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Streszczenie
Tematem niniejszej pracy jest projekt i numeryczna weryfikacja adaptacyjnych

metod aktywnego i półaktywnego sterowania układów inżynieryjnych poddanych
zmianom parametrów i zewnętrznym wymuszeniom. Przykładem takich układów
jest budynek poddany trzęsieniu ziemi, most wzbudzony przez przejazd pojazdów,
czy konstrukcja, która uległa częściowemu zniszczeniu. Celem zaproponowanych
rozwiązań jest stabilizacja sterowanych konstrukcji wokół zadanego punktu pracy
poprzez zadanego minimalizację funkcjonału celu. Sterowanie realizowane jest przez
aktywne i półaktywne elementy wykonawcze.

W pracy sformułowano ogólny problem sterowania optymalnego dla układów
poddanych zakłóceniom. Za pomocą rachunku wariacyjnego wyznaczono warunek
konieczny optymalności. Podano również ogólniejszy warunek konieczny w postaci
Zasady Maksimum oraz warunek wystarczający wynikający z równania Hamiltona-
Jacobiego-Bellmana. Na podstawie uzyskanych wyników wykazano, że sterowanie
optymalne jest niemożliwe do wyznaczenia w praktyce, kiedy przyszły przebieg za-
kłócenia jest nieznany. Jako rozwiązanie zaproponowano ogólną adaptacyjną metodę
sterowania polegającą na sukcesywnej aproksymacji zakłócanego układu przez modele
dynamiczne, które są niezmienne w czasie.

Pierwszym rozpatrywanym przypadkiem jest stabilizacja układów poddanych dzi-
ałaniu zewnętrznego wymuszenia. Zaproponowane podejście polega na sekwencyjnej
aproksymacji wymuszenia przez liniowy autonomiczny model dynamiczny. W rezultacie
otrzymywany jest powiększony model dynamiczny całego układu, który uwzględnia
wpływ wymuszenia a także jego zmienność w czasie. W przypadku sterowania ak-
tywnego, rozwiązaniem tak zmodyfikowanego problemu sterowania optymalnego jest
regulator liniowo-kwadratowy. W pracy zaproponowano dwa warianty: optymalizacja
na skończonym oraz, charakteryzująca się znacznie mniejszą złożonością obliczeniową,
na nieskończonym horyzoncie czasu. W wypadku sformułowania z nieskończonym
horyzontem, istnienie rozwiązania zadania sterowania zapewniono poprzez odpowiednią
modyfikację funkcjonału celu. W wypadku sterowania półaktywnego, zaproponowano
bliskie optymalnemu sterowanie przełączeniowe. Jego postać wyznaczana jest poprzez
rozwiązanie odpowiedniego równania Lapunova. W pracy udowodniono istnienie
rozwiązania tego równania, jak również stabilność i górne oszacowanie jakości sterowa-
nia przełączeniowego.

Drugim problemem będącym tematem pracy jest stabilizacja układów poddanych
nagłym zmianom parametrów wewnętrznych, takich jak sztywności połączeń czy masy
elementów konstrukcji. Zaproponowana metoda aktywnego sterowania wykrywa nagłą
zmianę parametrów konstrukcji poprzez chwilowy pomiar stanu i wartości zadanego
funkcjonału celu. Na tej podstawie generuje ona ciąg praw sterowania, które zbiega
do sterowania optymalnego. Do prawidłowego działania metody nie jest wymagana
wiedza na temat parametrów wewnętrznych układu.

Sformułowane metody sterowania zweryfikowano numerycznie poprzez symulacje
praktycznych problemów stabilizacji. Działanie zaproponowanych metod porównano
w każdym przypadku do klasycznych, nieadaptacyjnych i powszechnie stosowanych
rozwiązań, takich jak regulacja H∞ i liniowo-kwadratowa-Gaussa. Cztery metody
sterowania przetestowano w ramach czterech różnych zagadnień symulacji: maszyna
wiertnicza poddana zmiennemu tarciu, budynek poddany trzęsieniu ziemi, belka
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wzbudzana przez ruchome obciążenie i układ oscylatorów sprzężonych z nagłym częś-
ciowym zniszczeniem sztywnego połączenia. W każdym z rozpatrywanych przypadków
dana metoda przewyższała porównawcze algorytmy sterowania w ramach zadanych
kryteriów jakości.
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Abstract
The subject of the present work is the design and numerical verification of adaptive

active and semi-active control methods for stabilization of engineering systems subjected
to changes of parameters and external disturbances. Examples of such systems are:
a building subjected to an earthquake, a bridge excited by passing vehicles, or a
mechanical structure that has been subjected to sudden damage. The aim of the
proposed solutions is to stabilize the controlled structures around the given set-point
via minimization of the cost functional. The control is assumed to be carried out by
active and semi-active devices.

The general optimal control problem for systems subjected to time-varying uncer-
tainties is formulated. The necessary condition of optimality was determined using the
calculus of variations. A more general necessary condition in the form of the Maximum
Principle and the sufficient condition resulting from the Hamilton-Jacobi-Bellman
equation are also given. Based on the obtained results, it is shown that optimal control
is impossible to determine in practice when the future course of the uncertainty is not
fully known. As a solution, this Thesis proposes a general adaptive control method
that is based on the successive approximation of the disturbed system via dynamical
time-invariant models.

The first considered case is the stabilization of systems subjected to an external
disturbance. The proposed approach is based on the sequential approximation of
the disturbance by a linear autonomous dynamic model. As a result, the augmented
dynamic model of the whole system is obtained, which approximately reproduces not
only the influence of the disturbance but also its variation over time. In the case of
active control, the solution of such modified optimal control problem is the linear-
quadratic regulator. In the present work, two variants are considered: optimization
on a finite and, characterized by significantly lower computational complexity, on an
infinite time horizon. In the case of infinite horizon setting, the existence of a solution
to the optimal control problem is ensured by appropriate modification of the target
function. In the case of a semi-active control, the proposed near-optimal control is of
the form of switching control law. Its parameters are determined via the solution of
the corresponding Lyapunov equation. The existence of a solution to this equation is
proven in Thesis, as well as the stability of the proposed control law and the upper
bound of its quality.

The second problem that is the subject of the present work is the stabilization of
systems subjected to sudden changes in internal parameters, such as joint stiffness or
the mass of structural elements. The proposed active control method detects a sudden
change of parameters by measuring the instantaneous values of the state and the
performance criterion. Based on these values, it generates a sequence of control laws
that converges to the optimal control. For proper operation of the method, knowledge
about the internal parameters of the system is not required.

The formulated control methods have been verified numerically by simulations of
practical stabilization problems. The operation of the proposed methods was compared
in each case to the classic, non-adaptive and commonly used approaches, such as H∞
and linear-quadratic-Gauss regulators. Four control methods have been tested via
four different simulation scenarios: a drilling machine subjected to varying friction, a
building subjected to an earthquake, a beam excited by a moving load and a system of
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conjugate oscillators with sudden partial failure of a rigid connection. In each of the
considered cases, the method outperformed comparative control algorithms in terms
of stability and value of the performance criteria.
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Chapter 1

Introduction

Engineering structures have accompanied people since the beginning of history. They are
used in almost every area of human activity: buildings serve as shelter and fulfil many
social functions, while without machines, today’s industry would not be able to exist. The
exponential pace of the development of civilization poses new challenges to structural and
mechanical engineering. Buildings need to be lighter, higher and cheaper to produce. To
ensure the competitiveness of their production, industrial machines must work faster, more
cheaply and more efficiently.

The rush for efficiency and low cost is associated with the optimization of the construction
and the specialization to the desired process conditions. As a result, an undesirable effect
occurs: an increase in efficiency often leads to increased sensitivity to any changes in the
working conditions. The protection of buildings against damage is a particularly important
field of engineering, as it affects directly the safety of the people using them. Meanwhile,
slender and flexible structures, however cheap and quick to build, are easily damaged
by wind, earthquake and other dynamic loads. History records many cases of structural
damage due to such loads.

One of the most well-known examples is the failure of the Tacoma Narrows Bridge.
Although the bridge had unprecedented slenderness, low mass and stiffness, a later report
[1] showed that the bridge design was made correctly in accordance with the established
norms. The reason for the destruction was the vertical vibrations caused by the dynamically
operating wind.

Although the next example happened 60 years later, the by then mature technology still
couldn’t prevent a malfunction caused by the same combination of causes: an extremely
flexible structure subjected to dynamic loads. The Millennium Bridge, opened in 2000, had
to be closed merely two days after its official opening due to significant vibrations of the
structure [2]. In this case, the cause of the failure was the vibration resonance induced by
synchronized pedestrian steps.

Although the failure of machines, unlike buildings, is not usually associated with the
loss of human life, ensuring the proper operation of industrial equipment is also a key issue
of modern engineering. Machines that operate at higher speeds and under greater loads are
more prone to dangerous vibrations due to imbalances and external disturbances. Large
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and flexible machines, such as drill strings and flexible robot links, are especially vulnerable.
The development of effective methods of attenuation of such vibrations is then crucial to
ensure their safe and effective operation.

As shown in the examples above, the design of mechanical systems based only on the
influence of static loads is often insufficient. Dynamic disturbances in the system, such
as a sudden change in parameters or an external, unpredictable disturbance may lead to
destruction even if the magnitude of these changes does not exceed the permissible static
loads.

The development of control theory is the solution to the growing importance of mechan-
ical and structural stabilization problems. Control theory provides methods for designing
efficient methods that implement various goals and paradigms such as optimization of the
control goal, robustness against the variety of disturbances, fault tolerance or adaptation to
the changing conditions. In addition, the development of computational technology allows
creating more and more sophisticated methods that implement a control for increasingly
complex dynamic systems.

In addition to new control techniques, extensive research is also being devoted to the
development of new control devices. A typical, and historically the first, approach is the
employment of active elements, such as hydraulic actuators or electric motors. These devices
directly generate force or torque that is applied to the controlled object. However, the last
few decades have marked the development of a new type of control device, namely semi-
active elements. These are devices that instead of force generate a change in mechanical
parameters, such as the damping factor, stiffness, or friction coefficient. Examples of
such devices are magnetorheological and electrorheological dampers. Although semi-active
devices cannot implement a control that is as aggressive as one implemented by active
elements, they are characterized by a significantly lower energy demand and increased
operational stability in the case of failure of the control method. These two features make
semi-active devices extremely attractive for structural stabilization tasks.

The commonly used approaches for stabilization of mechanical systems are non-adap-
tive. An external disturbance is typically treated as a stationary stochastic signal with
specific predefined parameters. Based on these assumptions, a fixed stabilization method
is designed. The influence of the uncertainties of the system is mitigated by the means
of robust techniques that guarantee an upper bound on the system’s performance for a
predefined range of failure. It is a common phenomenon, however, that changes occurring in
a stabilized system are sudden, varying over time, and difficult to predict at the controller
design stage. Excitations such as earthquake or wind are non-stationary processes, and their
parameters are difficult to predict before their emergence. A sudden change of parameters,
such as partial destruction or a new type of load, causes a shift of the natural frequencies
of the system - the quality of stabilization performed by non-adaptive controllers in this
situation deteriorates significantly.

The above-mentioned, classic solutions guarantee the stabilization of a mechanical
system, but due to their lack of adaptability the stabilization process cannot be optimal.
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In contrast to fixed stabilization methods, this work focuses on the adaptive control of
structures subjected to parameter changes or disturbances. Because the adaptive control
is conducted by frequent adjustment of the control law, it is characterized by a greater
demand for computing power. In exchange, it has a significant advantage over the classic
approach: it detects the change in the system and adjusts the control accordingly. As a
consequence, adaptive controllers operate satisfactorily for a larger class of disturbance
signals and very often guarantee not only the stability but also a control behaviour that
is close to the optimal one. The stabilization of buildings and machines can be carried
out with the use of both types of actuators: active and semi-active. Both approaches are
widespread in practical applications. In order to present a full and coherent picture of the
adaptive stabilization of engineering structures, both active and semi-active paradigms
are considered in this work in parallel.

The research of the thesis has been conducted in the context of the project Adaptacyjne
rozproszone tłumienie drgań konstrukcji modułowych (Adaptive distributed vibration control
of modular structures) funded by the National Science Centre, Poland. The aim of the
project is to develop novel distributed control methods for the control of modular structures
subjected to vibrations. The focus of the research is motivated by the growing popularity
of the employment of modular, autonomous automation devices equipped with sensors,
actuators and controllers. Such independent systems benefit from low manufacturing costs
and the capability of fast and easy reconfiguration, allowing for rapid prototyping of different
control designs with the use of the same control elements. They are especially attractive
for large-scale and robotics control problems, where centralized design would be costly and
infeasible. As part of the project, this thesis focuses on the formulation and analysis of
centralized adaptive controllers for the stabilization of mechanical structures, which in the
future will form the basis for the formulation of novel, decentralized approaches.

1.1 Aims and scope of the thesis

The main goal of the thesis is to design effective methods of stabilizing mechanical systems
subjected to changes of parameters or external disturbances. The purpose of the proposed
control methods is to damp the induced vibrations of the mechanical system. The measure
of the degree to which this goal is achieved is formulated as the minimization of a positive
definite quadratic functional defined over a certain time horizon. This functional depends
on the state of the structure and/or the current control value and can often be treated as a
measure of the internal energy of the system. The optimization of this criterion corresponds
then to the minimization of the vibration amplitudes of the mechanical structure.

The thesis considers two different actuation methods:

• active control,

• semi-active control.
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These approaches differ significantly in terms of the used actuators and the overall effec-
tiveness of the stabilization. From the perspective of this work, which is focused on the
theoretical aspects of control, the main difference is the distinct mathematical models of
these control systems, and the consequent distinct formulations of the stabilization problem.
For this reason, the design of control methods for these approaches requires the use of
radically different mathematical tools.

The proposed adaptive methods differ also due to the changes considered as taking
place in the control system. The work focuses on two sources of destabilization:

• a jump change of the system’s parameters,

• an excitation due to an external and changing disturbance.

The first scenario corresponds to a situation where the stabilized structure suffers from
a sudden, partial destruction, for example, the breaking of a tendon of a bridge or the
malfunction of supporting structure elements of a building. Another example of such a
scenario is the operation of an industrial robot with loads of changing inertia. The second
scenario is assumed to reflect three different types of excitation distinguished by the degree
of stochasticity:

• a disturbance obeying a known dynamical model but with continuously varying
parameters, such as the passage of vehicles with changing velocities,

• a disturbance with stochastically and discontinuously varying parameters, such as a
sudden change in the friction coefficient,

• a purely stochastic disturbance, such as wind or earthquake.

In summary, the aim of this work is to examine three issues in parallel:

• active stabilization of a structure subjected to a sudden change of internal parameters,

• active stabilization of a structure subjected to a varying disturbance,

• semi-active stabilization of a structure subjected to a varying disturbance.

Consideration of different actuation methods and different types of change allows for a
holistic analysis of adaptive control for mechanical stabilization.

An important goal of this work is also to ensure the high computational efficiency of the
proposed methods. To keep up with the changes taking place in the considered system, the
adaptive control methods have to recompute the control laws with a high frequency. For
this reason, the key issue in the design of the controllers is to guarantee real-time operation,
i.e. to ensure that the control law update occurs within a given time regime. Because the
complexity of the adaptation algorithms depends polynomially on the number of degrees
of freedom of the stabilized system, ensuring a sufficiently fast computation for large and
complex structures is a difficult task. The adaptation methods proposed in this work are
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designed to meet the criterion of timely execution. Each of the methods is accompanied by
a computational complexity analysis.

The ultimate goal of the thesis is to validate numerically the proposed methods. The
operation of each of the adaptive methods is tested via numerical simulations that closely
mimic real-life stabilization scenarios. The results are compared to the simulations of classic,
non-adaptive and established approaches, such as linear-quadratic (LQR), linear-quadratic
Gaussian (LQG) and H∞ regulators.

The scope of the thesis is as follows:

1. A literature review and the placement of the thesis’ contributions within existing
solutions.

2. The definition of the general control problem of adaptive stabilization of a dynamic
system with the associated performance functional.

3. The determination of necessary and sufficient conditions for the optimality and
feasibility analysis of the obtained results.

4. The formulation of three adaptive methods to stabilize mechanical structures, as well
as the analysis of their stability, optimality and computational complexity.

5. The definition of models of the mechanical systems, simulation scenarios and compar-
ative controllers used for the numerical validation of the proposed methods.

6. An analysis of the results of the numerical simulations and a comparison to non-
adaptive controllers.

7. A summary of the results and proposals for further work.

1.2 Stabilisation of mechanical systems: State of the art

Structural control began to be considered by the scientific community in the 1970s [3] as a
field of science exploring the theoretical possibilities of using control theory techniques for
the stabilization of mechanical systems. The first recorded practical application of the use
of active control dates back to 1989 [4] when the Active Mass Driver system was proposed
to stabilize a structure excited by stochastic disturbances. Since then, the discipline has
developed significantly, with the implementation of novel theoretical and practical solutions.
Below is a review of the literature on the methods of stabilization of mechanical systems,
classifying the results relative to the employed control devices. Because this thesis is focused
on adaptive methods of stabilization, a review of adaptive control methods is presented in
a separate section.

Active control of mechanical systems

The modern approach to the control of mechanical systems assumes the use of feedback
and feedforward control methods. The functions that define how the control depends on
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the measured signals can be heuristic or based on one of many mathematically formulated
control objectives. One of the fundamental approaches is the use of the optimal control
theory.

Optimal control focuses on a control that minimizes a given performance criterion.
One of the fundamental methods of optimal control, which is also successfully employed
in the control of mechanical systems, is the linear-quadratic regulator (LQR) [5] theory.
Assuming that the stabilized system is represented by a linear dynamical model and the
criterion for minimization is a quadratic functional, the problem of optimal control is solved
by the LQR controller whose control law is affine with respect to the currently measured
system state. The gain of an LQR regulator is determined in two ways. In the case of a
performance criterion formulated for a finite time horizon or in the case of variable dynamic
parameters of the system, the solution is obtained by solving Riccati’s dynamic equation.
The algebraic Riccati equation is used when the control criterion is formulated on an
infinite time horizon. Both formulations are popular approaches to stabilization problems
due to the simple form of the control law and their low computational complexity. The
variant with an infinite horizon is particularly attractive, since the control law does not
vary in time, and the algorithms used to solve the algebraic Riccati equation have a low
computational complexity, proportional to the cube of the size of the system [6]. K. Seto
et al. [7] employ an LQR regulator to stabilize two tall buildings by an actuator placed
between them. Another interesting approach is to modify LQR to incorporate the influence
of the disturbance on the system. In [8], a forecast of the future values of an earthquake
is proposed by the employment of a fixed dynamic and linear model of the disturbance.
This model is then included in the formulation of the LQR problem. As a consequence, the
resulting controller computes the control value as a function of not only the system’s state
but also the value of an earthquake. A similar approach is proposed in [9], but rather than
being fixed, the model of the disturbance is continuously identified online and a change in
this model triggers the recomputation of the control law. The incorporation of the effect
of the disturbance in the formulation of the control law allows these methods to stabilize
structures more effectively.

The LQG regulator is an extension of the LQR control theory that is used to stabilize
systems with incomplete state measurement and subject to white measurement and process
noise. [10] uses the LQG theory to stabilize a wind-excited transmission tower. The results
show that by the proper identification of the spectral density of the wind excitation, the
resulting LQG regulator significantly outperforms the case without control. In [11], there
is proposed a modified LQG controller. This modification employs the alpha shift [12]
approach in a way that guarantees a prescribed level of stability of the whole control system.

Another approach to active optimal control is the Model Predictive Control (MPC).
MPC shares similarities with the finite-horizon LQR. The problem of optimal control for
MPC is also formulated over a finite time horizon. MPC uses an internal model of the
mechanical system to predict the future trajectory of the state. The difference between
MPC and LQR is that in the former, the solution to the control problem is obtained rather
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by direct discrete optimization methods, such as quadratic and nonlinear programming, and
not indirect optimization, as in the case of LQR. This allows a more general control problem
formulation: the control and state can have defined constraints, the considered model of
the system is allowed to be nonlinear, and the performance functional is not restricted to
being quadratic. The optimal control problem is recalculated with high frequency, as a
new state is measured. The disadvantage of this approach is the significant computational
cost associated with direct optimization methods. In addition, a time horizon that is not
long enough can result in a destabilizing control. The comprehensive numerical analysis of
the MPC employed for structural control is a topic of [13]. In [14], MPC is employed on
a wind-excited benchmark building with varying stiffness. Their results confirm that the
MPC approach shows great robustness against the system’s uncertainty.

The goal of robust control is to determine a controller that guarantees the minimization
of a given performance criterion for a certain range of uncertainties in the system and
disturbance. The robust control method tries to minimize the worst possible value of the
performance index and, as a consequence, gives an estimate of its worst behaviour. The
most popular example of robust control is the H∞ theory. By solving the corresponding
matrix inequalities, a control system is obtained that ensures that the gain of the system’s
response to the disturbance will not exceed a prescribed bound of H∞ norm. As an approach
to the stabilization of mechanical structures, the H∞ techniques were presented for the
first time in [15]. The control of structures in the event of the saturation of the actuators
was formulated in [16]. To incorporate the nonlinearity associated with the saturation, they
proposed a reformulation of the original dynamical model as a Lur’e system.

The H∞ control optimizes the behaviour of the control system over the entire frequency
spectrum of a disturbance. Therefore, an interesting modification of this idea is included in
[17], where the system response is optimized only for a certain range of excitation frequencies.
This range has been chosen to correspond to the typical frequencies of earthquakes. The
resulting controller surpasses the traditional H∞ in seismic control scenarios. The theory
of H∞ is also employed for non-linear mechanical systems. In [18], there is proposed
a robust-adaptive-control to stabilize a car’s suspension system using highly nonlinear
hydraulic actuators. The proposed idea is to compute the ideal robust feedback control
that guarantees a bound of the system’s response and to synthesize the actual adaptive
control law that tracks this desired reference control.

A separate branch of active control is the employment of artificial intelligence methods,
such as regulators based on fuzzy logic or neural networks. These approaches allow
formulating a large variety of controllers. Neural networks are especially attractive as a tool
for control computation because they can successfully approximate an arbitrary nonlinear
mapping. On the other hand, fuzzy logic allows easily reproducing control laws of heuristic
origins. In [19], there is proposed a combination of sliding mode control and neural network
techniques to stabilize a building subjected to an earthquake. Fuzzy control for an electric
drive is analysed in [20]. A control method that employs a fuzzy disturbance observer is
considered in [21].
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Semi-active control of mechanical systems

In comparison to the active approach, semi-active control theory does not exhibit analytical
solutions as do LQR and LQG. The smaller number of its theoretical results is caused by
the fundamental difference between semi-active and active systems: a semi-active control
system is nonlinear. There are, however, many approximate and heuristic solutions that
guarantee, among other things, stability and near-optimal operation. As an example, a
fundamental and commonly used semi-active stabilization method is Skyhook [22]. It is
used in particular to stabilize the suspension of vehicles moving on uneven ground.

One of the most popular methods for the formulation of a semi-active control is the
Lyapunov method. The Lyapunov theory of stability states that if the derivative of a positive
definite function of the system’s state V is strictly negative along the state trajectories,
then the control system is asymptotically stable. Lyapunov-based control depends then
on choosing a control value that minimizes this derivative, i.e. u = arg min V̇ . The first
theoretical considerations on the application of semi-active Lyapunov-based control were
presented in [23], where two different Lyapunov functions were proposed: the first represents
the mechanical energy of the system, the second corresponds to the solution of the algebraic
Lyapunov equation. When choosing the first function, the resulting control law minimizes
the instantaneous energy of the system. The second approach, in contrast to instantaneous
energy minimization, guarantees the global asymptotic stability of the control system.

The energy-based control method was employed to stabilize the structure by means of
an electrorheological damper in [24]. The simulation results confirmed the attractiveness of
this approach to structural stabilization tasks. The second variant, based on the algebraic
Lyapunov equation, was experimentally tested using magnetorheological dampers for the first
time in [25]. In [26] the energy-based Lyapunov control was employed to stabilize coupled
beams by changes in the stiffness. As the numerical simulations showed, the Lyapunov
control outperforms the passive one by over 50%. An interesting approach is presented also
in [27], where the Lyapunov method has been used to formulate a decentralized control
method. This approach was tested in the coupled beams stabilization problem in variants
with different degrees of decentralization. The results show that decentralized solutions
stabilize the system with an efficiency similar to that of the centralized approach.

As discussed at the beginning of the section, semi-active control theory lacks analytical
solutions of optimal control problems, equivalent to LQR or LQG. Nevertheless, there are
many attractive approaches that are based on approximate optimal control. One example
is the clipped-optimal control, proposed in [28]. The idea behind this solution consists of
two design steps. In the first one, a linear optimal control regulator is synthesized. This
regulator provides information about the desired force that should be generated to guarantee
optimal behaviour. The semi-active element is then controlled in such a way that the force
generated by it is as close as possible to the force determined by the optimal regulator. A
special case of this approach is clipped-LQR [29], a semi-active controller that realizes an
approximate LQR control. Another approach to the optimal control of semi-active systems
is to directly employ necessary conditions for the existence of an optimal control, given by
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the Maximum Principle. In [30], a control in the form of an open loop for the stabilization
of a beam system subjected to a moving load is proposed. An innovative approach to
determining the optimal control consists of the explicit assumption of a bang-bang shape
of the control and the optimization of only the switching times. This was extended in [31],
where the structure to be stabilized is excited by a moving load with varying speed.

As in the active control case, artificial intelligence methods have also been proposed as
tools for semi-active control. In [32], a method that uses fuzzy logic for the semi-active
stabilization of a bridge is proposed. The use of a fuzzy controller for the stabilization of a
three-story building is the subject of [33]. A nonlinear vehicle suspension control method
based on a neural network is presented in [34].

Adaptive control of mechanical systems

Among the many active and semi-active paradigms for mechanical stabilization, adaptive
control is the most adequate approach to tackling the control problem for systems subjected
to a change. As mentioned at the beginning of this chapter, the most important property
of adaptive control is the adjustability of the controller’s gains in response to measured
changes in the control system.

Adaptation is typically carried out in two distinct ways. First, the direct adaptive con-
troller recomputes the control law with the direct employment of the measured parameters.
Second, an indirect adaptive controller rather conducts online identification of the system
and then changes the control law depending on the adjusted model.

One example of direct adaptive control employed for nonlinear stabilization is gain
scheduling. The idea of gain scheduling is to compute many distinct controller gains,
each of them adapted to a different operating point of the control system. Based on
the measurements of the operating point, the control is then generated using the most
appropriate gain. In the stabilization of mechanical systems, gain scheduling is used, among
other things, for the stabilization of a non-linear building subjected to an earthquake in [35].
In that work, several robust regulators are synthesized based on the H∞ theory for various
states of the structure and earthquakes of different magnitudes. Based on the measured
inter-story ductility and amplitude of the earthquake, the appropriate gain of the H∞
regulator is then selected. The proposed gain schedule method gives similar stabilization
results to a constant-gain controller but uses significantly smaller control forces.

Another example of the direct method is the Simple Adaptive Control Method (SACM).
The idea of SACM is to adjust the control value in such a way that the trajectory of the
stabilized system coincides with the trajectory of the reference model. This adjustment
is determined as a combination of proportional and integral actions depending on the
system’s error. An interesting application of SACM is presented in [36], where the method
is employed for the seismic stabilization of a structure subjected to structural damage and
failures of the sensors.

An interesting example of an adaptive method for stabilizing structures subjected to
moving loads and with the use of semi-active dampers is presented in [37], which uses a
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sensitivity analysis and precomputed reference optimal control signals for adaptation to
the measured state of the structure and velocity of the load. An adaptive policy-iteration
method is introduced in [38] as a solution to the stabilization problem of an uncertain
linear system.

Another solution is to employ the adaptive variant of MPC. Adaptivity is typically
introduced to the MPC framework by the online parametric identification of the controlled
object and the computation of the MPC control law according to the identified model. In
[39], the adaptive MPC is employed for the stabilization of a nonlinear system subjected to
both parametric uncertainties and auxiliary disturbances. A similar approach is presented
in [40], where the uncertain model of the system is estimated with the use of the gradient
optimization method. The proposed adaptive MPC method guarantees bounds on the
estimation and asymptotic stability of the estimated state error.

