nat¦»eniem. W przypadku,

gdy ewolucja ukªadu b¦dzie wyª¡cznie deterministyczna, taka strategia nie zadziaªa. Jed-

nym z kilku wyników jest pokazanie, »e dla dwóch identycznych komórek, przy u»yciu

skonstruowanej strategii poziom biaªka w wybranej komórce b¦dzie wy»szy ni» w drugiej

z prawdopodobie«stwem 0.99.

W trzeciej cz¦±ci modelujemy, jak przekazywana jest informacja w prostym ukªadzie

biologicznym, skªadaj¡cym si¦ z dwóch binarnych zmiennych losowych. Wyliczona infor-

macja wzajemna jest interpretowana jako ilo±¢ informacji przekazanej w systemie. Celem

bada« zawartych w trzecim rozdziale byªo znalezienie maksymalnej informacji wzajemnej z

ograniczeniem poªo»onym na dost¦pn¡ energi¦ - szybko±¢ produkcji entropii, która to jest

natomiast funkcj¡ parametrów - szybko±ci przej±¢ mi¦dzy stanami. Porównywali±my opty-

maln¡ ilo±¢ przekazanej informacji i koszt energetyczny dla modeli bez sprz¦»enia i ze sprz¦»e-

niem zwrotnym, ze stacjonarnym lub niestacjonarnym warunkiem pocz¡tkowym. Pokazal-
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i±my, »e w przypadku stacjonarnego warunku pocz¡tkowego, sprz¦»enie zwrotne pozwala na

przekazanie wi¦kszej ilo±ci informacji, ale koszt energetyczy jest taki sam, jak dla modelu

bez sprz¦»enia zwrotnego. Je±li warunek pocz¡tkowy jest równie» poddany optymaliza-

cji, wówczas dla obu modeli (bez i ze sprz¦»eniem zwrotnym) jest mniejsza r»nica w ilo±ci

przekazanej informacji, ale koszt energetyczny jest du»o wyw»szy dla modelu bez sprz¦»enia

zwrotnego.
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Introduction

This thesis is dedicated to mathematical modelling of signalling pathways. Modelling as

a useful concept to approximate the phenomena of the surrounding world has been used

for quite a while now in all sciences. Even in humanities researchers has perceived the

bene�ts of building models � even though the description of what is modelled might get

simpli�ed, it is the invaluable ability to start a formal analysis and deduction that renders

modelling so attractive to scientists. And it is obviously not whichever modelling that

enables precise reasoning and concluding � indeed, the Queen of Sciences provides the best

tools for translating the reality into a robust enough and yet accurate mathematical model.

Since mathematical modelling has become almost a separate branch of Mathematics, and it

widens its scope all the time, this thesis comprises three, out of numerous, aspects of this

modelling - space, noise, and information transmission. All three are analyzed on the canvas

of a di�erent model, yet they all belong to a wide domain of �signalling pathways� models.

Signalling pathways are networks of interacting molecules governing probably all activities

of a cell. A signalling pathway can be of any degree of complexity, and indeed, those found

in nature are usually multi-component networks, enabling feedback, signal ampli�cation,

cascades of signals, etc.. Obviously, this is in the modeller's task to simplify such huge

networks enough so that the simpli�ed version exhibits the same behaviour, yet it is much

simpler to handle mathematically and (or) numerically.

It is not a new trend to cross borders between disciplines that in school are separate

subjects. We were not taught by Helmholtz, Maxwell, and Rayleigh, and perhaps that is

why we do not see the complementarity of biology, chemistry, physics, and other sciences,

because our teachers did not show us how closely related they are. Also, we are not used

to think that phenomena can be translated into mathematical models and subjected to a

rigorous mathematical analysis. Luckily, in graduate studies in Science it becomes obvious

that the intersection of disciplines is nonempty and that an adequate mathematical model

is required in order to formulate statements to validate heuristic reasoning and check the

intuition. This thesis enjoys such interdisciplinarity, as all three families of the models are

drawn from theoretical biology, physical chemistry, and biophysics.

Lastly, but perhaps most importantly, all models presented here have a common mathe-

matical background - Markov Chains with continuous time, the Markov Jump Process. At

11



12

the beginning of every chapter I describe the state space and transition rates that de�ne

the underlying Markov Jump Process. Formal de�nition and mathematical construction of

the state spaces, as well as some facts about Markov Jump Process are provided in the

Appendix.

Construction of the thesis

As mentioned above, this thesis is divided into three parts (chapters); each one of them re-

sulted from a di�erent question asked about mathematical modelling of signalling pathways.

The �rst part is about spatiality. In particular, it focuses on the rates of coupled bio-

chemical reactions, and as these take place mainly on the membrane, the presented model

accounts for spatial e�ects such as the subcellular localization of the reactants, and non-

speci�c molecular crowding. I chose to present space as the �rst of the three aspects of

mathematical modelling of signalling pathways not only because chronologically it was the

�rst research I undertook in my PhD studies, but also because it is still a growing topic

in applied mathematics, biomathematics, and mathematical modelling. I remember one of

the �rst conferences I attended and a memorable introductory slide on partial di�erential

equations in cancer modelling. The witty professor showed a snapshot from �Star Trek�

with the famous quotation: �space is the �nal frontier�. This is not just a bon-mot from

a good �lm, but a diagnose of the direction in which research in the mentioned �elds has

headed in the last years and will still be heading in the future. Maybe not surprisingly

my supervisors were interested in taming space in modelling of even simple, but stochastic

phenomena encountered in biology. At that time a co-student and colleague of mine, Marek

Kocha«czyk, developed a powerful software, SpatKin, that e�ectively performs spatial Ki-

netic Monte Carlo simulations. Our goal was to support numerical simulations by as accurate

as possible approximations. The latter resulted from purely analytical considerations and

were then �veri�ed� by performed numerical simulations. We published our results in [50].

Later on another colleague, Paweª Naª¦cz-Jawecki, continued and extended our coopera-

tion, and published the results in [40]. We aimed at establishing the dependencies between

di�usion and densities of substrates and enzymes in a model of a reversible reaction cycle

(phosphorylation�dephosphorylation). We investigated e�ects that might play a role there,

for example the molecular crowding or the size of the membrane, formation of transient

enzyme-substrate complexes. We found analytical expressions for the e�ective macroscopic

reaction rate constants (EMRRCs) in two limits of in�nite and zero motility. For non-zero

but small di�usion, we found numerically that the EMRRCs contain a term linearly pro-

portional to the di�usion coe�cient. EMRRCs decrease with decreasing di�usion and this

dependence is stronger for the less abundant enzyme. Steady-state fraction of substrates

in a given state (phosphorylated/dephosphorylated) can increase or decrease with di�usion,
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depending on relative concentrations of enzymes changing the state of the substrate (ki-

nases phosphorylate, phosphatases dephosphorylate). Molecular crowders favour the more

abundant enzyme. Analytical reasoning comprising mean-�rst passage time considerations

approximate very well spatial kinetic Monte Carlo simulations.

The subject of the second part of the thesis is stochasticity. In biophysics it has become an

axiom that �uctuations are present in cellular processes [7] and scientists argue that noise in

gene regulation for instance, enables adaptation and thus survival of cells [30, 56, 48]. But

I will focus there on yet another feature of a �noisy� signalling pathway - its controllability.

The study began as a project at the 2014 q-bio Summer School (qbSS, Albuquerque, New

Mexico) and resulted in a publication in Physical Biology in 2015 [51]. In this work my

colleagues, Johannes Keegstra, Nicola Gritti, Mohammad Soltani, and myself, under the

supervision of Brian Munsky, built simpli�ed mathematical and computational models to

capture the dynamics of stochastic gene regulatory responses when subjected to temporary

�uctuating, yet spatially homogenous, environmental conditions. We explored the theore-

tical possibility to select at random, from within a population, one cell, and then to use a

single, spatially uniform input to control that particular cell, that is to drive it to achieve

a di�erent phenotype than the rest. It is not possible if the model is strictly deterministic,

so we explored the extent to which it is possible in the setting that accounts for noise at

the single-cell level. One of the most spectacular results is that the stochastic control law

(UV radiation, described in details in the appropriate section), applied identically to the

whole population of cells, can render the chosen cell phenotypically di�erent with a very

high precision - in the case of a two-cell population, the probability that the chosen cell

performs better (synthesises more proteins) is 99% and for a population of 30 identical cells

we were able to maintain the chosen cell within the top 20% cells. The �freshness� of our

work for biophysicists resulted from the fact that cellular noise is typically said to impair

the predictability of biological responses; we managed to show that it can improve their

controllability. All �gures presented in this part were published in [51], and I use them with

their author's, Johannes Keegstra, kind permission.

Finally, the scope of the third chapter is information transmission in signalling pathways.

The biological inspiration for this part was the recurring question about how biological

circuits transmit signals and at what price. The analyzed models are relatively simple, con-

sisting of two binary random variables, interacting with one another. The speci�c research

aim was to compute optimal mutual information, interpreted as information transmitted

in the system, under constraints set on entropy production rate, interpreted as energy dis-

sipated during the process of transmitting information. Considered models (they di�ered

in transition rules and initial conditions) were compared in terms of optimal mutual in-

formation and the energetic cost. The mathematical tools exploited in this part comprise
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discrete information theory and constrained optimization. Although we have touched some-

how the phenomenon of information transmission in the �rst chapter, where the products

of chemical reactions were some sort of �information carrier� about the density of enzymes

and substrates, the size of the reactor etc., the term �information� can be used there rather

colloquially. In the last chapter, we will treat it mathematically, introducing two random

variables between which mutual information will be measured. Mathematically speaking,

we will optimize mutual information with a constraint set on entropy production rate, which

is, as will be shown, a function of . Heuristically speaking, if energy is considered a cost,

we will ask a simple and fashionable question: how costly information is? And how can we

transmit as much information as possible having limited energetic resources? The results

presented in this part were obtained in collaboration with Aleksandra Walczak during my

one year internship at Ecole Normale Supérieure in Paris. Preliminary results presented in

this part concerning information optimization case of no constraint set on �energy� were �rst

obtained by Francesca Mancini in [33]. Some further results for the case of constrained ener-

gy, but only for when the system starts at the steady state were published in [32]. Within

my research conducted in Paris I continued these investigations, extending the results to the

out of steady state cases and I introduced and evaluated the �cost� of optimal information. I

found, among others, that although it is usually more e�cient for the amount of information

transmitted if there is a feedback from the output variable to the input variable, the cost of

transmission is greater for the no-feedback variant only if the systems are allowed to start

out of the steady state. If they start at the steady state, the cost of information transmission

for the no-feedback system and the system with feedback is the same.



Chapter 1

Space

If you know where you are, you do not

know how fast you are moving, and if

you know how fast you are moving,

you do not know where you are.

ven. Fulton J. Sheen

Philosophy of Science

1.1 Motivation

In this chapter I introduce and analyze a model of chemical reactions that take place in

two-dimensional structures. The biological inspiration was drawn from studying plasma

membranes, where signalling pathways enable communication between the cell and the outer

world.�Space� thus refers to a 2-D plane with periodic boundary conditions, so that it mimics

the spherical character of the cell membrane - every lattice site has six neighbours and there

is no �border� as such. The mathematical task was to embrace the spatial aspect of such

phenomenon. One would naturally think to do it through partial di�erential equations,

precisely reaction-di�usion equations. Our modelling approach was di�erent - we discretized

the continuous space into sites thus obtaining a (�nite) lattice. However, the time in our

model remained a continuous variable, so that the mathematical concept we obtained is the

Markov Jump Process (see the Appendix).

The chemical canvas we work on is a cycle of coupled antagonistic reactions. There

are two kinds of enzymes, kinases and phosphatases, that change the state of the substrate

- it is either phosphorylated (by kinases) or dephosphorylated (by phosphatases). This

phosphorylation�dephosphorylation motif is therefore a cycle of reversible, antagonistic re-

actions. I will not go into chemical details, as this is only a working example of any such

motif where a molecule can be in either of two states and it needs the encounter with a

15



16 CHAPTER 1. SPACE

proper molecule type to change the state. It can be written down as:

K + Su
c−→ K + Sp, (1.1a)

P + Sp
d−→ P + Su, (1.1b)

where Su and Sp stand for dephosphorylated and phosphorylated substrates, respectively,

K represents the kinase, and P � the phosphatase. The letters above the arrows represent

corresponding microscopic reaction rates.

Just as a reference to the above scheme, we also consider a variant in which dephospho-

rylation is a �rst-order reaction, i.e.,

Sp
d0−→ Su, (1.2)

whereas phosphorylation still occurs as previously.

The dynamics of such networks is governed by reaction rates, which are strongly in�uenced

by di�usivity of reactants [12], their subcellular localization, and molecular crowding [15,

18, 24]. Therefore the overall aim of this part is to establish the dependencies between the

densities of substrates in a given state (phosphorylated/dephosphorylated) and the densities

of the two enzymes (kinases and phosphatases) and di�usion. However, we also discuss other

possible e�ects that might play a role, for example the mentioned molecular crowding or the

size of the membrane (number of lattice sites).

1.2 Mathematical description

Having introduced in the previous section our model, we can specify the state space and

the transition rates that characterize the considered Markov Chain. The state space is a

set of functions attributing to every lattice site a given molecule occupying it, or an empty

element. It is given explicitly for every model considered, in the Appendix. Transitions are

de�ned by microscopic reaction rates c and d, and the microscopic di�usion rate, motility,

m.

Since our aim is to �nd stationary mean densities of molecules, we will have to calculate

the expected value of a binary random variable Xi:

Xi =

{
1 if the i-th site is occupied by M

0 if the i-th site is not occupied by M,
(1.3)

and sum it over all lattice sites i. M is the symbol of the substrate molecule, either phos-

phorylated or not, M ∈ {Su,Sp}. We will not calculate the densities of enzymes, as their

counts are �xed.
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1.3 Mean �eld ansatz

Before surrendering to numerical methods and �nding the expected value of Xi by simula-

tions only, we tried to �reduce� the space to two non-spacial coe�cients that would be used

in the ordinary di�erential equation for the time evolution of substrate densities:

d
dtρSu

= −ceffρKρSu
+ deffρPρSp

, (1.4a)
d
dtρSp

= ceffρKρSu
− deffρPρSp

. (1.4b)

These two equations are complementary, since their solutions satisfy ρSu
(t) + ρSp

(t) = ρS =

const (total number of substrate molecules is �xed). The steady-state solution of Eqs. (1.4)

reads:

ρSu
=

deffρP

ceffρK + deffρP
ρS, (1.5a)

ρSp =
ceffρK

ceffρK + deffρP
ρS. (1.5b)

Equations (1.4) are linear and their stationary solution is globally asymptotically stable. We

call ceff the e�ective macroscopic phosphorylation rate constant and deff the e�ective macro-

scopic dephosphorylation rate constant. These coe�cients are supposed to approximate as

accurately as possible the joint e�ect of all molecules - this is the essence of the so-called

mean �eld approximation.

If we were able to track the time evolution of our system and count the reactions that

occurred until a given time, we would use the following de�nition of the e�ective macroscopic

reaction rates, (EMRRCs):

ceff =
n

ρSu
ρKV∆t

, (1.6a)

deff =
n

ρSp
ρPV∆t

(1.6b)

where n is the number of (de)phosphorylation reactions that �red during a time interval ∆t

and V is the lattice surface area (i.e., total number of lattice sites). The densities of kinases,

phosphatases and substrates are denoted by ρ with a respective subscript: ρK, ρP, ρSu , and

ρSp . But these can only be obtained by numerical methods, which I describe in the next

section.
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1.4 Numerical methods

The time evolution of chemical kinetics is simulated through the stochastic simulation algo-

rithm, SSA, �rst proposed by Gillespie [17]. In its classical formulation:

• the initial state of the system is chosen;

• for a given con�guration, the transition rates, λi, are calculated;

• time τ until the next reaction is drawn from the exponential distribution with param-

eter (mean) 1∑
i λi

= 1/λ;

• the transition type is chosen by drawing from the discrete distribution with probability

P (transition = i) = λi/λ;

• the system is updated until a stopping time.

The above algorithm was extended to account for a di�erent than usual�reaction� allowed

- hopping of molecules between adjacent empty sites. This change was implemented by

a colleague of mine, Marek Kocha«czyk [27, 60, 26]. So �rst, molecules are placed on

discrete sites of a 2-dimensional triangular lattice which forms a square domain with periodic

boundary conditions. Possible transitions (hopping of molecules to adjacent empty lattice

sites or reactions) are listed with their respective probabilities. Time-step is drawn at random

from the exponential distribution with the rate parameter equal to the sum of the rates of

all possible events. The rates of transitions are de�ned by microscopic rate constants, c and

d, and motilities, m (the propensity of hopping to a neighboring empty site on the triangular

lattice ism/6). Motilities are assumed to be equal for molecules of all types (unless otherwise

speci�ed). After every event, the list of all events is updated. However, since the change

in the system con�guration after every simulation step is local, only a partial update of the

list is necessary.

Initial distribution of molecules on the lattice is uniformly random. The in�uence of

the lattice size on the results is discussed in the �lattice size� subsection. The simulations

were preceded by an equilibration phase and mean densities of substrates were estimated

by averaging over a su�ciently long trajectory [26]. In order to calculate the EMRRCs, the

number of reactions that �red in a time interval (after cutting o� the equilibration phase)

was recorded. The number of enzyme molecules was �xed. All other details are given in the

captions of �gures.
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1.5 Basic Model

Recall that the state space is a set of functions ordering to each lattice site the molecule by

which the site is occupied, or an empty element. Therefore, for this �rst model considered,

governed by reactions (1.4), the function takes �ve values for every lattice site - either it is

empty, or is occupied by one of four molecule types - a phosphorylated substrate molecule, a

dephosphorylated substrate molecule, a kinase, or a phosphatase. The transitions between

the states consist of phosphorylation and dephosphorylation reactions (these change the

densities of phosphorylated and dephosphorylated substrates) and the di�usion events (these

change only the distribution of molecules on the lattice).

Analytical results

In�nite-motility limit

We assume that in the in�nite-motility limit the probability of �nding a given molecule is

uniform on the lattice. Thus, at any time the density of enzyme�substrate pairs is given by

the product of densities multiplied by the number of potential neighbours, e.g. the kinase�

dephosphorylated substrate pair density is equal to 6ρKρSu
. Therefore, the phosphorylation

rate is equal to 6cρKρSu
, which in light of Eq. (1.4) gives c∞eff = 6c. The limit of in�nite

motility is compared later with simulations performed for high motilities.