Recent developments of adaptive control theory have been focused on the employment of
artificial intelligence methods. In [41], a manipulator with uncertain parameters is controlled
by a method based on a neural network combined with a recursive back-stepping method.
The consequent virtual control laws are defined by nonlinear mappings provided by neural
networks. The weights of these networks are updated continuously in time in accordance
with the measured tracking errors. Many similar approaches have been also proposed for
specific control problems, such as the stabilization of a robot with uncertain dynamics [42],
systems with unknown hysteresis [43] or manipulators with an unknown deadzone [44]. The
fuzzy logic approach for the stabilization of an uncertain dynamical system is proposed in
[45]. The proposed sliding control law depends on the local approximation of the system’s
dynamical parameters. This approximation takes the form of fuzzy logic. The proposed
choice of the online adaptation law of this fuzzy approximation guarantees the stability of
the controller.

Novel approach proposed in Thesis

The stabilization of mechanical structures, as can be seen from the above review, is usually
carried out by using classical, fixed control methods. In case of mechanical stabilization
problems subjected to external disturbance, the excitations are usually treated as white
noise and an LQG-like regulator is employed or a robust H∞ controller is proposed, which
guarantees bounds on the performance for a wide range of excitation frequencies. However,
the classic solutions do not guarantee optimal or near-optimal performance in the case of
sudden and varying changes.

The solution is to use a control method that adjusts to new operating conditions. The
adaptive approaches found in the literature guarantee the stabilization of dynamic systems
for a wide range of changes. But in this thesis, the present author would like to focus on
two assumptions that are rarely seen together as design goals in the adaptive methods
found in the literature:

1. near-optimal performance,
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2. fast re-evaluation of the control law.

Adaptive MPC methods can guarantee near-optimal control. However, the optimization
procedure is based on the use of direct optimization methods, which are computationally
complex. In the case of large, complex systems subjected to significantly varying changes
(e.g. buildings subjected to an earthquake), this approach may not guarantee the required
speed of adaptation. The latest methods based on the use of artificial intelligence techniques
rely on the approximation of nonlinear functions with complex neural networks or fuzzy
logic models. The adaptation of such models is conducted by the gradient optimization
of a significant number of parameters, which seems infeasible for control problems with
sudden changes.

Only a small number of studies, such as [9, 8, 37], directly refer to the problem of
adaptation to sudden and varying uncertainties. In this thesis, the author pursue the
further development of this approach. The novel methods presented in this thesis detect
changes in a system to be stabilized, and on this basis perform an online computation of a
new control law. This approach ensures not only stabilization for a wide range of changes
and disturbances, but, unlike the robust approach, the adjustment of the control provides
near-optimal performance. In addition, the proposed solutions are designed with a focus
on having low computational complexity.

As a consequence, the theses of this work are as follows:

For the problem of the stabilization of mechanical systems subjected to a sudden

change of parameters or excited by a time-varying disturbance, non-adaptive

and time-fixed control methods do not provide optimal or near-optimal per-

formance. There exist more efficient control approaches that provide better

stability and performance. The adaptive stabilization methods proposed in this

thesis adjust their parameters to the current status of the controlled system

and outperform non-adaptive control methods in terms of the associated per-

formance index. The improvement of the performance of the proposed method

is observed for both active and semi-active types of actuation. In addition, the

formulated adaptive control methods have low computational complexity and

are feasible for real-time operation.
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1.3 Contributions

The contributions of this thesis are as follows.

1. The formulation and theoretical analysis of a novel adaptive active control method
based on the autoregressive identification proposed in [9] with an infinite time horizon
and an alpha-shift for stabilizing mechanical systems affected by an external and
varying disturbance.

2. The formulation and theoretical analysis of a semi-active adaptive controller, based
on the Lyapunov control theory and an autoregressive identification, for stabilizing
mechanical systems affected by an external and varying disturbance.

3. The formulation and theoretical analysis of an active adaptive controller based on
a policy iteration scheme for stabilizing mechanical systems affected by a sudden
change of parameters.

4. The numerical examination of a finite time horizon variant of the active control
method based on an autoregressive identification procedure.

5. The numerical analysis of an active adaptive controller for systems affected by an
external disturbance, in two separate simulation cases: stabilizing a machine affected
by a nonlinear and changing friction, and stabilizing a building exposed to earthquakes.

6. The numerical analysis of the semi-active controller for problems with external
disturbances via simulation of a mechanical structure subjected to a moving load.

7. The numerical analysis of an active controller for problems with a sudden change of
parameters via simulation of a mechanical structure subjected to partial failure.

These contributions have been published in the following journal papers: [46], [47] (in print)
and in the conference proceedings: [48], [49]. The contributions to be published are: [50],
[51].

1.4 Thesis structure

The structure of the Thesis is as follows:

Chapter 2 In this chapter, the general control problem considered in this Thesis is
formulated. The control problem is defined by the system of ordinary differential
equations that describe the dynamical behaviour of the control system, the functional
criterion that gives the quantitative measure of the performance of a controller and the
set of constraints imposed on the system. For this general formulation, the necessary
conditions of optimality are stated using the calculus of variation. A more general
necessary and sufficient conditions of optimality are also formulated via the Maximum
Principle and Hamilton-Jacobi-Bellman equation that is associated with Bellman’s
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optimality principle. Next, the infeasibility of the optimal control in the presence of
uncertainties and disturbances is discussed and the proposed solution in the form of
near-optimal adaptive controller is presented. Finally, the particular control problems
that are the focus of the present work are formulated. These control problems differ
by the method of control (active and semi-active) and the source of the uncertainty
in the control system (unknown external disturbance and unpredictable change of
the internal parameters of the system).

Chapter 3 In this part of the Thesis, the control problem of the dynamical system
subjected to an external disturbance is addressed. The general formulation of the
considered problem is presented in the optimal control framework. The adaptive
approach that is based on the identification of the disturbance is presented in the
most general form. Next, two different methods of identification: autoregressive and
parametric that are used by the proposed control method are described. The main
focus of this chapter is the formulation of three distinct control schemes that provide
near-optimal control for the mechanical systems affected by a disturbance. The first
two control methods are suitable for systems with active control. The third method
is designed to use with the semi-active control devices. For each considered control
method, stability and near-optimality are discussed and analysed. Each control
method is summarized in the algorithmic fashion. The computational complexity of
the method is also studied.

Chapter 4 The focus of this chapter is on the stabilization of the system affected by the
sudden change of its internal parameters. The near-optimal control scheme based on
the Policy Iteration is then formulated. It is also proven that the associated series of
control laws is stabilizing and converges to the optimal control. Similarly to Chapter
3, the control method is described as an algorithm and its computational complexity
is also analysed.

Chapter 5 In this part of the Thesis, the numerical verification of the methods proposed
in Chapters 3 and 4 is presented. Each control method is tested in the separate
stabilization problem and their performance is compared to the number of classical
controllers such as LQR and H∞ regulators. The considered simulation scenarios
are designed to correspond to the real-life engineering problems and are as follows:
stabilization of a drilling machine subjected to the varying friction, vibration attenu-
ation of the building affected by an earthquake, control of the beam subjected to the
moving load and stabilization of the system of conjugate oscillators exposed to the
sudden damage.





Chapter 2

General control problem

2.1 Optimal control of disturbed mechanical systems

The focus of this thesis is on a finite time horizon optimal control problem for a dynamical
system defined by the generic dynamical equation:

ẋ(t) = f(x(t),u(t),γ(t)), x(0) = x0, t ∈ T, (2.1)

where x : [0, Tf ] 7→ Rn represents an absolutely continuous state vector trajectory, u : T 7→
U ⊂ Rm is a measurable control signal applied to a system that has values in a compact
set U and γ : T 7→ Rp represents a piecewise continuous disturbance affecting the system,
γ ∈ L∞(T). This disturbance can correspond to both a variation of the system’s internal
parameters and an auxiliary excitation. The function f is assumed continuous with respect
to the state x, the control input u and the vector of the disturbance γ. Observe that,
because the disturbance γ(t) is allowed to change sharply, the function f(x(t),u(t),γ(t)) is
only almost everywhere continuous with respect to t. In addition, the next condition is
assumed:

Assumption 2.1. For every pair (t,x), the set {f(x,u,γ(t)) : u ∈ U} is compact and
convex.

The existence of the solution of the Cauchy problem (2.1) is guaranteed by the Cara-
théodory’s existence theorem.

The goal of the control is to stabilize the system around a set-point (such as an
equilibrium point of a mechanical structure or an operating point of a machine) with a
focus on optimization of an integral performance criterion:

J(u) =

∫ Tf

0
L(x(t),u(t)) dt. (2.2)

where L : Rn ×U 7→ R is a positive semidefinite function with respect to both x and u. In
addition, the next condition holds:

Assumption 2.2. The function L is differentiable with respect to x and u.

15
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The optimal control problem can be stated as follows:

Find u∗ : T 7→ U ⊂ Rm, T = [0, Tf ],

such that: u∗ = arg min
u(t)∈U , ∀t∈T

J(u) =

∫ Tf

0
L(x(t),u(t)) dt, ,

subject to: ẋ(t) = f(x(t),u(t),γ(t)),

x(0) = x0.

(2.3)

With the Assumptions 2.1 and 2.2, the existence of the solution to the problem (2.3)
can be established via the Filippov Theorem and the Weierstrass Theorem (see [52, Ch.
4.5] for the discussion).

Necessary and sufficient conditions of optimality

In this section, the necessary and sufficient conditions of optimality for the problem (2.3)
are stated. Let us firstly formulate the necessary conditions via the calculus of variations.

Let u∗ be a control that provides a local minimum of (2.2) for all piecewise continuous
controls u, i.e., J(u∗) ≤ J(u). Let x∗ be a corresponding optimal trajectory. Let u be a
perturbed optimal control:

u(t, α) = u∗(t) + αξ(t), (2.4)

where α ∈ R and ξ is a piecewise continuous function from T to Rm. The perturbed optimal
trajectory x corresponding to the perturbed control u is defined as follows:

x(t, α) = x∗(t) + αη(t) + o(α), (2.5)

where o(α) represents higher order terms of the Taylor expansion, i.e., limα→0
o(α)
α = 0.

Observe that η(0) = 0 since the initial conditions do not change. In addition, observe that:

∀t ∈ T,
∂x

∂α

∣∣∣∣
α=0

= η(t). (2.6)

By differentiation of Eq. (2.6) with respect to time we obtain:

η̇(t) =
∂ẋ

∂α

∣∣∣∣
α=0

=
∂f

∂x
(x(t, 0),u∗(t),γ(t))

∂x

∂α

∣∣∣∣
α=0

+
∂f

∂u
(x(t, 0),u∗(t),γ(t))ξ(t)

=
∂f

∂x
(x(t, 0),u∗(t),γ(t))η(t) +

∂f

∂u
(x(t, 0),u∗(t),γ(t))ξ(t)

=
∂f

∂x
(x∗(t),u∗(t),γ(t))η(t) +

∂f

∂u
(x∗(t),u∗(t),γ(t))ξ(t).

(2.7)

Let us now rewrite the performance functional (2.2):

J(u) =

∫ Tf

0

(
L(x(t),u(t)) + pT (t) [ẋ(t)− f(x(t),u(t),γ(t))]

)
dt, (2.8)

where p : T 7→ Rn is a so-called costate function to be defined later. Observe that, because
ẋ(t) ≡ f(x(t),u(t),γ(t)), the addition of the term pT (t) [ẋ(t)− f(x(t),u(t),γ(t))] does not
alter the value of J defined as in (2.2). In addition, let us define the Hamiltonian H:

H(x,p,u,γ) = pT f(x,u,γ)− L(x,u). (2.9)
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The performance functional can be now formulated in terms of this Hamiltonian:

J(u) =

∫ Tf

0

(
−H(x(t),p(t),u(t),γ(t)) + pT (t)ẋ(t)

)
dt, (2.10)

We would like to analyse the first variation of the performance functional J at the
optimal control u∗, denoted by δJ |u∗ , which is equal to the first-order term with respect
to α of the difference between the perturbed cost and the optimal cost:

J(u)− J(u∗) = J(u∗ + αξ)− J(u∗) = α δJ(ξ)|u∗ + o(α). (2.11)

According to the Eq. (2.10), the difference (2.11) can be expanded as follows:

J(u)− J(u∗) =

∫ Tf

0
(H(x∗(t),p(t),u∗(t),γ(t))−H(x(t),p(t),u(t),γ(t))

+ pT [ẋ(t)− ẋ∗(t)]
)

dt.

(2.12)

Let us expand the difference of the Hamiltonians:

H(x,p,u,γ)−H(x∗,p,u∗,γ) =
∂H(x,p,u∗,γ)

∂x

∣∣∣∣
x=x∗(t)

αη

+
∂H(x∗,p,u,γ)

∂u

∣∣∣∣
u=u∗

αξ + o(α).

(2.13)

The second difference in the integral (2.12) can be expanded with via the integration by
parts:∫ Tf

0
pT (t) [ẋ(t)− ẋ∗(t)] dt =

(
pT (t) [x(t)− x∗(t)]

)∣∣Tf
0
−
∫ Tf

0
ṗT (t) [x(t)− x∗(t)] dt

=
(
pT (Tf ) [x(Tf )− x∗(Tf )]

)
−
(
pT (0) [x(0)− x∗(0)]

)
−
∫ Tf

0
ṗT (t)αη(t) dt+ o(α).

(2.14)

Observe that, because the starting point x0 is fixed, the term pT (0) [x(0)− x∗(0)] ≡ 0 for
any function p(t) and pT (Tf ) [x(Tf )− x∗(Tf )] = αpT (Tf )η(Tf ) + o(α).

Finally, we obtain:

J(u)− J(u∗) = αpT (Tf )η(Tf ) + α

∫ Tf

0

([
ṗT (t) +

∂H(x,p,u∗,γ)

∂x

∣∣∣∣
x=x∗(t)

]
η(t)

+
∂H(x∗,p,u,γ)

∂u

∣∣∣∣
u=u∗

ξ(t)

)
dt+ o(α).

(2.15)

The first variation is then as follows:

δJ(ξ)|u∗ = pT (Tf )η(Tf ) +

∫ Tf

0

([
ṗT (t) +

∂H(x,p,u∗,γ)

∂x

∣∣∣∣
x=x∗(t)

]
η(t)

+
∂H(x∗,p,u,γ)

∂u

∣∣∣∣
u=u∗

ξ(t)

)
dt,

(2.16)

where the dependence of η on ξ is defined in Eq. (2.7).
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The first-order necessary condition for optimality states that δJ(ξ)|u∗ ≡ 0. This
condition is valid for optimal control u∗ for any costate function p, but is particularly
interesting with the special choice of p. Let us choose the function p∗ : T 7→ Rn, such that
it is a solution to the final value problem:

ṗ∗(t) = − ∂HT (x,p∗(t),u∗(t),γ(t))

∂x

∣∣∣∣
x=x∗(t)

, p∗(Tf ) = 0. (2.17)

As a consequence, the first-order necessary condition takes the form:

δJ(ξ)|u∗ =

∫ Tf

0

∂H(x∗,p∗,u,γ)

∂u

∣∣∣∣
u=u∗

ξ dt = 0. (2.18)

Because Eq. (2.18) holds for any function ξ, the condition (2.18) can be stated as follows:

∂H(x∗,p∗,u,γ)

∂u

∣∣∣∣
u=u∗

= 0, ∀t ∈ T. (2.19)

The first-order necessary condition for optimality can be now summarized:

H(x,p,u,γ) = pT f(x,u,γ)− L(x,u),

ẋ(t) = f(x(t),u(t),γ(t)),

ṗ∗(t) = − ∂HT (x,p∗(t),u∗(t),γ(t))

∂x

∣∣∣∣
x=x∗(t)

,

∂H(x∗,p∗,u,γ)

∂u

∣∣∣∣
u=u∗

= 0, ∀t ∈ T,

x(0) = x0,

p∗(Tf ) = 0.

(2.20)
The variational approach stated above has several limitations, such as assumption,

that the values of u∗(t) lay in the interior of the control set U and that the Hamiltonian
H is differentiable with respect to u. A more general necessary condition for optimality
that is not affected by these limitations and also considers a more general class of control
perturbations is stated via the Maximum Principle, formulated by L. Pontryagin [53]. The
variant of the Maximum Principle for the problem (2.3) is presented below:

Maximum Principle for Fixed-time Free-endpoint Problem. Let u∗ : T 7→ U be
an optimal control and let x∗ : T 7→ Rn be the corresponding optimal state trajectory. Then
there exists a function p∗ : T 7→ Rn such that, for almost every t ∈ T:

H(x,u,p∗,γ) = p∗T f(x,u,γ)− L(x,u),

ẋ(t) = f(x(t),u(t),γ(t)),

ṗ∗ = − ∂HT (x,p∗(t),u∗(t),γ(t))

∂x

∣∣∣∣
x=x∗(t)

, (2.21)

H(x∗(t),p∗(t),u∗(t),γ(t)) = max
u∈U

H(x∗(t),p∗(t),u,γ(t)),

x(0) = x0,

p∗(Tf ) = 0.

For the rigorous formulation of the Maximum Principle for more general optimal control
problems, see for example [52] and [54]. The formulation of the discrete Maximum Principle
for dynamical systems governed by difference equations is presented in [55].
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The focus of this Thesis is on control methods that are of the feedback form, i.e.,
u = g(t,x). The optimal controls in this form and the sufficient conditions for optimality
are provided by the dynamic programming principle and the solution to the Hamilton-
Jacobi-Bellman (HJB) equation [56]. Let us redefine the performance criterion (2.2) such
that it corresponds to the remaining cost associated with the control u(t) and initial
conditions x0:

J(τ,x0,u) =

∫ Tf

τ
L(x(t),u(t)) dt, τ ∈ T, x(τ) = x0. (2.22)

Observe, that J(Tf ,x,u) = 0, ∀x ∈ Rn and that J(0,x0,u) corresponds to the performance
criterion (2.2). Let us also define the optimal cost-to-go as a value of the performance
criterion associated with an optimal control:

V (τ,x0) = min
u(·)

J(τ,x0,u). (2.23)

Sufficient Conditions for Optimality. Let V (t,x) : T × Rn 7→ R+ be a Lipschitz-
continuous function that is a viscosity solution of the boundary value problem:

−∂V
∂t

= min
u(t)∈U

[
L(x(t),u(t)) +

∂V (t,x)

∂x
f(x(t),u(t),γ(t))

]
, V (Tf ,x) = 0, ∀x ∈ Rn.

(2.24)
Then V is the optimal cost-to-go (2.23), V (0, x0) is the optimal value of the performance
index (2.3) and the control law:

u∗(t,x) = arg min
u∈U

(
L(x(t),u) +

∂V (t,x)

∂x
f(x(t),u,γ(t))

)
(2.25)

is an optimal control law.

For the definition of the notion of the viscosity solution and the discussion on the
sufficient conditions for optimality, see [54, Chapters 7, 8].

Observe that both the necessary conditions provided by the Maximum Principle and
the sufficient conditions obtained via the dynamic programming employ functions that
depend on the future behaviour of the dynamical system:

• The costate function p∗ of the Maximum Principle is defined by the ordinary dynamical
equation that depends on f with final value p∗(Tf ) = 0.

• The optimal cost-to-go function V (t, x) of the HJB equation is defined by the
partial differential equation that depends on f with the final boundary condition
V (Tf , x) = 0.

To obtain the solution of the optimal control problem (2.3) via the Maximum Principle
or the HJB equation, the trajectories of the functions p∗ and V have to be computed
backward in time, that is, their values in time T depend on future values of the function
f(·, ·,γ(t)), t ≥ T . Because the control problem (2.3) considered in this work assumes
that the mechanical system is affected by unpredictable disturbances and change of the
parameters, that is, the future values of the function γ(t) are not known at the time t = 0,
the optimal control for such a case cannot be established. Instead, the near-optimal control
based on the adaptation to changing working conditions is proposed.
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2.2 Adaptive near-optimal control method

As stated above, the optimal control problem for the systems subjected to an unpredictable
change or disturbance cannot be solved in a real-life application. This work focuses on
near-optimal control methods that provide approximate solutions to a series of optimal
control problems based on a frequently updated approximations of the problem (2.3).

The main idea of the proposed approach is to transform the unsolvable optimal control
problem (2.3) into the series of simpler and approachable formulations. The new formula-
tions depend on temporary working conditions of the system and can be solved either in
the optimal or near-optimal sense. Reformulations of the control problem are attained via
frequent measurements of the varying parameter γ(t) that represents changes occurring in
the stabilized system. These measurements trigger the adaptation of the control problem
formulation that corresponds to the current condition of the system. The adaptation is
performed sequentially with constant time period h.

The general approach can be formulated in a Model Predictive Control framework
presented in Algorithm 2.1.

Algorithm 2.1 The main loop of the MPC-based control methods
1: At the time ti = h · i, based on real-time measurements, establish the new dynamical

model defined by function f i of the system (2.1).
2: Compute the control law u∗i (x) that is optimal or near-optimal with respect to the

performance criterion Ji for dynamical model f i.
3: Apply the control according to the measured state, u∗i (x(ti)).
4: Increment ti+1 ← ti + h.

To provide low computational complexity of the control law update, this work proposes
the model f i to be restricted to a function independent of time, i.e.,

˙̃x(t) = f i(x̃(t),u(t)), x̃(ti) = x̃i, (2.26)

where x̃ ∈ Rñ is a state vector of the approximation of the original model (2.1). The initial
conditions x̃i ∈ Rñi depend on the measured state of the system x and the measurements of
the disturbance signal γ. Observe that the order of the approximation ñi is not necessarily
equal to the order n of the unmodified system. In addition, the receding horizon of the
control method is assumed to be infinite:

Ji(u) =

∫ ∞
ti

Li(x̃(t),u(t)) dt. (2.27)

These two modifications (2.26) and (2.27) reduce the dimensionality of the original optimal
control problem (2.3), as the solution to the modified problem is independent of time. The
typical MPC computation algorithms have a complexity linear with respect to time. The
proposed approach significantly lower the computational burden of the control method, as
they rely on the stationary control problem formulation. The modified optimal control
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problem can be then summarized in a similar fashion to (2.3):

Find u∗i : Rñi 7→ U ⊂ Rm,

such that: u∗i (x̃) = arg min
u(x̃(t))∈U , ∀t∈Ti

Ji(u) =

∫ ∞
ti

Li(x̃(t),u(x̃(t))) dt,

subject to: ˙̃x(t) = f i(x̃(t),u(x̃(t))),

x̃(ti) = x̃i,

Ti = [ti,∞)

ti = h · i,
i = 0, 1, . . . , N − 1,

tN = Tf .

(2.28)

The modified optimal control problem is solved sequentially with equal time shifts ti =

h · i, i = 0, 1, . . . , N − 1 to adapt the solution to the changing working conditions denoted
by the γ(t) in the original formulation (2.1). Observe that the proposed method employs
the Model Predictive Control framework: the control function u∗i computed at the time
instance ti is applied to the system only on the first time interval t ∈ [ti, ti+1). After that,
the optimal control is recomputed for the shifted time horizon of the performance index,
Ti → Ti+1.

Because the proposed approach relies on the infinite time-horizon formulation, a special
focus has to be kept on a well-posedness of the modified optimal control problem, i.e., the
existence of the admissible controls for which the performance criterion (2.28) exists. In this
work, the considered control problems are characterized by linear and bilinear dynamical
systems. For such systems, it is showed that this well-posedness is closely linked to the
notions of stability and stabilizability. The well-posedness of this modified control problem
is individually considered for each proposed control method and, in general, is guaranteed
by the intrinsic properties of the system’s dynamics or the special modification Li of the
function L.

2.3 Specific control problems considered in Thesis

This work is focused on the mechanical systems governed by the differential equations of
the two independent forms:

• The case of mechanical system subjected to an external disturbance:

Mq̈(t) + Cq̇(t) + Kq(t) = F(u(t),q(t), q̇(t)) + Dz(t),

[
q(0)

q̇(0)

]
=

[
q0

q̇0

]
. (2.29)

• The case of a mechanical system subjected to a change of its parameters:

M(t)q̈(t) + C(t)q̇(t) + K(t)q(t) = F(u(t),q(t), q̇(t)),

[
q(0)

q̇(0)

]
=

[
q0

q̇0

]
, (2.30)
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where q ∈ Rnq is the vector of the generalized coordinates of the system, q̇ and q̈ are
the first and second derivatives of these coordinates, respectively. The vectors q0 and
q̇0 corresponds to the initial conditions. The matrix M ∈ Rnq×nq is the mass matrix of
the system, K ∈ Rnq×nq is the stiffness matrix, C ∈ Rnq×nq is the damping matrix and
F(u(t),q(t), q̇(t)) ∈ Rnq defines the dependence of the force generated by actuators on the
control u ∈ Rm and the system’s state q, q̇. In the first considered case, the additional
term z(t) ∈ R represents the disturbance affecting the system and the matrix D ∈ Rn

represents the impact of the disturbance on the system. In the second, the variation of the
internal parameters is realised by the varying matrices, M(t), K(t), C(t). We restrict our
focus to the cases with M(t), Z(t), K(t), C(t) being piecewise continuous on the considered
time interval T = [0, Tf ].

We consider two independent types of actuation: active and semi-active. They are
realised by two different forms of the vector function F:

• For the active control, the force depends linearly on the control value:

F(u(t),q(t), q̇(t)) = F(u) = EFu. (2.31)

• For the semi-active control, the force depends linearly on the control and the state of
the system:

F(u(t),q(t), q̇(t)) =

m∑
i=1

ui (EK, iq + EC, iq̇) , i = 1, 2, . . . , m. (2.32)

The matrix EF ∈ Rnq×m defines the relation between the force generated by actuators
and the control value and EK, i ∈ Rnq×nq , EC, i ∈ Rnq×nq , i = 1, 2, . . . , m represent the
assumption, that the forces generated by semi-active devices depend linearly not only on the
control value but also on the generalized coordinates (deflections) and/or their derivatives
(velocities), respectively.

With the substitution x =
[
qT q̇T

]T
, x ∈ Rn, n = 2nq, all considered control

scenarios can be summarized via three independent first-order dynamical equations with
initial conditions:

1. active control and an external disturbance:

ẋ(t) = Ax(t) + Bu(t) + Bzz(t), x(0) = x0, (2.33)

with:

A =

[
0 I

−M−1K −M−1C

]
,

B =

[
0

M−1EF

]
,

Bz =

[
0

M−1D

]
,

x0 =

[
q0

q̇0

] (2.34)

2. active control and a change of internal parameters:

ẋ(t) = A(t)x(t) + Bu, x(0) = x0, (2.35)



2.3. SPECIFIC CONTROL PROBLEMS CONSIDERED IN THESIS 23

with B as in (2.34) and:

A(t) =

[
0 I

−M−1(t)K(t) −M−1(t)C(t)

]
, x0 =

[
q0

q̇0

]
. (2.36)

Observe that the varying matrix M(t) is assumed restricted such that the matrix B

remains constant in time, i.e., M−1(t)EF = const.

3. semi-active control and an external disturbance

ẋ(t) = Ax(t) +
m∑
j=1

uj(t)Bjx(t) + Bzz(t), x(0) = x0, (2.37)

with A, Bz, x0 defined as in (2.34) and:

Bj =

[
0 0

M−1EK, j M−1EC, j

]
, j = 1, 2, . . . , m, (2.38)

We focus our attention on performance criteria (2.2) that have the form:

J(u) =

∫ Tf

0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt, (2.39)

where Q ∈ Rn×n, Q � 0 and R ∈ Rm×m and R � 0 or R = 0. Such a choice of performance
criteria corresponds to the goal of minimization of the deviation of the system’s state x on
the whole time interval T. In addition, the matrix Q can be defined in such a way, that it
reflects the internal energy of the controlled system. In that case, the goal of the control
would be to optimally dissipate energy accumulated in the system. The term associated
with the matrix R reflects the cost of the control. Large value of R in relation to Q

corresponds to the case with control being expensive. The case with R small or equal to 0

is associated with the control that is cheap or has no cost at all. The latter is especially
common in the structural control with semi-active devices, which can generate forces of a
large magnitude with a minimal energy consumption.