Zero-motility limit

The zero-motility limit is a singular limit, since without mixing the whole process is deter-

mined by initial positions of enzymes and substrates. For an arbitrarily small motility, how-

ever, the system relaxes after a su�ciently long time. The zero-motility limit approximates

the behaviour of dense systems, in which di�usion is substantially reduced, but reactions

still occur for substrates in a close vicinity of opposing enzymes. Increased density, together

with reduced di�usion has been intensively modelled in recent years see [21, 52, 10, 19, 22].

Formation of dense ordered patterns of proteins and other molecules was for example con-

sidered in [42] (and references therein).

The analysis of this limit starts with the calculation of the steady-state densities of phos-

phorylated and dephosphorylated substrates, ρSp
and ρSu

:

ρSp
= p+ · ρS, ρSu

= ρS − ρSp
, (1.7)

where p+ is the probability that a substrate molecule is in the phosphorylated state.

When the motility is zero, the probability that a given substrate molecule is phospho-

rylated depends solely on the number of neighbouring kinases, i, and the number of neigh-
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bouring phosphatases, j, and is equal to

p+
ij =

ic

ic+ jd
. (1.8)

The probability of having exactly i kinase and j phosphatase neighbours is

pij =

(
6

i

)
ρiK

(
6− i
j

)
ρjP (1− ρK − ρP)6−i−j , i, j ∈ {0, 1, . . . , 6}, 1 ≤ i+ j ≤ 6. (1.9)

Eq. (1.9) is exact only on in�nite domains with in�nite number of kinases and phosphatases,

however it serves as a good approximation when the number of enzymes of each type is

much larger than one.

The density of phosphorylated substrates, ρSp
, can be calculated in the following way:

ρSp
=ρSp

p0,0+

+ ρS

(
p1,0 + p1,1

c

c+ d
+ . . .+ p1,5

c

c+ 5d
+ . . .+ p5,0 + p5,1

5c

5c+ d
+ p6,0

)

=ρSp
p0,0 + ρS

∑

1≤i+j≤6

pij
ic

ic+ jd

=ρSpp0,0 + ρS

∑

1≤i+j≤6

pijp
+
ij

⇒

ρSp = ρS

∑

1≤i+j≤6

pijp
+
ij

1− p0,0
. (1.10)

In this way we obtained the formula for p+, as it is equal to ρSp
/ρS and 1−p0,0 =

∑

1≤i+j≤6

pij :

p+ =
∑

1≤i+j≤6

pijp
+
ij

/ ∑

1≤i+j≤6

pij . (1.11)

Steady state EMRRCs can be now calculated. Note that in the zero-motility limit reactions

occur only for the substrate molecules which have neighbours of di�erent types (i.e., at least

one kinase and one phosphatase). Again, the probability that the substrate which has i

neighbouring kinases and j neighbouring phosphatases is dephosphorylated is jd/(ic+ jd).

Thus the rate at which phosphorylation reaction occurs is jd/(ic+ jd) · ic. In the stationary

state, as there is no change in the fraction of phosphorylated and dephosphorylated sub-

strates, the rates at which phosphorylation and dephosphorylation reactions occur must be

the same. Therefore, the number of phosphorylation/dephosphorylation reactions per reac-

tor volume per time are equal to ρS

∑
i,j≥1,i+j≤6 pij(ic · jd)/(ic+ jd) and, correspondingly,
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the e�ective phosphorylation and dephosphorylation rate constants are equal to

c0eff =
ρS

ρKρSu

∑

i,j≥1
i+j≤6

pij
ic · jd
ic+ jd

, (1.12a)

d0
eff =

ρS

ρPρSp

∑

i,j≥1
i+j≤6

pij
ic · jd
ic+ jd

, (1.12b)

where ρS/ρSu
= 1/(1− p+) and ρS/ρSp

= 1/p+, with p+ given by Eq. (1.11).

Finite, non-zero motility

Two extreme cases of zero and in�nite motility have been analyzed. In the in�nite motility

limit, also known as the reaction-controlled limit, the e�ective macroscopic reaction rate

constants are proportional to the microscopic reaction propensities (for molecules in contact).

In this limit, sincem� c andm� d, the probability that an enzyme reacts with a substrate

at a single encounter is negligibly small and proportional to the microscopic rates c and d.

The small motility limit arises when the microscopic reaction rates c and d are big

compared to motility. Processes characterized by low motility and large reaction propensities

are called di�usion-limited. For such processes the probability that an allowed reaction �res

at every collision of molecules is close to 1. Therefore, for such processes, EMRRCs are

proportional to the collision frequency. And the collision frequency is proportional to the

motility m. Our situation is more complex, since even in the limit of zero motility the

reaction rates are nonzero, as shown in the previous section. Accordingly, one could expect

the following formula for macroscopic reaction rate:

d
dtρSp

= (λm+ c0eff) ρK ρSu
− (λm+ d0

eff) ρP ρSp
, (1.13)

where λ is some coe�cient. In fact, the considered case is even more complicated, since,

especially at low enzyme densities, the spatial distribution of the phosphorylated and de-

phosphorylated substrates is nonuniform. That is, the phosphorylated substrate molecules

are more likely to be present in the vicinity of a kinase, while the dephosphorylated sub-

strate molecules - in the vicinity of a phosphatase. As a result, even in the symmetric case

of c = d and ρK = ρP, in which the overall probability that a substrate is phosphorylated is
1
2 , kinase molecules collide much more often with phosphorylated substrates, which reduces

the e�ective phosphorylation rate. Intuitively, this e�ect increases with decreasing density

of enzymes and causes that each phosphatase molecule is surrounded by a cloud of dephosp-

shorylated substrates and each kinase molecule by a cloud of phosphorylated substrates.

Unfortunately, in the general case of �nite motility, EMRRCs are controlled simultane-

ously by the motility, both contact reaction propensities, and densities of both enzymes and

therefore analytical determination of these rates is a challenging problem. It is only for Mul-
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tiple lattice occupancy model that we were able, after a small modi�cation of the considered

Markov Chain, to go further and provide some analytically derived approximations.

Numerical results

Steady state dependence on enzyme density and motility

In this section we analyze numerically the dependence of the steady-state density of phos-

phorylated and dephosporylated substrates and EMRRCs on motility and densities of the

opposing enzymes.

Recall that in the in�nite-motility limit the e�ective macroscopic phosphorylation and

dephosphorylation rate constants are: c∞eff = 6c and d∞eff = 6d, and correspondingly (due to

Eq. (1.5)) the density of phosphorylated substrates is

ρSp
=

cρK

cρK + dρP
ρS. (1.14)

To keep the steady-state densities of phosphorylated and dephosphorylated substrates equal

to 1
2 in the limit of the in�nite motility, we keep cρK = const and dρP = const, that is, we

set c = 1/6ρK and d = 1/6ρP.

The �rst result is that for �nite motilities the phosphorylated substrate fraction increases

with ρK/ρP (in the analysis we keep ρK = 0.1 and vary ρP), and we show that the smaller

the motility is, the more pronounced this e�ect is, see Fig. 1.1(a).

The dashed line for m = 0 tends to 1 with ρK/ρP tending to in�nity. For low motility,

m = 1, the numerically estimated ρSp
matches closely the zero-motility limit. Similarly,

for large motilities, ρSp
is close to the in�nite-motility limit. Because of the symmetry, for

ρK = ρP the phosphorylated substrate fraction is equal to 1
2 for all motilities.

In Fig. 1.1(b) we show that when kinases are more abundant than phosphatases, but

at the same time have much lower catalytic activity, the dependence of ρSp
/ρS on motility

is strongly pronounced. At low motilities, substrates remain mostly in the phosphorylated

state, ρSp/ρS ≈ 0.9, while at high motilities they are mostly dephosphorylated, ρSp/ρS ≈ 0.1.

The above shows that, generically, in the regime of low motilities (di�usion-limited) it is

the density of enzymes that decides about the state of the system and for large motili-

ties (reaction-controlled limit) crucial is the product of the microscopic reaction rates and

densities.

In Fig. 1.1(c) we show that the density of phosphorylated substrate can either decrease

or increase with motility depending on the enzyme densities ratio. For a �xed density of

kinases (ρK = 0.1) we analyze the dependence of ρSp on motility for four values of phos-

phatase densities, as well as for the FOD model. Since, as in Fig. 1.1(a), dephosphorylation

microscopic rate is set d = 1/6ρP, for increasing motility, ρSp/ρS tends to 1
2 , regardless

of the phosphatase density. However, for small motilities ρSp
/ρS depends strongly on the

phosphatase density, and in general is di�erent than for the FOD model. Only for a very
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high density (ρP = 0.3), the fraction ρSp/ρS closely matches the FOD model prediction with

d0 = 1. This is due to the fact that for ρP = 0.3 the probability that a given substrate

molecule is in contact with at least one phosphatase is high (equal to 1 − (0.7)6 = 0.88)

and therefore the dephosphorylation is e�ectively of �rst order. This demonstrates that the

FOD model cannot serve as a good approximation across a broad range of motilities.

A descriptive explanation of the results shown in Fig. 1.1 is as follows: for a decreased

phosphatase density (compensated by a proportionally increased dephosphorylation rate

d), phosphatases are surrounded by dephosphorylated substrates and therefore the e�ective

dephosphorylation rate decreases. Intuitively, this e�ect becomes stronger for low motilities,

for which substrates have a higher chance to be dephosphorylated after a single encounter

with a phosphatase and vanishes in the limit of in�nite motility, when the probability that

a substrate molecule is in the phosphorylated state does not depend on its position.

FOD
ρP = 0.3
ρP = 0.1

ρP = 0.03
ρP = 0.01

(c)

m
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Figure 1.1: (a) Fractional density of phosphorylated substrates, ρSp/ρS, as a function of the
enzymes density ratio for di�erent values of motility,m. Analytically computed limits of zero
and in�nite motility are marked with dashed and dotted lines. Parameters are: ρS = 0.3,
ρK = 0.1, c = 1/6ρK, d = 1/6ρP. In this series of simulations, the density of kinases
was kept constant, while the density of phosphatases was varied from ρP = ρK/0.25 = 0.4
to ρP = ρK/12 ≈ 0.008. By setting d = 1/6ρP, the change of phosphatases density was
compensated by the proportional change of the microscopic dephosphorylation rate. (b)
Fractional density of phosphorylated substrates as a function ofm, in the case when the more
abundant enzyme (kinase) has much lower catalytic activity. Simulations were performed
for ρS = 0.3, ρK = 0.1, ρP = 0.01, c = 1, d = 100. (c) Fractional density of phosphorylated
substrate as a function of m for di�erent values of phosphatase density ρP as well as for
the�rst-order dephosphorylation model marked as FOD, with d0 = 1. Simulations were
performed for ρS = 0.2, ρK = 0.1, c = 1/6ρK, d = 1/6ρP.
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E�ective macroscopic reaction rate constants � EMRRCs

In here I provide some numerical results for EMRRCs estimate. As argued before, ceff

can be estimated according to Eq. (1.6). In Fig. 1.2 we show ceff/c
∞
eff for three values of

dephosphorylation rate d, as well as for the FOD model with d0 = 1.

E�ective macroscopic phosphorylation rate, ceff , increases with reagents' motility and

this e�ect is more visible for small dephosphorylation reaction rate d. This shows that

the phosphorylation kinetics is strongly coupled with the dephosphorylation kinetics and

therefore the e�ective macroscopic phosphorylation and dephosphorylation reaction rates

cannot be estimated separately. Figure 1.2 shows that ceff is a function of ρK, ρP, c, d, and

m. The dependence of ceff on motility is the strongest at the smallest considered enzyme

densities, ρK = ρP = 0.01, see Fig. 1.2(c), and the weakest for the highest considered

densities, ρK = ρP = 0.2, see Fig. 1.2(a), where c0eff/c
∞
eff is large. This, consistently with

Fig. 1.1, is due to the fact that at high enzyme densities, substrates are constantly in contact

with both kinases and phosphatases, and thus the phosphorylation and dephosphorylation

reactions can occur almost independently of the di�usion. As shown for ρK = ρP = 0.2

and ρK = ρP = 0.05, Fig. 1.2(a,b), numerically estimated ceff for m = 0.1 matches well the

analytically calculated limit of c0eff ; for ρK = ρP = 0.01, Fig. 1.2(c), the agreement is worse

since the convergence of ceff(m) to c0eff is slower.

Lets analyze these e�ects in the limit when phosphorylation is a di�usion-driven process.

As discussed above, such a limit can be achieved when di�usion-independent reactions are

very infrequent compared to those driven by di�usion, i.e., when:

c0eff � λm, d0
eff � λm. (1.15)

Simultaneously, the microscopic contact reaction propensities, c and d, should be much

larger than motility, so that the probability of a reaction �ring at a collision is close to 1,

c� m, d� m. (1.16)

These conditions are di�cult to satisfy in numerical simulations, therefore to estimate the

di�usion-limited contribution, λm, we subtracted the analytically calculated zero-motility

rate constant c0eff from the numerically estimated ceff . We assume here high reaction

propensities, c = d = 1000, and consider motilities m ∈ [0, 1000] and enzyme densities

ρE ∈ [0.0001, 0.1]. The EMRRC is estimated, as previously, from long-run numerical simu-

lations on the 100× 100 lattice, based on Eq. (1.6).
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Figure 1.2: Scaled e�ective macroscopic phosphorylation rate constant ceff/c
∞
eff as a function

of motility m. Densities of enzymes are: ρK = ρP = 0.2 in (a), ρK = ρP = 0.05 in (b), and

ρK = ρP = 0.01 in (c). First order dephosphorylation model marked as FOD, with d0 = 6ρP,

which corresponds to d = 1 in the basic model. Analytically calculated c0eff are marked by

respective arrows next to the vertical axis. For all panels ρS = 0.3, c = 1.
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Figure 1.3: (a) Scaled e�ective macroscopic phosphorylation rate constant ceff/c
∞
eff as a

function of enzyme density ρK = ρP. (b) Scaled e�ective macroscopic phosphorylation rate

constant with subtracted zero-motility contribution: (ceff − c0eff)/c∞eff with respect to enzyme

density. (c) (ceff − c0eff)/c∞eff with respect to motility. For all panels c = d = 1000.
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First we investigate the symmetric case of ρK = ρP =: ρE. In Fig. 1.3(a) we show the

dependence of ceff/c
∞
eff on enzyme densities in a log�log scale for seven values of motility.

The numerical predictions for small motilities, m = 1 and m = 3, lie close to the theoretical

prediction of the zero-motility limit (dashed line). It shows that for relatively small motilities

and large enzyme densities the zero-motility contribution is a substantial part of the overall

e�ective rate. The theoretically predicted c0eff is the lower bound for the e�ective rate

coe�cient. The zero-motility contribution is proportional to the enzyme density and thus

for intermediate motilities, m ∈ {10, 30}, it becomes dominant as enzyme density increases.

In order to eliminate the zero-motility contribution from the e�ective rate coe�cient,

we show (ceff − c0eff)/c∞eff with respect to enzyme densities (Fig. 1.3(b)) and with respect to

motility (Fig. 1.3(c)). In light of Eq. (1.13) we would expect ceff − c0eff = λm and therefore

(ceff − c0eff)/c∞eff to be proportional to m for �xed densities of enzymes, which is con�rmed

in Fig. 1.3(c). The average of gradients of lines on the log�log plot is equal to 0.99. We

therefore numerically con�rmed our heuristic prediction that in the small motility limit:

ceff = c0eff + λ(ρE)m. (1.17)

Figure 1.3(b) con�rms that the coe�cient λ decreases (weakly) with decreasing enzyme

density. This dependence follows from the fact that at low enzyme densities, enzymes are

surrounded by clouds of converted substrates.

Lattice size

So far my �taking into account space� in the modelling of the presented reaction network

was focused on considering di�usivity and its interplay with the reaction rates. One could

also ask a very natural question about the impact of, simply, the size of the reactor, in

which the molecules react. We did perform an analysis of the in�uence of the lattice size

on the estimated EMRRCs (see Fig. 1.4). The simulations were performed on lattices of

sizes 300 × 300, 100 × 100, 30 × 30, and 10 × 10. For each lattice size and each parameter

set (corresponding to the parameters chosen for Fig. 1.2(b), we performed 10 independent

simulations with simulation times t = 103, t = 9 × 103, t = 100 × 103, t = 900 × 103, i.e.,

inversely proportional to the lattice size, which assured that more than 5 × 104 reactions

�red in each simulation. Each simulation was preceded by an equilibration phase lasting for

1000. We calculated the scaled e�ective macroscopic phosphorylation rate constant ceff/c
∞
eff

independently for each simulation, and then, based on the set of ten simulations (for each

lattice size and each parameter set), we calculated the mean value of ceff/c
∞
eff and the error

of the mean. In each case the error of the mean was found smaller than 10−3. In conclusion,

we found that for assumed densities of molecules the di�erences between the 10× 10 lattice

and the remaining lattices are signi�cant, while the di�erences between larger latices are of

the order of the statistical error. One could expect that the dependence of EMRRCs on the
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lattice size can be stronger for systems of smaller molecule densities. In the analyzed system

there are 45 phosphatases, 45 kinases, and 300 substrates on the 30× 30 lattice.

V4 = 300× 300
V3 = 100× 100
V2 = 30× 30
V1 = 10× 10

ceff
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Figure 1.4: Scaled e�ective macroscopic phosphorylation rate constant ceff/c
∞
eff , estimated

in simulations performed on lattices of di�erent sizes. For all simulations ρS = 0.3, c = 1,

m = 1, ρK = ρP = 0.05. In the �rst-order dephosphorylation, model marked as FOD,

d0 = 6ρP, which corresponds to d = 1 in the basic model. The di�erence between the

10× 10 lattice and the remaining lattices is statistically signi�cant, the di�erences between

larger lattices are of order of the statistical error.

1.6 Molecular crowding model

Another natural question would be about the e�ect of the presence of additional molecules,

so-called crowding agents, which do not react but occupy space and di�use with a given

motility mC (not necessarily equal to substrate and enzyme motility, m). We also looked

into such model variant and analyzed how the densities of active substrates in the stationary

state change due to the presence of crowding agents.

In this model the state space of the Markov Chain is slightly di�erent than previously -

there is an additional type of molecule that can occupy the lattice site and since the crowding

molecules are not reagent, there is just one additional element in the set of transitions - the

di�usion of crowders.