The adaptive control methods for the particular control problems characterized by
dynamical models (2.33)–(2.38) and the performance criterion (2.39) are formulated in
details in Chapters 3 and 4.





Chapter 3

Adaptive control in presence of
changing disturbance

In this chapter, the adaptive control method for mechanical systems affected by an auxiliary
disturbance is formulated and presented. The attention is focused on active and semi-active
dynamical models presented in Eqs. (2.33) and (2.37):

ẋ(t) = Ax(t) + Bu(t) + Bzz(t), x(0) = x0, (3.1)

ẋ(t) = Ax(t) +
m∑
j=1

uj(t)Bjx(t) + Bzz(t), x(0) = x0. (3.2)

The goal of the control is to stabilize these systems with minimization of the performance
index:

J(u) =

∫ Tf

0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt. (3.3)

The aim of the adaptive approach formulated in Section 2.2 is to sequentially approximate
systems (3.1), (3.2) by the dynamical models that do not depend explicitly on time. Observe
that the only element of the systems’ dynamical equations (3.1), (3.2) that depends explicitly
on time (besides the control) is the term associated with the external disturbance, z(t). As
a consequence, the goal of the time-invariant approximation is achieved by approximating
the disturbance z(t) at the time interval [ti, ti+1) by the linear time-invariant system:

ẋz,i(t) = Az,ixz,i(t), xz, i(ti) = xz0,i,

z̃i(t) = Cz,ixz,i(t), such that: z̃i(t) ≈ z(t),
(3.4)

where xz,i(t) ∈ Rnz,i is the state of the approximation model, z̃i(t) ∈ R is the approximation
of the disturbance signal and Az,i ∈ Rnz,i×nz,i , Cz,i ∈ R1×nz,i are state and output matrices
of the approximation to be calculated by the identification procedure. Observe that the
matrices Az,i and Cz,i and their sizes nz,i are allowed change in every iteration of the
adaptation, denoted here by the index i.

The approximation (3.4) is then incorporated into the active model (3.1) as follows:

˙̃x(t) =

[
ẋi(t)

ẋz,i(t)

]
=

[
A BzCz,i

0 Az,i

][
xi(t)

xz,i(t)

]
+

[
B

0

]
u(t),

[
xi(ti)

xz,i(ti)

]
=

[
x(ti)

xz0,i

]
(3.5)

25
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and into the semi-active model (3.2):

˙̃xi(t) =

[
ẋi(t)

ẋz,i(t)

]
=

[
A BzCz,i

0 Az,i

][
xi(t)

xz,i(t)

]
+

m∑
j=1

(
uj(t)

[
Bj 0

0 0

])[
xi(t)

xz,i(t)

]
,

[
xi(ti)

xz,i(ti)

]
=

[
x(ti)

xz0,i

]
,

(3.6)

where x̃i ∈ Rñ, ñ = n + nz,i is the state vector of the i-th time-invariant model of a
disturbed system, xi ∈ Rn is the state of the i-th approximation corresponding to the
state of the mechanical system and xz,i ∈ Rnz,i is the state of the i-th approximation of
the auxiliary disturbance process. The initial conditions for this approximation consist of
the direct measurement of the actual state of the controlled system, x(ti) and the initial
condition of the disturbance model xz0,i that is defined separately for each disturbance
identification scheme. Observe that resulting models (3.5), (3.6) are linear and bilinear,
respectively and both do not depend explicitly on time.

The performance index for the approximated systems (3.5) and (3.6) can be formulated
in such a way that retains the value of the original performance index (3.3):

Ji(u) =

∫ Tf

0

[
x̃Ti (t)

[
Q 0

0 0

]
x̃i(t) + uT (t)Ru(t)

]
dt. (3.7)

In the next section, two methods of the disturbance identification that are employed in the
proposed control methods are formulated.

3.1 Methods of disturbance identification

The identification of the system based on the measurements can be conducted in many
distinctive ways. The approaches are divided into the parametric identification, where the
structure of the identified model is known a priori and only its parameters are tuned up and
black box identification, where the internal structure of the model gives no physical insights
about the identified process. For the comprehensive review of the system identification
methods, see [57].

Autoregressive identification

The first identification approach employed in the proposed control methods is autoregressive
(AR) identification. Autoregressive models are linear and the computation of their weights
has low complexity, which makes them suitable for fast calculation of the disturbance model
(3.4). It is important to point out that the AR models are discrete with respect to time
and the identified model is the discrete equivalent of the continuous model (3.4):

xz,i(k + 1) = Az,ixz,i(k), xz, i(i) = xz0,i,

z̃i(k) = Cz,ixz,i(k), such that: z̃i(k) ≈ z(tk),
(3.8)

It is then assumed that the continuous dynamics of the controlled system (3.1), (3.2) can
be successfully approximated by the discrete model.
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Let [
zi−S+1 zi−S+2 · · · zi

]
(3.9)

be the time series of the disturbance zk sampled with the equidistant times tk, k =

i− S + 1, i− S + 2, . . . , i, i.e., zk = z(tk). The length of the series is S. To obtain this
vector, one can use measurements of the past S values of the disturbance or employ an
external signal extrapolator which provides forecasts of the future values of the disturbance.
The design of such an extrapolator does not fall within the scope of this work, and it is
assumed that the disturbance approximation is based on the past values of the perturbation.

The deterministic AR model of order nz,i has the following form

z(k + 1) =

nz,i∑
j=1

θj,iz(k + 1− j) =
[
z(k) z(k − 1) · · · z(k − nz,i + 1)

]
·Θi, (3.10)

where Θi denotes the vector of weights of the AR model at the i-th iteration of the
identification process:

Θi =
[
θ1,i θ2,i · · · θnz,i,i

]T
. (3.11)

The weights vector is computed such that it minimizes the quadratic estimation error RLSE

based on the past S measurements of the signal z(t):

Θi = arg min
Θ∈Rnz,i

RLSE

= arg min
Θ∈Rnz,i

i∑
k=i+nz,i−S+1

(
zk −

[
zi(k − 1) zi(k − 2) · · · zi(k − nz,i)

]
Θ
)2
.

(3.12)

The minimization problem (3.12) reduces to the matrix equation:

HiΘi =
i∑

k=i+nz,i−S+1

zk


zk−1

zk−2

...
zk−nz,i

 , (3.13)

where matrix Hi ∈ Rnz,i×nz,i is defined as follows:

Hi =

i∑
k=i+nz,i−S+1


zk−1

zk−2

...
zk−nz,i

 ·
[
zk−1 zk−2 · · · zk−nz,i

]
. (3.14)

Observe that the matrix Hi and the right-hand-side of the Eq. (3.13) consist of only
elements of the measurement vector (3.9).

The solution to the equation (3.13) in the least-square sense is as follows:

Θi = H+
i


zi−S+nz,i+1

zi−S+2

...
zi

 , (3.15)
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where H+
i denotes the Moore-Penrose pseudoinverse of the matrix Hi. It is easy to conclude

that the number of the considered values (the size of the signal window) S and the order of
the model nz,i have to satisfy the inequality

S ≥ nz,i + 1. (3.16)

The AR model (3.10) can be reformulated in the discrete state-space representation


z(k + 1)

z(k)
...

z(k − nz,i + 2)

 =



θ1,i θ2,i · · · θnz,i−1,i θnz,i,i

1 0 · · · 0 0

0 1
. . . 0 0

...
. . . . . . . . .

...
0 0 · · · 1 0


·


z(k)

z(k − 1)
...

z(k − nz,i + 1)

 . (3.17)

Observe, that the difference equation (3.17) represents the desired model of the disturbance
of the form defined in Eq. (3.8) with:

Az,i =



θ1,i θ2,i · · · θnz,i−1,i θnz,i,i

1 0 · · · 0 0

0 1
. . . 0 0

...
. . . . . . . . .

...
0 0 · · · 1 0


, Cz,i =

[
1 0 · · · 0

]
,

xz0,i =


z(ti)

z(ti−1)
...

z(ti−nz,i+1)



(3.18)

and the state of the disturbance model xz,i(k) consists of the consecutive measurements of
the disturbance z. Such a choice of the state vector is particularly beneficial because the
state vector in this form can be directly measured without the employment of any state
estimation scheme.

If the approximation of the disturbance is based on the preceding values of the signal, it
is obvious that the control scheme cannot be initiated until the number of the available past
values of the disturbance is not less than some set parameter Smin (nz,i + 1 ≤ Smin ≤ S). If
the dynamic equation governing the evolution of the disturbance z(t) in time is nonlinear
and/or varies in time, it is highly recommended to choose relatively small values of S
and Smin. Otherwise, the past measurements that correspond to the previous character of
the disturbance will dominate the measurement vector (3.9) over the new measurements.
Because the approximation of the disturbance calculated by Eq. (3.15) depends on the
whole measurement vector, it would be biased towards the outdated character of the load.
It is important to observe that the measurements that reflect the former behaviour of the
load will still appear in the measurement vector until the next S values of the disturbance
are measured.
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It must be emphasized that in some cases the dynamics of the disturbance has a
different order than the order of the approximation nz,i. In such a case, the autoregressive
approximation may provide a model that does not provide the best approximation of the
disturbance, with the forecasted trajectory of the disturbance significantly diverging from
the actual one. As a consequence, the use of such an overfitted or underfitted model can
result in the worse performance of the control law and even lead to instability of the control
system. This situation can be avoided for example if we compute the series of AR models
with orders ranging from 1 to some set parameter nmax and choose the best one according
to some criterion. In [58], the authors propose the criterion called final prediction error
(FPE) that is of the form:

FPEj =

(
1 +

j + 1

S

)
S

S − 1− jRLSE, (3.19)

where j is the order of the AR model. We propose to introduce this scheme into the
identification method, that is, at every iteration of the method compute the series of AR
models and pick the best according to the criterion (3.19).

The identification method is summarized in Algorithm 3.1. Observe that the compu-

Algorithm 3.1 The autoregressive identification of the disturbance
Require: The range of the order of the approximation nmax, maximal and minimal size of

the measurement vector S, Smin.
1: At the time ti, measure the disturbance value zi = z(ti) and add it to the vector of

past measurements
[
z1 z2 . . . zi−1

]
.

2: if Size of the measurement vector is smaller than Smin then
3: Wait for the next measurement i← i+ 1.
4: else
5: if Size of the measurement vector is larger than S then
6: Trim the vector such that it consists of only last S measurements.
7: end if
8: nz,i = 1
9: while nz,i ≤ nmax do

10: Build the matrix Hi according to Eq. (3.14).
11: Compute the Moore-Penrose pseudoinverse matrix H+

i .
12: Find the weights of the approximation Θi by computing the equation (3.15).
13: Compute the error RLSE according to Eq. (3.12).
14: Compute the FPEj criterion according to Eq. (3.19).
15: nz,i ← nz,i + 1
16: end while
17: Pick the optimal AR model.
18: Build matrices Az,i, Cz,i with weights of the optimal AR model as in Eq. (3.18).
19: end if

tational complexity of the Algorithm 3.1 is clearly dominated by the calculation of the
matrix Hi and its pseudoinverse H+

i on lines 10 and 11. Both operations have complexity
O(Sn2

z,i) and O(n3
z,i) respectively. The example of the pseudoinverse algorithm of such

complexity is proposed in [57]. The loop starting at line 9 is executed nmax times and with
the assumption that the length of the measurement window S is fixed, the final complexity
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of the algorithm 3.1 with respect to the parameter nmax is O(n4
max). The AR identification

is employed in adaptive control methods presented in Sections 3.2 and 3.3.

Parametric identification

The autoregressive identification method can be used when there is no knowledge about
the intrinsic process governing the disturbance z(t). In this section, we focus on a situation
when the disturbance z(t) is not directly measurable, but rather the dynamical model of the
disturbance (3.4) is known and it depends on the set of measurable parameters γi = γ(ti),
γi ∈ Rp:

ẋz,i(t) = Az,i(γi)xz,i(t), xz, i(ti) = xz0,i(γi),

z̃i(t) = Cz,i(γi)xz,i(t), such that: z̃i(t) ≈ z(t).
(3.20)

Typical examples of such a scenario are: a moving load with measurements of its mass,
velocity and position or a sinusoidal disturbance with measurements of its frequency and
phase. In such a case, the identification procedure is straightforward and consists only of
the computation of matrices Az,i(γi), Cz,i(γi) and the initial state vector xz0,i(γi). The
procedure is summarized in Algorithm 3.2. If we assume that the values of elements of

Algorithm 3.2 The parametric identification of the disturbance
Require: Functions Az,i(γi), Cz,i(γi) and xz0,i(γi).
1: At the time ti, measure the parameters value γi = γ(ti).
2: Calculate matrices Az,i(γi), Cz,i(γi) and vector xz0,i(γi).

matrices Az,i(γi), Cz,i(γi) and the vector xz0,i(γi) that depend the measured parameters γi
can be calculated in constant time (e.g., when this dependence is stated via basic arithmetic
operations, such as addition and multiplication), then the computational complexity of
Algorithm 3.2 is O

(
n2
z,i · p

)
. This simple identification scheme is employed in Section 3.4.

3.2 Finite horizon LQR with autoregressive identification of

disturbance

The novel control method formulated in Section 3.3 is based on the control approach firstly
introduced in [9]. The authors of the aforementioned paper propose the adaptive seismic
stabilization method employing the AR disturbance identification and finite horizon LQR.
The brief formulation of this control method is presented in this section. In addition, the
comprehensive numerical analysis of the scheme that examines the impact of the method’s
parameters on the performance of the controller is presented in Section 5.1. The contents
of this section have been originally presented in the author’s paper [47].

Let the active control system with an auxiliary disturbance be defined via the linear
time-variant differential Eq. (3.1). The discrete equivalent of the continuous model (3.1)
with the sampling time h is defined as follows:

x(k + 1) = ADx(k) + BDu(k) + BzDz(k), x(0) = x0 (3.21)
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where the matrices AD, BD, BzD of the discrete model are determined from the matrices
A, B, D of the continuous model (3.1) by employing one of the system discretization
methods. If the zero-order hold method is used, then the matrices are computed as follows:

AD = eAh, BD =

∫ h

0
eAt dtB,

BzD =

∫ h

0
eAt dtBz.

(3.22)

The discrete finite horizon performance index that is analogous to the continuous index
(3.3) is for the time horizon T = h · iT defined as follows:

J =

iT∑
k=0

(
xT (k)Qx(k) + uT (k)Ru(k)

)
. (3.23)

The goal of the control method is to stabilize the system (3.1) with the prescribed integral
quadratic performance index (3.3). In every time instance ti, the disturbance z(t) is
approximated by the autoregressive model according to Algorithm 3.1. As a result, the i-th
discrete approximation of the whole system that consists of the autoregressive disturbance
model established at the time instant ti = h · i is as follows:

x̃i(k + 1) =

[
xi(k + 1)

xz,i(k + 1)

]
=

[
AD BzDCz,i

0 Az,i

][
xi(k)

xz,i(k)

]
+

[
BD

0

]
u(k), xi(i) = x(ti),

xz,i(i) =


z(ti)

z(ti−1)
...

z(ti−nz,i+1)

 .
(3.24)

The receding-horizon discrete performance index can be now stated analogously to (3.7) in
the Model Predictive Control fashion:

Ji(u) =

i+iT∑
k=i

[
x̃Ti (k)

[
Q 0

0 0

]
x̃i(k) + uT (k)Ru(k)

]
. (3.25)

The sequence of modified optimal control problems for the approximations (3.24) and the
performance index (3.25) in the general form (2.28) is defined as follows:

Find: u∗i : Ti × Rñ 7→ U ⊂ Rm,

such that: u∗i (k, x̃i) = arg min
u(k,x̃i(k))∈U , k∈Ti

Ji(u) =

∑
k∈Ti

[
x̃Ti (k)

[
Q 0

0 0

]
x̃i(k) + uT (k)Ru(k)

]
,

subject to: difference equation and initial conditions (3.24),

ti = h · i,
Ti = {i, i+ 1, . . . , i+ iT } .

(3.26)
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The magnitude of the positive definite matrix R is assumed chosen in such a way, that the
resulting optimal control u∗i belongs to the interior of the control set U for the considered
range of excitations, that is, the constraints of the control value do not have to be treated
explicitly.

For the finite control horizon - that is for iT < ∞, the solution to (3.26) exists for
any dynamics (3.24). In this case, the solution to (3.26) is represented by the linear
state-feedback control of the form:

u∗i (k) = −Ki(k)x̃i(k), (3.27)

where Ki(k) ∈ Rm×ñ is the time-varying gain matrix depending on the temporary approx-
imation of the disturbance and is computed backwards by solving the discrete dynamic
Riccati equation with final conditions:

Ki(k) =

R +

[
BD

0

]T
Pi(k + 1)

[
BD

0

]−1 [
BD

0

]T
Pi(k + 1)

[
AD BzDCz,i

0 Az,i

]
,

Pi(k) =

[
Q 0

0 0

]
+

[
AD BzDCz,i

0 Az,i

]T
Pi(k + 1)

[
AD BzDCz,i

0 Az,i

]

−
[
AD BzDCz,i

0 Az,i

]T
Pi(k + 1)

[
BD

0

]

·

R +

[
BD

0

]T
Pi(k + 1)

[
BD

0

]−1 [
BD

0

]T
Pi(k + 1)

[
AD BzDCz,i

0 Az,i

]
,

Pi(i+ iT ) =0,

(3.28)

where Pi(k) ∈ Rñ×ñ, k = i, i+ 1, . . . , i+ iT is the positive-definite Riccati matrix. For the
full derivation of the LQR for the systems that are not disturbed, the reader is referred to
[5]. The performance of the control (3.27) depends on the approximation of the disturbance
dynamics, as represented by the matrices Az,i, Cz,i.

In the case when there is an insufficient number of the measurements of the signal z(t),
that is, i < Smin and the model of the disturbance cannot be established, it is proposed to
calculate the control law with the simplifying assumption that the disturbance does not
affect the system:

Ki(k) =
(
R + BT

DPi(k + 1)BD

)−1
BT
DPi(k + 1)AD,

Pi(k) =Q + AT
DPi(k + 1)AD

−AT
DPi(k + 1)BD

(
R + BT

DPi(k + 1)BD

)−1

·BT
DPi(k + 1)AD,

Pi(i+ iT ) =0, Pi(k) ∈ Rn×n, k = i, i+ 1, . . . , i+ iT .

(3.29)

In that case, the optimal control law is affine with respect to only the measured state:

u∗i (k) = −Ki(k)x(tk). (3.30)
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Observe that this situation occurs only at the very beginning of the control and is believed
not to play any crucial role on the overall performance of the proposed method.

The benefit of the finite horizon formulation of the optimal control problem (3.26) is
that the optimal control can be established without imposing any restrictions on the system
matrices of the approximation (3.24). However, because the value of the control at the
time instant ti, u∗i (i), depends on the all future values of matrix Pi(k), the computation
burden of the iterative scheme (3.28) grows linearly with the horizon iT . If we assume that
the operations of the multiplication and the inversion of a square matrix have complexity
proportional to the cube of a matrix’s size1 then the computational complexity of the
scheme (3.28) is O

(
iT · ñ3

)
.

The final finite horizon adaptive method proposed in [9], consisting of the identification of
the disturbance and the computation of the LQR feedback control law can be summarized in
the form of Algorithm 2.1: The computational complexity of the one iteration of the control

Algorithm 3.3 The main loop of the finite horizon active control method
Require: LQR horizon iT , the range of the order of the AR approximation nmax, maximal

and minimal size of the measurement vector S, Smin
1: At the time ti = h · i, measure state of the system x(ti), value of the disturbance z(ti).
2: Execute the autoregressive identification procedure described in Algorithm 3.1.
3: if i ≥ Smin and the identification procedure computed the matrices Az,i, Cz,i then
4: Compute the optimal gain matrix Ki(i), by solving the equation (3.28).
5: Apply the control according to the measured state and the disturbance, u∗i (i) =
−Ki(i)x̃i(i), with the state of the approximation x̃i defined as in (3.24).

6: else
7: Compute Ki(i) ∈ Rm×n, by solving the Riccati equation without the AR model,

Eq. (3.29).
8: Apply the control according to just the measured state, u∗i (i) = −Ki(i)x(ti).
9: end if

10: Increment i← i+ 1.

method presented in Algorithm 3.3 is equal to O
(
iT · ñ3 + n4

max

)
. With the reasonable

assumptions that ñ3 � n4
max and iT � nmax, the computational complexity of Algorithm

3.3 reduces to O
(
iT · ñ3

)
. This finite horizon adaptive control method is validated and

analysed numerically in Section 5.1.

3.3 Alpha-shift and infinite horizon modification

In this section, the novel adaptive control method based on the controller defined in Section
3.2 is presented. It is based on the Author’s paper [51] (to be published). The development
of this approach has been motivated by two drawbacks of the finite horizon method:

• Since the computational complexity of the finite horizon method is linear with respect
to the time horizon iT , the choice of a large horizon makes the computation time

1The complexity O
(
ñ3
)
corresponds to naive divide-and-conquer algorithm for matrix multiplication

and inversion. There exists a number of sub-cubic algorithms, e.g., [59] of complexity O
(
ñlog2 7

)
that

exhibit better performance for very large matrices. In the context of this work, we assume that the order ñ
is not large enough to justify the use of these algorithms.
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of the method proportionally longer. With a horizon too large, the computation
time may exceed the period of the adaptation loop h, which would make the method
infeasible to use in real-time operation.

• Contrarily, an MPC control method can guarantee global stability of the control
system only when a finite horizon is large enough, see theoretical results in [60,
Theorem 4.2]. The phenomenon of instability caused by a too small horizon is also
presented in this thesis, in the numerical analysis of the finite horizon method, see
Figure 5.18. The figure presents the situation in which the method fails to stabilize
the system for the finite horizon Thorizon = iTh < 0.5 s.

These two problems are especially significant in a case when the variation of the disturbance
signal is considerably faster than the responsiveness of the controlled object. A very
common example of such a scenario is a large structure subjected to an earthquake. The
rapidity of an earthquake imposes a small discretization period h. On the other hand,
natural frequencies of a large-mass structure are significantly lower than those typical to
earthquakes. To accommodate a large inertia of a system and maintain good performance
and stability of the controller, the finite horizon Thorizon = iTh has to be set appropriately
long. As a consequence, the horizon of the discrete LQR scheme iT is large and may prevent
a real-time application of the method. To tackle these computation and performance
problems here the use of the infinite horizon variant of the LQR controller is proposed.

For the discrete dynamical system with the disturbance model defined as in Eq. (3.24)
and the infinite horizon performance index:

Ji(u) =

∞∑
k=i

[
x̃Ti (k)

[
Q 0

0 0

]
x̃i(k) + uT (k)Ru(k)

]
(3.31)

the infinite horizon optimal control problem can be formulated as follows:

Find: u∗i : Rñ 7→ U ⊂ Rm,

such that: u∗i (x̃i) = arg min
u(x̃i(k))∈U , k∈Ti

Ji(u) =

∑
k∈Ti

[
x̃Ti (k)

[
Q 0

0 0

]
x̃i(k) + uT (k)Ru(k)

]
,

subject to: difference equation and initial conditions (3.24),

ti = h · i,
Ti = {i, i+ 1, i+ 2, . . .} .

(3.32)

Observe that the formulation of the optimal control problem (3.32) is analogous to the
general adaptive control problem stated in Eq. (2.28). The resulting optimal infinite
horizon control law is similar to the control defined for finite horizon LQR, but the feedback
matrix K is in this case constant and the Riccati equation is not dynamic, but algebraic.
The control takes the form:

u∗i (k) = −Kix̃i(k), (3.33)
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where Ki ∈ Rm×ñ is the constant gain matrix that is computed by solving the discrete
algebraic Riccati equation:

Ki =

R +

[
BD

0

]T
Pi

[
BD

0

]−1 [
BD

0

]T
Pi

[
AD BzDCz,i

0 Az,i

]
,

Pi =

[
Q 0

0 0

]
+

[
AD BzDCz,i

0 Az,i

]T
Pi

[
AD BzDCz,i

0 Az,i

]

−
[
AD BzDCz,i

0 Az,i

]T
Pi

[
BD

0

]R +

[
BD

0

]T
Pi

[
BD

0

]−1

·
[
BD

0

]T
Pi

[
AD BzDCz,i

0 Az,i

]
,

(3.34)

where Pi is the positive-definite solution to the Riccati equation. The Riccati equation (3.34)
can be solved very efficiently, e.g., with the use of the Shur method [6]. The computational
complexity of the algorithm presented in the aforementioned paper is equal to O

(
ñ3
)
,

where ñ3 is the order of the problem. Observe that, as a consequence of the infinite horizon
formulation, this complexity depends solely on the size of the system. When compared to
the complexity of the finite horizon LQR presented in (3.28), we conclude that the infinite
horizon method surpasses the finite horizon approach for large values of the horizon iT .

This statement was computationally verified by comparison of the computation time of
both finite and infinite LQR controllers for different orders of the system ñ and different
values of the finite horizon iT . Results are presented in Figure 3.1. The blue colour

0 50 100 150 200 250

0

100

200

300

400

Figure 3.1: Comparison of the calculation times of finite (tfin) and infinite horizon (tinf )
LQR for different values of the system order ñ and the finite horizon N .

corresponds to such a pair of the parameters iT and ñ for which the computation time of
the finite horizon LQR tfin is smaller than the computation time of the infinite LQR tinf .
The yellow colour represents the opposite, i.e., situations, where tinf is smaller than tfin.
Observe that the plot is divided into two coloured regions. With the growing size of the
system’s order ñ, the boundary between these regions is clearly limited from below, that is,
it does not exceed finite horizon iT = 100. We then conclude that for finite horizons iT
larger than 100, the infinite horizon approach will result in faster computation, despite the
order ñ. The boundary iT = 100 is easily exceeded in applications. For the control problem
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analysed in Section 5.2, with a model of the order n = 60, the smallest finite horizon that
has been found to provide acceptable performance is iT ≈ 5000. The computation time
for this case was 0.2933 ± 0.0299 s. In contrast, the infinite horizon LQR for the same
problem is computed in 0.0085± 0.0013 s and gives superior control results to the finite
horizon variant. Observe also that the finite horizon method stabilizes the drilling system
in Section 5.1 only when iT is larger than 100.

However, for the solution to the infinite horizon control problem (3.32) to exist, further
assumptions for the structure of the control system have to be made:

Assumption 3.1. The pair of the matrices of the controlled system([
AD BzDCz,i

0 Az,i

]
,

[
BD

0

])
(3.35)

is stabilizable.

In addition, the optimal feedback defined in Eq. (3.33) stabilizes the controlled system
if and only if the next assumption holds:

Assumption 3.2. The pair of the matrices of the controlled system and the performance
index ([

AD BzDCz,i

0 Az,i

]
,
[
Q

1
2 0

])
, (3.36)

where Q
1
2 denotes the positive semi-definite square root of a matrix Q is detectable2.

The sufficiency of these conditions for the existence of infinite horizon LQR solution is
proven in [61]. Stabilizability and detectability criteria can be stated in many equivalent
forms. One exemplary criterion is: the pair (A,B) of the discrete dynamical system is
stabilizable if and only if there exists a feedback control matrix K which makes the system
asymptotically stable, i.e, the matrix (A−BK) has moduli of all its eigenvalues smaller
than 1. An analogous condition can be stated for detectability: a pair (A,C) is detectable
if and only if there exists a Luenberger observer matrix L which makes the error of a state
estimation reach asymptotically 0, i.e., (A− LC) has moduli of all its eigenvalues smaller
than 1. Observe that (A,B) is stabilizable if and only if

(
AT ,BT

)
is detectable. The

stabilizability of the pair (A,B) can be then rigorously stated via checking if the next
condition holds:

|λ| ≥ 1 ⇒ rank
([
λI−A B

])
= n, ∀λ ∈ C, (3.37)

where n is the size of the square matrix A. For the in-depth definitions of stabilizability,
detectability and their stronger forms, controllability and observability for continuous
systems, see for example [62, Appendix B]. The discrete equivalents of these criteria are
discussed in [63, Chapter 6.2].

2The existence of the principal square root of a matrix Q is assured by the positive semi-definiteness
property of this matrix.
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Because of the changing and unpredictable value of the AR approximation Az,i, the
fulfilment of detectability and stabilizability conditions is a non-trivial task. To ensure the
existence of the solution of optimal control problem (3.32), we use the theory of LQR with
the alpha shift [12]. In the aforementioned work, the authors added the exponential term
α2k, α > 1 to the quadratic performance index (3.31) to increase the degree of stability of
a completely controllable system. In the present work, we propose an opposite application,
that is, we assume the modified performance criterion:

Ji(u) =

∞∑
k=i

α
2(k−i)
i

[
x̃Ti (k)

[
Q 0

0 0

]
x̃i(k) + uT (k)Ru(k)

]
(3.38)

with αi < 1, which relax stabilizability and detectability conditions. For the rest of this
paper we also make standard assumptions about the controlled mechanical system:

Assumption 3.3. The pair (AD, BD) of the unaugmented control system (3.21) is stabi-
lizable.

Assumption 3.4. The pair
(
AD, Q

1
2

)
of the unaugmented control system (3.21) and the

matrix Q as in (3.31) is detectable.

These assumptions are fulfilled by a majority of structural systems that display internal
damping. In particular, the work [64] presents the necessary and sufficient conditions for
asymptotic stability of an autonomous continuous mechanical system analogous to the
system (2.29):

Mq̈(t) + Cq̇(t) + Kq(t) = 0, q(t) ∈ Rnq . (3.39)

Theorem 3.1 ([64, Theorem 1, Corollary 2]). Suppose the matrices of the system (3.39)
have properties: K � 0 and C � 0. Then the mechanical system (3.39) is asymptotically
stable if and only if

rank



C

C
(
M−1K

)
C
(
M−1K

)2
...

C
(
M−1K

)nq−1


= nq, (3.40)

where nq is the number of the generalized coordinates of the system.

Observe that the stability of the continuous autonomous system (3.39) directly implies
the stability of its zero-order hold approximation3 and, as a consequence, the stabilizability
and detectability of the discrete system pairs presented in Assumptions 3.3 and 3.4. The

3A continuous linear autonomous system defined by a matrix A is asymptotically stable if and only if
all eigenvalues λi of the matrix A have negative real part. A zero-order hold approximation of this system,
defined by the matrix AD = eAh, has eigenvalues of the form eλih. If ∀λi, <λi < 0, then

∣∣eλih
∣∣ < 1, which

is a sufficient condition for the discrete linear autonomous to be asymptotically stable.
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modified optimal control problem can be now stated as follows:

Find: u∗i : Rñ 7→ U ⊂ Rm,

such that: u∗i (x̃i) = arg min
u(x̃i(k))∈U , k∈Ti

Ji(u) =

∑
k∈Ti

α
2(k−i)
i

[
x̃Ti (k)

[
Q 0

0 0

]
x̃i(k) + uT (k)Ru(k)

]
,

subject to: difference equation and initial conditions (3.24),

ti = h · i,
Ti = {i, i+ 1, i+ 2, . . .} .

(3.41)

As described above, the unique stabilizing solution to the infinite horizon LQR problem
exists only for the linear systems and performance indices that fulfil the stabilizability and
detectability criteria. However, in the presence of the varying matrix Az,i, fulfilment of
these criteria is not guaranteed. Even if the measured disturbance z(t) is asymptotically
stable, its intrinsic nonlinearities and the presence of measurement errors may result in an
unstable approximation Az,i.

When the disturbance model is unstable, there is no control u(k) that can prevent
exponential growth of the state of the system with AR approximation (3.24) (because the
control u(k) cannot affect the disturbance xz,i(k)). Consequently, the quadratic terms
of the performance index (3.31) grow exponentially for every possible control and the
infinite-horizon optimal control problem has no solution.

Nonetheless, if we introduce sufficiently small αi into the performance index, the
contracting exponential term α

2(k−i)
i will dominate the growth of the quadratic terms and

allow the performance index to have a finite limit on the infinite time horizon, even if the
system itself cannot be stabilized. Let us now formally state and prove the necessary value
of the decay parameter αi that guarantees well-posedness of the modified optimal control
problem (3.41).

The exponential term αki obviously varies with k, which transforms the original time
independent formulation of performance index into an undesirable time-dependent one. To
again get the time-independent optimal control problem, let us redefine the state of the
approximated model x̃ and the control u as the virtual state and control y and w:

y(k) = αk−ii x̃(k), w(k) = αk−ii u(k). (3.42)

Then the performance index (3.38) and the dynamics (3.24) takes the form:

Ji =

∞∑
k=i

[
y(k)T

[
Q 0

0 0

]
y(k) + wT (k)Rw(k)

]
, (3.43)
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y(k + 1) = αi

[
AD BzDCz,i

0 Az,i

]
y(k) + αi

[
BD

0

]
w(k), y(i) = x̃(i) =



x(ti),

z(ti)

z(ti−1)
...

z(ti−nz,i+1)


.

(3.44)
It is apparent that the matrices of the system (3.44) and the performance index (3.43) do
not explicitly depend on the time step k and, therefore, the solution of the infinite horizon
LQR can be considered again. If this solution exists, then it is of the feedback form

w∗(k) = −Kiy(k), (3.45)

where the matrix Ki is computed via the algebraic Riccati equation with the incorporation
of the exponential term αi. The equation is defined as follows:

Ki =α2
i

R + α2
i

[
BD

0

]T
Pi

[
BD

0

]−1 [
BD

0

]T
Pi

[
AD BzDCz,i

0 Az,i

]
,

Pi =

[
Q 0

0 0

]
+ α2

i

[
AD BzDCz,i

0 Az,i

]T
Pi

[
AD BzDCz,i

0 Az,i

]

− α4
i

[
AD BzDCz,i

0 Az,i

]T
Pi

[
BD

0

]R + α2
i

[
BD

0

]T
Pi

[
BD

0

]−1

·
[
BD

0

]T
Pi

[
AD BzDCz,i

0 Az,i

]
.

(3.46)

Observe that the transformation from the virtual optimal control w∗(k) to the actual
control u∗(k) is straightforward:

u∗(k) = αi−kw∗(k) = −αi−kKiy(k) = −Kix̃(k). (3.47)

Let us now proceed with basic remarks from control theory and matrix algebra. Spectrum

σ and spectral radius ρ of a triangular block matrix A =

[
A11 A12

0 A22

]
depend only on its

diagonal sub-matrices:

σA = σA11 ∪ σA22 ⇒ ρ (A) = max {ρ (A11) ; ρ (A22)} . (3.48)

The following is also true for every square matrix A

∀α ∈ R+, ρ (αA) = αρ (A) . (3.49)



40 CHAPTER 3. ADAPTIVE CONTROL IN PRESENCE OF CHANGING...

Every triple (A,B,C) that describes a discrete linear control system x(k + 1) =

Ax(k) + Bu(k), y(k) = Cx(k) can be decomposed into the Kalman canonical form
xRU (k + 1)

xRO(k + 1)

xUU (k + 1)

xUO(k + 1)

 =


A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44




xRU (k)

xRO(k)

xUU (k)

xUO(k)

+


B1

B2

0

0

u(k),

y(k) =
[
0 C1 0 C2

]


xRU (k)

xRO(k)

xUU (k)

xUO(k)


(3.50)

where xRU , xRO, xUU , xUO represents respectively, reachable and unobservable, reachable
and observable, unreachable and unobservable, unreachable and observable parts of the
system state. This decomposition can be defined as a similarity transformation by a
transformation matrix T

A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44

 = T−1AT,

[
BT

1 BT
2 0 0

]T
= T−1B,

[
0 C1 0 C2

]
= CT. (3.51)

The Kalman decomposition exists for every discrete linear system; for the proof, the reader
is referred to [65]. The original proof for continuous systems is presented in [66].

The Kalman canonical form is very convenient to test for stabilizability and detectability.
The system (3.50) is stabilizable if and only if the unreachable part of the system; that is,

governed by

[
A33 A34

0 A44

]
has spectral radius ρ < 1. The pair (A,C) is detectable if and

only if the pair
(
AT ,CT

)
is stabilizable, that is,

[
A11 A13

0 A33

]
has spectral radius ρ < 1.

Let us now define the matrix

T =


T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

 , T ∈ Rn×n, (3.52)

such that it transforms the triple
(
αiAD, αiBD,Q

1
2

)
of the model (3.44) to the Kalman

canonical form:

T−1αiADT = αi


AD,11 AD,12 AD,13 AD,14

0 AD,22 0 AD,24

0 0 AD,33 AD,34

0 0 0 AD,44

 , T−1αiBD = αi


BD,1

BD,2

0

0


Q

1
2 T =

[
0 Q1 0 Q2

]
.

(3.53)
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Observe that if we transform the triple corresponding to the whole model that incorporates
the AR approximation:(

αi

[
AD BzDCz,i

0 Az,i

]
, αi

[
BD

0

]
,
[
Q

1
2 0

])
(3.54)

via the transformation matrix that has been built with the use of the matrix T:

T̂ =



T11 T12 T13 T14 0

T21 T22 T23 T24 0

T31 T32 T33 T34 0

T41 T42 T43 T44 0

0 0 0 0 I


·



I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 0 0 0 I
0 0 0 I 0


, (3.55)

then the resulting matrices will also be in the Kalman form:

T̂
−1
αi

[
AD BzDCz,i

0 Az,i

]
T̂ = αi



AD,11 AD,12 AD,13 Z1 AD,14

0 AD,22 0 Z2 AD,24

0 0 AD,33 Z3 AD,34

0 0 0 Az 0

0 0 0 Z4 AD,44


,


Z1

Z2

Z3

Z4

 = T−1BzDCz,i, T̂αi

[
BD

0

]
= αi



BD,1

BD,2

0

0

0


,

[
Q

1
2 0

]
T̂ =

[
0 Q1 0 0 Q2

]
.

(3.56)

The particular position of Az,i in the canonical Kalman form (3.56) emphasizes the fact
that the state of a disturbance is both unreachable and unobservable. Let us now prove that
the special choice of the decay parameter αi guarantees the stabilizability and detectability
of the system with decay (3.44).

Lemma 3.1. If Assumption 3.3 holds and αi < min
{

1; (ρ (Az,i))
−1
}
, then the system

(3.44) is stabilizable.

Proof. Let

Astab. = αi


AD,33 Z3 AD,34

0 Az,i 0

0 Z4 AD,44

 (3.57)

denote the unreachable part of the dynamics (3.56). Then

ρ (Astab.) = αi max {ρ (AD,33) ; ρ (AD,44) ; ρ (Az,i)} . (3.58)

From Assumption 3.3 and property (3.48) we know that the unreachable part of the matrix
AD is stable:

max {ρ (AD,33) ; ρ (AD,44)} < 1. (3.59)
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Two cases may occur: ρ (Astab.) < αi, if ρ (Az,i) < 1,

ρ (Astab.) < αiρ (Az,i) , if ρ (Az,i) ≥ 1.
(3.60)

Observe that by substituting αi < min
{

1; (ρ (Az,i))
−1
}

these two cases reduces to:

∀Az,i ∈ Rnz,i×nz,i ρ (Astab.) < 1, (3.61)

which fulfils the stabilizability condition.

Lemma 3.2. If Assumption 3.4 holds and αi < min
{

1; (ρ (Az,i))
−1
}
, then the system

(3.44) is detectable.

Proof. The proof is parallel to the stabilizability proof. Let

Adet. = αi


AD,11 AD,13 Z1

0 AD,33 Z3

0 0 Az,i

 (3.62)

denote the unobservable part of system (3.56) dynamics. Then from Assumption 3.4, we
know that ρ (Adet.) < αi, if ρ (Az,i) < 1,

ρ (Adet.) < αiρ (Az,i) , if ρ (Az,i) ≥ 1.
(3.63)

The same substitution αi < min
{

1; (ρ (Az,i))
−1
}

provides that

∀Az,i ∈ Rnz,i×nz,i , ρ (ADet.) < 1, (3.64)

which fulfils the detectability criterion.

Let us now collect the preceding findings into the final result.

Theorem 3.2. Let the discrete system (3.21) fulfil Assumptions 3.3, 3.4. If the parameter
αi is selected such that αi < min

{
1; (ρ (Az,i))

−1
}
, where ρ (Az,i) denotes a spectral radius

of the matrix Az,i, then the modified optimal control problem (3.41) has a stabilizing solution.

Proof. The proof emerges directly from Lemmas 3.1 and 3.2. If we choose αi such that it
is smaller than min

{
1; (ρ (Az,i))

−1
}
, then the system (3.44) is stabilizable and detectable.

This is a sufficient condition for the existence of a stabilizing solution of the infinite-horizon
linear quadratic regulator problem, as can be deducted from [61].

Remark 3.1. Observe that the solution to the modified optimal control problem with decay
αi defined in Eq. (3.41) is stabilizing for the modified system (3.44), that is, there exists
γ ∈ (0, 1) and constant Γ ∈ R+ such that

‖y(k)‖ ≤ Γ ‖y(i)‖ γk−i. (3.65)
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Unfortunately, when the AR model is unstable, the resulting optimal control law u∗ does
not stabilize the original dynamical system defined in Eq. (3.24) but rather guarantee that
the rate of destabilization does not exceed the magnitude of destabilization provided by the
spectral radius ρ (Az,i):

‖x̃(k)‖ ≤ Γ ‖x̃(i)‖ γk−iαi−k < Γ ‖x̃(i)‖ ρ (Az,i)
k−i , if ρ (Az,i) ≥ 1. (3.66)

Remark 3.2. A more aggressive control strategy may be established if we enforce

αi < min
{
ρ (AD,11)−1 ; ρ (AD,33)−1 ; ρ (AD,44)−1 ; ρ (Az,i)

−1
}
. (3.67)

In a case when ρ (Az,i) < 1, the parameter αi takes values larger than 1, which adds a degree
of stability to the control. Unfortunately, such a reformulation requires prior knowledge of
spectral radii of these specific submatrices of AD.

Remark 3.3. We assume that the time of computing ρ (Az,i) is insignificant in the com-
parison to the solution time of the algebraic Riccati equation. This is a case when the order
of the approximation nz,i is smaller than the order of the system n. In a case when there is
a need to make computation even faster, one can use Gelfand’s formula [67]:

ρ (Az,i) = lim
k→∞

∥∥∥Ak
z,i

∥∥∥ 1
k
. (3.68)

This sequence converges to ρ (Az,i) from the above; that is, ∀k ∈ N,
∥∥Ak

z,i

∥∥ 1
k > ρ (Az,i).

Using even the first iteration of (3.68) ensures that Lemmas 3.1 and 3.2 are fulfilled. The
computational complexity of Gelfand’s formula is O

(
log k · n3

z,i

)
4.

The final infinite horizon adaptive control method is stated in Algorithm 3.4 via the
procedure similar to Algorithm 3.3. The computational complexity of one iteration of the
control method presented in Algorithm 3.4 is equal to O

(
ñ3 + n4

max + log k · n3
z,i

)
, where k

denotes the number of iteration of Gelfand’s formula. Observe that nz,i ≤ nmax. With the
reasonable assumptions that ñ3 � n4

max and k � 2nmax , the computational complexity of
Algorithm 3.3 reduces to O

(
ñ3
)
. This infinite horizon adaptive control method is validated

and analysed numerically in Section 5.2.

4With assumptions that the multiplication of a matrix has complexity equal to O
(
n3
z,i

)
and the power

of a matrix is computed via exponentiation by squaring.
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Algorithm 3.4 The main loop of the infinite horizon active control method
Require: The range of the order of the AR approximation nmax, maximal and minimal

size of the measurement vector S, Smin
1: At the time ti = h · i, measure state of the system x(ti), value of the disturbance z(ti).
2: Execute the autoregressive identification procedure described in Algorithm 3.1.
3: if i ≥ Smin and the identification procedure computed the matrices Az,i, Cz,i then
4: αi ← 1
5: Compute the spectral radius of the matrix ρ (Az,i).
6: if ρ (Az,i) > 1 then
7: αi ← ρ−1 (Az,i)β, β < 1
8: end if
9: Compute Ki, by solving the algebraic Riccati equation with decay (3.46).

10: Apply the control u∗i (i) = −Kix̃i(i), with x̃i defined in (3.24).
11: else
12: Compute Ki ∈ Rm×n, by solving the algebraic Riccati equation without the AR

model.
13: Apply the control according to just the measured state, u∗i (i) = −Kix(ti).
14: end if
15: Increment i← i+ 1.

3.4 Semi-active system – Lyapunov switching control

In this section, a semi-active adaptive stabilization method for systems affected by a
disturbance is proposed. The method, as the active control methods that have been defined
in Sections 3.2 and 3.3, employs the linear time-invariant approximation of the disturbance
that affects the controlled system. The quadratic performance criterion is defined on an
infinite time horizon, similarly to the LQR-based control method proposed in Section 3.3.
The alpha shift is also introduced as a guarantee that the control problem has a solution.
Unlike the active control approaches, this method does not rely on explicit optimal solutions
such as LQR. The proposed control law takes the extremal values of the control set and is
characterised by a switching behaviour. It is showed that this control law is near-optimal
and exceeds the performance of passive, constant control.

Let the semi-active control system subjected to an external disturbance be defined as
in Eq. (3.2):

ẋ(t) = Ax(t) +
m∑
j=1

uj(t)Bjx(t) + Bzz(t), x(0) = x0, u(t) ∈ [umin, umax]m , (3.69)

where x(t) ∈ Rn denotes the state of the system, u(t) ∈ Rm is the control signal, A ∈ Rn×n

is a state-transition matrix, the matrices Bj ∈ Rn×n, j = 1, 2, . . . , m denote the set of the
control matrices and the matrix Bz ∈ Rn defines the impact of the disturbance z(t) ∈ R on
the system.

Each entry of the vector of the control signal u(t) is assumed constrained within the
interval [umin, umax], umax > umin. Observe that with the affine transformation of the
control

û =
2

umax − umin
u− umax + umin

umax − umin
1, (3.70)
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the semi-active control system (3.69) is defined via a more generic control set:

ẋ(t) = Ax(t) +
m∑
j=1

ûj(t)Bjx(t) + Bzz(t), x(0) = x0, û(t) ∈ [−1, 1]m . (3.71)

Any control set defined as in Eq. (3.69) can be transformed into the form defined in Eq.
(3.71). Thus, for simplicity and without loss of generality it is assumed that the control set
for u(t) equals to [−1, 1]m.

The similar condition to the stabilizability of active systems defined in Assumption 3.1
is imposed on the system (3.69).

Assumption 3.5. For the matrices A and Bj , j = 1, 2, . . . , m there exists a known

constant control u0 =
[
u01 u02 · · · u0m

]T
, u0 ∈ [−1, 1]m for which the closed-loop

state-transition matrix A +
m∑
j=1

u0jBj

 (3.72)

is stable.

Observe that in the special case of the matrix A being stable, this assumption is trivially

satisfied by the constant control u0 =
[
0 · · · 0

]T
.

The performance of the stabilization is measured by the quadratic performance index

J =

∫ Tf

0
x(t)Qx(t) dt, (3.73)

where Tf denotes the horizon of the control and Q is such a positive semi-definite matrix
that Assumption 3.6 holds.

Assumption 3.6. The matrix Q and matrices A, Bj, j = 1, 2, . . . , m are such that all
pairs A +

m∑
j=1

ujBj

 ,Q

 : u ∈ [−1, 1]m (3.74)

are observable.

Notice that, unlike the criteria for the active control methods, this performance criterion
does not depend explicitly on the value of the control. Such a formulation corresponds to
the fact, that the power consumption of the semi-active devices is very often negligible.
From the analysis of the HJB equation (2.24) and Maximum Principle (2.21), it can be
easily showed that the optimal control in the case of the performance criterion (3.73) takes
only the extremal values5, i.e. u∗(t) ∈ {−1, 1}m.

The semi-active control method employs the same approach towards the disturbance
as the active controllers described in Sections 3.2 and 3.3. In every iteration i of the

5This statement holds only if the optimal control is not subjected to singular arcs.
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adaptive method, the disturbance signal z(t) is approximated by the linear time-invariant
and continuous system of the order nz,i defined similarly as the system in Eq. (3.20),

ẋz,i(t) = Az,i(γi)xz,i(t), xz, i(ti) = xz0,i(γi),

z̃i(t) = Cz,i(γi)xz,i(t), such that: z̃i(t) ≈ z(t),
(3.75)

where γi is the vector of the disturbance parameters identified by an identification procedure
in every iteration of the adaptation, xz,i(t) ∈ Rnz,i is the state of the model of the
disturbance, z̃i(t) ∈ R is the approximated signal of the disturbance, xz0,i(γi) denotes the
initial conditions and matrices Az,i, Cz,i are computed via the vector γi. Both systems
(3.69) and (3.75) can be combined as follows:

˙̃x(t) =

[
ẋ(t)

ẋz,i(t)

]
=

[
A BzCz,i(γi)

0 Az,i(γi)

][
x(t)

xz,i(t)

]
+

m∑
j=1

uj(t)

[
Bj 0

0 0

]
x̃(t),

x̃(ti) =

[
x(ti)

xz,i(ti)

]
=

[
xi

xz0,i(γi)

]
,

(3.76)

where x̃(t) ∈ Rñi , ñi = n + nz,i is the state of the system consisting of the controlled
object and the model of the disturbance and xi ∈ Rn is the state of the mechanical system
measured in the ith iteration of the adaptation.

The performance criterion for the new control system (3.76) that maintains the value
of the performance criterion (3.73) is defined as

J =

∫ Tf

0
x̃T (t)

[
Q 0

0 0

]
x̃(t) dt. (3.77)

Similarly to the active adaptive control methods defined in Sections and 3.2, 3.3, the
operation of the semi-active controller is also based on the iterative solution to the receding
horizon control problem:

Find: u∗i : Rñi 7→ [−1, 1]m ,

such that: u∗i (x̃i(t)) = arg min
u(t)∈[−1,1]m, t∈Ti

Ji(u) =

∫ ∞
ti

x̃T (t)

[
Q 0

0 0

]
x̃(t) dt,

subject to: differential equation and initial conditions (3.76),

ti = h · i,
Ti = [ti,∞) ,

(3.78)

where h denotes the period of the iteration of the adaptative controller.
Observe that the infinite horizon formulation of the control problem and time invariance

of the system matrices implies that the resulting optimal control law does not depend
explicitly on time. Similarly to the discussion in Section 3.3, the existence of the solution to
the problem (3.78) has to be addressed. Because the state-transition matrix Az,i(γi) is not
guaranteed to be stable, the performance integral in (3.78) may not exist. To guarantee
that the performance criterion exists for the augmented system (3.76) controlled via the
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stabilizing control u0, a continuous variant of the alpha shift is introduced:

Find: u∗i : Rñi 7→ [−1, 1]m ,

such that: u∗i (x̃i(t)) = arg min
u(t)∈[−1,1]m, t∈Ti

Ji(u) =

∫ ∞
ti

e2αi(t−ti)x̃T (t)

[
Q 0

0 0

]
x̃(t) dt,

subject to: differential equation and initial conditions (3.76),

ti = h · i,
Ti = [ti,∞) .

(3.79)

Next, it is shown that the special choice of the parameter αi guarantees that the performance
criterion with alpha shift exists when the augmented system (3.76) is controlled via constant
control u0.

Theorem 3.3. Let the augmented dynamical model consisting of the controlled system
and the disturbance approximation be defined as in Eq. (3.76) and let the Assumption 3.5
hold. Let u0 ∈ Rm, u0 = const. be any constant control for which the Assumption 3.5
holds. Let λj , j = 1, 2, . . . , nz,i denote the eigenvalues of the state-transition matrix of the
disturbance approximation, Az,i. Then if the parameter αi of the modified control problem
(3.79) is chosen such that αi < −max

{
0, < (λ1) , < (λ2) , . . . , <

(
λnz,i

)}
, then the modified

performance criterion for the augmented system controlled via constant control u0, J(u0),
defined in Eq. (3.79) exists.

Proof. Let x̃(t) be a trajectory of the augmented system (3.76) controlled via the constant
control u0. Define y(t) = eαi(t−ti)x̃(t). Observe that y(t) is the trajectory of the linear
time-invariant dynamical system:

ẏ(t) = αiy(t) +

[
A BzCz,i(γi)

0 Az,i(γi)

]
y(t) +

m∑
j=1

u0j

[
Bj 0

0 0

]
y(t)

=

([
A +

∑m
j=1 u0jBj BzCz,i(γi)

0 Az,i(γi)

]
+ αiI

)
y(t), y(ti) = x̃(ti).

(3.80)

The performance criterion with alpha shift defined in Eq. (3.79) can be reformulated with
the use of the new state trajectory y(t):

Ji(u0) =

∫ ∞
ti

e2αi(t−ti)x̃T (t)

[
Q 0

0 0

]
x̃(t) dt ≡

∫ ∞
ti

yT (t)(t)

[
Q 0

0 0

]
y(t) dt. (3.81)

Observe that these performance criteria are finite if the linear time-invariant system (3.80)
is exponentially stable. Since the matrix([

A +
∑m

j=1 u0jBj BzCz,i(γi)

0 Az,i(γi)

]
+ αiI

)
=

[
A +

∑m
j=1 u0jBj + αiI BzCz,i(γi)

0 Az,i(γi) + αiI

]
(3.82)
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is a triangular block matrix, its spectrum is a sum of the spectra of the matrices(
A +

∑m
j=1 u0jBj + αiI

)
and (Az,i(γi) + αiI). Notice also that if λ is an eigenvalue

of a matrix M, then (λ+ α) is an eigenvalue of a matrix (M + αI).

Since Assumption 3.5 holds, all eigenvalues of the matrix
(
A +

∑m
j=1 u0jBj

)
have a

negative real part. Observe that the parameter αi defined as in the body of the theorem is
negative and ultimately the eigenvalues of the matrix

(
A +

∑m
j=1 u0jBj + αiI

)
also have

a negative real part.

Because αi is smaller than the maximal real part of the eigenvalues of the matrix
(Az,i(γi)), all eigenvalues of the matrix (Az,i(γi) + αiI) also have a negative real part. All
eigenvalues of the matrix (3.82) have a negative real part and the modified linear dynamical
system (3.80) is exponentially stable. As a conclusion, such a choice of the parameter αi
guarantees the existence of the performance criterion J(u0). The criterion has the explicit
value

J(u0) = x̃T (ti)Pi(u0)x̃(ti), (3.83)

where Pi(u0) � 0, Pi(u0) ∈ Rñi×ñi is the solution to the Lyapunov equation:

0 =

[
A +

∑m
j=1 u0jBj + αiI BzCz,i(γi)

0 Az,i(γi) + αiI

]T
Pi(u0)

+ Pi(u0)

[
A +

∑m
j=1 u0jBj + αiI BzCz,i(γi)

0 Az,i(γi) + αiI

]
+

[
Q 0

0 0

]
.

(3.84)

The existence of this solution is guaranteed by the stability of the matrix defined in Eq.
(3.82).

Remark 3.4. Since the matrix
[

Q 0
0 0

]
is not positive definite and the pair

([
A +

∑m
j=1 u0jBj + αiI BzCz,i(γi)

0 Az,i(γi) + αiI

]
,

[
Q 0

0 0

])
(3.85)

is not observable, the matrix Pi(u0) is positive semi-definite.

Observe that the optimal control problem (3.79) is formulated for a nonlinear dynamical
system and with the explicit control constraints. Therefore, it lacks explicit analytical
solutions, similar to the LQR for the unconstrained linear-quadratic optimal control problem.
In the present work, the approximate, near-optimal control method is proposed that has
low computational complexity and has a simple and closed form of the feedback law.