Some analytical considerations

As could be suspected, the presence of crowding agents leads to a decrease of e�ective

motility of reacting molecules. We tried to quantify this e�ect and performed the following

reasoning: the macroscopic di�usion coe�cient,D, of a single tracer molecule having motility

m depends on the total density of the crowding molecules ρC (i.e., the fraction of lattice



1.6. MOLECULAR CROWDING MODEL 29

sites occupied by molecules), their motility mC = m/γ, and the lattice constant `:

D = f(ρC, γ)(1− ρC)`2m/4, (1.18)

where f is the correlation function that can be approximated by the following formula [54, 2]:

f(ρC, γ) =

=
{[(1− γ)(1− ρC)f0 + ρC]2 + 4γ(1− ρC)f2

0 }1/2 − [(1− γ)(1− ρC)f0 + ρC]

2γ(1− ρC)f0
, (1.19)

where

f0 = (1− α)/[1 + α(2γ − 1)]. (1.20)

The coe�cient α depends on the lattice type; for triangular lattice (considered here) α =

0.282, for square lattice α = 1− 2/π and for honeycomb (or hexagonal) lattice α = 1/2 [13].

The parameter

meff = f(ρC, γ)(1− ρC)m (1.21)

will be considered as the e�ective motility of the tracer molecule in the presence of crowding

molecules of density ρC and motility mC.

The correlation function f satis�es 0 < f < 1 for 0 < γ < ∞. In the limit of γ → 0,

i.e., when the crowding molecules move in�nitely fast and a tracer molecule does not sense

their positions, f → 1; in the limit of γ = ∞, i.e., when crowding molecules do not move,

the expression for f reads:

f(ρC) = max

{
0,

(1− α)− ρC(1 + α)

(1− ρC)(1− α)

}
. (1.22)

According to the equation above, the di�usion coe�cient of a tracer molecule drops to

zero when the fractional density of immobile obstacles equals ρcrit = (1−α)/(1 +α) = 0.56,

which agrees reasonably well with the percolation threshold of 1/2 for the triangular lattice.

In the case most interesting to us, i.e., when all molecules have the same motility (γ = 1),

Eq. (1.18) simpli�es to

D(ρC, 1) =

√
ρ2

C + 4(1− ρC)
(

1−α
1+α

)2

− ρC

2
(

1−α
1+α

) `2m/4. (1.23)
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Numerical results

The approximate Eq. (1.18) agrees well with our simulation results presented in Fig. 1.5(a).

In these simulations we estimated the e�ective motility of the tracer molecule meff :=

〈Dist2〉/∆t, based on the mean square distance 〈Dist2〉 covered by the tracer molecule in

time ∆t. To obtain reasonable statistics at a modest computational cost we performed sim-

ulations in which the number of tracer molecules was larger than one, but always smaller

than 1% of the number of crowding molecules. Finally, in order to analyze the in�uence

of crowding molecules with a given motility on the e�ective motility of reacting molecules,

we performed simulations in which the density of reacting molecules was 30%, while di�er-

ent densities and motilities of crowding molecules were considered, see Fig. 1.5(b). These

results are used to interpret the e�ect of molecular crowding on the steady state of the re-

acting system: the reduction of the e�ective substrate motility either increases the fraction

of phosphorylated substrates in the stationary state, provided that ρK > ρP, or, because of

the symmetry of the model, decreases this fraction for ρP > ρK. As shown in Fig. 1.6(b),

the e�ect of crowding agents can be almost fully reproduced by the appropriate scaling of

reagents motility:

m̃R := mR
meff(ρR, ρC,mR,mC)

meff(ρR,mR)
, (1.24)

where ρR = ρS+ρK+ρP is the fractional density of all reacting molecules assumed to have the

same motility mR. In the numerator of Eq. (1.24) there is the e�ective motility of reacting

molecules of density ρR and motility mR in the presence of crowding agents of density

ρC and motility mC, estimated in numerical simulations and given in Fig. 1.5(b). In the

denominator of Eq. (1.24) there is the e�ective motility of reacting molecules of density ρR

and motilitymR in the absence of additional molecules, given by the approximate Eq. (1.21).
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Figure 1.5: (plotted by Marek Kocha«czyk) Scaled e�ective motility meff/m as a function

of density of crowding molecules ρC, and motility mC = m/γ. (a) E�ective motility of a

tracer molecule in the presence of crowding molecules. Lines correspond to the theoretical

result given by Eq. (1.18), circles mark results of the corresponding numerical simulations.

(b) Scaled e�ective motility meff/m of reacting molecules with fractional density ρR = 0.3

and motility m = 1000 in the presence of crowders. This result is used in simulations shown

in Fig. 1.6(b).
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Figure 1.6: Phosphorylated substrate fractional density with respect to the density of crowd-

ing agents ρC. Reagents motility mR = 100 in (a), mR = 1000 in (b), for four values of

crowding agents motilitymC. Dashed lines refer to the simulations without crowding agents,

with scaled reagents motility m̃, see Eq. (1.24). Other parameters are ρS = 0.2, ρK = 0.09,

ρP = 0.01, c = 1/6ρK and d = 1/6ρP.
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1.7 Transient enzyme�substrate complexes model

The two models presented thus far do not account explicitly for the formation of the enzy-

matic encounter complex: both the phosphorylation and dephosphorylation are considered

to be single-step reactions. In reality, these reactions are multi-step processes (enzyme�

substrate binding, reaction, and enzyme�product dissociation). This simpli�cation does not

signi�cantly a�ect our key �ndings, at least when the enzyme sequestration is weak [50].

However, we decided to show this part of the analysis, because in reality such processes as

the phosphorylation�dephosphorylation cycle involve at least three steps and require forma-

tion of a transient enzyme�substrate complex. It was therefore important to verify whether

the analyzed e�ects are preserved when a more accurate description is executed. In the more

detailed model, reactions (1.1) are replaced by

K + Su

c1


c2

[K · Su]
c3−→ [K · Sp]

c4−→ K + Sp, (1.25a)

P + Sp

d1


d2

[P · Sp]
d3−→ [P · Su]

d4−→ P + Su. (1.25b)

The state space of the Markov Chain handled here is a bit di�erent than in the Basic Model

- we now distinguish between a state in which two molecules occupying adjacent lattice sites

are forming a complex (then a reaction might occur or they can dissociate) or not (then

they can associate or drift apart). Accordingly, the set of possible transitions between the

states is larger - there are additional reactions that occur - association and dissociation of

two types of complexes. This accounts for four new reactions.

We will consider two sets of reaction rate coe�cients corresponding to the short or longer

enzyme�substrate binding, implying respectively either weak or stronger, but still moderate

enzyme sequestration. The coe�cients for the two cases are:

weak sequestration:

c1 = 2c, c2 = 10c, c3 = 10c, c4 = 100c, (1.26a)

d1 = 2d, d2 = 10d, d3 = 10d, d4 = 100d; (1.26b)

moderate sequestration:

c1 = 10c, c2 = 9c, c3 = c, c4 = 100c, (1.27a)

d1 = 10d, d2 = 9d, d3 = d, d4 = 100d. (1.27b)
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Numerical results

For these two sets of coe�cients a substrate being initially in contact with an enzyme

molecule is modi�ed with almost the same probability as in the original model. For this

model variant we performed an analysis analogous to that shown in Fig. 1.1 (see Fig. 1.7).

In the case of weak sequestration, we obtained the quantitatively similar dependence of

fraction of phosphorylated substrate on enzyme density and on motility (Fig. 1.7(a,b)) as in

the original model. For stronger sequestration, for which the fraction of sequestered kinases

exceeds 60% (for large motilities), the agreement with the original model (Fig. 1.7(b)) is only

qualitative. Importantly, the fraction of sequestered enzymes and substrates signi�cantly

grows with motility. This is due to the fact that the increase of motility implies more

enzyme�substrate encounters, and therefore increases their binding rate, not in�uencing the

dissociation rate.

Overall, with the analysis of the above model variant we veri�ed that the reported de-

pendence of steady state on motility is independent of the details of the phosphorylation

and dephosphorylation processes, as long as the fractions of sequestered enzymes and sub-

strate are small, and results from the presence of opposing enzymes in the reaction network.

However, for stronger enzyme�substrate binding, the fraction of sequestered reactants is

higher (and dependent on their motility), and therefore the quantitative dependence of the

phosphorylated substrate fraction on motility can be di�erent.
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Figure 1.7: (plotted by Marek Kochanczyk) (a) Fractional density of phosphorylated sub-

strates as a function of the enzyme ratio for di�erent values of motility m. We compare the

model variant in which the formation of a transient enzyme�substrate complex is explicitly

included (the case of weak enzyme sequestration, Eqs. (1.26); dotted lines) with the original

model prediction shown in Fig. 1.1(a) (solid lines). The parameters used in the simulations

of the basic (original) model: ρS = 0.3, ρK = 0.1, c = 1/6ρK, d = 1/6ρP; the parameters

for the model variant considered are de�ned by Eqs. (1.26). In the calculation of the phos-

phorylated substrate fraction only free (unbound) substrates are considered. (b) Fractional

density of phosphorylated substrates as a function of m. We compare the original model

prediction shown in Fig. 1.1(b) (black line) with the model variant in which the formation of

a transient enzyme�substrate complex is explicitly included; two cases are considered: weak

sequestration, Eqs. (1.26), and moderate enzyme sequestration, Eqs. (1.27). The parameters

used in simulations are: ρS = 0.3, ρK = 0.1, ρP = 0.01, c = 1, d = 100. (c) Fraction of

sequestered reactants for the weak and moderate sequestration cases as a function of m in

simulations performed for (b). (d) Steady-state densities of all reactants and complexes in

the case of moderate sequestration, Eqs. (1.27), for three motilities: m = 1, m = 1000 and

m = ∞. Values for �nite motility come from simulations performed for (b). Values for

in�nite motility are given by the steady state of the corresponding system of ODEs.
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1.8 Multiple lattice occupancy model

The reason why we ventured on yet another model, at the �rst glance quite similar to the

previous ones, is that we were unsatis�ed with the amount of analytical results obtained -

only the limits of zero and in�nite motility were properly embraced by rigorous analytical

reasoning. The non-zero, �nite motility case was mainly approached by computational

methods, but we felt that more analytical approach, which leads to quite precise predictions,

is still possible in this regime. However, there had to be a small modi�cation introduced, both

in the construction of the Markov Chain and consequently in the numerical implementation

- here we will allow a substrate molecule and an enzyme molecule to enter the

same lattice site (but not two substrate molecules nor two enzyme molecules) and we will

require for the reaction to occur that the substrate (in the proper state) and the enzyme are

in the same lattice site. This changes the state space of the Markov Chain - the function

mapping lattice sites on the set of elements that can enter the lattice site now takes 9 values -

empty, four single molecules and four enzyme-substrate pairs. The set of possible transitions

remains the same, as there are no additional types of reactions.

Analytical results

The new assumptions imposed on the model change slightly the two analytical limits we

computed previously.

Ini�nite-motility limit

The concentration of enzyme�substrate pairs is now given by the product of their concen-

trations: ρKρSu , and the phosphatase�phosphorylated substrate pair concentration equals

ρPρSp . Recall that before in both these quantities there was a prefactor equal to the number

of neighbouring sites : 6. Analogously the numbers of phosphorylation and dephosphoryla-

tion reactions that �red during a time interval ∆t in a reactor of volume V are c ρKρSuV∆t

and d ρPρSpV∆t. Consequently, the EMRRCs in the in�nite-motility limit are equal to:

c∞e� = c, d∞e� = d. (1.28)

Zero motility limit

As the substrate and enzyme molecules react only when present in the same lattice site, the

reactions cease in this limit completely. Recall that in the previous model, the substrate

molecules having both a kinase molecule and a phosphatase molecule at adjacent sites were

repeatedly converted between the phosphorylated and the unphosphorylated state, which

resulted in (sometimes signi�cant) zero-di�usion contribution to the macroscopic reaction

rates coe�cients. This is not the case here.
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Finite, non-zero motility

We want to derive, as before, formulae for the e�ective macroscopic reaction rate coe�cients,

EMRRCs, ce� and de�, as functions of microscopic reaction rates c and d and the remaining

parameters of the model. Again, we restrict our study to the steady-state values. First,

we express the steady-state EMRRCs via the mean �rst-passage time, MFPT, in which a

substrate molecule after changing its state upon the reaction with a given enzyme reaches

an opposite enzyme molecule. Then we estimate this MFPT by the average number of steps,

w(ρ), until trapping a random walker in the system of randomly distributed traps with a

given concentration, ρ. These are needed for �nal formulae.

The whole derivation starts with a simple observation that the steady-state fractions of un-

phosphorylated and phosphorylated substrate, ρSu/ρS and ρSp/ρS, can be expressed in terms

of the average time intervals during which a substrate molecule remains unphosphorylated,

τu, and phosphorylated, τp:

ρSu
ρS

=
τu

τu + τp
,

ρSp
ρS

=
τp

τu + τp
. (1.29)

Now we express ce� and de� through τu and τp:

ce� =
1

τuρK
, de� =

1

τpρP
. (1.30)

To calculate time intervals τu and τp we split them into:

τu = τu1
+ τu2

, τp = τp1
+ τp2

, (1.31)

where τu1
(τp1

) is the MFPT, in which a substrate molecule after being modi�ed by a

phosphatase (kinase) molecule meets a kinase (phosphatase) molecule for the �rst time, and

τu2
(τp2

) is the average time after which a substrate molecule occupying initially the same

lattice site as a kinase (phosphatase) molecule becomes phosphorylated (unphosphorylated).

Time intervals τu and τp depend on the e�ective motilities of enzyme and substrate

molecules, m̃E and m̃S. As discussed previously, the e�ective motilities are lower than

the nominal motility of all molecules, m, due to molecular crowding, and when ρE 6= ρS,

then m̃E and m̃S di�er because enzyme and substrate molecules are crowding agents only

for themselves. The e�ective relative motility of enzyme and substrate molecules is M̃ =

m̃E + m̃S. The time between encounters of enzyme and substrate molecules scales inversely

with M̃ .
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Again, because all molecules have the same motility, the expression for m̃ is simply (see

Eq. (1.21))

m̃(m, ρC) = m

√
ρ2
C + 4(1− ρC)

(
1−a
1+a

)2

− ρC

2
(

1−a
1+a

) . (1.32)

The modi�cation introduced in this model allows two molecules to enter the same lattice

site only if they are an enzyme-substrate pair. So neither two enzyme molecules nor two

substrate molecules can enter the same lattice site. This means that enzyme as well as

substrate molecules play the role of crowding agents only for themselves. Accordingly, m̃X

for X ∈ {S,K,P} is given by:

m̃X =

{
m̃(mX , ρS) for X = S,

m̃(mX , ρK + ρP) for X ∈ {K,P}.
(1.33)

Having this scaling at hand, we start the calculation of time intervals τki , k ∈ u,p, i ∈
{1, 2} by the simplest, τu2 . When an unphosphorylated substrate molecule and a kinase

molecule meet in the same lattice site, two exclusive events are possible: either the substrate

molecule gets phosphorylated, or the molecules move apart before the reaction �res. The

expected time for which an unphosphorylated substrate molecule and a kinase molecule

remain in the same lattice site, τshort, is inversely proportional to the sum of rates of these

two events, τshort = 1/(c+ M̃). With the probability of the phosphorylation event, which

is c/(c+ M̃), τu2
will be equal to τshort, and with the probability of the separation event,

which is M̃/(c+ M̃), τu2
will be equal to τlong, which is the expected time for substrate

molecule phosphorylation in the case when it moves away from the kinase molecule. Taken

together, τu2
may be expressed as:

τu2
=

c

c+ M̃
τshort +

M̃

c+ M̃
τlong, (1.34)

where

τlong = τ�nd + τshort + τu2
. (1.35)

Here, τ�nd is the average time for the substrate molecule to meet a kinase molecule (the same

or another) under the condition that it is in a site adjacent to a site occupied by a kinase

molecule. When the substrate molecule meets a kinase molecule, the initially considered

situation reoccurs and therefore the third term is τu2
.

To calculate τ�nd we notice that since the fraction of lattice sites occupied by kinase

molecules is equal to ρK, on average every 1/ρK step the substrate molecule meets a kinase

molecule. This is, when a substrate molecule and a kinase molecule occupy the same lattice

site, the expected number of steps after which the substrate molecule meets the same or

another kinase molecule is 1/ρK. Therefore, if these two molecules are in adjacent lattice
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sites, i.e., when one step toward next meeting has already been done, the expected number

of steps is 1/ρK − 1. Thus

τ�nd =
1/ρK − 1

M̃
. (1.36)

Finally, Eq. (1.34), Eq. (1.35), and Eq. (1.36) together yield

τu2
=

c

c+ M̃

1

c+ M̃
+

M̃

c+ M̃

(
1/ρK − 1

M̃
+

1

c+ M̃
+ τu2

)
, (1.37)

from which we obtain a simple expression for τu2 and an analogous expression for τp2
:

τu2 =
1

cρK
, τp2

=
1

dρP
. (1.38)

Now the only remaining calculation is that of τu and τp. For these we need to estimate τu1

and τp1
. These two MFPTs can be expressed as:

τu1
=
w(ρP, ρK)

M̃
, τp1

=
w(ρK, ρP)

M̃
, (1.39)

where w(ρP, ρK) and w(ρK, ρP) are the expected numbers of steps needed for a substrate

molecule to reach a kinase and a phosphatase molecule, respectively, after being converted

by a phosphatase (kinase) molecule. Eventually, we arrive at the following formulae:

ce� =
1

(τu1
+ τu2

)ρK
=

(
1

c
+
ρK w(ρP, ρK)

M̃

)−1

, (1.40a)

de� =
1

(τp1
+ τp2

)ρP
=

(
1

d
+
ρP w(ρK, ρP)

M̃

)−1

. (1.40b)

The reader is now ready for further analytical consideration leading to formulae for w(ρK, ρP).

The following paragraphs reproduce the reasoning presented in our paper [50] and conducted

mostly by Paweª Naª¦cz-Jawecki.