The near-optimal control method proposed in this section guarantees improvement of
the performance in comparison to the stabilizing constant control u0. If there are many
constant controls that stabilizes the controlled system, then it is preferable to choose such a
control u∗0 that is not only stabilizing but also provides the best performance. The possible
ways of computing the optimal constant control are discussed below.
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The Optimal Passive Control

For brevity, let the state-transition matrix of the system with alpha shift (3.80) stabilized
via the control u be defined as:

Ãi(u) =

[
A +

∑m
j=1 ujBj + αiI BzCz,i(γi)

0 Az,i(γi) + αiI

]
. (3.86)

and

Q̃ =

[
Q 0

0 0

]
(3.87)

According to Theorem 3.3, if for the constant control u0 the autonomous part of the
mechanical system defined in Eq. (3.69) is stable, then the constant matrix Ãi(u0) is also
stable and the performance of the constant control has a quadratic form:

J(u0) = x̃T (ti)Pi(u0)x̃(ti),

0 = Ãi(u0)TPi(u0) + Pi(u0)Ãi(u0) + Q̃.
(3.88)

Now, the aim of this section is to find the constant control u∗0 that minimizes the objective
(3.88). The corresponding optimization problem can be regarded as a minimization of the
performance index for a given initial state x̃0:

u∗0 = arg min
u0∈[−1;1]m

F1(u0), F1(u0) = x̃T0 Pi(u0)x̃0. (3.89)

Alternatively, in the case when the passive control is expected to provide a fair result for
a wide range of the initial states, one can consider optimizing the expected value of the
performance index, i.e.

u∗0 = arg min
u0∈[−1;1]m

F2(u0), F2(u0) = E
(
x̃T0 Pi(u0)x̃0

)
. (3.90)

The expected value in Eq. (3.90) is equal to

E
(
x̃T0 Pi(u0)x̃0

)
= tr (Pi(u0)Σ) + µTPi(u0)µ, (3.91)

where Σ ∈ Rñi×ñi , µ ∈ Rñi are the covariance matrix and the mean value vector of
a random initial state x̃0, respectively. Assuming that the initial states are uniformly
distributed on a unit sphere, the optimization criterion for (3.90) can be written as follows

F2(u0) =
1

ñi
tr (Pi(u0)). (3.92)

Below, the nonlinear programming problems for both considered criteria are formulated.
Firstly, it is demonstrated that the dependence of Pi(u0) on u0 can be described using the
Kronecker product. Let

vec M =
[
m11 . . . m1n m21 . . . m2n . . . mnn

]T
∈ Rn

2
(3.93)
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be an operator that stacks vertically the columns of a matrix M ∈ Rn×n and M1 ⊗M2

denote the Kronecker product of the matrices M1 and M2. Let also define the matrix
X ∈ Rñ2

i×ñ2
i such that

X (u0) =
(
I⊗ Ãi (u0) + Ã

T
i (u0)⊗ I

)
. (3.94)

Then
vec Pi(u0) = −X−1 (u0) vec Q̃. (3.95)

The nonlinear programming problem for (3.89) and (3.90) can be stated as follows:

Find: u∗0 = arg min
u0∈[−1;1]m

−cTkX−1 (u0) vec Q̃,

subject to:

[
I
−I

]
u0 ≤

[
I
I

]
.

(3.96)

The constant vector ck ∈ Rñi depends on the choice of the minimization criteria F1(u0) or
F2(u0). In the case of the first optimization criterion (3.89), the vector c1 depends on the
given initial condition x̃0, i.e.

c1 = vec x̃0x̃
T
0 . (3.97)

For the second criterion (3.90), the vector c2 is defined as follows:

c2 = vec I. (3.98)

The search for the exact solution to the problem (3.96) is computationally complex.
One of the reasons is that the computation of the gradient of the criterion (3.96) involves
the calculation of the inverse of the matrix X ∈ Rñ2

i×ñ2
i . This procedure has complexity

O
(
n6
i

)
. Thus, it is advised to compute an approximate solution to (3.96), e.g. by the use

of the Fixed Step Random Search. For a good number of the semi-active structures, the
optimal passive control can also be established based on the practical experience. As an
example, in the majority of the damping controlled structures, the optimal passive strategy
relies on the maximal admissible value, i.e. u∗0 = 1.

The Near-optimal Switched Control

Assume that the optimal or heuristic constant control u∗0 =
[
u∗0,1 u∗0,2 . . . u∗0,m

]
is known.

For the system (3.80), the state-feedback control function û(y)

= [û1(y), û2(y), ..., ûm(y)] is defined as follows:

ûj(y) = − sgn
(
yTPi(u

∗
0)B̃jy

)
,

0 = Ã
T
i (u∗0)Pi(u

∗
0) + Pi(u

∗
0)Ãi(u

∗
0) + Q̃,

B̃j =

[
Bj 0

0 0

]
.

(3.99)

This switching control law based on the Lyapunov equation has been introduced in [23].
In the present work, the control law formulation is extended to include the analysis of its
near-optimality properties.
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Observe that the differential equation that governs the system controlled via the
switching control law (3.99):

ẏ(t) =

A + αiI−
∑m

j=1 sgn
(
yTPi(u

∗
0)B̃jy

)
Bj BzCz,i(γi)

0 Az,i(γi) + αiI

y(t),

y(ti) = x̃(ti)

(3.100)

is discontinuous. Thus, the trajectory y(t) is not a solution to (3.100) in the classical
sense. The solution to (3.100) is considered in the Filippov sense [68, Chapter 2.], i.e. an
absolutely continuous function that almost everywhere satisfies:

ẏ(t) ∈ F(y), (3.101)

where the differential inclusion is a set-valued function F(y) constructed as a convex hull
of the right-hand side of Eq. (3.100):

F(y) =

{[
A + αiI +

∑m
j=1 ujBj BzCz,i(γi)

0 Az,i(γi) + αiI

]
y(t) : uj ∈ Uj(y), j = 1, 2, . . . , m

}
,

Uj(y) =


−1, if yTPi(u

∗
0)B̃jy > 0,

[−1, 1] if yTPi(u
∗
0)B̃jy = 0,

1, if yTPi(u
∗
0)B̃jy < 0,

(3.102)

Observe that the set F(y) in Eq. (3.102) is nonempty, bounded, closed and convex for any
y ∈ Rñi and the function F is upper semicontinuous on Rñi . Thus, from [68, Theorem 1,
p. 77] it can be concluded that there exists a solution to this differential equation in the
Filippov sense.

Firstly, it is proven that the feedback control law (3.99) is asymptotically stable.

Theorem 3.4. The switched suboptimal controller defined as in (3.99) stabilizes asymptot-
ically the system (3.80).

Proof. Let Pz be a solution to the Lyapunov equation

Ã
T
i (u∗0)Pz + PzÃi(u

∗
0) +

[
0 0

0 I

]
= 0, (3.103)

where I ∈ Rnz,i×nz,i . The stability of the matrix Ãi(u
∗
0) guarantees the existence of the

solution Pz. Since the matrix Ãi(u
∗
0) is upper triangular, the matrix Pz has a special block

form:

Pz =

[
0 0

0 X

]
, (3.104)

where X ∈ Rnz,i×nz,i is a positive definite matrix.
Observe that the sum (Pi(u

∗
0) + Pz) is positive definite because the pair([

A +
∑m

j=1 u0jBj + αiI BzCz,i(γi)

0 Az,i(γi) + αiI

]
,

[
Q 0

0 I

])
(3.105)
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is observable and the Lyapunov equation

Ã
T
i (u∗0) (Pi(u

∗
0) + Pz) + (Pi(u

∗
0) + Pz) Ãi(u

∗
0) +

[
Q 0

0 I

]
= 0 (3.106)

holds.
Let the Lyapunov candidate function be defined as follows:

V (y) = yT (Pi(u
∗
0) + Pz) y. (3.107)

Notice that V (y) is a positive definite function. The upper derivative with respect to time

V̇ = sup
ẏ∈F(y)

∂V (y)

∂y
ẏ (3.108)

along the trajectories of the system controlled via the feedback control (3.99) is as follows:

V̇ (y(t)) = sup
uj∈Uj(y)

2yT (t) (Pi(u
∗
0) + Pz)

[
A +

∑m
j=1 ujBj + αiI BzCz,i(γi)

0 Az,i(γi) + αiI

]
y(t).

(3.109)

Since uj = u∗0j + uj − u∗0j ,

V̇ (y(t)) = 2yT (t) (Pi(u
∗
0) + Pz)

[
A +

∑m
j=1 u

∗
0jBj + αiI BzCz,i(γi)

0 Az,i(γi) + αiI

]
y(t)

+ sup
uj∈Uj(y)

2yT (t) (Pi(u
∗
0) + Pz)

m∑
j=1

(uj − u∗0j)B̃jy(t)

= 2yT (t) (Pi(u
∗
0) + Pz) Ãi(u

∗
0)y(t)

+ sup
uj∈Uj(y)

2yT (t) (Pi(u
∗
0) + Pz)

m∑
j=1

(uj − u∗0j)B̃jy(t).

(3.110)

Since the matrix Pz has the particular form (3.104), the identity

PzB̃j ≡ 0, j = 1, 2, . . . , m (3.111)

holds and as a result,

V̇ (y(t)) = 2yT (t) (Pi(u
∗
0) + Pz) Ãi(u

∗
0)y(t)

+ sup
uj∈Uj(y)

m∑
j=1

(uj − u∗0j)2yT (t)Pi(u
∗
0)B̃jy(t).

(3.112)

Notice that

sup
uj∈Uj(y)

ujy
TPi(u

∗
0)B̃jy = − sgn

(
yTPi(u

∗
0)B̃jy

)
yTPi(u

∗
0)B̃jy

= ûjy
TPi(u

∗
0)B̃jy

(3.113)

and

V̇ (y(t)) = 2yT (t) (Pi(u
∗
0) + Pz) Ãi(u

∗
0)y(t)

+
m∑
j=1

(ûj − u∗0j)2yT (t)Pi(u
∗
0)B̃jy(t).

(3.114)
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Observe that the time derivative of the Lyapunov function (3.114) is a sum of two
separate terms:

the first term: 2yT (t) (Pi(u
∗
0) + Pz) Ãi(u

∗
0)y(t),

the second term:
m∑
j=1

[(
ûj − u∗0j

)
yT (t)Pi(u

∗
0)B̃jy(t)

]
.

(3.115)

Consider the sign of the first term. Recall from the Lyapunov equation (3.106) that

2yT (t) (Pi(u
∗
0) + Pz) Ãi(u

∗
0)y(t) = −yT (t)

[
Q 0

0 I

]
y(t). (3.116)

Since the matrix
[

Q 0
0 I
]
is positive semi-definite, the term (3.116) is non-positive.

Since the switching control law û(y) is defined as in (3.99), each summand of the second
term is as follows:(

ûj − u∗0j
)
yT (t)Pi(u

∗
0)B̃jy(t)

=
(
− sgn

(
yT (t)Pi(u

∗
0)B̃jy

)
− u∗0j

)
· yT (t)Pi(u

∗
0)B̃jy(t). (3.117)

Observe that

− sgn
(
yTPi(u

∗
0)B̃jy

)
yTPi(u

∗
0)B̃jy = −

∣∣∣yTPi(u
∗
0)B̃jy

∣∣∣ (3.118)

and

−u∗0jyTPi(u
∗
0)B̃jy(t) = −u∗0j sgn

(
yTPi(u

∗
0)B̃jy

) ∣∣∣yTPi(u
∗
0)B̃jy

∣∣∣ . (3.119)

From these observations follows that the second term of V̇ is equal to

2

m∑
j=1

[(
ûj − u∗0j

)
yTPi(u

∗
0)B̃jy

]
= −2

m∑
j=1

[
1 + u∗0j sgn

(
yTPi(u

∗
0)B̃jy

)] ∣∣∣yTPi(u
∗
0)B̃jy

∣∣∣ . (3.120)

By definition, u∗0j ∈ [−1, 1], j = 1, 2, . . . , m and

1 + u∗0j sgn
(
yTPi(u

∗
0)B̃jy

)
∈ [0, 2]. (3.121)

As a consequence, the sum (3.120) is non-positive.
Because the derivative V̇ is a sum of the non-positive terms, it is also non-negative.

The derivative V̇ is equal to 0 on the whole trajectory of the system only if the first term
denoted in Eq. (3.116) is equal to 0. Since the pair([

A +
∑m

j=1 u0jBj + αiI BzCz,i(γi)

0 Az,i(γi) + αiI

]
,

[
Q 0

0 I

])
(3.122)

is observable, there is no trajectory y(t) except trivial y(t) = 0, for which V̇ remains 0.
From LaSalle’s invariance principle for discontinuous systems (see [69, Theorem 1 and

Proposition 2]) it follows that the closed-loop system (3.80) controlled via the switching
control law defined in (3.89) is asymptotically stable.
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The next theorem shows that the switching control law defined in (3.89) results in a
non-greater value of the performance criterion than the optimal constant control u∗0.

Theorem 3.5. Let V0(y0) and V̂ (y0) stand for the performance cost (3.81) from the initial
state y(ti) = y0 generated via the optimal passive control and suboptimal switched control,
respectively. Then the relation V0(y0) ≥ V̂ (y0) is satisfied for every initial condition y0.

Proof. Observe that for the constant control, the value function is V0(y0) = yT0 Pi(u
∗
0)y0.

Let y(t) be a trajectory of the system (3.80) controlled via the switching control law û(y)

defined in (3.89) with the initial state y0.
Since y(t) and consequently V0(y(t)) = y(t)TPi(u

∗
0)y(t) are absolutely continuous, the

following relation holds (see [70, Theorem 20.8]):

V0(y(t))− V0(y0) =

∫ t

ti

V̇0(y(τ)) dτ. (3.123)

Theorem 3.4 guarantees that the considered system with the switching control law is
asymptotically stable and limt→∞ y(t) = 0. As a result,

lim
t→∞

(V0(y(t))− V0(y0)) = −V0(y0) =

∫ ∞
ti

V̇0(y(τ)) dτ. (3.124)

In the similar fashion to Eqs. (3.109)–(3.116) it can be showed that

V̇0(y(t)) = −y(t)T Q̃y(t)

+ 2
m∑
j=1

[(
ûj − u∗0j

)
yT (t)Pi(u

∗
0)B̃jy(t)

]
.

(3.125)

From the definition of the performance index (3.81), it follows that

V̂ (y0) =

∫ ∞
ti

y(τ)T Q̃y(τ) dτ. (3.126)

Compare values of V̂ (y0) and V0(y0):

V0(y0)− V̂ (y0) = −
∫ ∞
ti

2
m∑
j=1

[(
ûj − u∗0j

)
yT (t)Pi(u

∗
0)B̃jy(t)

]
dτ. (3.127)

Observe that the integrand in (3.127) is equivalent to the derivative of the Lyapunov
function (3.114) defined in the proof of Theorem 3.4. Recall from Eq. (3.120) that this
integrand is non-positive and as a result for all y0 ∈ Rñi , V0(y0)− V̂ (y0) ≥ 0.

Theorem 3.5 shows that the performance of the proposed switching control û(y) is
bounded above by the performance of the constant control u∗0. Next theorem provides
conditions that guarantee the strict improvement, i.e. that there exists y0 ∈ Rñi such that
V0(y0) > V̂ (y0).

Theorem 3.6. Let V0(y0) and V̂ (y0) be defined as in Theorem 3.5. Then V̂ (y0) is equal
to V0(y0) on whole domain y0 ∈ Rñi if and only if the constant control u∗0 is the optimal
control for the problem (3.79).
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Proof. Assume that u∗0 is the optimal control for the problem (3.79). The associated value
function with the constant control is V0(y0) = yT0 Pi(u

∗
0)y0. The control u∗0 is optimal if

and only if both V0(y0) and u∗0 satisfy the sufficient and necessary conditions of optimality,
denoted by the infinite horizon variant of the HJB equation (2.24):

0 = yT Q̃y +
∂V0(y)

∂y
Ãi(u

∗
0)y, V0(0) = 0 (3.128)

and

u∗0 = arg min
u(y)∈[−1,1]m

[
yT Q̃y +

∂V0(y)

∂y
Ãi(u)y

]

= arg min
u(y)∈[−1,1]m

[
yTPi(u

∗
0)Ãi(u)y

]
= arg min

u(y)∈[−1,1]m

yTPi(u
∗
0)

m∑
j=1

ujB̃jy

 . (3.129)

Since the Lyapunov equation (3.99) holds, equation (3.128) is trivially satisfied:

yT Q̃y +
∂V0(y)

∂y
Ãi(u

∗
0)y = yT Q̃y + 2yTPi(u

∗
0)Ãi(u

∗
0)y

= yT
(
Q̃ + Pi(u

∗
0)Ãi(u

∗
0) + Ã

T
i (u∗0)Pi(u

∗
0)
)

y = 0.

(3.130)

Let us analyse the minimum denoted in Eq. (3.129). Two cases are possible.

arg min
uj(y)∈[−1,1]

[
ujy

TPi(u
∗
0)B̃jy

]
∈


{
− sgn

(
yTPi(u

∗
0)B̃jy

)}
,
(
yTPi(u

∗
0)B̃jy

)
6= 0,

[−1, 1],
(
yTPi(u

∗
0)B̃jy

)
= 0.

(3.131)
From that follows that the constant control u∗0 ∈ [−1, 1]m is optimal if and only if

∀y ∈ Rñi : yTPi(u
∗
0)B̃jy 6= 0, u∗0j = − sgn

(
yTPi(u

∗
0)B̃jy

)
. (3.132)

Observe that this condition holds only if each of the matrix products Pi(u
∗
0)B̃j , j =

1, 2, . . . , m is positive or negative semi-definite. Recall the assumed form of the switching
control law:

ûj(y) = − sgn
(
yTPi(u

∗
0)B̃jy

)
. (3.133)

The constant control u∗0 is optimal if and only if

∀y ∈ Rñi , u∗0j = ûj(y) ∨ yTPi(u
∗
0)B̃jy = 0. (3.134)

Equivalently, the constant control u∗0 is the optimal control if and only if the next condition
holds:

∀y ∈ Rñi , (u∗0j − ûj(y))yTPi(u
∗
0)B̃jy = 0. (3.135)

Notice that the left-hand side of Eq. (3.135) is the same as the integrand that characterizes
the difference of V̂ (y)− V0(y) in Eq. (3.127). Observe that if (3.135) holds, then V̂ (y) ≡
V0(y).

Let us prove the opposite implication, i.e., if V̂ (y) ≡ V0(y) then (3.135) holds. From
Theorem 3.4 it follows that the integrand in Eq. (3.127) is non-positive. Thus the
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equivalence V̂ (y) ≡ V0(y) can be achieved only if this integrand is equal to 0 almost
everywhere on [ti,∞). Observe that this integrand function in Eq. (3.127) is continuous
with respect to t. From that follows that V̂ (y) ≡ V0(y) only if the integrand function is
equal to 0 on the whole interval [ti,∞). Because the initial conditions y0 are arbitrary, it
follows that if V̂ (y) ≡ V0(y) then (3.135) holds. As a conclusion, the constant control u∗0
is optimal if and only if V̂ (y) ≡ V0(y).

Remark 3.5. If for some j = 1, 2, . . . , m the matrix product Pi(u
∗
0)B̃j is indefinite, then

there exists ỹ ∈ Rñi such that V̂ (ỹ) < V0(ỹ)

Proof. Because Pi(u
∗
0)B̃j is indefinite, there exist y1,y2 ∈ Rñi for which

yT1 Pi(u
∗
0)B̃jy1 > 0 ∧ yT2 Pi(u

∗
0)B̃jy2 < 0 (3.136)

and the switching control û(y) takes both values −1 and 1 on domain Rñi . Since u0 is
constant, it cannot satisfy the condition (3.135) and via Theorem 3.6 there exists ỹ ∈ Rñi

such that V̂ (ỹ) 6= V0(ỹ). From the result of Theorem 3.4 it follows that V̂ (ỹ) < V0(ỹ).

The resulting switching control law asymptotically stabilizes the system and guarantees
bounded performance. In fact, the improvement of the overall performance is guaranteed
for all possibilities except the special case, when the constant control is already the optimal
control. Because the control problem is formulated on the infinite time horizon, the near-
optimal feedback law is established via a computationally efficient procedure of solution to
the algebraic Lyapunov equation.

The semi-active adaptive control method formulated in this section is summarized in
Algorithm 3.5. It is assumed that the computation of the eigenvalues of the matrix Az,i has
a computational complexity of O

(
n2
z,i

)
. The procedure that solves the Lyapunov equation

(3.99) [71] has complexity O
(
n3
i

)
. Since ni > nz,i, the computational complexity of the

one iteration of the proposed control method is O
(
n3
i

)
.

Algorithm 3.5 The main loop of the infinite horizon semi-active control method
Require: The initial stabilizing (and preferably optimal) constant control u∗0.
1: At the time ti = h·i, measure state of the system x(ti) and parameters of the disturbance

γi.
2: Execute the parametric identification procedure described in Algorithm 3.2 and compute

matrices Az,i, Cz,i and the initial state of the disturbance xz0,i.
3: Compute eigenvalues λj , j = 1, 2, . . . , nz,i of the matrix Az,i.
4: Pick αi : αi < −max

{
0, < (λ1) , < (λ2) , . . . , <

(
λnz,i

)}
.

5: Compute solution Pi(u
∗
0) of the Lyapunov equation (3.99).

6: Apply switching control û = (ûj)
m
1 , ûj = − sgn yT (ti)Pi(u

∗
0)B̃jy(ti), where y(ti) =[

xT (ti) xTz0,i
]T .

7: Increment i← i+ 1.



Chapter 4

Adaptive control in presence of
change of system parameters

In this chapter, the adaptive control method for mechanical systems affected by a change
of their intrinsic parameters is proposed. The content of this chapter has been published in
the Author’s paper [46].

The attention is focused on the active model presented firstly in Eq. (2.35):

ẋ(t) = A(t)x(t) + Bu(t), x(0) = x0, (4.1)

where x(t) ∈ Rn is the state of the system, u(t) ∈ Rm is the control vector, x0 ∈ Rn denotes
the initial condition, A(t) ∈ Rn×n is the varying state-transition matrix that represents
changes of the system’s parameters and B ∈ Rn×m is the control matrix. The goal of the
control is to stabilize this system with minimization of the performance index:

J(u) =

∫ Tf

0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt, (4.2)

where Q ∈ Rn×n and R ∈ Rm×m are positive definite. It is also assumed that the changing
parameters of these systems and, as a consequence, changing matrix A(t), vary slow enough,
that is, they allow to approximate them by a series of parameters that are constant on
each adaptation interval, t ∈ [ti, ti + h). In particular, we assume that the system’s actual
parameters are piecewise constant and are affected only by jump changes. Example of such
a situation is a sudden damage of a structure. In every iteration i of the adaptation, it is
then assumed that the matrix Ai which approximates the matrix A(t) is constant in time.

57
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The adaptive control problem considered in this section can be now stated as follows:

Find: u∗i : Rn 7→ U ⊂ Rm,

such that: u∗i (x(t)) = arg min
u(x(t))∈U , t∈Ti

Ji(u) =∫ ∞
ti

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt,

subject to: ẋ(t) = Aix(t) + Bu(t),

x(ti) = xi,

ti = ih,

Ti = [ti, ∞) .

(4.3)

Observe that the adaptive MPC formulation (4.3) represents an optimal control problem
that is independent of time. In the case of an active control system, the solution to the
problem (4.3) takes the form of the infinite horizon LQR. The goal of the adaptive control
method is to, based on measurements, find approximations Ai of the matrix A(t). In this
work, the proposed approach is to identify matrix Ai indirectly, via the approximation of
the associated value function, similar to the value function V of the HJB equation (2.23).
This method is based on the control methods presented in the series of works [72, 73, 74].

4.1 Policy iteration method

Let the linear active control system with unknown state-transition matrix Ai be defined as
in control problem (4.3):

ẋ(t) = Aix(t) + Bu(t), x(ti) = xi. (4.4)

The performance of the control is measured by the quadratic performance index defined on
an infinite time horizon, as defined in adaptive control problem (4.3):

Ji(u) =

∫ ∞
ti

(xT (t)Qx(t) + uT (t)Ru(t)) dt. (4.5)

Within the considered problem it is assumed that the pair (Ai,B) is stabilizable for every
adaptation iteration i.

Define the value function V µi(x0) : Rn 7→ R+ associated with a closed-loop control law
µi(x) as the value of the performance index Ji(µi(x)) for the initial point x0:

V µi(xi) =

∫ ∞
ti

(
xT (t)Qx(t) + µTi (x(t))Rµi(x(t))

)
dt, x(ti) = x0,

ẋ(t) = Aix(t) + Bµi(x(t)).

(4.6)

Let now define an admissible control law for the system (4.4).

Definition 4.1 (Admissible control, based on [75, Definition 1.]). A control law µi(x) is
defined admissible for the system (4.4) on some compact set Ω ⊆ Rn, 0 ∈ int Ω if:
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1. µi(x) is differentiable on Ω,

2. µi(0) = 0,

3. the closed-loop system ẋ(t) = Aix(t) + Bµi(x(t)) is asymptotically stable on Ω,

4. the value function V µi(x) is finite on Ω.

Notice that for the admissible control µi(x), the value function V µi(x) is differentiable
on Ω. Observe important property of the infinite horizon value function defined for
admissible control law µi(x):

V µi(x(ti)) = V µi(x(ti + t)) +

∫ ti+t

ti

(
xT (τ)Qx(τ) + µTi (x(τ))Rµi(x(τ))

)
dτ. (4.7)

Differentiating Eq. (4.7) with respect to t, a partial differential equation is obtained:

0 =
∂V µi(x)

∂x
(Aix + Bµi(x)) + xTQx + µTi (x)Rµi(x), V µi(0) = 0. (4.8)

Notice the similarity between the partial differential equation (4.8) that defines the cost
associated with an admissible control µi(x) and the HJB equation (2.24) that defines the
cost associated with the optimal control µ∗(x):

0 = arg min
µi(x)

{
∂V ∗(x)

∂x
(Aix + Bµi(x)) + xTQx + µTi (x)Rµi(x)

}
, V ∗(0) = 0. (4.9)

The main difference between both equation is that the Eq. (4.8) is linear, where the HJB
equation is not.

In the present section of the work, the focus is on the admissible control law that is
affine with respect to the system state,

µi(x) = Kix, Ki ∈ Rm×n, i = 1, 2, . . . . (4.10)

Recall from the discussion in Section 3.3 that the linear system (4.4) is stabilizable if and
only if there exists such a linear feedback control law µi(x) = Kix for which the system
(4.4) is stable. Observe that with such an affine control law, the system (4.4) has the linear
autonomous form

ẋ(t) = (Ai + BKi) x(t), x(ti) = xi. (4.11)

As a consequence, the resulting closed-loop control system is exponentially stable and the
value function V µi(x) is finite on Rn. In fact, for the asymptotically stable linear system
the value function V µi(x) has the explicit formula

V µi(x) = xTPix, (4.12)

where the matrix Pi ∈ Rn×n is the solution to the algebraic Lyapunov equation:

(Ai + BK)T Pi + Pi (Ai + BKi) +
(
Q + KT

i RKi

)
= 0. (4.13)

Notice that the linear stabilizing control law (4.10) is then an admissible control defined by
Definition 4.1. Observe also, that the optimal value function V ∗ and the optimal control
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law µ∗(x) for the linear dynamical system (4.4) and the quadratic performance index (4.5)
are defined similarly, i.e.

V ∗(x) = xTP∗ix, µ
∗
i (x) = K∗ix, K∗i = −R−1BTP∗ix, (4.14)

where P∗i is the solution to the algebraic Riccati equation

0 = AT
i P∗i + P∗iAi −P∗iBR−1BTP∗i + Q. (4.15)

Because the state-transition matrix Ai is not known, this Riccati equation cannot be solved
in the direct way.

The idea of the present control algorithm is to calculate the series of admissible control
laws µi(x) = Kix, i = 1, 2, . . ., which guarantee improvement of the control, i.e.

∀i = 1, 2, . . . , ∀x ∈ Ω, V µi+1(x) ≤ V µix). (4.16)

The new control law is computed via minimization of the infinitesimal Eq. (4.8) for the
value function of the previous admissible control:

µi+1(x) = arg min
µ(x)

{
∂V µi(x)

∂x
(Aix + Bµ(x)) + xTQx + µT (x)Rµ(x)

}
= −1

2
R−1BT ∂V

µi(x)

∂x
= −R−1BTPix.

(4.17)

Notice that, if the matrix Pi is known, then the new control is computed without the
knowledge of the matrix Ai. Next two Lemmas show that the new control µi+1(x) is
admissible and it results in a smaller performance cost than the previous control µi(x).

Lemma 4.1. Let µi(x) = Kix denote an admissible control law for the system (4.4)
and the performance index (4.5) and let the V µi(x) = xTPix denote the associated value
function. Then the new control law µi+1(x) = Ki+1x defined as in Eq. (4.17) is admissible.

Proof. The control law µi+1(x) is clearly differentiable with respect to x and µi+1(0) = 0.
The sufficient condition for admissibility is then the stability of the new control law. Recall
that because

(
Q + KT

i RKi

)
is positive definite, the solution to the Lyapunov equation

corresponding to the previous closed-loop system:

(Ai + BKi)
T Pi + Pi (Ai + BKi) + Q + KT

i RKi = 0 (4.18)

is also a positive definite matrix Pi. Consider a Lyapunov equation for the new closed-loop
system and the matrix Pi

(Ai + BKi+1)T Pi + Pi (Ai + BKi+1) + χi = 0. (4.19)

In this case, matrix Pi is known and the stability of the closed-loop system can be deduced
from matrix χi: because Pi is a positive definite matrix, matrix (Ai + BKi+1) is stable if
the matrix χi is also positive definite, see [76, Lemma 7.1].

χi = −AT
i Pi −PiAi −PiBKi+1 −KT

i+1B
TPi. (4.20)
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Because the new feedback matrix is defined as Ki+1 = −R−1BTPi, then

χi = −AT
i Pi −PiAi + 2KT

i+1RKi+1. (4.21)

From Lyapunov equation (4.18) it holds that

−AT
i Pi −PiAi = KT

i BTPi + PiBKi + Q + KT
i RKi

= −KT
i RKi+1 −KT

i+1RKi + Q + KT
i RKi

(4.22)

and

χi = −KT
i RKi+1 −KT

i+1RKi + Q + KT
i RKi + 2KT

i+1RKi+1

= Q + (Ki −Ki+1)T R (Ki −Ki+1) + KT
i+1RKi+1

(4.23)

Because the matrix Q is positive definite and the matrices (Ki −Ki+1)T R (Ki −Ki+1)

and KT
i+1RKi+1 are positive semi-definite, the matrix χi is also positive definite. As a

consequence, the new control µi+1(x) is stabilizing and admissible.

Lemma 4.2. Let µi(x) = Kix denote an admissible control law for the system (4.4) and
performance index (4.5) and let the V µi = xTi Pixi denote the associated value function.
Then for the value function V µi+1(x) = xTPi+1x associated with the new control law
µi+1(x) = Ki+1x defined as in Eq. (4.17), the inequality

∀x ∈ Ω, V µi+1(x) ≤ V µi(x). (4.24)

holds.

Proof. Lemma 4.2 is proven by the comparison of matrices Pi and Pi+1. Because Lemma
4.1 holds and new control is admissible, matrix Pi+1 is defined as a positive definite solution
to the Lyapunov equation:

(Ai + BKi+1)T Pi+1 + Pi+1 (Ai + BKi+1) + Q + KT
i+1RKi+1 = 0. (4.25)

Recall from Eqs. (4.23) and (4.18) that

Q + KT
i+1RKi+1 = χi − (Ki −Ki+1)T R (Ki −Ki+1)

= − (Ai + BKi+1)T Pi −Pi (Ai + BKi+1)

− (Ki −Ki+1)T R (Ki −Ki+1) .

(4.26)

Combining Eqs. (4.25) and (4.26), we have

0 = (Ai + BKi+1)T Pi+1 + Pi+1 (Ai + BKi+1)− (Ai + BKi+1)T Pi

−Pi (Ai + BKi+1)− (Ki −Ki+1)T R (Ki −Ki+1)

= (Ai + BKi+1)T (Pi+1 −Pi) + (Pi+1 −Pi) (Ai + BKi+1)

− (Ki −Ki+1)T R (Ki −Ki+1) .

(4.27)

Since matrix (Ki −Ki+1)T R (Ki −Ki+1) is positive semi-definite, then symmetric matrix
(Pi+1 −Pi) is negative semi-definite. As a result, Pi+1 � Pi, which concludes the proof.
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Remark 4.1. Observe that if the matrices Ki Ki+1 are not equal, then Pi+1 6= Pi. As
a result, there exists such an initial state x ∈ Rn, for which the new control law µi+1(x)

provides strict improvement, i.e.

∃x ∈ Rn : V µi+1(x) < V µi(x). (4.28)

The next theorem combines results of the Lemmas 4.1, 4.2 and defines policy iteration
scheme.

Theorem 4.1. Let µ0(x) = K0x denote the initial admissible control law for the system
(4.4) and the performance index (4.5). Then the iteration between

1. computation of the value function
V µi = xTi Pixi: (Ai + BKi)

T Pi + Pi (Ai + BKi) + Q + KT
i RKi = 0 and

2. computation of the new control law µi+1(x) = Ki+1x = −R−1BTPix

for i = 1, 2, . . . converges to the optimal control µ∗(x) and the optimal value function
V ∗(x).

Proof. [72, Theorem 1.] Sketch of the proof is as follows. From Lemma 4.1, the sequence
of control laws µi(x), i = 1, 2, . . . is admissible. From Lemma 4.2, the sequence of value
functions V µi(x), i = 1, 2, . . . is monotonically decreasing and bounded from below by the
optimal value function V ∗(x) = xTP∗ix. Observe that for all x ∈ Rn, V ∗(x) is the infimum
of the sequence V µi(x), i = 1, 2, . . ..

Because Ω is compact, Dini’s Theorem [77, Theorem 12.1] states that V µi converges
uniformly to V ∗(x). Pi converges then to P∗i and the control law µi(x) = R−1BTPix

converges to the optimal control µ∗i (x) = −R−1BTP∗ix

The policy iteration scheme defined in Theorem 4.1 guarantees that if the initial control
is admissible, then every control law that has been computed in the policy iteration is
also admissible and provides improvement of the controller’s performance. To obtain
these new control laws, only matrices R, B and Pi are needed to be known. Because
matrix Ai is assumed to be unknown, matrix Pi cannot be computed from the associated
Lyapunov equation (4.13). In the present approach, the matrix Pi is evaluated via online
measurements of the state of the system. The computation algorithm makes use of the
fundamental property of the value function, denoted in Eq. (4.7).

4.2 Estimation of value function

The goal of this part of the section is to provide scheme that allows to compute the
associated matrix Pi. It is assumed that the state of the system x(t) can be directly
measured. Let

υi(t) : [ti, ti+1)× Rn 7→ Rn, ti+1 = ti + h (4.29)
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denote the trajectory of the controlled system during the ith adaptation interval with the
initial state x(ti). The proposed scheme is based on the subsequent measurements of the
state conducted within this adaptation interval. Let the set of N such measurements be
defined as ΥN (ti) = {υi(ti + dj), j = 1, 2, . . . , N} with d1 = 0, d1 ≤ d2 ≤ . . . ≤ dN < h.

From Eq. (4.7) it is known that for some ∆t > 0

x(t)TPix(t)− x(t+ ∆t)TPix(t+ ∆t)

=

∫ t+∆t

t

(
x(τ)TQx(τ) + µTi (x(τ))Rµi(x(τ))

)
dτ

=

∫ t+∆t

t
x(τ)T

(
Q + KT

i RKi

)
x(τ) dτ.

(4.30)

Denote the right-hand side of the Eq. (4.30) by

qi,j(t,∆t) =

∫ t+dj+∆t

t+dj

x(τ)T
(
Q + KT

i RKi

)
x(τ) dτ, j = 1, 2, . . . , N. (4.31)

Let ΥN (ti + ∆t) denote the set of the measurements of the state that is shifted in time by
∆t. The focus of the considered computation scheme is on the values of qi,j(ti,∆t) that is,
measured between the consecutive elements of ΥN (ti,x(ti)) and ΥN (ti + ∆t,x(ti + ∆t)).
It is assumed that the values of the integrals qi,j can be obtained via online measurement
of the state of the system.

Since the positive definite matrix

Pi =


p

(i)
11 p

(i)
12 · · · p

(i)
1n

p
(i)
12 p

(i)
22 · · · p

(i)
2n

...
...

. . .
...

p
(i)
1n p

(i)
2n · · · p

(i)
nn

 (4.32)

is symmetric, it is uniquely defined by only (n+1)n
2 entries, placed above or below the main

diagonal. The quadratic form xTPix can be then rewritten as a scalar equation

xTPix =
n∑
a=1

a∑
b=1

xaxbp
(i)
ab , x =


x1

x2

...
xn

 . (4.33)

Define the vector consisting of the entries of matrix Pi that have been used in Eq. (4.33)

θi =
[
p

(i)
11 p

(i)
21 p

(i)
22 p

(i)
31 · · · p

(i)
nn

]T
∈ R

(n+1)n
2 (4.34)

and the row vector function that consists of the corresponding polynomials:

γ(x) =
[
x2

1 x1x2 x2
2 x1x3 · · · x2

n

]
. (4.35)

Notice that
γ(x)θi = xTPix. (4.36)
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Let the number of measurements N in the set ΥN (ti) be equal to the number of the
unknown parameters of the matrix Pi, i.e. N = (n+1)n

2 . Let the square matrix Γ(t) be
built as follows:

Γ(t) =


γ(x(t+ d1))

γ(x(t+ d2))
...

γ(x(t+ dN ))

 ∈ R
(n+1)n

2
× (n+1)n

2 . (4.37)

Observe that, according to Eqs. (4.36) and (4.30), the identity

(Γ(ti)− Γ(ti + ∆t))θi =


qi,1(ti,∆t)

qi,2(ti,∆t)
...

qi,N (ti,∆t)

 . (4.38)

holds.
It is assumed that the initial state x(ti) and the measurement times dj , j = 1, 2, . . . , N

are such that Γ(ti) is invertible, i.e. the polynomial functions that the vector θi (Eq. (4.34))
consists of are linearly independent on the set ΥN (ti). From [74, Lemma 3] it follows that
there exists ∆t such that the matrix (Γ(ti)−Γ(ti + ∆t)) is invertible. The unknown matrix
Pi defined by the vector θi is then an unique solution of the equation

θi = (Γ(ti)− Γ(ti + ∆t))−1


qi,1(ti,∆t)

qi,2(ti,∆t)
...

qi,N (ti,∆t)

 . (4.39)

Notice that the convergence of the iteration scheme defined in Theorem 4.1 is guaranteed
only if the initial control µ0(x) = K0x is stabilizing. When the matrix Ai is stable, this
condition is trivially achieved with K0 = 0. Such a situation is very common when the
controlled system represents a mechanical system with internal damping, see the discussion
in Theorem 3.1. If the stability of the matrices Ai cannot be guaranteed, it is then assumed
that the internal structure of the controlled mechanical system is known and allows for
explicit formulation of the control law µ0(x) that it always stable. In particular, it is
assumed that such a control law can be formulated as affine with respect to the velocities
of the system, i.e. control that mimics internal damping.

The computation of the new control laws is continued until the assumed convergence
criterion is not reached, i.e. ‖θi − θi−1‖ ≤ εstop, with εstop > 0. Control law µi(x) is
then used as the initial control in the subsequent iterations of the adaptation scheme
i+ 1, i+ 2, . . ., i.e. µi+1(x) = µi(x), until the change of the parameters is not detected.
This detection is conducted by checking whether the value function for the converged control
law did not change, i.e. ‖θi − θi−1‖ ≥ εstart with εstart > εstop. The initial stabilizing
control law µ0(x) = K0x is applied to the system at the beginning of the control and
whenever the change of the dynamics has been detected.
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Algorithm 4.1 The main loop of the active policy iteration control method

Require: The times of measurements dj , j = 1, 2, . . . , n(n+1)
2 , the time-shift ∆t, the

initial stabilizing policy µ0(x) = K0, matrices Q, R, B, threshold values εstart εstop for
detection of the change and convergence of the iteration, respectively.

1: Control the system using the previously computed control µi(x).
2: j ← 1
3: for j ≤ n(n+1)

2 do
4: Measure state x(ti + dj).
5: Measure state x(ti + dj + ∆t).
6: Compute integral qi,j(ti,∆t) according to Eq. (4.31).
7: Increment j ← j + 1.
8: end for
9: Compute θi according to Eq. (4.39).

10: if ‖θi − θi−1‖ ≥ εstart then
11: µi+1(x) = µ0(x)
12: else
13: if ‖θi+1 − θi‖ < εstop then
14: µi+1(x) = µi(x)
15: else
16: Compute matrix Pi from θi
17: Compute new control law µi+1(x) = −R−1BPix
18: end if
19: end if
20: Increment i← i+ 1.

Presented adaptive control algorithm is summarized in Algorithm 4.1. The compu-
tational burden of the Algorithm 4.1 is dominated by the computation of the vector θi.
For the dynamical system of the order n, the size of the vector to be found θi is equal
to n(n+1)

2 and the inversion of the matrix performed in Eq. (4.39) has complexity O
(
n6
)
.

The proposed control method is tested numerically in Section 5.4 via simulation of the
mechanical oscillator subjected to a sudden change of the stiffness parameters.





Chapter 5

Numerical analysis

In this chapter, the numerical analysis of the adaptive control methods formulated in
Chapters 3 and 4 is presented. The performance of every control method is tested via
numerical simulations of mechanical stabilization problems. The particular scenarios
correspond to the practical engineering problems that commonly occur in the industry. The
special attention is given to the analysis of the autoregressive identification of a disturbance,
as it has a number of parameters that impacts the overall performance of the control
method.

5.1 Active control of the drilling machine

In this Section, the adaptive control method that has been presented in Section 3.2 is tested
numerically. The results of this section have been originally presented in the author’s paper
[47]. The method is based on the autoregressive identification of a disturbance and the
finite-horizon LQR. It is validated and analysed numerically via simulation of the problem
of vibration attenuation of a drilling system subjected to a change of the ground friction
characteristics.

The friction is considered as a generalized resistance of the drilled ground to the drilling.
It can be both smooth in time and stepwise variable and can contain a sudden jump of
characteristics. It generates a resistive force that can change suddenly when the drill passes
a layer of soil or rock or it meets rigid inclusions. The voltage supplying the electric motor
is the control function and when applied to the system, it influences the dynamic response
in a nonlinear way. A drill string used in drilling for gas and oil is an example of such a
system. The string has a low diameter-to-length ratio. The sticking phase and the phase of
slipping when the friction coefficient decreases may lead to instability of the system and to
stick-slip flicker. Self-induced vibrations lower the effectiveness of the drilling process and
may even damage the drill. The friction parameters depend on the rock formation, which
means that the resulting friction varies with the depth of the drilling.

The control methods proposed in the literature for such problems can be divided into
passive and active approaches. The passive solutions focus on optimization of the drilling bit
parameters or drilling input parameters, such as the weight of the drill bit, the input torque,

67
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and the rotary speed, to make stick-slip vibrations less likely to occur. This approach is
presented in [78], where the authors proposed an increase of the torsional stiffness of the
drill string and a redesign of the bit. In [79] the optimization of the bottom hole assembly
(BHA) design is given.

One of the active methods for vibration attenuation is to optimize the aforementioned
parameters in real time, based on measurements. In [80] an automated vibration detection
system with guidelines for the machine operators is proposed. In another approach, active
control systems are used. In [81], a sliding mode control scheme is proposed to attenuate
stick-slip oscillations in oil drill strings. An active damping system based on a feedback
control is developed in [82]. [83] presented an active strategy based on optimal state
feedback control. An H∞ controller for a drilling system is given in [84]. In [85] the control
scheme based on the proportional-integral regulator for reduction of torsional vibration in
a drill string is investigated. A comprehensive review of the literature concerning vibration
suppression in drilling systems is given in [86].

The drilling machine can be treated as a special case of a more general drive system
coupled with an elastic joint. There exist numerous examples of the vibration control
algorithms for such systems that also deal with the disturbances explicitly. The sliding-mode
control and the reconstruction of the disturbance value by the Kalman filtering are proposed
in [20]. In [87], the authors formulate nonlinear fuzzy Luenberger observer that estimates
the state of the system along with the present value of the disturbance load. Similar fuzzy
disturbance observer is introduced in [21].

Model description

Figure 5.1: The scheme of the controlled object.

Let us consider the system depicted in Fig. 5.1. It consists of a DC motor with resistance
RDC , inductance L, and electromotive force constant Ke. The motor generates the torque
TD. Although the drill string part of the machine can be modelled as the dynamical system
of distributed parameters that is then transformed into its lumped approximation (see [82],
[88]), it is also common to model it directly by the system of lumped parameters (see [89],
[84], [90], [81]). In this example, we employ the latter strategy and define the mechanical
part of the system only by the means of a set of rigid bodies. The shaft of the motor is
firmly connected to the first body. The moment of inertia of this coupling is I0. The next
three bodies are numbered from left to right and are characterized by the moments of inertia
denoted by I1, I2, I3, respectively. These bodies are interconnected by the use of torsion
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springs of the stiffnesses k1, k2 and k3, and torsion dampers with damping coefficients c1,
c2, and c3. The angular displacement and angular velocity of the i-th body are denoted
by φi and φ̇i, respectively. The disturbance torque, consisting of the changing torsional
friction TF (t, φ̇3) and other disturbances, modelled as the white noise, is assumed to excite
the body I3.

The friction torque is defined as in [88]:

TF

(
φ̇3

)
=


(
TC + [TB − TC ] e−cv|φ̇3|

)
sign(φ̇3) + fT φ̇3, if

∣∣∣φ̇3

∣∣∣ ≥ φ̇c(
φ̇3
φ̇c

)(
TC + [TB − TC ] e−cvφ̇c + fT φ̇c

)
, if

∣∣∣φ̇3

∣∣∣ < φ̇c,
(5.1)

where TC is the Coulomb friction torque, TB is the static friction torque, cv defines
the steepness of the friction characteristics, and fT is the viscous friction coefficient.
The parameter φ̇c defines the length of the interval of the angular velocity on the friction
characteristics on which the sticking phase (static friction) is approximated by a straight
line.

The dynamics of the mechanical coupling is represented by the second-order nonlinear
differential equation analogous to the general dynamical equation (2.29) of the mechanical
object

Mq̈(t) + Cq̇(t) + Kq(t) = −Ffrict.TF (t, φ̇3) + FDCTD(q̇(t), u(t)), (5.2)

where q =
[
φ0 · · · φ3

]T
is the vector of the angular positions of the bodies; q̇ and q̈

are the vectors of angular velocities and accelerations of the bodies, respectively. The
matrix M = diag (I0, I1, I2, I3), M ∈ R4×4 is the mass matrix of the system, K ∈ R4×4

is the stiffness matrix, C ∈ R4×4 is the damping matrix and Ffrict. =
[
0 0 0 1

]T
and

FDC =
[
1 0 0 0

]T
are the vectors allocating the nonlinear friction and motor torque on

the mechanical part of the system, respectively. The dynamic behaviour of the DC motor
is described by the first-order dynamical equation:

ṪD(t) = −K
2
e

L
Eq̇(t)− R

L
TD(t) +

Ke

L
u(t), (5.3)

where E =
[
1 0 0 0

]
represents the impact of the angular velocity of the first body on

the motor’s torque (observe that Eẏ(t) = φ̇0(t)). The voltage applied to the motor is the
control input u(t) ∈ U ⊂ R. In this particular system the compact control set is defined by
the lower and upper constraints on the control value, U = [umin;umax] with umin < umax,
umin, umax ∈ R.

Both equations (5.2) and (5.3) can be rewritten as the first-order differential equation
of the form of Eq. (3.1) that links both mechanical and electric part of the considered
system:

ẋ(t) = Ax(t) + Bu(t) + BzTF (t, φ̇3), (5.4)

x(t) =
[
qT (t) q̇T (t) TD(t)

]T
, x(t) ∈ R9, (5.5)
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where x(t) is the state of the system that is made up of the set of angular displacements
and velocities of all rigid bodies, φ0−3 and φ̇0−3, along with the torque generated by the
DC motor TD. The matrix

A =


0 I 0

−M−1K −M−1C M−1FDC

0 −K2
e
L E −R

L

 ∈ R9×9 (5.6)

is the state-transition matrix of values defined by equations (5.2) and (5.3),

B =
[
0 · · · 0 Ke

L

]T
∈ R9 (5.7)

is the matrix allocating the control input in the system, defined in the equation (5.3) and

Bz =


0

−M−1Ffrict.

0

 =
[
0 · · · 0 − 1

I3
0
]T
∈ R9 (5.8)

represents the impact of the friction force.
The initial point of the system considered in the simulations is assumed to be at

the origin of the state space

x(0) =
[
0 · · · 0

]T
. (5.9)

The goal of the control is to control all bodies to yield constant angular velocity ωd. The
desired state of the system is achieved when all the bodies of the system rotate with
an identical constant angular velocity ωd. This condition is feasible only if the torque
TD generated by the motor is constant and equal to the friction torque corresponding to
the velocity ωd, i.e. TD = TF (ωd). This means that the operating point to be tracked
by the control

xd(t) =
[
φd0(t) · · · φd3(t) φ̇d0(t) · · · φ̇d3(t) T dD(t)

]T
, (5.10)

fulfills the condition

ẋd(t) =
[
ωd ωd ωd ωd 0 0 0 0 0

]T
. (5.11)

The trajectory xd(t) and the value of the control at the operating point ud are obtained
from the algebraic solution of the equation:

ẋd(t) = Axd(t) + Bud + DTF (t, ωd). (5.12)

with ẋd(t) and xd(t) defined as in (5.11) and (5.10), respectively and ud being the constant
voltage for which the stationary DC torque and the friction torque at the angular velocity
setpoint are equal. The solution to (5.12) is

xd(t) =
[
ωdt ωdt+ ξ1 ωdt+ ξ2 ωdt+ ξ3

ωd ωd ωd ωd TF (ωd)
]T
,

ud =
RTF (ωd) +K2

eωd
Ke

. (5.13)
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Since the system of the bodies at the operating point acts under two opposite torques,
the static stretch between the bodies appears. This phenomenon is reflected in the reference
trajectory xd(t) by the presence of the ξi terms. These terms are equal to the static
difference between the angular position of the first body and the i-th body at the operating
point and are equal to

ξ1 = −TF (ωd)
1

k1
,

ξ2 = −TF (ωd)
k1 + k2

k1k2

ξ3 = −TF (ωd)
k1k2 + k2k3 + k3k2

k1k2k3
. (5.14)

The error state-space representation of the system can be introduced:

ε(t) = x(t)− xd(t). (5.15)

It can be noticed that the error dynamical equation is analogous to the system equation
(5.4):

ε̇(t) = ẋ(t)− ẋd(t) = Aε(t) + Buε(t) + BzT
ε
F (t, ε̇3), (5.16)

uε(t) = u(t)− ud (5.17)

ε(0) =− xd(0)

=
[
0 −ξ1 −ξ2 −ξ3 −ωd

−ωd −ωd −ωd −TF (t, ωd)
]T
, (5.18)

T εF (t, ε̇3) = TF (t, ε̇3 + ωd)− TF (t, ωd). (5.19)

The goal of the control is to stabilize the system around the desired trajectory xd(t).
The performance index for this aim is constructed in terms of the error of the trajectory
ε(t) and the error of the control uε(t):

J =

∫ Tf

0

[
εT (t)Qε(t) + u2

ε (t)R
]

dt. (5.20)

The convergence of the quadratic terms of the objective to 0 means that the control
successfully steers the system to the desired angular velocity ωd.

In this work, we assume that both the error state of the system ε(t) and the friction
torque T εF (t, ε̇3(t)) are directly measurable. In addition, the friction torque T εF (t, ε̇3(t)) is
treated not as a function of the angular velocity ε̇3 but rather as a disturbance that depends
purely on time, T εF (t). This approach bypasses the nonlinear dynamical formulation (5.16)
and provides an approximate but desired linear model of the system’s dynamics:

ε̇(t) = Aε(t) + Buε(t) + BzT
ε
F (t). (5.21)
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Observe that the error dynamics (5.21) and the performance criterion (5.20) correspond to
the general dynamics (3.1) and general performance index (3.3) proposed in the formulation
of the adaptive control method described in Algorithm 3.3.

Let AD, BD, BzD be the matrices of the discrete equivalent of the error model of the
drilling system (5.21) computed by the zero-order-hold method defined in Eq. (3.22). The
discrete model in the error space is then as follows:

ε(k + 1) = ADε(k) + BDuε(k) + BzDT
ε
F (k), (5.22)

The adaptive control method presented in Section 3.2, in Algorithm 3.3 can be then
straightforwardly employed for this stabilization problem.

Numerical Results

In this section, the numerical results are presented. The performance of the proposed
control scheme is compared to the results established by the Linear-Quadratic-Gaussian
(LQG) regulator.

The framework of the Linear-Quadratic-Gaussian controller employs a specific form
of the dynamical equations of the system dynamics. It is assumed that in general not all
states of the system can be measured by the sensors and that two Gaussian noises act on
the system: a measurement noise w replicating the errors of the sensors and a system noise
v corresponding to the disturbances affecting the system. The discrete dynamical model in
the error space (5.21) adapted for the LQG framework is of the form

ε(k + 1) = ADε(k) + BDu
ε(k) + BzDw(k),

y(k) = Lε(k) + v(k), (5.23)

where y is the measured output vector, L = I ∈ R9×9 is the output matrix, w ∈ R is the
Gaussian system noise with variance W ∈ R+ and v ∈ R9 is the Gaussian measurement
noise with covariance matrix V ∈ R9×9.

The steady-state LQG regulator feedback matrix KLQG and the Kalman filter matrix
SLQG are calculated as follows:

KLQG =
(
R + BT

DPLQGBD

)−1
BDPLQGAD, KLQG ∈ R1×9,

SLQG =ΣLQGLT
(
V + LΣLQGLT

)−1
, SLQG ∈ R9×9

(5.24)

where PLQG ∈ R9×9, ΣLQG ∈ R9×9 are the solutions of the respective algebraic Riccati
equations:

PLQG =AT
DPLQGAD −

(
AT
DPLQGBD

)
·
(
R + BT

DPLQGBD

)−1 (
BT
DPLQGAD

)
+ Q.

ΣLQG =ADΣLQGAT
D −

(
AΣLQGLT

)
·
(
V + LΣLQGLT

)−1 (
LΣLQGAT

D

)
+ BzDWBT

zD.

(5.25)
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For the steady-state solution of the LQR and Kalman estimation problems, it is assumed
that the system’s matrices (AD,BD) are stabilizable and (AD,L) detectable. For the full
derivation of the steady-state Kalman filter, see [91, Chapter 2].

The matrices KLQG and PLQG are calculated with the employment of the same matrices
Q and R as the feedback law of the adaptive scheme. The values of these matrices are
presented in Eq. (5.28). The LQG regulator operates in the infinite loop defined in
Algorithm 5.1.

Algorithm 5.1 LQG control loop
1: Measure the output of the system y(k) = ε(k) according to Eq. (5.23).
2: Update state estimation: x̂(k) = ADx̂(k − 1) + BDu(k − 1) +

SLQG (y(k)− L [ADx̂(k − 1) + BDu(k − 1)]).
3: Update control: u(k) = −KLQGx̂(k).

Both the proposed adaptive control method defined in Section 3.2 and the LQG regulator
were tested for the angular velocity stabilization problem with friction models of the form
defined in Eq. (5.1) and different parameters depicted in Tables 5.2, 5.3, 5.4. The torque-
angular velocity characteristics of each used friction model are depicted in respective
sections concerning particular disturbance scenario. In addition, the spectral analysis of
the considered control system is conducted and the dependence of the performance of the
proposed scheme on various model and algorithm’s parameters is being studied.

The performance of the adaptive and the LQG controllers is compared by the computa-
tion of the quadratic cost function

Jx(t) =

∫ t

0
εT (s)Qε(s) ds. (5.26)

Because the ultimate goal of the control is to steer the system to the reference trajectory
xd(t) despite the control expenditure, the function (5.26) does depend only on the error of
the state of the system. The time horizon t varies for every simulation case and is equal to
the simulation duration.