Under the assumption that the search for enzyme molecules of an appropriate type starts

from a random position, functions w(ρP, ρK) and w(ρK, ρP) can be simpli�ed to

w(ρP, ρK) = w(ρK), w(ρK, ρP) = w(ρP). (1.41)

To understand when the above simplifying assumption is valid, let us consider the case

when on the lattice there is only one kinase molecule and a large number of phosphatase

molecules. In such a case, a substrate molecule phosphorylated by the kinase molecule will

be dephosphorylated in its vicinity by one of numerous phosphatase molecules, and therefore

the next search for the single kinase molecule will start not from a random position with

respect to the kinase molecule but more likely from its vicinity. Thus, in the considered
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case, the assumption is not valid for the phosphorylation reaction; however, since there

is only one kinase molecule and thus the expected time to phosphorylation is relatively

long, the abundant phosphatase molecules change signi�cantly their positions between two

dephosphorylation reactions, so that one can assume that the search for a phosphatase

molecule starts from a random position with respect to positions of phosphatase molecules.

Lets consider now the system of N di�erent enzyme molecules, Ei, i = 1, ..., N , and

assume that each enzyme molecule Ei converts substrate molecules to a distinct state Si
with reaction rate q. Let us assume that N � 1 and let ρE denote the total concentration of

all enzyme molecules. In light of the observation made in the previous paragraph, substrate

molecules converted by Ei (i.e., in state Si) will start their search for the remaining N − 1

enzyme molecules at a position that can be considered random (with respect to remaining

enzyme molecules). Thus, the average time τ for which the substrate molecules will remain

in each of the states Si is (by analogy to Eqs. (1.31), with Eqs. (1.38) and Eqs. (1.39), and

since the concentration of N − 1 enzyme molecules is ≈ ρE)

τ =
1

qρE
+
w(ρE)

M̃
. (1.42)

The number of reactions per substrate molecule per time is equal to r = 1/τ . Let us assume

that one part of these enzyme molecules are kinase molecules and the rest are phosphatase

molecules, so that ρK + ρP = ρE. Therefore, the probability that an unphosphorylated sub-

strate molecule will be converted in the next reaction to the phosphorylated state is ρK/ρE,

while with probability ρP/ρE it will be converted to the other (unphosphorylated) state

(such pseudo-conversions are possible because we assumed that each enzyme molecule con-

verts the substrate to a distinct state). The number of real phosphorylation reactions (i.e.,

conversions from the unphosphorylated to the phosphorylated state) per unphosphorylated

substrate molecule is rp = r · ρK/ρE, and therefore the average time spent by a substrate

molecule in the unphosphorylated state is τu = 1/rp = τ · ρE/ρK.
From ce� = 1/(τuρK), Eqs. (1.30), we obtain

ce� =

(
1

q
+

1

M̃
ρE w(ρE)

)−1

. (1.43)

To derive the above equation we had to assume that all substrate states, Si, are equiprobable,

which requires c = d = q. In the case when c 6= d we propose to replace q by c or d,

appropriately, which leads to the following approximations for EMRRCs:

ce� =

[
1

c
+

1

M̃
(ρK + ρP)w(ρK + ρP)

]−1

, (1.44a)

de� =

[
1

d
+

1

M̃
(ρK + ρP)w(ρK + ρP)

]−1

, (1.44b)
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where, recall, w(ρ) is the average number of steps until trapping a random walker in a system

of randomly distributed traps of concentration ρ.

The very last thing is now to calculate w(ρ). Here I evoke an old result by Montroll

[35], who obtained an analytical asymptotic formula for the average number of steps of a

random walker, (for walks on lattices with periodic distributions of traps, of concentration

ρ, or, equivalently, on �nite lattices of volume V = 1/ρ with periodic boundary conditions,

containing a single trap). The approximate formula reads:

wP(1/V ) = αV log V + βV + γ +O(1/V ), (1.45)

where α is constant for a particular lattice structure (α = 1/π for a square lattice, α =√
3/(2π) for a triangular lattice), whereas β and γ depend also on the shape of the reactor.

For a triangular lattice and a square-shaped reactor their values are β ≈ 0.235 and γ ≈
−0.251. We can restrict ourselves to two �rst terms of the right-hand side of Eq. (1.45).

However, having found this result, we faced the problem of how to adapt it to the case when

traps are distributed randomly. In here it was Paweª's excellent coding skills that saved our

analytical e�ort. He established, by �tting Montroll's formula, coe�cients α′ and β′ in

wR(ρ) = α′ρ−1 log ρ−1 + β′ρ−1, (1.46)

to be α′ = α and β′ = 1.00.

At this point we could plug every element of the puzzle (some of the elements are exact,

some are approximations) into the formula for EMRRCs. After setting 1/V = ρK +ρP from

Eqs. (1.44) we obtained the compact form:

ce� =

[
1

c
+

1

M̃

(
α′ log

1

ρK + ρP
+ β′

)]−1

, (1.47a)

de� =

[
1

d
+

1

M̃

(
α′ log

1

ρK + ρP
+ β′

)]−1

, (1.47b)

with α′ = α =
√

3/(2π), β′ = 1.00.

Some numerical results

As I already mentioned before, as far as analytical results are concerned, they were produced

in cooperation with my colleague Paweª Naª¦cz-Jawecki. However, he did all the numerical

work, as well as plots, so I do not dare to present it here, but I am most willing, with

Paweª's consent, to present for an avid reader just one plot of comparison how well these

analytical reasoning works, or at least how better it is, compared to the previous study.

The assumption in the former model [40] implies that there are on average six times more

enzyme�substrate pairs than in the current model (wherefrom in the in�nite-di�usion limit,
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the EMRRC was equal c∞e� = 6c and not c as in the current model). Therefore, to compare

EMRRCs between the Basic Model and the Mutliple lattice occupancy model, (see Fig. 1.8)

we used a respective c∞e� value to normalize ce� for both models. The �e�ective� distances

between enzymes were in the previous approach �shorter�, so that for �nite motilities the

EMRRCs were greater compared to those calculated in the current model, see Fig. 1.8 (a)

and (b). As mentioned before, in the zero-motility limit, the substrate molecules could have

two antagonistic enzymes in their reaction volumes (consisting of six neighbouring sites), this

led to nonzero ce�, particularly when the probability of having two antagonistic enzymes

is large, i.e., for dense systems, Fig. 1.8 (a). Fig. 1.8 (c) shows the discrepancy between

steady-state phosphorylated substrate fraction predicted by the two models, which arises

when c 6= d (for c = d, both models predicts that ρSp/ρS = ρK/(ρK + ρP) independently of

motility).
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et al.

pthisstudyq
simul. Eq. (21)

ρK=ρP=0.03

ρK=ρP=0.003

Szymańska
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Figure 1.8: Comparison between the Mutliple lattice occupancy model, which approximates

the e�ective reaction rate constants with Mean First Passage Time considerations, and the

Basic Model presented in an earlier section. Solid lines correspond to theoretical predictions

of the new model. (a) Normalized e�ective phosphorylation rate constant, ce�/c∞e�, in the

fully symmetric case: c = d, ρK = ρP with ρK equal 0.03 or 0.003. (b) Normalized e�ective

phosphorylation rate constant, ce�/c∞e�, in the asymmetric case c = 10d, ρP = 0.03, with

ρK equal 0.03 or 0.003. (c) Fraction of the phosphorylated substrate, ρSp/ρS, for c = 10d,

ρP = 0.03, and ρK equal 0.03, 0.01 or 0.003.



42 CHAPTER 1. SPACE

1.9 Short conclusions

In this �rst part of the dissertation I reproduced the results I obtained while investigating the

kinetics of the phosphorylation�dephosphorylation cycle on a 2D lattice. Presented results

were published in [50] and [40]. In the �rst one we de�ned and established the dependence

of e�ective macroscopic reaction rate coe�cients, as well as the steady-state phosphorylated

substrate fraction, on the di�usion coe�cient and concentrations of opposing enzymes: ki-

nases and phosphatases. Analytical expressions were found for two limits of in�nite and

zero-motility and numerical simulations agree with these predictions. In the regime of non-

zero but small di�usion, a contribution linearly proportional to the di�usion coe�cient

appears in the reaction rate. In this regime, the presence of opposing enzymes creates inho-

mogeneities in the (de)phosphorylated substrate distributions: enzymes are surrounded by

clouds of �converted� substrates. This e�ect becomes important at low enzyme concentra-

tions, substantially lowering e�ective reaction rates. E�ective reaction rates decrease with

decreasing di�usion and this dependence is more pronounced for the less abundant enzyme.

Consequently, the steady-state fraction of phosphorylated substrates can increase or decrease

with di�usion, depending on relative concentrations of both enzymes. Additionally, steady

states are controlled by molecular crowders which, mostly by lowering the e�ective di�usion

of reactants, favour the more abundant enzyme.

In the second paper we ventured on analytically treating the regime on �nite motility,

and, after modifying one assumption in the model (two appropriate molecules are allowed to

enter the same lattice site), we were able to conduct analytical derivations, in just few places

supported by approximations, and obtain compact, almost exact expressions for EMRRCs.

They were �rst expressed as the average time, τu (or τp), a substrate molecules spends

between opposing reactions. This time, in turn, is the sum of the time to �nd the opposing

enzyme molecule, τu1
(or τp1

), and the time to react after the �rst encounter with the enzyme

molecule, τu2
(or τp2

). As the time τu2
(or τp2

) was found to be simply τu2
= 1/(c ρK) (or

τp2
= 1/(d ρP)), the main di�culty was in calculating the time to �nd the opposing enzyme

molecule, τu1
(or τp1

). The �nal formulae show how the EMRRCs depend on reaction

propensities, motilities, and densities.

In summary, our works were a step towards the determination of e�ective macroscopic

reaction rate constants and steady states for ubiquitous cycles of opposing reactions with

respect to the motility of substrates and enzymes, and their densities.



Chapter 2

Noise

Le hasard ne favorise que les esprits

préparés.

-Chance favors only the prepared mind.

Louis Pasteur

2.1 Motivation

The existence of uncertainties and variability (i.e., �noise�) is one of the main impediments to

development of precise and e�ective biomedical control strategies. Heterogeneities arise even

at the level of single, genetically identical cells, which can exhibit diverse responses when

exposed to identical environmental conditions or drug regimens [8, 44, 14, 43, 38, 23, 47].

This phenotypic variation is due in large part to the intrinsic stochasticity of gene expression

and associated biochemical reactions within individual cells, and it has been shown that

heterogeneity can have tremendous consequences on levels ranging well beyond single cells

and up to the entire population [31, 56, 4, 58, 59, 20]. In environments subjected to quick

and potentially deadly changes, cells may exploit intrinsic variability and switch early into

phenotypes that are more likely to survive catastrophic environmental changes [14, 56, 28, 5].

Such bet-hedging strategies enable persistent bacteria to survive severe antibiotic treatments,

or persistent cancer cells to resist chemotherapy [56].

On the other hand, the goal for much of the biomedical sciences is to control biologi-

cal processes to achieve a desired outcome (e.g., apply or maintain a su�cient dosage of

chemicals to eliminate abnormal, cancerous cells) while minimizing deleterious e�ects (e.g.,

reduce toxicity, expense and inconvenience to the patient). In an ideal world, one would �x

a treatment regimen that always achieves the same desired result without the need for inter-

mediate changes or decisions. Real world is more complex though and every tissue, organism

or person is di�erent. We thus need to continually monitor and update the control strate-

43
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gies, giving rise for instance to personalized medicine, where treatments are continuously

adjusted in time.

In this chapter I will explore the potential to selectively control the phenotypes of in-

dividual cells within a larger population of genetically identical cells, all subjected to the

same environmental conditions. I will show an e�ective control strategy, which exploits the

random nature of protein production process, to attain this goal.

2.2 Self-activating gene model

The �rst model analyzed here is the model of self-activating gene, depicted schematically in

Fig. 2.1(a). One kind of protein is synthesised from a gene whose state - active or inactive -

depends on whether the protein is bound to a speci�c site on the gene, called the promoter

site. If the promoter site is free, the gene is in its inactive state and the production of proteins

happens only at some basal, low rate. If the protein is bound to the promoter, the gene is

active, thus enhancing further production of protein molecules. Since the production cannot

increase unlimitedly, its rate is modelled by a function that plateaus when the concentration

of protein molecules increases. For this purpose, it is common to chose Hill's function. The

details of the ordinary di�erential equation governing the time evolution of the concentration

of protein are given below and the derivation of the Hill function in the Appendix to this

chapter.

2.2.1 Deterministic description

In the model of self-activating gene, the protein is produced at a basal rate, k0, plus an

induced rate via positive feedback, modelled by a Hill function of the form: k1x
m/(xm+βm),

where x is the concentration of proteins, k0 + k1 is the saturated production rate and β is

the concentration of protein at half maximum induction. Proteins are subject to natural

degradation, proportional to their concentration. The di�erential equation for the time

evolution of x in each cell thus reads:

dx

dt
= k(x)−R(x) = k0 + k1

xm

xm + βm
− γx. (2.1)

The number of stationary points (i.e., such that satisfy dx
dt = 0) of the above ordinary

di�erential equation depends of course on m. If we set m = 2, equating dx
dt to 0 returns a

polynomial of degree 3, which has either one solution or three. If dx
dt = 0 has one solution,

then the di�erential equation (2.1) has one stationary point, and it is stable. If dx
dt = 0

has three solutions, then (2.1) has two stable stationary points and one unstable. This

qualitative behaviour is presented in the cartoon Figs. 2.1(c) and 2.2(b-d). However, for

control strategy purposes, m was set equal to 4 (see quantitative Figs. 2.3, 2.4, 2.5, 2.6). This

could potentially result in 5 stationary solutions to (2.1). We made sure other parameters
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Figure 2.1: (a) A classical representation of a genetic toggle switch [16]. Protein A binds
to Promoter B disabling synthesis of the opposing Protein B, which in turn might bind
to Promoter A inhibiting production of Protein A. The degradation rate of one protein
is enhanced by UV radiation. (b) Scheme of the self-activating gene model. This is the
simplest model that exhibits bistability. Protein production is usually modelled as a two-
step process - in the �rst one, transcription, messenger RNA molecules are �produced� from
the DNA; they are then translated into protein molecules in the process of translation. Here
we merge these two steps into one, neglecting mRNA production. We thus get rid of the
majority of noise in this process, as mRNA production is proven to generate most of the
variability of protein synthesis. Protein degradation can be enhanced by increasing levels of
UV radiation. (c) Production and degradation rates versus the concentration of proteins,
x, in the self-activating gene model. The production rate, k(x) = k0 + k1x

2/(x2 + β2), is
plotted in green, and the degradation rate, R(x) = (γ + u)x, is plotted in brown. In a
deterministic representation, protein concentrations evolve according to ẋ = k(x) − R(x).
Intersections where k(x) = R(x) provide the stationary points. The three panels correspond
to cases where UV is low (top, a single high stationary point), moderate (middle, two stable
and one unstable stationary points) or high (bottom, a single low stationary point).

were chosen so that the polynomial resulting from dx
dt = 0 has at most 3, not 5 solutions and

m = 4 case is reduced qualitatively to the m = 2 case.

Control strategy

The whole population of identical cells, in which the concentration of proteins being governed

by the introduced ordinary di�erential equation is now subjected to UV radiation, which

enhances the degradation rate of proteins. This means that from now on γ = γ0 +u(x). Un-

der this control law, and with m = 2, the di�erential equation for the protein concentration
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becomes:
dx

dt
= k0 + k1

x2

x2 + β2
− (u(x) + γ0)x, u ≥ 0. (2.2)

We assume that all other parameters controlling protein production (m, k0, k1, β) and basal

degradation (γ0) are �xed and independent of UV.

It is only by adjusting UV strength that we can control the population. Note however

that UV depends solely on the protein concentration and not explicitly on time. The UV

signal, u, will determine the number and location of all stationary points, as given by the

zeroes of:

k0 + k1
x2

x2 + β2
= (u(x) + γ0)x.

We depicted in Fig. 2.1(c) three possible scenarios to compare the production rate, k(x),

and the degradation rate R(x), where UV radiation is low (top), moderate (middle) or

high (bottom). For low and high UV, there is a single stationary point at high or low values

of x, respectively. For moderate UV, there are two stable and one unstable stationary points.

We introduced a model of a single cell that can be switched via UV control from a single

stable high stationary point, to a pair of high and low stable stationary points, and then

to a single low stationary point. Lets now examine the e�ects of UV on multiple cells

simultaneously. For this, lets �rst consider a population of two independent cells, given by

a two dimensional vector x = [x1, x2], where both x1 and x2 evolve according to the same

ODE as before (equation (2.2)). Once again the number and location of stationary points

depend upon the level of UV radiation. For low or high UV signals, x1 and x2 will converge

to a stationary point that is high or low, respectively. For intermediate UV levels, a total

of four stable stationary points will be possible: low protein expression in both cells, high

protein expression in both cells, low protein in cell 1 and high protein expression in cell

2, or vice versa. Figures 2.2 (b-d) illustrate schematically how low, moderate or high UV

radiations a�ect the phase diagrams of the protein trajectories for the two cells.

The deterministic model consisting of two identical cells evolves according to the following

set of two di�erential equations:





dx1

dt = k0 + k1
x2
1

x2
1+β2 − (u(x1, x2) + γ0)x1,

dx2

dt = k0 + k1
x2
2

x2
2+β2 − (u(x1, x2) + γ0)x2.

(2.3)

The set is coupled by the function u(x) - UV radiation level, the control strategy that

depends on protein levels of both cells. If we knew the initial condition to the above set,

we would be able to predict the exact protein concentration at every time t. As a result,

it would be impossible to modulate the ranking of gene expression levels in di�erent cells

using only a single control input that operates on the whole population. Luckily, when

stochasticity of the biochemical reactions is taken into account, this is no longer true -



2.2. SELF-ACTIVATING GENE MODEL 47

a given cell will occasionally, due to randomness, have higher protein expression than its

immediate neighbour, and this could allow to systematically alter the UV strength in order

to maximize or minimize this di�erence.
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Figure 2.2: (a) A cartoon of the model considered: two identical cells each governed by a
toggle switch are subjected to the same UV radiation. (b-d) A schematic phase diagram of
the system with two cells, each governed by the same self-activating gene mechanism (see
Fig. 2.1(b)) at three di�erent UV radiation values: (b) low UV; (c) moderate UV; and (d)
high UV. Axes represent number of proteins in cell 1 and cell 2, circles and crosses mark
the stable and unstable stationary points, respectively.

2.2.2 Stochastic description

The Markov Jump Process underlying the model is de�ned by the state space and the

transition rates between these states. If the population contains N cells, N ≥ 2, the state

space consists of integer vectors x = [x1, . . . , xN ], where xh denotes the number of proteins

in the hth cell. Lets index these vectors by i, so that xih denotes the number of proteins in

the hth cell for the ith state. Accordingly, let Pi(t) denote the probability that the system is

in the ith state at time t, and let P(t) = [P1(t), P2(t), . . .] be the vector of probabilities for

all states {x1,x2, . . .}. Let me recall that P (t) satis�es the master equation: P ′(t) = P (t)Q.

Matrix Q is given by:

qij =





k0 + k1(xih)2/(β2 + (xih)2) for xi = xj − eh

(γ + u(xi))xih for xi = xj + eh

−∑N
h=1

(
k0 + k1(xih)2/(β2 + (xih)2) + (γ + u(xi))xih

)
for j = i

0 otherwise

(2.4)

where eh is a N -component vector, it is zero except for the hth entry, where it is unity.

Here again we will be aiming at the stationary probability distribution, i.e., such a probability

vector P st that P stQ = 0. Since the potential number of proteins in each cell can be any
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integer number, the number of equations in the master equation set is in�nite. In such a

case one normally performs the Stochastic Simulation Algorithm (SSA, [17]). This is, recall,

the method used in the previous chapter, except that before we took into account spatiality.

In this chapter we also perform the �conventional� SSA simulations � each time a reaction

�res, new stochastic reaction rates, k(xi) and R(xi), are computed for each cell, and the UV

level is based on the current number of proteins in each cell, u(x1, x2, . . .). Reactions change

the number of proteins (by +1 if production occurred or −1 if degradation occurred) in one

cell exactly in each time step.

Besides performing the SSA, we also resorted to a di�erent, computationally much more

e�cient method called the �nite state projection. This approach, described in details in [36],

consists of reducing the in�nite state space to a �nite set. This means, we set a limit on the

maximum number of proteins allowed in each cell. All states corresponding to the number

of proteins greater or equal to the chosen limit are shrunk in one state and a re�ective

boundary condition is imposed there. Accordingly, the transition rate matrix is rede�ned,

becoming a proper, �nite matrix. Its entries for qij , if xi and xj have components smaller

than the chosen limit of proteins, are given as in de�nition (2.4); other entries, i.e., those

for which the states were aggregated in a single �boundary� state, are recomputed. In the

in�nite case, it is possible to estimate the error incurred through the described truncation

[36].

2.2.3 Results for the self-activating gene

E�ectiveness of the control strategy

Before describing any control law, we should introduce a quantity that would measure its

e�ectiveness. For this purpose, we integrated numerically the master equation and estimated

the stationary marginal and joint distributions of the protein concentration in the cells (two

or more, depending on the population count). For a two-cell population, the e�ectiveness of

the control strategy is given by the stationary probability distribution that the protein level

in cell 1 exceeds that of cell 2: P (x1 > x2), where x1 is the protein level in the chosen cell

and x2 the protein level in the other cell. For a population containing more than two cells,

we will compute the time-averaged rank of the chosen cell, i.e., all cells are �rst ranked with

respect to the protein level they express and then an average rank, weighted by the length

of the time interval, is calculated for the chosen cell.

Two cell population

We start with the small (N = 2) population of cells governed by the self-activating gene

scheme. Our task is to construct such a control law that it favourably drives the chosen

cell to express high level of proteins, while the other (genetically identical) cell is driven

simultaneously to express low level of proteins.
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The control law we built is depicted in Fig. 2.3 and it was built intuitively as follows: �rst,

if the number of proteins in both cells is low (bottom left part of the plane), low UV is

applied, allowing the cells to produce protein freely. Because of the symmetry between the

cells, the trajectories of the protein expressions in cells 1 and 2 will move roughly parallel to

the x1 = x2 line. However, because of the stochastic nature of the process, the system will

�uctuate into the regions where the protein expression is higher in one cell than the other.

Second, if the cell population randomly moves to the region where protein expression in cell 1

is high, and the protein expression in cell 2 is low (bottom right part of the plane), moderate

UV is applied to stabilize the system in this favourable condition. Third, when expression in

cell 2 becomes elevated, in order to knock it down, higher level of UV is applied. Of course

this reduces expression in both of the cells, but brie�y and only until cell 2 falls below the

threshold, thereby allowing cell 1 a greater chance to remain closer to the high stable state

at moderate UV levels. This strategy for how the UV level is chosen depending on the level

of protein in the chosen cell (x1) and in the competitor (x2) is depicted in Fig. 2.3. Notice

that the control law is as simple as possible, admitting only three values: u1, u2 or u3. In

our particular case, for a choice of gene regulatory parameters: k0 = 5, k1 = 50, β = 20,

m = 4 and γ = 0.5, the control function u(x) is given by:

u(x) =





u1 = 0 if x1 < 40 and x2 < 12

u2 = 0.75 if x1 ≥ 40 and x2 < 12

u3 = 1.75 if x2 ≥ 12

(2.5)

A natural question arises if with this control scheme the chosen cell really expresses higher

protein concentration than the competitor cell. Figure 2.4 illustrates the results of this

control law when applied to the trajectories of proteins versus time for a population of

three cells, but only two of them being considered as the population (N is still equal 2).

These cells correspond to one cell intentionally driven to have high expression (red), one cell

intentionally driven to have low expression (blue), and a third cell (black) that is subjected

to the changing UV level but upon which the control law does not depend. Marginal

distributions computed using a long time simulated trajectory are shown for each cell to

the right of the trajectories. From the �gure it is clear that the UV control law successfully

maintains the �rst cell in the high state (red, 〈x1〉 = 44.3 ± 5.8) and the second cell in the

low state (blue, 〈x2〉 = 4.7 ± 2.5). Meanwhile, the cell that is not speci�cally controlled

(black, 〈x3〉 = 23± 21) is free to �uctuate between high and low states.

We depicted the e�ectiveness of the above control strategy by comparing it to the con-

stant (low, moderate, and high) UV radiation scheme in Fig. 2.5. In each case the joint

distribution is shown on the left and the marginal distributions are shown on the right. UV

levels that do not depend upon the concentrations in the two cells, shown in Figs. 2.5(a)-(c),

do not break the symmetry between the cells, and the UV-dependent marginal distributions
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Figure 2.3: Preliminary control law for the application of UV radiation based upon compar-
ison of the protein content for two cells. When both cells contain little protein (bottom left
corner), no UV is applied (u1 = 0). When protein content is high in cell 1 and low in cell 2
(bottom right corner) moderate UV is applied (u2 = 0.75). When protein content in cell 2
is above a threshold (= 12) (upper part), high UV is applied (u3 = 1.75). All parameters
for the gene regulatory circuit (k0 = 5, k1 = 50, β = 20, m = 4 and γ = 0.5) are �xed and
identical for both cells. Degradation rate parameters (i.e., γ and ui) have arbitrary units of
inverse time, and production rates (i.e., k0 and k1) have units of molecules per unit time.

are identical for the two cells. In contrast, Fig. 2.5(d) shows that the chosen UV control

law is successful to make it highly probable that cell 1 has high protein expression and cell

2 has low protein expression. The stationary probability distribution that the protein level

in cell 1 exceeds that of cell 2 is P (x1 > x2) = 0.998 with the speci�ed control law. This

number is obtained by numerically solving the master equation. To con�rm the consistency

between the stochastic simulations and the direct solutions, Fig. 2.5(d) plots the marginal

distributions for both approaches.

Three or more cell population

We next extended the control law found for the two-cell population to the case of a N -cell

population, N ≥ 3. To keep the control law as simple as possible, we maintained the same

three regions of di�erent UV values shown in Fig. 2.3, as well as the same three values for

the UV radiation {u1, u2, u3}. The choice of the UV level is now based on the comparison of

the number of proteins in cell 1, x1, and themaximum number of proteins in all other

cells, maxNi=2(xi). As above, we simulated the trajectories of all N cells simultaneously

under the controlled UV radiation. Foreseeably, the e�ectiveness of the control law decreased

when a larger population was considered. This e�ect is quanti�ed in Fig. 2.6(a), (top, black

diamonds), which shows the time averaged rank of the chosen cell versus the total number

of cells in the population.
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Figure 2.4: Example stochastic trajectories [17] for the number of proteins versus time for
three cells, all subjected to the same UV signal over time. Trajectories for cells whose
expressions are controlled to be high and low are shown in red and blue, respectively. A
trajectory for a third cell that experiences the same UV signal but is not included in the
control decisions, is shown in black. The top plot represents the UV radiation applied to all
cells over time. The curves to the right show the marginal probabilities for the number of
proteins in each cell, as determined form a single stochastic trajectory.
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Figure 2.5: Stationary distributions for the joint probabilities (left) and marginal probabili-
ties (right) for the protein content in two cells under four di�erent UV control laws: (a) low
UV; (b) with moderate UV; (c) with high UV; and (d) with the UV control law given in
Fig. 2.3. On the right, marginal distributions for cell 1 (red) and cell 2 (blue), are compared.
The inset in panel (d) shows the marginal probability distributions computed from a single
trajectory obtained using the SSA [17].
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Figure 2.6: Time-averaged rank of the chosen cell versus the number of competing cells
in the population for measurement noise and time delays. The UV is chosen as discussed
in the main text. (a) E�ectiveness of the control strategy versus the number of cells in
the population. Solid lines correspond to di�erent measurement time delays, τ , using the
same time units as in Fig. 2.3. Dashed line corresponds to no time delay but with 20%
standard deviation uncorrelated white noise added to all measurements. The blue line
corresponds to the success rate in the absence of any control law. (b) E�ectiveness of the
control strategy versus the time delay normalized by the protein half-life at the lowest UV
setting τ/τ1/2 = τ/(log 2/γ) for 2, 3 and 4 competing cells.



54 CHAPTER 2. NOISE

2.3 Extensions to the self-activating model

2.3.1 Time delays

The �rst extension considered was to introduce time delays that are present in all cellular

processes [1, 49], especially in the production and maturation of the �uorescent proteins that

are frequently used to quantify gene regulatory responses [46]. To introduce the e�ects that

such time delay would have on the time-evolution of protein concentrations in single cells,

UV control law will now depend not upon the state at the current time, x(t), but upon the

state at an earlier time x(t− τ). Figures 2.6(a) and 2.6(b) show how the e�ectiveness of the

control law decreases as the time delay increases (e.g., due to longer �uorescent maturation

times or delays in the activation of the UV-induced SOS pathway). While short delays may

be tolerated, once the time delays reach or exceed the half-life of the controlled protein, the

e�ectiveness of the control law rapidly diminishes. Maturation times for �uorescent proteins

vary considerably from about two minutes for the fastest variant of yellow �uorescent protein

to thirty or more minutes for common fast folding green �uorescent proteins [39, 11]. For

bacterial division times of about 30 minutes, this result emphasizes the substantial impact

that the choice of protein reporter could have on our ability to actively monitor and control

cellular responses.

2.3.2 Measurement errors

Lets now assume that the measurements of the protein levels were corrupted by uncorrelated

white noise with 20% standard deviation. One can explore the e�ect that these errors would

have on the success rate of the control law. Since the control law only needs to examine two

cells (i.e., the chosen cell and the maximum of its competitors) and assign them to one of

the three coarse regions (see Fig. 2.3), the success rate is highly insensitive to errors in the

measurement of the absolute protein numbers (see Fig. 2.6(a), dashed line).

2.3.3 Extrinsic variability

In addition to the e�ects of time delays and measurement errors, there is yet another natural

source of noise - extrinsic variability in protein synthesis rate. This quantity can vary in a

reasonable range around the mean. In a series of simulations, variability in the synthesis

rate was introduced by scaling both k0 and k1 by a common factor chosen from a normal

distribution with a 10% standard deviation at the beginning of each independent simulation.

The production rate of the chosen cell was set to be equal to the mean, the mean plus one

standard deviation or the mean minus one standard deviation of the whole population.

Figure 2.7(a) shows the average e�ectiveness of the control law based on the maximum

protein expression in other cells. From the �gure one can see that extrinsic variability

can have a substantial e�ect on the average cell ranking. If the chosen cell has weaker
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production strength than its neighbours, then its uncontrolled ranking will be lower than the

50th percentile, but the addition of control can signi�cantly increase this ranking (compare

solid and dashed purple lines in Fig. 2.7(a)). If the chosen cell has stronger production rate

than its competitors, then the control can further increase that cell's advantage, at least for

small populations size of about 70 cells or less (compare solid and dashed orange lines in

Fig. 2.7(a)). Note that the extrinsic variability plays an important role in the e�ectiveness

of the control strategy from one random population to the next. To illustrate this concern,

Fig. 2.7(b) plots the success probability for two cells with di�erent relative production rates.

When the chosen cell has an elevated production rate, control becomes very easy, but if the

chosen cell's production rate falls below the threshold needed to maintain bistability (i.e.,

to the left of the red bar in Fig. 2.7(b)), successful control becomes almost impossible. For

an exhaustive analysis, 200 populations of 30 cells apiece were randomly generated. The

chosen cell's transcription rate is the mean of transcription rates in other cells. Figure 2.7(c)

plots the distribution of the success probability for the controlled (green) and uncontrolled

(blue) system. From the �gure, it is clear that the control law substantially improves the cell

rankings overall, but for populations of heterogeneous cells, the speci�c success rate depends

heavily on the particular population.

2.3.4 Di�erent control laws

The control law used thus far was always based on the maximum protein expression in other

cells � the decision about the level of UV applied was made after assessing the maximum

number of proteins in all other cells. One could wonder how the e�ectiveness of control

changes if the decision about the UV level is based on di�erent statistics of the protein

expression levels, for example the mean, median, percentiles. Figure 2.8 shows the success

rates versus the number of cells for additional control laws based upon the mean, the median,

and the 75th percentile of the neighbouring cells. We also considered an independent control

law where the UV depends only upon the level of protein in the chosen cell compared to a

null cell assumed to have no expression (i.e., lying on the x-axis of Fig. 2.3). The success

probabilities plotted in Fig. 2.8 show that our preliminary control law based on the maximum

works the best for small populations. As the number of cells increases, the law based on

the 75th percentile and then the median begin to outperform the control based upon the

maximum. The success probability for the independent control law does not vary with the

number of cells, suggesting that for very large populations, such a controller may be optimal.

Interestingly, the success probability for the mean is not monotonic. This is likely due to fact

that the average of a �nite population �uctuating within a bimodal probability landscape

can be very di�erent from the instantaneous state of any individual within that population.
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Figure 2.7: In�uence of extrinsic variability in protein synthesis rates on the control law
e�ectiveness. (a) Success probability as a function of the number of cells for di�erent
cases of variability of the synthesis rates. All cells are perturbed by 10% variability in their
synthesis rate, and the synthesis rate of the chosen cell is �xed as the mean of the population
(mean) plus or minus one standard deviation (mean+ and mean-, respectively). Results are
shown for the uncontrolled system (No control), and for the system subjected to the control
law based on the maximum protein expression in other cells (Max control). For comparison,
previous cases without extrinsic parameter variation are replotted (No Noise). (b) Success
probability for two cells versus the protein synthesis rate of the chosen cell divided by the
synthesis rate of the other cell. The red bar on top indicates the regime for which a cell still
exhibits bistability. Error bars indicate standard deviation computed over 20 simulations.
(c) Distribution of the success probability for 200 simulations of di�erent 30-cell populations
with 10% random deviations in synthesis rates for the uncontrolled system (blue) and with
the maximum control law (green). In all situations, the transcription rate of the chosen
cell is equal to the population mean. We also plot reference lines for the system without
protein synthesis noise (red lines, solid for the uncontrolled system, dashed for the controlled
system).
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Figure 2.8: Comparison of the e�ectiveness of di�erent control laws. Shown is the success
probability as a function of the number of cells for di�erent control strategies: the control
law based on the maximum expression of other cells (red squares), the control law based
on the mean expression, (black diamonds), the median (orange circle), the 75th percentile
(gold squares) and the control law that only considers the chosen cell (brown diamonds). We
plot for reference the uncontrolled system, for which the UV level is constant (blue circles).
Error bars indicate the standard error of the mean (SEM) for 12 independent repeats.

2.4 Toggle switch model

In this section I present results for the original, classical model of the toggle switch. It was

originally described in [16] and ever since it has then been considered in the literature many

times [37, 57, 29]. Gardner et al. designed the real toggle switch loop that describes the

expression of two mutually repressive proteins. The two mutually inhibiting proteins are

LacI and λcI [16]. A schematic for the standard toggle switch model is shown in Fig. 2.1(a).

The ordinary di�erential equations for the concentration of LacI (x) and λcI (y) would read:





d
dtx =

k
(m)
λcI

k
(0)
λcI+y

m
− γλcIx

d
dty =

k
(m)
LacI

k
(m)
LacI+x

m
− γLacIy.

(2.6)

As redesigned by Kobayashi et al. [25], the degradation rate of λcI is controlled via

UV radiation, such that one can optogenetically push the system from a state of high λcI

expression to a state of high LacI expression. We will later use this feature to specify a UV

radiation control law such that the expression of LacI is made high in one pre-speci�ed cell

and small in all of the others. Using parameters originally �t to the original UV dependent
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response distributions [25, 37], the rates for the production of λcI and LacI are given by:

kλcI = k
(0)
λcI +

k
(1)
λcI

1+αLacI[LacI]2.1 =
(

6.8× 10−5 + 0.016
1+6.1×10−3[LacI]3

)
s−1 (2.7)

kLacI = k
(0)
LacI +

k
(1)
LacI

1+αλcI[λcI]3 =
(

2.2× 10−3 + 0.017
1+2.6×10−3[λcI]2.1

)
s−1. (2.8)

The degradation rate for LacI is the dilution rate due to division (γLacI = 3.8 × 10−4s−1),

and the degradation rate for λcI depends upon the UV levels as:

γλcI =





3.8× 10−4s−1 at UV = 0 J/m2

6.8× 10−4s−1 at UV = 6 J/m2

2× 10−3s−1 at UV = 12 J/m2

(2.9)

For the stochastic simulation of the process in N genetically identical cells, the reactions are

similar to those described above for the toy model, but the expanded state vector is now

given by z = [x1, y1, . . . , xN , yN ]T ∈ N2N .

Now again the aim is to �nd a UV radiation control law such that the expression of LacI

is high in one cell and small in all others. As before, the control law will be UV radiation

applied at three levels only and the choice depends on the current state of the system.