The analogous performance criterion for the error of the control uε is not considered as
a proper measurement of the performance in the simulations, because it does not reflect
the goal of the control. As a motivational example let us observe that the for the constant
control uε = 0 such a criterion

∫ t
0 uε(s)Ruε(s) ds will equal to 0, however, the trajectory of

the considered system will diverge as a result of the self-induced oscillations.
The assessment of the control input performance is rather conducted by measurement

of the energy used by the motor on the whole simulation interval,

Eu =

∫ t

0

u2(s)

RDC
ds. (5.27)

The mechanical parameters of the considered system, as well as both the proposed
adaptive and the LQG controllers’ settings, are listed below. The values of the parameters of
the considered drilling machine model (5.4) employed in the computations are summarized
in Table 5.1. For every simulation case, it is assumed that the constraints of the input
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Table 5.1: The values of the system parameters.

Parameter Value
RDC 0.472 Ω

L 7.85 mH

Ke 4.9 N m A−1

I0 5.56 · 10−2 kg m2

I1−2 1 · 10−1 kg m2

I3 1.2114 kg m2

k1−3 200 N m rad−1

c1−3 1 N m s rad−1

defined are equal to umin = −200 V and umax = 200 V.
For the objective function (5.20), we assume

R = 10−4,

Q =

[
I8 0

0 0

]
. (5.28)

The assumed form of the matrix Q results from the fact that the goal of the control is to
minimize only the error of the states representing the angle and angular velocity deflection
of the system. Such value of R has been used to meet value constraints on the input
U = [−200 V; 200 V].

The parameters of the adaptive control method defined in Algorithm 3.3 are defined
as follows: the maximal order of the approximating autoregressive model of the adaptive
control method was set to nmax = 3. The size of the window was set to S = 220. The
minimal size of the window was Smin = 40 and the sample time chosen for the simulation
was h = 0.005 s. The horizon of the LQR regulator is chosen iT = 300. It can be emphasized
that the time of execution of one call of the proposed control scheme for this system on
a PC-class computer is approximately equal to 0.000259 s, so the devised control method
fulfils the requirements for real-time computing.

The LQG regulator was synthesized for various values of V and W and tested for the
single friction case simulation scenario described below. The final values of these parameters
were then chosen such that the performance index obtained in the control simulation was
minimal and are as follows:

V = 5.5 · I9,
W = 1. (5.29)

Such a LQG tuning strategy was used to assure that the potential improvement of the
adaptive scheme in comparison to the LQG control is not caused by a poor choice of the
LQG parameters.

The case with a single friction

In the first simulation, the goal of the controller is to steer the object from the initial state
(5.9) to the reference trajectory (5.13) with the setpoint angular velocity ωs = 10 rad s−1.
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The time of the simulation was set to TF = 8 s. The values of the friction parameters are
given in Table 5.2. The characteristics of the friction torque are depicted in Fig. 5.2. For
the first simulation scenario, it is assumed that the disturbance torque consists of friction
torque only. The impact of random noise on the quality of control is analysed in the second
scenario. The results of the simulation are compared to the result of the LQG control in

Table 5.2: The values of the friction parameters for the first scenario.

Parameter Value
TC1 60 N m

TB1 190 N m

cv1 0.05 s rad−1

fT1 0.001 N m s rad−1

φ̇c1 0.0001 rad s−1

Figure 5.2: The torque–angular velocity characteristics of the friction torque model assumed
for the first simulation scenario.

Figs. 5.3–5.4. As one can see, the control generated by the developed control method brings

(a) The error of the angular displacement of the first
mass controlled with the proposed method and LQG
control.

(b) The error of the angular displacement of the
fourth mass controlled with the proposed method
and LQG control.

Figure 5.3: The comparison of the numerical simulation of the adaptive controller Alg. 3.3
and the LQG regulator Alg. 5.1

the system to the reference trajectory in about two seconds (Fig. 5.3). Then the objective
function (5.26) depicted in Fig. 5.4 stabilizes. This means that all the displacements of
the angles and angular velocities of the bodies from the reference trajectory xd approach
zero. On the other hand, the LQG control results in a greater final value of the objective
function. The performance objective (5.26) equals 91.73 for the proposed control scheme
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(a) The objective function values obtained by the
proposed scheme and the LQG regulator.

(b) The control values generated by the adaptive
controller and the LQG regulator.

Figure 5.4: The comparison of the numerical simulation of the adaptive controller Alg. 3.3
and the LQG regulator Alg. 5.1 in the first scenario.

and 105.5 for the LQG control, the improvement is 13 %.
The total energy consumed by the system for the LQG control is Eu ≈ 83000 J, whereas

the adaptive control scheme resulted in Eu ≈ 88000 J. This 6% increase of the energy
utilisation is a result of the sharp peaks of the control at the beginning of the simulation
(see Fig. 5.4).

The LQG control provides greater absolute values of the system errors, which can be
seen in Fig. 5.3. These simulation results prove the ability of the developed adaptive
method to control the system under external disturbances with higher quality than the
LQG control.

The case with single friction characteristics with a noise

In this section, the ability to control the system by the proposed method in the presence of
Gaussian noise is tested. The parameters of the system and the proposed control algorithm
are the same as in the previous section. The uniform signal noise with variance g and mean
0 is added to the friction model from the previous section. The simulation time was set
to TF = 8 s. The resulting variation of the friction force over time for the two considered
variances g = 1 N2 m2 and g = 200 N2 m2 is depicted in Fig. 5.5. A comparison of the
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Figure 5.5: The friction torque values in the simulation for the noise variance g = 1 N2 m2

and g = 200 N2 m2. T200 stands for the friction torque generated in the simulation with
noise variance g = 200 N2 m2 and T1 stands for the simulation with g = 1 N2 m2.

objective function for different values of g is presented in Fig. 5.6. The objective function
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Figure 5.6: The objective function Jx achieved at the simulation time t = 8 s for different
variances of the noise g.

(a) The objective functions achieved with the control
method.
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(b) The control values generated by the Algorithm
3.3.

Figure 5.7: The comparison of the numerical simulation of the adaptive scheme 3.3 for the
friction noise gain g = 1 N2 m2 and g = 200 N2 m2. J200 stands for the result of simulation
governed with noise variance g = 200 N2 m2 and J1 stands for the trajectory of simulation
with the noise variance g = 1 N2 m2.

(a) The error of the angular displacement of the first
body.

(b) The error of the angular displacement of the
fourth body.

Figure 5.8: The comparison of the numerical simulation of the control scheme 3.3 for the
friction noise gain g = 1 N2 m2 and g = 200 N2 m2.

obtained at the time 8 s of the simulation increases with an increase of the variance g. In
addition, Fig. 5.7 (a) shows that the value of the objective function does not stabilize
but increases with time. In fact, when g 6= 0, the objective function obviously diverges.
However, even for a noise variance as high as g = 200 N2 m2, Fig. 5.8 shows that the values
of the errors are bounded and have lower values than for the LQG control without noise,
as depicted in Fig. 5.3. For g = 1 N2 m2, the value of the objective function is 91.3 and for
g = 200 N2 m2 Jx it is equal to 101.3.
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The case with varying friction characteristics

In this section, the scenario with a step change of the friction characteristic is studied. As
in the previous case, the results are compared to the LQG control. The initial point and
the angular velocity set point are the same as in the previous cases. In the first phase of the
simulation, for t ∈ [0 s, 1 s), the friction torque has the parameters assumed as in the first
column of Table 5.3 and at the time t = 1 s, the parameters of the friction changes to the
second set of parameters, presented in the second column of Table 5.3. The simulation runs
then until the final time TF = 9 s. Both torque characteristics defined by the parameters
in Table 5.3 are presented in Fig. 5.9. The sets of parameters were chosen to provide an
unchanged friction torque value for ωd. This property of the friction was chosen to avoid a
sudden jump of the constant in the formula (5.17). It can be observed that the friction
characteristics significantly change at the time 1 s.

Table 5.3: The values of the friction parameters for the second scenario.

Parameter First stage Second stage
TC2 200 N m 45 N m

TB2 210 N m 310.5518 N m

cv2 0.05 s rad−1 0.05 s rad−1

fT2 0.001 N m s rad−1 0.001 N m s rad−1

φ̇c2 0.0001 rad s−1 0.0001 rad s−1

Figure 5.9: The friction torque vs. angular velocity characteristics for the second simulation
scenario: T1 - characteristics of the friction torque at the first stage of the simulation,
t ∈ [0 s, 1 s); T2 - characteristics of the friction torque at the second stage of the simulation,
t ∈ [1 s, 9 s).

The results are depicted in Figs. 5.10 and 5.11. The curves depict the results for the
LQG control method (dashed lines) and are compared with our adaptive control method
(solid lines). In the first interval of the simulation t ∈ [0 s; 1 s) both the adaptive method
and LQG regulator are stabilizing the system. In fact, the results obtained for the LQG
control in the first interval are better than for the proposed control method. The initial
peak of the error of the angular displacement for the first and the fourth masses is nearly
40% greater for the system controlled by the adaptive method than for the LQG. This is
due to the fact that the number of measurements of the friction is small at the beginning
of the simulation and the friction at this time is in the sticking phase. The generated AR
model in such a case cannot be precise enough. Despite that, the objective functions (Fig.
5.10 (a)) achieved in the first interval by both control algorithms have similar values. In
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(a) The objective functions achieved by the control
scheme and the LQG regulator.
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(b) The control values generated by the adaptive
controller and the LQG regulator.

Figure 5.10: The comparison of the numerical results of the simulation of the adaptive
controller Alg. 3.3 and the LQG regulator Alg. 5.1 in the second scenario.

(a) The error of the angular displacement of the first
mass controlled with the proposed control scheme
and LQG control.

(b) The error of the angular displacement of the
fourth mass controlled with the proposed control
scheme and LQG control.

Figure 5.11: The comparison of the numerical results of the simulation of the adaptive
controller Alg. 3.3 and the LQG regulator Alg. 5.1 in the second scenario.

the second stage of the simulation t ∈ [1; 9] s, when the friction characteristics are changed,
the LQG control destabilizes the system. The error trajectories (Fig. 5.11) for the LQG
control exhibits undamped oscillations and the objective function does not converge.

The peak-to-peak amplitude of the angular displacement error of the first and the fourth
body stabilise at 0.4 rad and 0.7 rad, respectively. In comparison, the proposed control
method quickly achieves the goal of the control: in 1.5 seconds after the friction change the
adaptive method generates smaller oscillation of the angular displacement than the LQG
regulator and after approximately 3 s, the error trajectories of the system converge to 0.
The final value of the objective function Jx obtained in the simulation is 82.25, that for
LQG control is J = 90.28. The results of this simulation prove the efficiency of adaptation
by the proposed algorithm to a sudden change of the disturbance.

The ultimate energy consumed by the adaptive and LQG controllers is approximately
equal 95300 J and 93400 J, respectively. The small power increase (approximately 2%) for
the adaptive scheme is caused mainly by the sharp peaks of the control. What is important,
the system after t = 2 s has approximately the same energy consumption for both control
algorithms but the LQG control fails to stabilize the system.

As can be noticed from Fig. 5.10 (b), the adaptive scheme yields two sharp peaks of
the control at t = 1 s and t = 2.1 s. The first peak is observed at 1.05 s, right after the
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step change of the friction characteristics. Because of the step change of the disturbance
parameters, the time instant t = 1 s marks not only the discontinuity of the friction signal
but also the change of the signal’s parameters such as amplitude and frequency. Because of
that, the feedback vector of the measured disturbance xzi is sharply changed. In addition,
the change of the AR model caused by the introduction of new friction parameters results
in a significantly different value of the feedback matrix Ki. The observed peak in the
control signal is a result of both aforementioned events.

In order to explain the second aberration, it is crucial to observe that the assumed
disturbance measurement window S = 220 corresponds to the measurements interval
S · Ts = 1.1 s. For the time interval t ∈ [1, 2.1), the AR model adjusts its parameters based
on the measurements corresponding to both friction models with a gradual increase of
the measurements of the second one. The instant 2.1 s marks the complete removal of the
initial friction values from the measurement window. This event again triggers the change
of the AR model parameters and, as a consequence, the change of the matrix Ki which
explains the second peak.

It is important to emphasize that the presented simulation assumes rather an extreme
scenario of the friction change, which is sudden and discontinuous. In practice, the friction
character changes more smoothly. It has been validated that for such cases the control
peaks does not occur.

The case with two friction characteristics

In this scenario, an additional friction torque T2(ω) applied to the third body of the system
is considered. The torque T1(ω) is applied to the fourth body, as in the previous scenarios.
The equation of motion (5.4) is now modified and it includes the additional friction

ẋ(t) = Ax(t) + Bu(t) + Bz2

[
T2(φ̇2)

T1(φ̇3)

]
, (5.30)

Bz2 =

[
0 · · · 0 − 1

I2
0 0 0

0 · · · 0 0 0 − 1
I3

0

]T
. (5.31)

The steady state angular displacements between the bodies that appear in the equation of
the reference trajectory (5.14) are as follows:

ξ1 = − (T1(ωd) + T2(ωd))
1

k1
,

ξ2 = − (T1(ωd) + T2(ωd))
k1 + k2

k1k2
,

ξ3 = −T1(ωd)
k1k2 + k2k3 + k3k1

k1k2k3
− T2(ωd)

k1 + k2

k1k2
. (5.32)

The setpoint angular velocity has the value ωd = 10 rad s−1.
The algorithm is now modified to take into account the simultaneously measured friction

torques, both T1 and T2. Two dynamic models are generated by the algorithm, one for
each friction function, T1 and T2, given in Fig. 5.12. The respective parameters that are
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Figure 5.12: The friction torque–angular velocity characteristics for the third simulation
scenario.

Table 5.4: Values of the friction parameters for the third scenario.

Parameter T1 T2

TC3 60 N m 100 N m

TB3 200 N m 160 N m

cv3 0.05 s rad−1 0.05 s rad−1

fT3 0.001 N m s rad−1 0.001 N m s rad−1

φ̇c3 0.0001 rad s−1 0.0001 rad s−1

used in both formulas are listed in Table 5.4. Figs. 5.13 and 5.14 depict the results of the
simulation. Fig. 5.13 (a) shows the objective function in time. In the first second, it

(a) The objective functions achieved by the method.
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(b) The control values generated by the method.

Figure 5.13: The results of the numerical simulation of the adaptive controller Alg. 3.3.
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(a) The error of the angular displacement of the first
mass under the algorithm control.
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(b) The error of the angular displacement of the
fourth mass under the algorithm control.

Figure 5.14: The results of the numerical simulation of the adaptive controller Alg. 3.3.

increases and reaches the constant value 96.04. This means that the dynamical system is
successfully steered to the reference trajectory. In the remaining period, it is practically
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constant. The control function u(t) is depicted in Fig. 5.13 (b). It varies significantly at
the beginning of the process, then slightly improves the solution, and starting from t = 2.5 s

remains constant. The errors ε1 and ε4 of the angular displacements of the first and fourth
masses are presented in Fig. 5.14. One can notice that the errors reduce to zero rapidly.
The error ε1 increases from zero to the value 2.4 rad at the beginning and then decreases.
The reason for this is that the reference angular displacement to be tracked by the system
is a linear function of time, i.e. φd1 = ωdt, as in (5.10). At the beginning of the simulation
all bodies are still, the angular error ε1 = φd1 − φ̇1 is increasing. This error reaches its
peak at approximately t = 0.8 s, when the velocity of the first body φ̇1 reaches the velocity
setpoint ωd. After that, the error decreases and converges to zero.

The results of this simulation are similar to the results achieved for the first simulation
scenario. The derived control scheme effectively steers the system to the desired trajectory.
A comparison with the results of the first scenario suggests that the proposed control
method can be applied to complex disturbance configurations, such as two disturbances of
different characteristics applied to the system.

Spectral analysis

To adequately verify adaptive controller’s ability to counteract a load of wide-range frequency,
the spectral analysis of the control system has been conducted. The dynamical model (5.4)
governed by the proposed control scheme defined in Algorithm 3.2 has been subjected to
the sinusoidal disturbance with frequency from the range f ∈ [0.1, 20] Hz. The steady-state
amplitudes of the dynamical system’s state x(t) were then measured.

In this simulation scenario, the goal of the control is to steer the system to the origin
and as a result, the algorithm can be formulated directly for the state-space formulation
(5.4) rather than the error-space (5.16). The parameters of the algorithm remain the same
as for the previous scenarios, i.e. nmax = 3, S = 220, Smin = 40 and h = 0.005 s with Q, R
defined as in (5.28).

The amplitude spectra obtained with the adaptive control scheme have been compared
to the results of the same analysis conducted for the LQG regulator. The values of the
correlation matrices V and W remain the same as in the previous simulations.
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(a) The amplitude spectra of the angular deflection
φ1.
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(b) The amplitude spectra of the angular velocity φ̇1.

Figure 5.15: Amplitude spectra of the response of the body I1. Results obtained with the
adaptive controller Alg. 3.3 and the LQG regulator Alg. 5.1.
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(a) The amplitude spectra of the angular deflection
φ3.
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(b) The amplitude spectra of the angular velocity φ̇3.

Figure 5.16: Amplitude spectra of the response of the body I3. Results obtained with the
adaptive controller Alg. 3.3 and the LQG regulator Alg. 5.1.

The results of the analysis are presented in Figs. 5.15–5.16 that depict amplitude
spectra of the angular deflections and velocities of the bodies I1 and I3. It can be observed
that the proposed scheme results in greater damping of the oscillations for almost the whole
considered frequency spectrum. According to the results, the diagrams can be divided
into three regions. For the frequencies lower than 1 Hz, the adaptive control method gives
significantly better results than the LQG regulator. The improvement for this interval
varies from 10-fold (see values depicted in Fig. 5.15 (b) for f = 0.1 Hz) to twofold. For the
second interval, f ∈ [1, 10] Hz, the difference between the amplitudes decreases and for the
subinterval f ∈ [1, 2.5] Hz the LQG regulator results in smaller amplitudes of movement of
the body I1 than in the case of the adaptive scheme. Nevertheless, the body I3, to which
the load is directly applied, still exhibits lower amplitudes for the adaptive control. For
the last interval denoted by f ∈ [10, 20] Hz, responses of both controllers coincide and the
adaptive controller exhibits no improvement. The results for the remaining bodies I0,2 are
similar, but with the noticeable trend: the closer the body to the disturbance, the better the
improvement. It may be then concluded that the transitional lack of improvement for the
interval f ∈ [1, 2.5] Hz for the bodies closer to the drive but farther from the disturbance is
a result of the adaptive scheme controlling the motor aggressively to damp out oscillations
of the bodies I2−3 that are more prone to the load.

Favourable results of the analysis for the proposed control scheme come from the fact
that the adaptive scheme controls the system using the identification of the linear dynamic
model of the load. In this case, the load is a sinusoidal function, which can be precisely
approximated by the linear autoregressive model. The fact that time-variation of the
disturbance is exactly reconstructed by the model makes the control generated by the
adaptive scheme very close to the optimal one.

Impact of the algorithm parameters

In this section, the effectiveness of the proposed control method is tested for different values
of the algorithm parameters: the sample time h, the size of the signal window TS = Sh,
the length of the LQR horizon Thorizon = iTh, and the order of the model approximation n.
To show the impact of the AR model’s order on the controller’s performance, it is assumed
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in this section that the procedure of choosing the best order defined by Eq. (3.19) is not
being used and the Algorithm 3.3 operates with the constant order nz,i = n. The analysis
was performed for the drilling system set as for the first simulation scenario.

(a) The comparison of the objective functions
achieved by the adaptive controller for different sam-
pling periods h and different lengths of the window TS
(size of the LQR horizon is constant, Thorizon = 1.5 s).

(b) The objective function as the function of the
sampling period h (order of the disturbance model -
n = 3, size of the window - TS = 1.5 s).

Figure 5.17: The dependence of the objective function achieved by the adaptive Algorithm
3.3 on the parameters.

In Fig. 5.17 (a), a comparison of the objective functions computed for different sampling
times Ts and different sizes of the window S is presented. One can see that the objective
function increases with S. This monotonicity is preserved for different sampling periods h.
It is important that for TS < 1 s, the stabilization of the dynamic system fails. A signal
horizon shorter than 1 s is not sufficient to calculate a good autoregressive approximation
of the torque dynamics. This critical value of TS is related to the system configuration
described above. For a system governed by different dynamic equations or with frictions of
different characteristics, this value naturally will be different. However, it appears that the
value of Jx as a function of h does not change monotonically. The lowest characteristics
presented in Fig. 5.17 (a) are computed for h = 0.007 s. The next one is computed for the
shorter sampling period h = 0.006 s. This trend breaks as the characteristics for h = 0.004 s

and Ts = 0.003 s show lower values of Jx than the characteristics computed for h = 0.005 s.
This phenomenon is presented in Fig. 5.17 (b), where the values of the objective function
Jx are computed for a fixed length of the window TS and different sampling periods h. One
can notice that although the characteristics are not smooth (which explains the seeming
randomness of the results in Fig. 5.17 (a)), the global trend is that the value of the objective
function increases with an increase of the sampling period. However, a reduction of the
sampling period h involves an increase of the window size S. This ensures acceptable
control results in the unchanged horizon of the measurements TS = S · h. The increase of
S results in a longer execution time of the proposed algorithm. This means that there is a
critical value of h below which the execution time of the algorithm exceeds the sampling
time and the algorithm fails to be useful in real time.

Fig. 5.18 (a) presents the influence of the value of the LQR horizon on the objective
function. For short Thorizon, e.g., Thorizon < 0.5 s, the algorithm fails. For longer simulation
times, the value of the objective function calculated for Thorizon < 0.5 s will be higher, but
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for Thorizon ≥ 0.5 s will remain still, as the adaptive algorithm stabilizes the system in
the simulation time. For Thorizon > 0.5 s one can observe that the value of the function
stabilizes and for Thorizon > 1 s there is no profit in a further increase of the horizon.

(a) The impact of the length of the horizon Thorizon.
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(b) The ability of the disturbance prediction for dif-
ferent orders n of the model (S = 220).

Figure 5.18: The influence of selected parameters on the control quality.

In Fig. 5.18 (b) the ability of the prediction of the AR model used in the derived
algorithm is presented. The reference signal of the friction torque (referred in Fig. 5.18
(b) to as “measurement”) that was used to analyse the AR models was computed from the
results of the first simulation case. The signal “measurement” is a friction torque generated
by the model (5.1) represented in the error space defined in (5.19) with the use of the
parameters from Table 5.2 and angular velocity of the last body φ̇3 measured at the first
simulation case, i.e. measurement(t) = T εF (φ̇3(t)).

Then the AR models were generated with various values of the parameter n. The
predicted future signals of these models are compared to the values of the torque calculated
in the simulation. The other parameters of the proposed algorithm are as in the previous
cases. One can see that the order of the autoregressive model n = 1 is too low to give a good
prediction of the signal because dynamical models of order 1 cannot reproduce oscillations.
With the order equal to n = 2 or larger, the oscillations are properly approximated by the
model. However, the increase of the order to n = 3 provides a better approximation of the
original signal, the overall change in comparison to n = 2 is small. In addition, further
increase of the order to n > 3 does not provide a significant change in the quality of the
approximation.

Impact of the number of elements

The developed control algorithm was tested on the drilling system consisting of four rigid
bodies. However, a real drilling machine is comprised of a long drill string, which is an
example of a distributed parameter dynamical system. To check if the control scheme can
be successfully used in a real scenario, the efficiency of the control of the model with an
increased number of elements is investigated. Such a modification provides a more accurate
model of a real system.

The control algorithm is computed as previously by using the model (5.21). The control
is then applied to the altered model, consisting of a greater number of interior elements.
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The scheme of the model is presented in Fig. 5.19.

Figure 5.19: Scheme of the altered model with the points on which the measurements are
conducted.

The parameters: linear density ρ, shear modulus G, torsion inertia moment I, torsional
damping coefficient c and length l of the interior body were selected such that they
correspond to the parameters I1, I2, k1, k2, c1, c2 of the simplified model described in
Section 5.1. Measurements of the angular displacements and angular velocities corresponding
to the interior bodies of the simplified model were made at the 1/3 and 2/3 of the length of
the interior body.

The simulation scenario was then performed with the constant single friction torque
described in the first simulation case for the interior body I discretized to 1-11 elements
(the case with discretization to 1 element is identical to the model employed for the previous
cases). To measure the performance of the scheme a quadratic performance index defined
by (5.26) for the altered model was introduced. The indices of the diagonal matrix Q
corresponding to the elements of the interior body are inversely proportional to the number
of elements, to ensure normalization of the cost function. For all cases, the control scheme
successfully steers the system to the angular velocity set point.

The final value of the cost function as the function of the number of elements is presented
in Fig. 5.20. As can be observed, the initial increase up to the three elements causes
worsening of the performance index. The peak corresponds to 150% of the performance index
for only one element. However, the further increase of the elements causes the performance
index to decrease. The final value for the choice of 11 elements is approximately 25%

higher than for the one-element model. It has been validated that further increase of the
number of elements does not affect significantly the value of the performance index. This
result confirms that the developed control scheme can be successfully used in a real-world
application with only two additional measurements of the displacement and velocity on the
drill string.
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Figure 5.20: The value of the performance index Jx for a different number of elements in
the model.

5.2 Active seismic stabilization of structure

In this Section, the adaptive infinite horizon control method that has been presented in
Section 3.3 is tested numerically. The results of this section have been originally presented in
the Author’s paper [51] (to be published). The method is validated and analysed numerically
via simulation of the problem of vibration attenuation of the structure subjected to a
seismic excitation.

There are numerous examples of active control schemes that are used for seismic
control. The application of the simple LQR method can be reviewed in [8, 92, 93]. Some
improvements in the means of seismic reduction are provided by the linear-quadratic-
Gaussian (LQG) regulator. In this formulation, the regulator still minimizes the quadratic
index but it is also assumed that the control system is affected by the Gaussian-noise
disturbance. The inclusion of the disturbance in the control problem setting is an evident
contribution. Nevertheless, the variance and amplitude of the disturbance have to be set a
priori and, as a result, the LQG regulator is not guaranteed to sustain good operation for
a wide variety of the earthquake signals. For interesting results describing the use of LQG
for earthquake attenuation, the reader is referred to [11, 10, 94].

The H∞ controller is introduced for structural control in [95] and the experimental
verification of this controller on the three-story test structure is presented in [96]. Another
approach to H∞ structural control is proposed in [97], where the authors use a more
general and computationally efficient numerical scheme based on Linear Matrix Inequalities.
The resulting control method is successfully tested against the LQG controller on the
numerical simulation of the three-story building. In [98], the authors reformulate H∞
controller so that it operates using only a sampled feedback information. Sliding-mode
control is another robust control technique; its application for stabilization of the slender
building by the means of an active tuned-mass damper is proposed in [99]. The use of
active tuned-mass damper is also studied in [100], where a fuzzy logic based adaptive
controller is implemented. In [101], a robust control method based on online neural network
identification is successfully validated for an L-shaped structure. The MPC control scheme
is universally applied to industrial process automation, but it also has a number of uses
in seismic control, for example [13]. For a comprehensive state of the art review of the
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structural control methods, the reader is referred to [102].

Model description

This section provides a description of the numerical dynamical model that is used for
controller verification. We consider the problem of the vibration attenuation of a multi-
store steel structure subjected to an earthquake. First the controlled structure is described.
Its linear finite-element approximation is then obtained with the use of ANSYS software.
This precise model, will be termed the reference model (RM) hereafter, serves as the basis
for the simplified model and for ultimately testing the effectiveness of the proposed control
scheme.

The simplified model (SM) with a reduced number of degrees of freedom is essential
for a control law synthesis. In this model, we treat structure levels as lumped masses
that are joined by springs and dampers. There are several ways to reduce the fully
detailed finite-element model of the structure. The simplest and most commonly used is
the dimensionality reduction scheme, such as the Guyan reduction [103]. A more precise
dynamic synthesis method [104] can also be used. The Rayleigh-Ritz reduction enables
generally good agreement of reduced model natural frequencies with a full modal response.
However, in a multi-degree-of-freedom system, we are unsure if the reduced model has
proper physical representation. In reality, we do not have a reliable numerical model.
Instead, we have a physical system.

In this scenario, the RM model is treated as such real physical object, information
about which can only be obtained through its excitation and measurements, as can be
done in practice. An identification procedure has to be conducted to obtain an SM model.
Obviously, the identification process results in inaccuracies of the model’s parameters.
However, this method of synthesis of the SM model is closer to the real-life scenario
application of the control method, where the structure to be controlled is already built.
In addition, extracting the system matrices from ANSYS commercial software can be
burdensome. The parameters of the simplified model were determined based on the static
and harmonic response of the reference model.