However, in this case, the control law is based upon a limited amount of directly observable

information and directly controllable dynamics. It is assumed that only the level of LacI

can be measured experimentally through the use of a �uorescent protein reporter, and only

the degradation rate for λcI can be controlled via the application of UV radiation [37].

Taking into account all that, the control law in this model should be designed essentially

in a reverse manner to the previous one (compare to Fig. 2.3): high UV is applied when the

system is in a state of low LacI expression in all cells, moderate UV is applied if the system

has high LacI expression in the chosen cell and low expression in other cells (desired states),

and low UV is applied if the system has high LacI expression in other cells, regardless of

its expression in the chosen cell. Here the system is steered to the desired states indirectly,

since the UV does not a�ect LacI expression directly and only the inhibitory interactions of

LacI and λcI enable tuning of the LacI expression using UV radiation.

Given these additional di�culties one would expect less satisfactory results. However,

Fig. 2.9 shows optimistic results of the control law described here, applied to a population

of ten cells. In the chosen cell (red curve) the expression of LacI is driven to be high (panel

(a)), while the levels of λcI are driven to be low (panel (b)). For the other nine cells in

the population, cells are supposed to express the opposite behavior (grey curves represent

individual trajectories and their mean is plotted in blue). To illustrate how dramatically

di�erent the controlled cell's behavior is in comparison to the others, panel (c) illustrates

the same trajectories for the ten di�erent cells, all on the LacI-λcI plane.
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Figure 2.9: (a) Time evolution of the number of LacI proteins in ten cells expressing LacI
and λcI proteins, subjected to UV radiation control law discussed in the main text. The
trajectory for the chosen cell, in which we want to enhance LacI expression, is plotted in
red. The trajectories for the nine other cells, in which we want to damp LacI expression,
are plotted in grey and their mean is plotted in blue. (b) Number of LacI (x-axis) and λcI
(y-axis) proteins in ten cells, as in panel (a). Parameters of the gene regulatory circuit (see
main text) are �xed and identical for all cells. The inset in panel (b) shows two example
trajectories of LacI and λcI content in two cells subjected to constant UV, under which the
cell exhibits either high LacI or high λcI.
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2.5 Short conclusions

Biomolecular processes that involve small numbers of molecules are by nature stochastic.

This feature creates �uctuations that restrict the ability to make precise and accurate pre-

dictions for the behaviour of individual cells. Conversely, for deterministic processes that

lack these intrinsic uncertainties, knowledge of the initial conditions and reaction dynamics

provide accurate and complete predictions for the system evolution in time. In principle,

noise is said to reduce the predictability of any system's behaviour. In particular, in gene

regulation, the stochasticity is an obstacle to controlling individual cells without direct in-

tervention in each individual cell. In this part of the thesis, where noise was the principal

actor, I chose a very concrete case to show how it can actually enable precise control of

many individual cells using a single input. Although cells in the presented study were iden-

tical and subjected to identical conditions, I showed that it is possible to exploit stochastic

�uctuations to drive these individual cells each into a pre-speci�ed, desired state. This ca-

pability was illustrated using two models of cell populations, where dynamics are governed

by a simple self-activating gene model and the full toggle switch model. For a determinis-

tically varying process, the phenotype of each cell depends entirely on its initial condition,

and therefore it would be impossible to individually control cell phenotypes without �rst

specifying these initial conditions. Exploration of the stochastic framework showed that

�uctuations render identical cells to become distinct and susceptible to control inputs. In

turn, this �uctuating susceptibility allowed for formulation of control laws that depend on

the observed and continually perturbed states of the system.

2.6 Appendix

I show in here how the Hill function, used widely to model feedbacks, is derived from the

law of mass-action. Consider the following binding reaction:

p + DNA
b


u

pDNA, (2.10)

where p is the protein molecule that binds to the free promoter site on the DNA, and they

form a complex pDNA. We can write the di�erential equation for the time evolution of

the complex concentration, [pDNA], in terms of the concentrations of protein, [p], and free

DNA, [DNA]. For the case when there is only one copy of the gene, there can only be either

0 or 1 complexes pDNA, therefore we can also consider [pDNA] and [DNA] as the relative

times that the DNA is bound, and free, respectively. The di�erential equation for [pDNA]

reads:
d[pDNA]

dt
= b[p][DNA]− u[pDNA]. (2.11)
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The Hill function we are looking for will model protein production. This process usually

takes hours, whereas binding of protein to the DNA is thought to take only seconds, [3].

Therefore, we consider the adiabatic regime, (see [34]), in which protein production happens

when the binding process has reached its steady state, i.e., we look at d[pDNA]
dt = 0. This

implies [DNA] = u
b

[pDNA]
[p] . Lets consider the fraction of bound DNA, i.e.: [pDNA]

[DNA]+[pDNA] :

[pDNA]

[DNA] + [pDNA]
=

[pDNA]
u[pDNA]
b[p] + [pDNA]

=
1

u
b

1
[p] + 1

=
[p]

u
b + [p]

β:=u
b=

[p]

β + [p]
. (2.12)

If the transcription factor needs �rst to form a polymer of n molecules before binding to the

DNA, the reaction is:

n · p + DNA
b


u

(np)DNA, (2.13)

and the resulting di�erential equation for the concentration of the whole complex (DNA and

the polymer (np)), [(np)DNA] reads:

d[(np)DNA]

dt
= b[p]n[DNA]− u[(np)DNA]. (2.14)

This gives the expression for the fraction of bound DNA:

[(np)DNA]

[DNA] + [(np)DNA]
=

[(np)DNA]
u
b

[(np)DNA]
[p]n + [(np)DNA]

=
1

u
b

1
[p]n + 1

=
[p]n

u
b + [p]n

=
[p]n

β + [p]n
.

(2.15)

If we want to model self-activation of a protein, we set the production term in the ordinary

di�erential equation to be proportional, with some positive constant, to the fraction of bound

DNA, i.e., the expression computed above.
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Chapter 3

Information

It is a very sad thing that nowadays

there is so little useless information.

Oscar Wilde

3.1 Motivation

All living organisms, even the most simple ones, in order to adapt to the environment,

must read and process information. This biological fact has been known for long; in the

case of cells, transmitting information means sensing through receptors chemical stimuli and

activating biochemical pathways in response. Such reading and transmitting signals comes

at a price - it consumes energy. There are plenty of possible topologies of these regulatory

circuits, yet not all of them are found in nature. The question arises why some network

architectures are frequent and others nonexisting [3]. One way to approach such a question

is to optimize a (speci�c) function by a circuit topology - it could be for example noise

(minimization), time-delay of response (minimization) or information transmitted between

the input and output (maximization).

A regulatory network is a collection of linked elements, which through direct and indirect

interactions in�uence the state of each other and oneself. Here I analyze a simple regulatory

model with binary input and output variables and a delayed information measured between

them. The processes modelled here are irreversible, thus the whole system consumes en-

ergy. Irreversible reactions (for example biochemical cascades), come at a cost, energetic

cost. When one hears �energy� in this context, one thinks about energy needed for protein

production. Here, we rather look at the energy that is dissipated (used) in a given network

topology, and by �network topology� I understand its architecture, for example the existence

of feedbacks. Two di�erent circuits can produce the same amount of proteins, but the en-

ergy dissipated in them is di�erent. In other words, we assume that there is some amount of

63
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energy needed for protein synthesis, and we think of it as a hardware of the network. This

cannot be modi�ed a lot. Instead, we want to �nd the best regulatory logic - software - we

can implement, given a certain set of hardware.

In order to concentrate on this speci�c problem of dissipation coming from regulatory

architecture, we choose to study a simpli�ed model with two binary elements: a receptor

and a product protein. Each element can be in one of two states: active or inactive, and

its state regulates the state of the other element. We will consider a simple model, with no

feedback from the output protein to the receptor, and a model with feedback.

3.2 Models

Similarly to the previous parts of this dissertation, we will be again investigating Markov

Chains with continuous time. The considered system consists of two discrete random vari-

ables xt and zt, evolving in time, which we will interpret as the output and input, respec-

tively. We assume that x and z can take only two values: + (active state) and − (inactive

state). Thus the state space of the Markov Chain consists of four elements: (−,−), (−,+),

(+,−), and (+,+). The transition rates will be given explicitly with a transition rate matrix.

The two models that will be investigated are: a simple model of regulation (input variable

z regulates output variable x), and a model of regulation with feedback (input variable z

regulates output variable x and output variable x regulates input variable z). These two

models become slightly simpli�ed if we do not distinguish between �pure� states, i.e., (−,−)

and (+,+), and the �mixed� states, i.e., (−,+) and (+,−). We will be thus speaking

rather about aligning/antialigning than activation/deactivation. This symmetry reduces

the number of parameters and thus simpli�es the computations.

Lets recall that the master equation of the Markov Chain is P ′(t) = P (t)Q, where P (t)

is now the probability distribution of the model: P (xt, zt) and Q depends on whether there

is feedback from the output to the input. For the simple model, without feedback, Q := QS:

QS =




−(u+ s) u s 0

u −(u+ r) 0 r

r 0 −(u+ r) u

0 s u −(u+ s)



, (3.1)

and for the model with feedback, Q := QF:

QF =




−(s+ α) α s 0

y −(r + y) 0 r

r 0 −(r + y) y

0 s α −(s+ α)



. (3.2)



3.2. MODELS 65

The transition rates are also given in Fig. 3.1 and Fig. 3.2.
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Figure 3.1: Representation of a possible time evolution of the system. Two variables �ip
between active (+) or inactive (-) states with respective rates. In the model without feedback
(upper �gure) the output variable depends on the input variable (aligns to it with rate r
or antialigns, with rate s), the input variable z �ips freely between its active and inactive
state, regardless of the state of the output. In the model with feedback (lower �gure), there
is a di�erence in rates of �ipping of the input that depends on the state of the output.
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Figure 3.2: Scheme of the possible states and transitions between them for both models:
without feedback (left �gure), and with feedback (right �gure). Since there are two binary
variables there are four states; transition rates are marked next to respective arrows. Note
the symmetry between the �pure� ((−,−) and (+,+)) states and the �mixed� states ((−,+)
and (+,−)) in both models.

We will be interested in the joint probability P (xt, z0), that is, we will look at the output

variable x at time t and the initial state of the input variable z. This probability is needed in

the computation of the central quantity we optimize - the mutual information between the

initial state of the input and the state of the output at time t. After summing up over the

possible states of z0 we will obtain P (xt) =
∑
z0

P (xt, z0), which in turn is indispensable for

calculating the entropy production rate of the system. These two basic quantities of interest

- Mutual Information and Entropy production rate - are de�ned and discussed in the next

section.
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As mentioned before, there is a very handy symmetry introduced into both models - we

do not distinguish between (−,−) and (+,+) states, as well as between (−,+) and (+,−)

states. We can thus parametrize the probability distribution p by a single parameter µt. We

write the joint distribution P (xt, z0) in a general form:

P (xt, z0) = (a+ bxt + cz0 + µtxtz0)/4. (3.3)

Since the probabilities must sum up to 1 we get that a = 1:

P (xt = −1, z0 = −1) + P (xt = 1, z0 = −1) + P (xt = −1, z0 = 1) + P (xt = 1, z0 = 1) = 1

1

4
(a− b− c+ µt + a+ b− c− µt + a− b+ c− µt + a+ b+ c+ µt) = 1

a = 1

We also have the following: P (xt = −1, z0) + P (xt = 1, z0) = P (xt, z0 = −1) + P (xt, z0 =

−1) = 1/2. Hence:

P (xt = −1, z0) + P (xt = 1, z0)︸ ︷︷ ︸
1
2 (a+cz0)

= P (xt, z0 = −1) + P (xt, z0 = 1)︸ ︷︷ ︸
1
2 (a+bxt)

= 1/2

⇒ 1 + bxt = 1 and 1 + cz0 = 1 ⇒ b = c = 0.

We have then a parametrization of the probability distribution at any time t: P (xt, z0) =(
1+µt

4 , 1−µt
4 , 1−µt

4 , 1+µt
4

)
. This reasoning was conducted under the assumption that the ini-

tial probability distribution p0 yields the symmetry condition as well and thus is also of the

form P (x0, z0) = P0 =
(

1+µ0

4 , 1−µ0

4 , 1−µ0

4 , 1+µ0

4

)
.

Consideration of the initial distribution multiplies the number of models. So far I have

introduced two models - simple regulation and one with feedback. However, within both

of them, I can either �x the initial distribution or let it be any four-dimension probability

vector satisfying the symmetry condition (i.e., I let µ0 be any number between −1 and 1).

From now on, I will use the following notation:

• S - will denote the simple model (no feedback) with the initial probability distribution

equal to the stationary state one

• F - will denote the model with feedback with the initial probability distribution equal

to the stationary state one

• S̃ - will denote the simple model (no feedback) with free initial probability distribution

• F̃ - will denote the model with feedback with free initial probability distribution.
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3.3 Basic concepts and the main task

Here I provide de�nitions of the two main notions, Mutual Information and Entropy pro-

duction rate, considered in this chapter, give some intuition behind them, and how they

relate to each other. Both of them are derived from the same quantity, Entropy, a notion

considered both in Mathematics and in Physics. Let me start with its de�nition.

3.3.1 Entropy

A discrete random variable X is a measurable function de�ned on a countable probability

space. If we conventionally denote the probability of the i-th event by Pi, then the Entropy

of the random variable X is de�ned as:

S(t) = −
∑

i

Pi(t) logPi(t). (3.4)

Heuristically speaking, it quanti�es the amount of uncertainty a random variable carries.

For example in coin �ipping, the entropy is the highest if the coin is fair and decreases to

zero with the probability of the heads or tails approaching to 0 or 1.

3.3.2 Entropy production rate

The entropy production rate formula is derived directly from Entropy. After di�erentiation

of the latter with respect to time we get:

Ṡ(t) = −
∑

i

Ṗi(t) logPi(t)−
∑

i

Pi(t)
1

Pi(t)
Ṗi(t)

= −
∑

i

Ṗi(t) logPi(t)−
(∑

i

Pi(t)

)′
.

Let's denote by wij the transition rate from state i to state j. We have that Ṗi(t) =∑
j 6=i

wjiPj(t) −
∑
j 6=i

wijPi(t). We de�ne wii as −
∑
j,j 6=i wij , so that we can write compactly

Ṗi(t) =
∑
j

Pj(t)wji and the expression for Ṡ(t) becomes:

Ṡ(t) = −
∑

i


∑

j

Pj(t)wji


 logPi(t)− 0

= −
∑

i,j

Pj(t)wji logPi(t). (3.5)

With the de�nition of wii, the terms wij satisfy
∑
j

wij = 0. Thus, the following expression:
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−∑
i

Pi(t) logPi(t)
∑
j

wij = −∑
i,j

Pi(t)wij logPi(t) is equal to zero and we subtract it from

(3.5) to obtain a compact form:

Ṡ(t) =


∑

i,j

Pi(t)wij logPi(t)−
∑

i,j

Pi(t)wij logPj(t)


 =

∑

i,j

Pi(t)wij log
Pi(t)

Pj(t)
. (3.6)

Further formula manipulation gives:

Ṡ(t) =
1

2

∑

i,j

Pi(t)wij log
Pi(t)

Pj(t)
− 1

2

∑

i,j

Pi(t)wij log
Pj(t)

Pi(t)

=
1

2

∑

i,j

Pi(t)wij log
Pi(t)

Pj(t)
− 1

2

∑

j,i

Pj(t)wji log
Pi(t)

Pj(t)

=
1

2

∑

i,j

(Pi(t)wij − Pj(t)wji) log
Pi(t)

Pj(t)
.

This expression can be split in two in the following way:

=
1

2

∑

i,j

(Pi(t)wij − Pj(t)wji) log
wji
wij

︸ ︷︷ ︸
entropy �ow

+
1

2

∑

i,j

(Pi(t)wij − Pj(t)wji) log
Pi(t)wij
Pj(t)wji

︸ ︷︷ ︸
entropy production rate

. (3.7)

The di�erence between the entropy production rate and the entropy �ow, is the rate at which

the whole entropy of a system changes [53]. The entropy �ow quanti�es the �ux of entropy

from the system to the outside. In the steady state, as the entropy does not change, they

are equal, which means that the whole entropy produced by the system is given away.

The second underbracket of (3.7) can be rewritten as:

σ(t) =
∑

i,j

Pi(t)wij log
Pi(t)wij
Pj(t)wji

. (3.8)

This is the formula used from now on for the entropy production rate [45].

We will be looking at both steady state entropy production rate and average dissipation,

which is a mean integral, calculated up to some time, of the entropy production rate.
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Steady state entropy production rate

The steady state entropy production rate is simply the limit of the time-dependent quantity,

entropy production rate, when t→∞:

σ(t) =
∑

i,j

Pi(t)wij log
Pi(t)wij
Pj(t)wji

=
∑

i,j

Pi(t)wij log
wij
wji

+
∑

i,j

Pi(t)wij log
Pi(t)

Pj(t)
︸ ︷︷ ︸

Ṡ(t)

−−−→
t→∞

∑

i,j

P ss
i wij log

wij
wji

= σss.

(3.9)

The steady state entropy production rate corresponds, heuristically speaking, to the amount

of energy available at every moment. The �rst question to be asked is what are the circuits

that optimally transmit information, given a limited amount of steady state dissipation,

σss. The energy expense of a circuit that remains in the steady state is well de�ned by this

quantity. However, if the system starts not in the steady state it will dissipate more energy,

and a second question arises - what is the �total expense� of such a circuit. In order to

answer this question we have to de�ne yet another notion - the average dissipation.

Average dissipation

The average dissipation will have to be calculated as the integral of the entropy production

rate in Eq. (3.8) over the entire time the circuit is active, τp, (such as the duration of the

cell cycle or the interval between new inputs that kick the system into the initial out-of-

steady-state condition). After some time the circuit will relax to the steady state (see the

diagram in Fig. 3.3 below), where its energetic expense is given by σ̂ss - a rescaled steady

state entropy production rate, see section �Rescaling�. But the out-of-steady-state initial

condition costs the system some energy. We can compare the performance of circuits that

have the same steady state entropy production rate, but di�erent regulatory designs, by

considering their average dissipation until a given time τp:

Σavg(τp) =
1

τp

τp∫

0

σ̂(τ)dτ. (3.10)
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σ̂
(τ
)

τp ·Σavg σ̂ ss

reset time

τp

readout time

τ

Figure 3.3: Schematic representation of system's relaxation. Entropy production rate, σ̂(τ)
relaxes with time to its steady state value, σ̂ss. At τp - the system is �kicked out� or reset,
thus the pink area represents the total energy dissipated until that time. The information
is collected at an earlier readout time τ .

3.3.3 Mutual Information

The most commonly known de�nition of mutual information, involving entropy, reads:

I(X,Y ) = S(X)− S(X|Y ), (3.11)

where S(X) is the entropy of the random variable X and S(X|Y ) is the conditional entropy

of X given Y . The conditional entropy is given by:

S(X|Y ) =
∑

j

P (Y = j)S(X|Y = j), (3.12)

and it quanti�es the uncertainty about X, given that we know Y . So the di�erence between

the entropy of a random variable X and its conditional entropy given another random

variable Y is in fact how much we reduced our uncertainty about X assuming we know Y .

The de�nition (3.11) is equivalent to the de�nition used throughout this work:

I[X,Y ] =
∑

i,j

P (xi, yj) log
P (xi, yj)

P (xi)P (yj)
. (3.13)

This de�nition of the mutual information measures how �far� is the joint probability distri-

bution of X and Y of the product of their marginal distributions. It is easy to see, that if X

and Y are independent, then P (X,Y ) = P (X) ·P (Y ) and the logarithm renders the mutual

information to be 0. I show the equivalence of defs. (3.12) and (3.13) in the Appendix to

this chapter.

The time dependent Mutual Information for our model of input (z) and output (x) reads:

I[Xt, Z0] =
∑

xt,z0

P (xt, z0) log
P (xt, z0)

P (xt)P (z0)
. (3.14)
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This quantity is a function of the transition rates and time. Its explicit formulae for the

model without feedback, as an example, is worked out in the Appendix to this chapter.

3.3.4 Rescaling

Both of these notions, mutual information and entropy production ate are functions of time.

In order to analyse the system in its natural timescale, we set τ = t ·λ, where λ is the inverse

of the relaxation time (smallest, non-zero eigenvalue of the matrix L). From now on, we will

talk about I[xτ , z0] = I[xλ·t, z0], about σ̂(τ) = 1
λσ(τ/λ) and about σ̂ss = 1

λσ
ss.

To gain some intuition, I chose to plot in Fig. 3.4 the rescaled entropy production rate, σ̂,

with respect to the rescaled time τ for the model without feedback. σ̂ is a constant function

of τ , if the initial probability distribution is the steady state one. In other cases σ̂ relaxes to

σ̂ss monotonically. Particularly interesting is the fact that the entropy production rate can

be negative (for some µ0 at initial times). I will not discuss the physics behind it, an avid

reader can �nd more details in [6].

µ0 =−1
µ0 =−0.5

µ0 = µ ss
0 = 0.1̇

µ0 = 0.5
µ0 = 1

τ

s = 0.75, u = 0.25
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µ0 =−0.5
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µ0 = µ ss

0 = 0.3̇
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)
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Figure 3.4: Rescaled entropy production rate σ̂ plotted as function of τ for some chosen
values of parameters and di�erent initial distributions (parametrized by µ0), for the model
without feedback.

3.3.5 Task

The task is to �nd maximal mutual information between the input and the output, with or

without constraints, for all model variants, (simple regulation, and the one with feedback;

starting at steady state, or starting out of steady state) and compare their performance -

the amount of information transmitted and the energy spent. The next section will show

the results of the unconstrained optimization, which is numerically least demanding. Then,

a constraint will be set on the steady state entropy production rate σ̂ss. Mathematically

speaking, we are looking for the maximum of the function (mutual information) in the

space of parameters (s, u, r, or s, α, y, r). Optimizing with a constraint is looking for the

maximum of the function not in the whole parameter space (RN+ ) but on the manifold given

by σss(parameters) = constraint. Finally, to compare not only the information transmitted

in the models, but also its cost, we will calculate the average dissipation of the models.
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3.4 Results

Here I present results of the optimization of mutual information between the input at time

0 and the output at time τ , without and with a constraint set on the steady state entropy

production rate, σ̂ss, and calculate the average dissipation, Σavg. The latter quantity is a

function of the transition rates, (u, s and r for the model without feedback and α, y, s and

r for the model with feedback). We can also treat the initial distribution, (parametrized by

a single parameter, µ0), as an additional constraint - in our particular case we set µ0 to be

equal to µss0 , i.e., we �x the initial distribution to be the steady state one. Alternatively,

we can relax this constraint and let the initial distribution be di�erent from the steady

state one; in other words we can also optimize over µ0, potentially obtaining higher mutual

information.

As mentioned in the Introduction, some of the results presented here were �rst obtained

by Francesca Mancini. In [33] she calculated the optimal information for many variants of

the models for the case when there is no constraint on the steady state entropy production

rate. In [32] she found the optimal mutual information also for when there is a constraint

put on the steady state entropy production rate for models S and F . Here I extend her

results to the models S̃ and F̃ , i.e., I perform the optimization also with respect to the initial

distribution. Then, I calculate the average dissipation of the optimal information (the cost).

3.4.1 Unconstrained optimization

Optimization algorithm

On the example of the simple model, S, I provide the optimization procedure. Recall that

the Mutual Information is a function of the transition rates (u, s, r) and of the readout

time, τ . First, one of the rates, (r), was for simplicity and without loss of generality set to 1.

Then, the readout time τ was �xed and rates u and s returning highest mutual information,

and satisfying µ0 = µss0 , found. This procedure was repeated for all τ . The results are

shown in Fig. 3.5: blue stars indicate the highest mutual information computed with the

optimal rates u and s found for a �xed τ . Red curves in panel (a) correspond to the mutual

information computed for these optimal rates plotted for the whole range of τ . The rate

of antialigning, s, was found to maximize mutual information when it is equal to 0 for all

times τ . The rate of the independent input �ipping, u, increases linearly with τ until when

it becomes constant, equal to 0.5.

The optimization algorithm was applied to the three remaining models: S̃, F , and F̃ .

For the model with feedback and with steady state initial distribution, F , it was exactly the

same, there was only one additional rate to be found in the optimization. For the models

with initial distribution not �xed, S̃ and F̃ , the parameter space had one supplementary

dimension, as µ0 is no longer �xed.

Let me summarize the result of this unconstrained optimization in one graph, Fig. 3.6,
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Figure 3.5: Optimal mutual information between the input, z0, and output xτ for the simple
model, S. In panel (a) optimal mutual information for every τ is marked with blue stars.
Red curves are mutual information curves calculated with the optimal parameters, but for
the whole range of τ . In panel (b) optimal mutual information and optimal rates u and s
are presented

and in one sentence - simple feedback allows for better information transmission only in the

case when the initial distribution is �xed to its steady state value. Optimizing over the initial

distribution renders the models without and with feedback equivalent. Of course the model

with feedback performs better than the model without feedback if the initial distribution is

�xed.

S
F
F̃ = S̃

τ

Max I[xτ ,z0]

20

1

0

Figure 3.6: Results of the unconstrained optimization - mutual information for the simple
models (S and S̃) and with feedback (F and F̃ ) with respect to the readout time τ . Opti-
mization done both when the initial distribution is �xed to its steady state value (no tilde)
and when the parameter is subjected to optimization as well (with tilde).

The conclusion about the equivalence of the simple model and the model with feedback no

longer holds when we constrain σ̂ss.
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3.4.2 Constraining σ̂ss

Optimization algorithm

The optimization in the case when we set a constraint on the steady state entropy production

rate, σ̂ss, was numerically much more demanding, although the concept remains the same -

we �x the time τ at which we read out the information, and look for rates that maximize

I[xτ , z0] and that yield σ̂ss = given constraint.

Let me begin by showing two instructive plots done for the simple models, S and S̃,

before I summarize the results for all four models in one graph and a table.

In Fig. 3.7, optimal mutual information is plotted in the conventional way, as function of

the readout time, τ . Not surprisingly, it is a decreasing function of τ for both models. Also,

higher σ̂ss allows for more information transmitted, and of course model S̃ performs better

(transmits more information) than model S (solid lines are above the corresponding dashed

lines). The second plot presents the same result in a di�erent way � in Fig. 3.8, optimal

σ̂ = 0.1
σ̂ = 0.3
σ̂ = 1
σ̂ = 3
σ̂ = ∞

τ

µSS
0µopt

0

Max I[xτ ,z0]

20

1

0

Figure 3.7: Optimal mutual information as function of the readout time, τ , for di�erent
steady state entropy production rates, σ̂ss, for the model S (dashed lines) an S̃ (solid lines).

mutual information for models S and S̃ is shown as function of the steady state entropy

production rate, σ̂ss, for �xed values of the readout time, τ . I plotted in separate panels

the results for models S and S̃, but the scales on the axis are the same, so that it is easy

to compare between them. One obvious observation is that higher the steady state entropy

production rate is, higher information is transmitted. Also, choosing the initial distribution,

instead of starting from the steady state, signi�cantly increases information transmitted.

Finally I present the results obtained for all four models in one plot, Fig. 3.9. The di�erence

between optimal mutual information transmitted in models S̃ and F̃ is higher for smaller

σ̂ss, and, as shown previously, this di�erence vanishes as σ̂ss → ∞. The conclusion about

the model with feedback performing better (transmitting more information) than the models
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Figure 3.8: Optimal mutual information as function of the steady state entropy production
rate σ̂ss for di�erent readout times, τ for the simple models. In panel (a) the initial distribu-
tion, p0 is �xed to the steady state value pst0 , in panel (b) it was subjected to optimization.

without feedback holds, as well as the observation (which was also true for the unconstrained

optimization case) that the models with free initial distribution outrank the variants with

the initial distribution �xed to its steady state value.

S, σ̂ ss = 0.2
F, σ̂ ss = 0.2
S, σ̂ ss = 2
F, σ̂ ss = 2
S̃, σ̂ ss = 0.2
F̃ , σ̂ ss = 0.2
S̃, σ̂ ss = 2
F̃ , σ̂ ss = 2

τ

Max I[xτ ,z0]
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Figure 3.9: Optimal mutual information as function of the readout time, τ , for two di�erent
steady state entropy production rates, σ̂ss, for the models S and F (dashed lines), and the
models S̃ and F̃ (solid lines).

Let me summarize all the results obtained so far in a symbolic form. I denote the optimal

mutual information for each model by I(W ), where W ∈ {S, S̃, F, F̃}.
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• I(S) < I(S̃), I(F ) < I(F̃ ) ∀σ̂ss <∞, as well as without constraint on σ̂ss,

• I(S) < I(F ) ∀σ̂ss <∞, as well as without constraint on σ̂ss,

• I(S̃) < I(F̃ ) ∀σ̂ss <∞, I(S̃) −−−−−→
σ̂ss→∞

I(F̃ ).

3.4.3 Cost of optimal information

We have seen that the for both models, if we can choose the initial distribution, instead

of starting from the steady state, we can signi�cantly increase information transmitted.

Now a question arises if this choice of initial distribution �costs� us something? We will be

calculating the average dissipation, Σavg(τp), and look for the highest mutual information

attainable for a given steady state entropy production rate if we allow the initial condition to

be out of the steady state. As argued already, the systems that start at steady state, i.e., for

which µ0 = µss0 , will not pay additional cost (see Fig. 3.4, for µ0 = µss0 the function of σ̂(τ) is

constant, equal to σ̂ss). This means that also the mean integral, Σavg(τp), will be equal to σ̂ss.

Optimization algorithm

First of all, the steady state entropy production rate, σ̂ss, as it is an inevitable expense we

pay constantly, is �xed. Then we �x the reset time, τp, until which Σavg will be calculated.

Next, we �x Σavg itself and then transition rates returning optimal mutual information for

a chosen readout time τ ≤ τ are found. With this procedure, we �nd Σavg for which the

mutual information is highest for a given σ̂ss. We shall call this quantity the cost. The

result of this analysis are shown in Fig. 3.10, where for a chosen σ̂ss = 0.1, optimal mutual

information is plotted against Σavg(τp). Depending on the value of τ , mutual information

has either two peaks (smaller τ) or one peak (bigger τ). The higher peak, or only one,

requires µ0 = 1, i.e., the initial distribution to be equal to (0.5, 0, 0, 0.5). The second peak

(if arises) is when µ0 = −1, which in turn means that the initial distribution is (0, 0.5, 0.5, 0).

This result about the optimal µ0 holds for all σ̂ss.

I present the interplay of the three quantities - optimal mutual information, steady state

entropy production rate, and cost, in one graph, Fig. 3.12, for di�erent readout and reset

times, τ and τp. Let me introduce one more handy term that will characterise the models

- the relaxation cost. It is schematically depicted in Fig. 3.11, which is analogous to the

cartoon in Fig. 3.3. This time the pink area shades the di�erence between the total cost

paid until time τp, τpΣavg and the energy that would be anyhow dissipated if the system

started at steady state, τpσ̂ss.

I can now compare models S with S̃ in terms of the cost of information transmission and

the readout time τ . We know from the previous section that model S̃ transmits more infor-

mation than model S, however it is only now that we can compare the costs. As shown in

Fig. 3.12, the total cost (z-axis, in colour) generated was only slightly bigger for S̃ than for
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Figure 3.10: Optimal mutual information and optimal parameters µ0, u and s for the simple
model as function of the average dissipation, Σavg, for two values of the readout time, τ = 0.5
(upper panels), and τ = 2 bottom panels and three values of the reset time, τp (di�erent
colours of curves). Steady state entropy production rate, σ̂ss, was �xed to 0.1.

S and the di�erence is more pronounced only for relatively small σ̂ss. This holds for both

sets of parameters (τ = τp = 0.5 and τ = 1, τp = 2), but is more visible for τ = τp = 0.5.

In order to quantify the intuition that S̃ transmits more information than S at a small

price, I plotted in panel (b) of Fig. 3.12 the information gain, I* − Iss, and the relaxation

cost with respect to σ̂ss. I* − Iss is the di�erence between the optimal information when

the initial distribution is free to be optimized over (S̃) and the optimal information for the

system with steady state initial distribution (S). In other words, I looked into how much

the system pays additionally for better information if the initial condition is optimal. We

see that the relaxation cost is almost the same regardless of the reset time, τp. Of course

the relaxation cost decreases along with increasing steady state entropy production rate, σ̂ss.

This analysis leads to a result stating that higher optimal mutual information obtained

when the optimization over the initial distribution is allowed does not generate signi�cantly

higher costs. The same result holds for models F and F̃ , but instead of plotting analo-

gous �gures for the model with feedback I performed another cross-comparison, this time

between the models with steady state initial distribution, S with F , and the models where

the initial distribution is the optimization variable, S̃ with F̃ . Figure 3.13 completes previ-

ous results about mutual information. Let's recall that the model with feedback performed



78 CHAPTER 3. INFORMATION

σ̂
(τ
)

τp
(
Σavg − σ̂ss)

relaxation cost

σ̂ ss

reset time

τp

readout time

τ

Figure 3.11: Cartoon of the relaxation of the system when the initial distribution is not the
steady state one, and thus σ̂(τ) 6= σ̂ss. The pink area is called the relaxation cost.
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Figure 3.12: Left �gure: Total cost, τpΣavg, of the optimal information transmitted with
respect to the steady state entropy production rate, τpσ̂ss, for the model without feedback,
that starts at the steady state distribution, S, and that optimizes the initial distribution,
S̃. Right �gure: relaxation cost, τp (Σavg − σ̂ss), of the gain in information, I* − Iss, with
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Figure 3.13: Comparison of all four models: simple (S, S̃) and with feedback (F , F̃ ), with
the initial distribution equal to the steady state one (S, F ) or optimized over (S̃, F̃ ). Left
panel - optimal mutual information, right panel - corresponding cost, Σavg. The values of τ
and τp were �xed to 0.5.

better (transmitted more information) than the model without feedback. However, there

was a subtlety to be taken into account when distinguishing the models with optimal initial
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distribution (S̃ and F̃ ) and steady state initial distribution (S and F ). The comparison of

the models with steady state initial distribution showed signi�cant di�erence in the amount

of information transmitted, in contrast to the variants with optimal initial distribution. In

fact, the optimal mutual information for su�ciently large entropy production rates for mod-

els S̃ and F̃ was nearly the same for all times τ . This was not the case for models S and F ,

where for small τ , regardless of the steady state entropy production rate σ̂ss, the optimal

mutual information for model S was signi�cantly smaller than for F .

It is thus interesting to see how the cost of optimal mutual information will classify these four

models. In the right panel of Fig. 3.13 I plotted the cost of the optimal mutual information for

model S̃ and F̃ . I omitted plotting the results for models S and F , as we learnt already that

the cost of optimal mutual information for these models is the same, equal to σ̂ss. I gathered

all the above results, along with the previous ones about optimal mutual information in

Table 3.1. I use again the convention: I(W ) is the optimal mutual information for model

W , W ∈ {S, S̃, F, F̃} and C(W ) is the cost of the optimal information transmitted in model

W .

Iopt Cost

S, F I(S) < I(F ) C(S) = C(F )

S̃, F̃ I(S̃) ≤ I(F̃ ) C(S̃) > C(F̃ )

Table 3.1: Comparison between the four models, S, F , S̃, and F̃ in terms of optimal mutual
information, I, and the cost (value of Σavg calculated with optimal rates), C.

3.5 Short conclusions

In this chapter I looked into the third aspect of mathematical modelling of signalling path-

ways, information transmission, and presented a model of two binary random variables that

regulate each other either without or with feedback. For these two models I looked for the

optimal mutual information between the random variables called the input and the output.

More precisely, the mutual information is a function of the transition rates between the states

(four states, as the variables are binary), the time at which this information is �measured�

and the initial probability distribution (assumed to be parametrized by one parameter). On

the whole, there were four models considered: one simple (without feedback) with the initial

distribution equal the steady state one (called S), one simple but with the initial distribution

free to be optimized over (S̃), one with feedback and the initial distribution equal the steady

state one (F ) and �nally one with feedback with the initial distribution free to be optimized
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over (F̃ ).

The optimization was performed numerically by �rst �xing the time at which the output

is read and then looking for the parameters that yield the highest mutual information. I also

performed optimizations with a constraint set on the steady state entropy production rate.

This thorough analysis enabled to compare the four models. We veri�ed that the models

with the initial distribution subjected to optimization transmit more information than their

equivalents with the initial distribution �xed to the steady state value. Secondly, we found

that the model without feedback and steady state initial distribution is worse in terms of

information transmitted than the model with feedback and steady state initial distribution.

Finally, the same result was shown for the models with the optimized initial distribution

with such a di�erence that the optimal mutual information for the variant without feedback

was close to the optimal mutual information for the variant with feedback for even small

steady state entropy production rate.

Next I considered average dissipation - the mean integral of the time dependent entropy

production rate, calculated up to some reset time τp. The optimal mutual information is

attained for some �nite average dissipation, called the cost. We then asked questions about

the interplay of the optimal mutual information and its cost. The conclusion completes

neatly the results about optimal information: for the case of steady state initial dis-

tribution, the feedback model outranks signi�cantly the no-feedback model in

terms of optimal information, but the respective costs of optimal information

are the same. In the case of the initial distribution subjected to optimization

there is less di�erence in the optimal information, but the cost remains highly

larger for the no-feedback model than for the one with feedback.

One could look at these results from two perspectives - �rst would be to focus on the

preeminance of the feedback and argue for its better performance either in terms of informa-

tion transmitted (in the case of steady state initial distribution) or its frugality in expenses

(in the case of optimized initial distribution). Conversely, one could defend the no-feedback

model stating that it is only slightly worse in terms of information transmission (optimized

initial distribution case) and spends exactly the same amount of energy (steady state initial

distribution). But of course the global conclusion about whether feedback is bene�cial or not

is that it certainly performs better (or equally well) than a simple regulatory system with

no feedback. And this holds both for information transmission, and the cost of transmitting

this optimal information.
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3.6 Appendix

3.6.1 Equivalence of two de�nitions of Mutual Information

Here I provide formula manipulations that lead from the most known de�nition of Mutual

Information:

I[X,Y ] = S(X)− S(X|Y ),

to the de�nition I used in my analysis:

I[X,Y ] =
∑

i,j

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
. (3.15)

I[X,Y ] = S(X)− S(X|Y ) =

= −
∑

i

P (X = i) logP (X = i)−
∑

j

P (Y = j)S(X|Y = j)

= −
∑

i

p(xi) log p(xi) +
∑

j

p(yj)
∑

i

p(xi|yj) log p(xi|yj)

= −
∑

i

p(xi) log p(xi) +
∑

i,j

p(yj)
p(xi, yj)

p(yj)
log p(xi|yj)

= −
∑

i


∑

j

p(xi, yj)


 log p(xi) +

∑

i,j

p(yj)
p(xi, yj)

p(yj)
log p(xi|yj)

= −
∑

i,j

p(xi, yj) log p(xi) +
∑

i,j

p(xi, yj) log
p(xi, yj)

p(yj)

=
∑

i,j

(
p(xi, yj) log

1

p(xi)
+ p(xi, yj) log

p(xi, yj)

p(yj)

)

=
∑

i,j

p(xi, yj) log
p(xi, yj)

p(xi) · p(yj)
.

3.6.2 Calculations for the model without feedback

Let me present here some calculations and explicit formulae obtained for the simpler model,

without feedback. I would like to show that some work might be done still with a pencil

and a piece of paper, with no numeric power at hand. These calculations were originally

conducted by Francesca Mancini in [33], for a simple case when s was set to 0 and they

were shown again in [32] but for µ0 = µss0 . I reproduce the formulae for model S with no

assumptions on rates (except that r = 1 as everywhere before, without loss of generality)

and the initial distribution.
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The normalized eigenvector corresponding to the zero eigenvalue gives the stationary prob-

ability distribution, i.e., we solve the equation for the stationary probability of a Markov

Chain: P ·QS = 0, where QS reads:

QS =




−(u+ s) u s 0

u −(u+ r) 0 r

r 0 −(u+ r) u

0 s u −(u+ s)




(3.16)

We obtain:

P ss(−−,−+,+−,++)

=

(
1 + u

2(1 + s+ 2u)
,

s+ u

2(1 + s+ 2u)
,

s+ u

2(1 + s+ 2u)
,

1 + u

2(1 + s+ 2u)

)
. (3.17)

With the above we have straightaway the steady state entropy production rate, σss:

σss =
∑

i,j

P ss
i wij log

wij
wji

= 2
1 + u

2(1 + s+ 2u)
(−s) log

s

1
+ 2

s+ u

2(1 + s+ 2u)
(−1) log

1

s
=
u(s− 1) log s

1 + s+ 2u
. (3.18)

Calculation of Mutual Information:

This calculation has been thoroughly done in the Appendix in [33]; I provide here my

results for the simple model S with r = 1. The joint distribution p(xt, z0) is computed,

after necessary manipulations, from the transition rate matrix QS, as the exponential of its

eigenvalues multiplied by the left and right eigenvectors. In our case P (xt, z0) is:

e−t(s+2u+1)
(
−e(s+1)t(s− 1) + et(s+2u+1)(s− 2u+ 1) + e2tu(s+ µ0(s− 2u+ 1)− 1)

)

4(s− 2u+ 1)
,

(3.19)

in the �rst and fourth component, and

e−t(s+2u+1)
(
e(s+1)t(s− 1) + et(s+2u+1)(s− 2u+ 1)− e2tu(s+ µ0(s− 2u+ 1)− 1)

)

4(s− 2u+ 1)
(3.20)

in the second and third component.

Summing the above by z0 and by xt, we obtain P (xt) and P (z0), respectively. These

three quantities are all we need to plug into the de�nition of mutual information. We obtain:

I[xt, z0] =
1

2
((1−A−B) log(1−A−B) + (1 +A+B) log(1 +A+B)) , (3.21)
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where:

A =
−e−2ut(1− s)

1 + s− 2u
, (3.22)

B =
e−(1+s)t (µ0(1 + s− 2u)− (1− s))

1 + s− 2u
. (3.23)

The above can be simpli�ed a lot. If we substitute by K the following expression:

K = A+B =
−e−2ut(1− s)

1 + s− 2u
+
e−(1+s)t (µ0(1 + s− 2u)− (1− s))

1 + s− 2u

= µ0e
−(1+s)t +

1− s
1 + s− 2u

(
e−(1+s)t − e−(1+s)t

)
, (3.24)

we obtain a very neat expression for I[xt, z0]:

I[xt, z0] =
1

2
((1 +K) log(1 +K) + (1−K) log(1−K)) . (3.25)

Figure 3.14: Screenshot of Mathematica �le I used for computations. Probability p(xt, z0)
and Mutual Information.

I prepared a plot for the reader to gain some intuition about the mutual information. It

doesn't show the optimization results, just the behaviour of the model. In Fig. 3.15 mutual

information is plotted with respect to the rescaled time, τ . Intuitively, after some time

it decreases for all values of the parameters, but what might be surprising is the peak of
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information that appears for τ > 0. The appearance of the maximum is explained for

example in [41]. An intuitive reasoning gives a hint - the system needs some time to learn

about itself. Not everything is known at t = 0 and we learn about the transition rates if we

let the system evolve, before it decorrelates and the mutual information decreases.

The procedure of �nding the optimal mutual information is a standard method of di�er-

entiating the function, equating the gradient to 0 and checking that the given extremum is a

maximum. First the time, τ , was �xed, and then for that τ the parameters (u, s or α, y, s)

that return the maximum mutual information were found. If there was a constraint set on

the steady state entropy production rate, σ̂ss then the parameters had to satisfy a condition.

All these steps are done in Mathematica software, a platform for symbolic computations.

τ

s ≈ 0, u = 0.2

(c)
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Figure 3.15: Mutual Information plotted with respect to time τ for chosen values of the

parameters and di�erent initial distributions (parametrized by µ0), model without feedback.

3.6.3 A remark about the range of mutual information

Another detail to which I would like to draw the reader's attention is the range of the

function I plotted. You observe that in all graphs the mutual information never exceeds the

value of 1. It is not due to a normalization! In our particular model it comes from the fact

that the variables are binary.

Lets look at the conditional entropy of X given Y . Intuitively, this is a weighted sum of

S(X|Y = j), where P (Y = j) are the weights. Further writing gives:

S(X|Y ) =−
∑

j

P (Y = j)
∑

i

P (X = i|Y = j) logP (X = i|Y = j)

=−
∑

i,j

P (Y = j)P (X = i|Y = j) logP (X = i|Y = j)
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=−
∑

i,j

P (X = i, Y = j) log
P (X = i, Y = j)

P (Y = j)
.

This quantity is of course non-negative, since the logarithm of a quantity smaller or equal

to 1 is non-positive (and the expression under the logarithm is indeed smaller or equal to 1,

as it is P (X=i,Y=j)
P (Y=j) = P (X = i|Y = j) ≤ 1), so the negative sign in front of the whole sum

guarantees that S(X|Y ) ≥ 0.

We have then that:

I(X,Y ) = S(X)− S(X|Y ) ≤ S(X) = −
∑

i

pi log pi, (3.26)

and since the function f(x) = x log x is a convex function for x ∈ [0, 1], we can use Jensen's

inequality (that holds for any convex function f):

f(x1) + f(x2) + ...+ f(xn)

n
≥ f

(
x1 + x2 + ...+ xn

n

)
. (3.27)

Taking xi = pi we obtain:

n∑
i

pi log pi

n
≤ p1 + ...+ pn

n
log

p1 + ...+ pn
n

, (3.28)

and this gives a very useful boundary:

S(X) = −
∑

x

pi log pi ≤ − log(
1

n
) = log(n). (3.29)

This means that the mutual information is bounded by the logarithm of the number of states

of the variables

I(X,Y ) ≤ min(S(X), S(Y )) ≤ log(min(|X|, |Y |)). (3.30)

In our case both variables are binary, the logarithm used here is a base 2 logarithm, thus

we have:

I(xτ , z0) ≤ log2 2 = 1. (3.31)

This part of the appendix, hopefully instructive, was to make sure we know why the range

of mutual information on all plots is contained in [0, 1]. One can easily get used to the range

[0, 1], as normalizations are a natural rescaling done, but here it is not a normalization, but

a boundary resulting from the nature of the variables - having two binary variables allows

to transmit at most one bit of information.
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Summary

In the presented three-part dissertation I investigated three �features� of signalling pathways

and tried to mathematically embrace them on a canvas of di�erent models. Their common

trait is that they are all modelled by a Markov Chain with continuous time.

In the chapter entitled �Space� I investigated the correspondence between microscopic and

macroscopic reaction rate coe�cients in a model of a phosphorylation-dephosphorylation

cycle with respect to di�usion (motility). Spatiality refers to the environment in which the

reactions occur - a biological membrane (a sphere), modelled by a two-dimensional trian-

gular lattice where molecules are allowed to move with given motilities and react when in

adjacent lattice sites with given propensities: microscopic reaction rate constants. The state

space of the underlying Markov Chain is huge and it was by numerical simulations that we

found steady states of the system (fraction of phosphorylated substrates), as well as e�ec-

tive macroscopic reaction rate constants, EMRRCs, as functions of reaction propensities,

fractional densities of substrates, and motility. Analytical approach was done thoroughly in

limiting cases of in�nite and zero motility, which agree with numerical simulations. As an

extension, I proposed another analytical approach to the case of �nite, non-zero motility,

for a slightly modi�ed model (the change consisted in letting two molecules enter the same

lattice site and allowing reaction to take place only if the substrate and enzyme entered the

same lattice site). In this part not only did I take into account spatiality by modelling the

biological membrane to be a (triangular) lattice, but I also investigated phenomena directly

related to spatiality - the importance of the lattice size and the molecular crowding.

The chapter �Noise� dives into the branch of modelling that assumes events occur randomly

with a probability, not deterministically with an intensity. It is already accepted that this

stochastic setting, in contrast to the deterministic one, models more accurately many of the

genetic phenomena, but in this chapter something more has been shown - the title character

of this chapter, i.e., stochastic �uctuations were exploited to drive individual, yet identical

cells into a pre-speci�ed, desired state. This capability was illustrated on models of cell

populations, where dynamics are governed by a self-activating gene scheme and the classi-

cal genetic toggle switch. A single universal input, in this case UV radiation, was applied
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simultaneously to the whole population of cells, whose protein level �uctuates according to

discrete stochastic reactions. Here again a lot was done by simulations, since the Markov

Chain is de�ned on a big state space, but we were able to write explicitly its transition rate

matrix. We quanti�ed the e�ectiveness of the control law and concluded that a meticulous,

but yet very simple design of a control law, one chosen cell exhibited a qualitatively di�erent

phenotype than the others, i.e., synthesised more proteins than the competing cells. This

control law was applied to di�erent populations sizes and with di�erent time delays.

In the chapter �Information� I considered how information is transmitted in signalling path-

ways. In particular, I analyzed a model consisting of an input and an output, both binary

random variables, so that the state space of the Markov Chain here was a four element set,

with explicit transition rates, and I was able to calculate by hand the steady state probabil-

ity distribution. The title character of this chapter was the mutual information calculated

between these two variables. The model on which I worked was either a simple regulation of

the output by the input, or a regulation with feedback from the output to the input, both

with free or �xed initial distribution; on the whole four models variants. The transition rates

of the Markov Chain de�ned not only the steady state probability distribution of the system,

but also the mutual information, which is a function of time, and these transition rates. We

looked for its optimal value under a constraint set on entropy production rate, which is also

a function of the transition rates. I classi�ed the four models in terms of optimal information

transmitted (highest mutual information) and the cost of this transmission (de�ned as the

average entropy production rate calculated up to a �xed time). I found that the models with

the initial distribution subjected to optimization are more informative (have higher optimal

mutual information) than their equivalents with the initial distribution �xed to the steady

state value. Also, the model without feedback and the steady state initial distribution is

less informative than the model with feedback and steady state initial distribution. Finally,

the same result was shown for the models with the optimized initial distribution with such

a di�erence that the optimal mutual information for the variant without feedback was close

to the optimal mutual information for the variant with feedback for even small steady state

entropy production rate. When it comes to the cost, in the case of steady state initial

distribution, although the feedback model outranks signi�cantly the no-feedback model in

terms of optimal information, the respective costs of optimal information are the same. In

the case of the initial distribution subjected to optimization there is less di�erence in the

optimal information, but the cost remains highly larger for the no-feedback model than for

the one with feedback.



Appendix

The common feature of all models presented in this thesis is the mathematical tool used

to build and analyze them � Markov Chains with continuous time, de�ned on a �nite or

countable state space � the Markov Jump Processes.

A Markov Jump Process, (Xt)t≥0, is de�ned by the state space, Ω, and the transition rates

between states, and an initial probability distribution [55]. The transition rates form the

matrix Q:

[Q]ij =

{
qij transition rate from state i to j, i 6= j

−∑j,j 6=i qij on the diagonal,
(3.32)

where i, j ∈ Ω.

The probability that the system is at time t in a given state is given by the vector P (t),

which satis�es, along with the transition rate matrix Q, the master equation, [55]:

P ′(t) = P (t)Q. (3.33)

With an initial condition P (0) provided, one could solve the above master equation and

obtain the time-dependent probabilities P (t). However, we were not looking for the whole

evolution in time, but the behaviour in the stationary state, i.e., for such a vector P st that

satis�es:

P stQ = 0. (3.34)

The i-th component of P st gives the stationary probability of residing in the i-th state [55].

In all our models, the Markov Chains are aperiodic and irreducible, i.e., we can get form any

state i to every state j. Such chains are called ergodic and they satisfy the ergodic theorem:

If X(t) is ergodic, then the random variable

ηT :=
1

T

t0+T∫

t0

X(t)dt, (3.35)
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tends to EX(t) as T → +∞.

This theorem allows to compute the ensemble average, EX(t), by taking a su�ciently long

time-average ηT from a single realization (trajectory) of X(t) [9]. Ergodic chains have a

unique stationary probability distribution.

In chapter 1 the average number of molecules (of phosphorylated or dephosphorylated sub-

strate) were found by taking one, su�ciently long trajectory. The same was done in chapter

2, where we computed the average numbers of proteins in cells. In chapter 3 we were inter-

ested in the stationary probability distribution, which was computed analytically.

I provide the state spaces, Ωi, i = 1, 2, 3, for every model analyzed in chapters 1, 2, and 3.

In the �rst chapter the state space was the set of functions attributing to every lattice site a

given molecule occupying it or an empty space if there was no molecule. Recall that in the

basic model of this chapter, there were four types of molecules: kinase K, phosphatase P,

unphosphorylated substrate Su and phosphorylated substrate Sp. Therefore the state space,

Ω1, is the Cartesian product of a �ve element set:

Ω1 = {∅,K,P,Su,Sp}L (3.36)

where L is a 2-dimensional triangular lattice, forming a square domain with periodic bound-

ary conditions. The set of possible transition rates contains only three elements: c - phos-

phorylation, d - dephosphorylation, and m/6 - hopping to adjacent empty site.

Further on in this chapter we investigated the molecular crowding e�ect, i.e., we added

to the set of molecules an additional, non-reagent molecule. Thus the state space ΩC
1 is:

ΩC
1 = {∅,K,P,Su,Sp,C}L, (3.37)

where C is the crowder molecule. The set of possible transition rates contains an additional

element, mC - the motility of crowder molecules.

In the model of transient enzyme�substrate complexes the state space is enlarged by

additional states accounting for complex formation and disruption - a pair of proper enzyme

molecule and substrate molecule can form a complex or drift apart, and a complex can either

�re a reaction or disrupt. The transition rates set is also larger: {c1, c2, c3, c4, d1, d2, d3, d4,m/6},
see (1.25).

Finally, in the �multiple lattice occupancy� model, we allow a substrate molecule and an

enzyme molecule to enter the same lattice site. However, neither two substrate molecules,

nor two enzyme molecules can occupy the same lattice site. Therefore for this model variant
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the state space ΩM
1 is:

ΩM
1 = {∅,K,P,Su,Sp,KSu,KSp,PSu,PSp}L. (3.38)

The set of possible transitions remains the same, as there are no additional types of reactions.

In the second chapter, we investigated a population of N identical cells containing proteins.

The state space Ω2 is:

Ω2 = {[x1, . . . , xN ]|xh ∈ N is the number of proteins in the h-th cell}. (3.39)

This time we are able to write explicitly the transition rate matrix Q, see (2.4).

In the third chapter we analyzed a system of two discrete random variables, which can take

only two values: �+� (active state) and ′′−′′ (inactive state). Thus the state space of this

Markov Jump Process, Ω3, is simply:

Ω3 = {(−,−), (−,+), (+,−), (+,+)}. (3.40)

The transition rate matrix for the simple model, QS, is given in (3.1), and the transition

rate matrix for the model with feedback, QF, is given in (3.2).
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