Reference model definition

The considered RM model is adapted from the work [105]. In this paper, the authors define
the benchmark structure for seismic control problems, and they provide exact geometrical
and physical properties of the object. The structure is 30.48 m by 36.58 m in plan and
80.77 m in height. Its outline and its geometric properties are depicted in Figure 5.21. The
building consists of steel perimeter moment-resisting frames. The building has 22 levels
(basement B-1, 20 above-ground floors and the roof). The columns are 345 MPa steel. The
exterior columns have a box cross-section, while the interior columns have profiles that are
defined according to the norm ASTM A6. The specific dimensions of the columns vary
with the height of the structure.
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Figure 5.21: Scheme of the steel structure.

The level floors are comprised of 248 MPa steel wide-flange beams with dimensions
according to the norm ASTM A6. Rigid connections are assumed between beams, columns,
and columns and beams.

The column bases are fixed in the ground. The first floor is assumed to be restrained
from horizontal movement, because of the presence of the foundation walls and the soil.

Apart from the mass of the steel framing itself, the structure is modelled to have an
additional seismic mass that is distributed evenly on every above-ground level. For the
first floor, this seismic mass is 5.08 · 105 kg. For the second floor, this mass is 5.4 · 105 kg.
For the third to the 20th level, this mass is 5.26 · 105 kg. And for the roof, this mass is
5.58 · 105 kg. The summary mass of the entire structure is 1.16 · 107 kg.

In this work, as in the original paper [105], we focus on a 2-D analysis of the single
frame of the entire structure. This frame is also depicted in Figure 5.21. We assume that
the seismic acceleration of the ground is in the plane of this frame and that a chosen section
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of the structure supports half of the seismic mass of the whole object; that is, 2.54 · 105 kg

for the first floor, 2.7 · 105 kg for the second floor, 2.63 · 105 kg for the third to 20th floor
and 2.79 · 105 kg for the roof. The mass of the steel frame is 5.80 · 105 kg.

This object is then modelled by the use of the finite element method in the ANSYS
software. Each column and beam is divided evenly into four finite elements. The obtained
finite-element model has 892 elements with 5040 degrees of freedom. The element BEAM188
that is obtained from the software’s element database is used in the simulation. This is
a linear element that is based on the Timoshenko’s beam theory, which includes shear
deformation effects. In this model, Rayleigh-type damping with coefficients α = 0.015277

and β = 0.12466 is used. These coefficients correspond to the damping of the first two
natural frequencies (respectively 0.205 Hz and 0.597 Hz) by the decay ratio ζ = 0.05.

Although similar to the model synthesized in [105], our RM model differs in the much
greater number of degrees of freedom and different damping coefficients. This difference
manifests itself in a plot of the three mode shapes of the model, as depicted in Figure 5.22.
Both the frequencies and the shapes differ from the model given in [105]. The first ten

Figure 5.22: First three mode shapes of the RM model.

eigenfrequencies of the RM model are presented in Table 5.5.

Table 5.5: The first ten values of the RM model’s eigenfrequencies.

Index Eigenfrequency [Hz]
1 0.2050
2 0.5973
3 1.0158
4 1.1299
5 1.2334
6 1.5065
7 2.3849
8 3.1561
9 3.5264
10 3.6236

Simplified model

The SM model with a reduced number of degrees of freedom is used to synthesize the
described control method. This is a set of 20 adjoined masses that are joined with dampers
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and springs. The lumped masses correspond to the subsequent on-ground levels of the
structure. The scheme of this model is presented in Figure 5.23.

Figure 5.23: Scheme of the simplified model.

Due to the assumption that the first floor is horizontally fixed and due to the premise of
the simplified model that there is no direct influence between non-adjacent floors, the floors
below and above the first floor have to be treated as separate systems. From the modal
analysis depicted in Figure 5.22 it can be concluded that the movement of the basement
floor B-1 has a negligible impact on the whole structure. Thus, the basement floor and the
first floor are not modelled by SM.

The SM model is defined by the motion equation analogous to the general equation
(2.29):

Mq̈(t) + Kq(t) + Cq̇(t) = F(u(t)) + M1ẍe(t), (5.33)

where q(t) ∈ R20 is a vector of level deflection (q(t) = 0 refers to non-deflected, equilibrium
state of the structure), F(u(t)) ∈ R20 is a vector of external forces applied to the subsequent
floors, 1 denotes the column vector consisting of entries equal to 1, ẍe is an earthquake
acceleration and matrices M, K, C ∈ R20×20 are mass, stiffness and damping matrices,
respectively.
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These are built as follows:

M (κ) =



m1 0 · · · · · · 0

0 m2
. . . . . . 0

...
. . . . . . . . . . . .

0 · · · · · · m19 0

0 · · · · · · 0 m20


,

K (ξ) =



k1 + k2 −k2 · · · · · · 0

−k2 k2 + k3
. . . . . . 0

...
. . . . . . . . . . . .

0 · · · · · · k19 + k20 −k19

0 · · · · · · −k19 k20


,

C (λ) =



c1 + c2 −c2 · · · · · · 0

−c2 c2 + c3
. . . . . . 0

...
. . . . . . . . . . . .

0 · · · · · · c19 + c20 −c19

0 · · · · · · −c19 c20


, (5.34)

where the tuples

κ = (m1,m2, . . . ,m20) , ξ = (k1, k2, . . . , k20) ,

λ = (c1, c2, . . . , c20) (5.35)

are introduced for readability.
The identification scheme for the simplified model has to determine a total of 60

parameters κ, ξ, λ. The procedure and the final values of the parameters κ, ξ, λ are
presented in Appendix A.

Actuators and sensors setting

The control forces, as in the example in [105] are induced by hydraulic actuators. Six
actuators are placed between each level, starting from the ground floor, one each in every
cell of the considered frame. In summary, the object is controlled by a set of 120 actuators.
They are rigidly mounted horizontally between subsequent floors, as depicted in Figure
5.24. It is also assumed that parameters of all actuators are the same and that a group of
six actuators placed on a certain floor realizes the same control strategy. This postulate
reduces the control signal to just 20 inputs.

The dynamic behaviour of the hydraulic actuators is modelled as in [106]:

ḟak = a1 (uk − dk)− a2ḋk − a3fak , (5.36)

where fak stands for the force generated by the actuator on the kth floor, uk is a control
input of the actuator, dk is the current position of the actuator, and a1, a2, a3 are the
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Figure 5.24: The scheme representing the idea of the active actuators mounting.

parameters of values similar to [105]:

a1 = 5.813 · 109 Nm−1s−1, a2 = 5.464 · 107 Nm−1, a3 = 1.621 · 103 s−1. (5.37)

These parameters correspond to the hydraulic actuator of capacity equal to 897 kN. It
is worth noting that the control devices have a servomechanism-type design; that is, the
dynamic response of the actuator has negative feedback, as denoted by the term a1 (uk − dk)
in (5.36). In this case, the control input uk is not an explicit power supply but rather the
desired stroke of the actuator. This formulation agrees with the typical realization of the
devices that are available on the market.

Because of the horizontal mounting of the servomechanisms between the floors, the
position of the actuator is equal to the interstory drift of the structure:

dk = qk − qk−1, (5.38)

where qk is a displacement of the kth level and dk is a position of an actuator placed between
kth and (k − 1)th floor (we assume q0 ≡ 0⇒ d1 = q1). Let us define the transformation
matrix Z1 ∈ R20×20:

Z1 =



1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0
...

. . . . . . . . .
...

0 0 · · · −1 1


, (5.39)

and

ḟa(t) =


ḟa1(t)

...
ḟa20(t)

 = −a3fa(t) +
[
−a1Z1 −a2Z1

] [q(t)

q̇(t)

]
+ a1


u1(t)
...

u20(t)

 . (5.40)

The summary force f acting on all levels of the structure (as in (5.33)) is a sum of the
forces that are induced by all of the control devices that are directly above and below each
floor:

f =


f1

...
f20

 =


6fa1 − 6fa2

...
6fa19 − 6fa20

6fa20

 = 6Z2fa, (5.41)



94 CHAPTER 5. NUMERICAL ANALYSIS

where

Z2 =



1 −1 0 · · · 0

0 1 −1 · · · 0
...

. . . . . . . . .
...

0 0 · · · 1 −1

0 0 · · · 0 1


. (5.42)

We assume that the weight of the actuators and their mounting is negligible when compared
with the whole mass of the structure.

The measurement of the system state is done by the set of 20 accelerometers, which are
placed on every above-ground floor. An additional accelerometer is attached to the ground
and it provides the earthquake acceleration signal ẍe to the controller. The use of the base
accelerometer fulfils the assumption of the disturbance measured in real-time. We assume
idealized versions of accelerometers; that is, without the bias and the inertia. The time
delay of measurement is assumed τ = h = 0.01 s.

The whole time-continuous control model, combining control devices inputs u, system

state x =
[
qT q̇T fTa

]T
, the earthquake acceleration ẍe and the measurement of the

accelerometers y =
[
ẍ1 · · · ẍ20

]T
can be presented in the general form of a linear system

subjected to an external disturbance (2.33):

ẋ(t) =


q̇(t)

q̈(t)

ḟa(t)

 = Ax(t) + Bu(t) + Bzẍe(t), y = Cx(t), (5.43)

where

A =


0 I 0

−M−1K −M−1C 6M−1Z2

−a1Z1 −a2Z1 −a3I

 , B =


0

0

a1I

 ,Bz =


0

1

0

 ,
C =

[
−M−1K −M−1C 6M−1Z2

]
. (5.44)

The pair (A,B) of the system (5.43) is controllable (which can be proven by calculating
the rank of a respective Kalman matrix) and, therefore, it fulfils Assumption 3.3 required
for the existence of the solution to modified optimal control problem (3.41).

Because the described controller is discrete in time, a discrete equivalent of the system
(5.43) in the form of Eq. (3.24) was determined via the zero-order hold method:

x(k + 1) = ADx(k) + BDu(k) + BzDẍe(k). (5.45)

The period of the discretization was chosen as h = 0.01 s. It was assumed that period
h corresponds to the measurement frequency of the accelerometers and the frequency of
updating the control law. This period of time is short enough for the discrete system to
sufficiently reproduce the response of the continuous plant. At the same time, the frequency
of 1/h = 100 Hz is within the operating range of the numerous accelerometers available on
the market.



5.2. ACTIVE SEISMIC STABILIZATION OF STRUCTURE 95

Because the sensors that we have used do not measure the full state of the system, and
because this full state information is necessary to determine the regulator input, a state
estimator has to be used. One of the possibilities is the steady-state Kalman filter (for the
formulation, see [107] and [91, Chapter 2]).

The steady-state Kalman estimation x̂(k) is computed similarly to the estimation
introduced in Algorithm 5.1, but with the explicit incorporation of the measured disturbance
ẍe(k):

x̂(k + 1) = AD [I− SKC] x̂(k) + BDu(k) + BzDẍe(k) + ADSKy(k + 1), (5.46)

where SK is a constant gain matrix of the Kalman filter calculated for the discrete dynamical
model (5.45) via the algebraic discrete Riccati equation:

SK =ΣCT
(
V + CΣCT

)−1
,

Σ =ADΣAT
D −

(
AΣCT

)
·
(
V + LΣCT

)−1 (
CΣAT

D

)
+ W.

(5.47)

The incorporation of an earthquake ẍe(k) into the Kalman filter scheme is reasonable
because ẍe(k) is directly measured by the accelerometer.

For the filter synthesis, we assume that the covariance matrices of the process noise W

and the measurement noise V are as follows:

V = I ∈ R20×20, W = 10−6I ∈ R60×60. (5.48)

For the full derivation of the Kalman filter for control purposes, the reader is referred to
[108]. The state estimation (5.46) along with the measurement ẍe is then passed to the
proposed control method.

The parameters of the adaptive control method, length of the measurement window S

and the order of the AR model nmax were chosen as S = 750 and nmax = 9, respectively.
The matrices of the assumed quadratic performance index (3.38) are defined as follows.

The matrix

Q =


1
2K 0 0

0 1
2M 0

0 0 0

 ∈ R60×60, Q � 0 (5.49)

represents the internal energy that has accumulated in the structure (neglecting the energy
of the actuators) and the matrix

R = 5 · 106 · I20 (5.50)

was chosen by trial and error such that the forces generated by the actuators during the
simulations do not exceed their capacity 897 kN. The pair

(
A,Q

1
2

)
of the system (5.43)

is detectable and, therefore, it fulfils the Assumption 3.4. The adaptive control method
computes the desired control via the SM model formulation (5.45).

The simulation is conducted in online cooperation of two simulation environments:
MATLAB and ANSYS. The exact scheme of the information exchange between both
programs is outlined in Algorithm 5.2.
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Algorithm 5.2 Simulation of seismic control.
ANSYS (A): Set initial and boundary conditions.
MATLAB (M): Set the initial state of the Kalman filter and hydraulic actuators. Set
initial control value to 0.
t = 0 s
loop t ≤ Tf

M: Measure the instantaneous floor and earthquake accelerations.
A: Apply earthquake acceleration ẍe(t) and forces generated by the actuators f .
A: Conduct construction simulation on time interval (t; t+ h].
M: Conduct actuators simulation on time interval (t; t+ h] for the present control

input u and the state of the construction.
t← t+ h
M: Update state estimator x̂.
M: Update controller state according to Algorithm 3.4 with the measurements of floor

and earthquake accelerations.
M: Apply control signal u to the actuators.

end loop

Comparative controllers setting

For the sake of the comparative study, the same control scenarios are carried out employing
two additional controllers, LQG and H∞ regulators. The methodology that provided the
parameters of these controllers is described below.

Both comparative controllers were determined under the same assumptions as the
proposed adaptive method, namely:

1. All controllers use the direct measurements of the ground acceleration ẍe(t).

2. All controllers optimize the norm based on the quadratic functions of the state xTQx

and the control uTRu.

In the case of the LQG regulator, for the performance index, we assume a combination
of the quadratic functions and the infinite time horizon, similarly to performance index
(3.31):

JLQG =

∞∑
i=0

(
xTi Qxi + uTi RLQGui

)
. (5.51)

In the design of the H∞ regulator, the continuous system defined in Eq. (5.43) is assumed
and the control objective is defined in terms of the H∞ norm:

JH∞ = sup
‖ẍe‖2 6=0

∥∥∥∥∥
[
Q

1
2 0

0 R
1
2
H∞

]
·
[
x(t)

u(t)

]∥∥∥∥∥
2

‖ẍ2
e(t)‖2

. (5.52)

In (5.52), we use the following norm definition ‖z(t)‖2 =
(∫∞

0 zT (t)z(t) dt
) 1

2 . Observe that
this norm in the numerator in (5.52) is defined by analogy to (3.31) and (5.51):∥∥∥∥∥

[
Q

1
2 0

0 R
1
2
H∞

]
·
[
x(t)

u(t)

]∥∥∥∥∥
2

=

(∫ ∞
0

[
xT (t)Qx(t) + uT (t)RH∞u(t)

]
dt

) 1
2

. (5.53)
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The H∞ controller’s state is simulated with the use of the fourth order Runge-Kutta method,
but both the measured values of the earthquake and the structure’s state, which constitute
the regulator’s input, and the control value itself are updated with the same discretization
period as the adaptive and LQG scheme, i.e., h = 0.01 s. To validate this choice, the
simulation with tenfold smaller discretization period h = 0.001 s has been also conducted.
For both h = 0.01 s and h = 0.001 s, the resulting control signals and the performance
indices coincided.

For LQG and H∞ regulators, the matrix Q is defined the same as for the adaptive
method, see Eq. (5.49). The matrices RLQG � 0, RH∞ � 0 vary for every considered
simulation scenario and were selected such that the control expenditure measured as
‖u(t)‖2 is equivalent for each controller. The equivalence in the energy expenditures for all
controllers ensures that any improvement in the method’s performance results from the
intrinsic properties of the respective controller and not from more aggressive control signals.
The values selected for RLQG and RH∞ are summarized in Table 5.6.

Since the covariance matrices used for the LQG synthesis are as in (5.48), the resulting
Kalman filter is analogous to the state observer used in the adaptive controller defined in
Eq. (5.46). The control function of the LQG regulator is affine with respect to the state
estimation:

uLQG(k) = −KLQG


x̂(k)

ˆ̇x(k)

f̂a(k)

 , (5.54)

In Eq. (5.54), the gain matrix KLQG is assumed as the feedback matrix of the LQR
regulator for the infinite horizon performance index (5.51), and is computed by solving the
discrete algebraic Riccati equation:

PLQG = AT
DPLQGAD −

(
AT
DPLQGBD

) (
RLQG + BT

DPLQGBD

)−1 (
BT
DPLQGAD

)
+Q

KLQG =
(
RLQG + BT

DPLQGBD

)−1 (
BT
DPLQGAD

)
(5.55)

The continuous H∞ regulator is defined in the state-space form as follows:

ẋH∞(t) = AH∞xH∞(t) + BH∞

y(t)

ẍe(t)

 ,

uH∞(t) = CH∞xH∞(t) + DH∞

y(t)

ẍe(t)

 ,
(5.56)

where y(t) is the vector of measurements defined in (5.43), ẍe(t) is the measurement of
the earthquake acceleration, uH∞(t) is the control signal generated by the regulator H∞
and xH∞(t) is the state of the regulator. The matrices AH∞ ∈ R60×60, BH∞ ∈ R60×21,
CH∞ ∈ R20×60 and DH∞ ∈ R20×21 were established based on the numerical procedure
suggested in [109, 110].
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Numerical results

Excitation signals

The designed adaptive control method is tested and compared to LQG and H∞ control for
the reference model subjected to four different excitation signals. Two of these signals are
stochastic and established by the exact seismic measurements of the historical earthquakes,
in Kobe in 1995 and in El Centro in 1940. The following two excitations are periodic
and correspond to the structures’ eigenfrequencies. Here, for the first signal, we assume
a sine function of the frequency that is equal to the first eigenfrequency of the reference
model. The second signal is polyharmonic and consists of the first ten eigenfrequencies of
the system. The values of the eigenfrequencies are summarized in Table 5.5. The aim of
testing the adaptive controller for the periodic signals is to validate its performance not
only for the earthquake conditions but also other possible vibration scenarios, such as those
induced by periodic strong wind blows, passages of heavy vehicles or sea waves which may
act on offshore platforms. Since the frequencies of the assumed periodic signals coincide
with the natural frequencies of the structure, the structure’s response is expected to be of
large magnitudes. This gives a clear insight into whether the proposed method successfully
stabilizes the structure for the deterministic excitation signal scenarios. The amplitudes of
the periodic signals’ components are selected in such a way that the amplitude spectrum
of these signals corresponds to the amplitude spectrum of the El Centro earthquake. The
time evolution of all four considered signals and their amplitude spectra are demonstrated
in Figures 5.25–5.28.
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(a) Time evolution of the Kobe excitation signal.
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(b) The amplitude spectrum of the Kobe excitation
signal.

Figure 5.25: Parameters of the Kobe signal.

The initial state of the system corresponds to its equilibrium state, that is,
x(0)

ẋ(0)

fa(0)

 =


0

0

0

 . (5.57)

Starting with the initial condition, the simulations are conducted for t ∈ [0;Tf ], where the
final time Tf varies for each scenario. The signal parameters of every scenario, consisting
of the type of disturbance, the final time Tf and the assumed values for RLQG, RH∞ are
presented in Table 5.6.
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(a) Time evolution of the El Centro signal.
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(b) The amplitude spectrum of the El Centro signal.

Figure 5.26: Parameters of the El Centro signal.
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(a) Time evolution of the sine signal.
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(b) The amplitude spectrum of the sine signal.

Figure 5.27: Parameters of the sine signal.

0 10 20 30 40
−1.00

0.00

1.00

t [s]

ẍ
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(a) Time evolution of the polyharmonic signal.
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(b) The amplitude spectrum of the polyharmonic
signal.

Figure 5.28: Parameters of the polyharmonic signal.

Table 5.6: Parameters of the simulations.

Index Disturbance Final time Tf [s] RLQG RH∞

1 Kobe 40 5.2356 · 106I 2.6240 · 108I

2 El Centro 50 3.7929 · 106I 1.8154 · 108I

3 Sine signal 15 4.8862 · 105I 2.3932 · 107I

4 Polyharmonic signal 40 6.0809 · 106I 3.3035 · 108I

Control systems’ responses

The results of the simulations are demonstrated on Figures: 5.29 and 5.33 (response to
the Kobe earthquake), 5.30 and 5.34 (response to the El Centro earthquake), 5.31 and
5.35 (response to the sine disturbance) and 5.32 and 5.36 (response to the polyharmonic
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excitation).
Figures 5.29(a), 5.30(a), 5.31(a), 5.32(a) depict the deflection of the tenth floor of the

structure with respect to time. It can be observed that for the earthquake excitations, the
proposed adaptive control method results in deflection amplitudes reduced by 18.0%–23.0%

for the Kobe signal and 5.6%–22.2% for the El Centro signal. The improvement can be
also observed for the periodic signals, where compared to the LQG and H∞ controllers, the
adaptive strategy results in the reduction of the deflection amplitudes by 11.8%–47.1% for
the sine excitation and 2.2%–6.7% for the polyharmonic excitation.

(a) Deflection of the tenth floor over time. (b) Acceleration of the tenth floor over time.

Figure 5.29: Floor deflections and accelerations under the Kobe signal for the considered
controllers. To enhance readability, selected peak values are indicated by the horizontal
dashes.

(a) Deflection of the tenth floor over time. (b) Acceleration of the tenth floor over time.

Figure 5.30: Floor deflections and accelerations for the El Centro signal for the considered
controllers. To enhance readability, selected peak values are indicated by the horizontal
dashes.
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(a) Deflection of the tenth floor over time.
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(b) Acceleration of the tenth floor over time.

Figure 5.31: Floor deflections and accelerations under the Sine signal for the considered
controllers.
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(a) Deflection of the tenth floor over time. (b) Acceleration of the tenth floor over time.

Figure 5.32: Floor deflections and accelerations under the Polyharmonic signal for the
considered controllers.

In addition to the deflection, we also examine the acceleration of the tenth floor. The
acceleration measure relates to the safety and comfort of the humans that are inside the
building. From Figures 5.29(b), 5.30(b), 5.31(b), 5.32(b), it can be noticed that the adaptive
controller results in significantly lower accelerations for each considered disturbance. For
Kobe and El Centro earthquakes, the peak values of the acceleration decrease by 11.1%–
22.2% and 15.0%–27.1%, respectively. Regarding the sine and polyharmonic signals, the
peak accelerations are respectively reduced by 5.1%–23.0% and 9.5%–19.0%.

Figures 5.33(a), 5.34(a), 5.35(a), 5.36(a) depict the time evolution of the performance
index Jx(t) corresponding to the total energy of the structure defined by

Jx(t) =

∫ t

0
x(τ)Qx(τ) dτ. (5.58)

Here the matrix Q is assumed as in Eq. (5.49). It can be noticed, that for every excitation
signal, the lowest value of this index is obtained for the adaptive control scheme, which
confirms that the use of the designed controller improves the structure’s energy dissipation.
From the evolution of Jx(t), the reader can also observe that the improvement resulting
from the use of the adaptive control increases in time which brings us to the conclusion that
the proposed control scheme exhibit superior vibration attenuation capabilities throughout
the whole simulation.
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(a) Time evolution of the structure’s energy perfor-
mance index Jx(t) =

∫ t
0
x(τ)Qx(τ) dτ .
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(b) The final values of the performance index
Ĵx(T ) = Jx(T )/J

adapt.
x (T ) and the control expen-

diture ‖û‖22 = ‖u‖22/
∥∥uadapt.

∥∥2
2
. All values are nor-

malized to the adaptive control case.

Figure 5.33: Performance indices and energy expenditure of the control systems excited by
the Kobe signal.
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(a) Time evolution of the internal energy performance
index Jx(t) =

∫ t
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x(τ)Qx(τ) dτ .
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(b) The final values of the performance index
Ĵx(T ) = Jx(T )/J
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malized to the adaptive control case.

Figure 5.34: Performance indices and energy expenditure of the control systems excited by
the El Centro signal.
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(a) Time evolution of the internal energy performance
index Jx(t) =

∫ t
0
x(τ)Qx(τ) dτ .
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(b) The final values of the performance index
Ĵx(T ) = Jx(T )/J
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malized to the adaptive control case.

Figure 5.35: Performance indices and energy expenditure of the control systems excited by
the Sine signal.

0 10 20 30 40
0.00

0.50

1.00

·106

t [s]

J
x
(t
)

H∞ LQG Adaptive

(a) Time evolution of the internal energy performance
index Jx(t) =
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(b) The final values of the performance index
Ĵx(T ) = Jx(T )/J

adapt.
x (T ) and the control expen-
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Figure 5.36: Performance indices and energy expenditure of the control systems excited by
the Polyharmonic signal.

A similar conclusion can be also deduced from the analysis of Figures 5.33(b), 5.34(b),
5.35(b) and 5.36(b), where the final values of the performance index Jx(Tf ) are presented.
All of the demonstrated values are normalized to those obtained via the adaptive control,
i.e. Ĵadapt.

x (Tf ) = 1. The proposed adaptive control method outperforms both the LQG
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and H∞ for each of the considered scenarios. The improvement varies from 8.4% for the
El Centro earthquake and comparison to the LQG control to 92.0% for the sine signal
and comparison to the H∞ regulator. The second part of the Figures 5.33(b), 5.34(b),
5.35(b), 5.36(b) presents the normalized norm of the control, ‖u‖22 =

∫ T
0 uT (t)u dt. The

values of the regularization matrices RLQG � 0, RH∞ � 0 have been picked in such a way
that the control expenditure of all algorithms and all excitations is approximately equal.
This means that the adaptive control more efficiently stabilizes the structure with the
comparable control expenditure level.

It is also worth analyzing other criteria for the quality of stabilization, in particular,
those related to the acceleration and the interstory drift. As mentioned before, acceleration
corresponds directly to the safety and comfort of humans inside a building. The interstory
drift, on the other hand, is linked to dangerous inelastic deformations of the structure.
Such insightful performance criteria are introduced in [105]. The details of these criteria are
presented in Table 5.7. Their values that have been obtained for all considered excitation

Table 5.7: Definition of the examined performance criteria.

Criterion description
J1 = maxt, i |xi(t)| Floor Displacement
J2 = maxt, i

|di(t)|
li

Interstory Drift
J3 = maxt, i |ẍi(t)| Floor Acceleration

J4 = maxt

∣∣∣∑21
i=2miẍi(t)

∣∣∣ Base Shear
J5 = maxi ‖xi(t)‖ Normalized Floor Displacement
J6 = maxi

‖di(t)‖
li

Normalized Interstory Drift
J7 = maxi ‖ẍi(t)‖ Normalized Floor Acceleration

J8 =
∥∥∥∑21

i=2miẍi(t)
∥∥∥ Normalized Base Shear

scenarios can be found in Tables 5.8, 5.9, 5.10 and 5.11.

Remark 5.1. The masses that are used to compute the criteria J4 and J8 are the actual
masses of the levels of the RM model and they are not the values that were identified for
the SM model. The norm used for the criteria J5−8 is the L2 norm that is computed with
taking into account the whole simulation time, ‖xi(t)‖ =

√∫ Tf
0 x2

i (τ) dτ .

For the majority of the considered criteria, the designed adaptive method significantly
outperforms the comparative LQG and H∞ regulators. In particular, the reduction of the
normalized base shear and the normalized interstory drift criteria ranges respectively by
8.1%–21.1% and 5.2%–50.1% when implementing the adaptive strategy. The criteria where
the adaptive method does not exhibit the improvement are the maximal interstory drift
and the base shear computed for the sine excitation. For the maximal interstory drift, the
LQG controller outperforms the adaptive one by 0.7%. For the base shear index, the best
performance is exhibited by H∞ regulator which resulted in 14.2% improvement compared
to the adaptive method. In the case of the sine excitation, the autoregressive scheme has
the ability to ideally identify the disturbance model. As a result, the adaptive method
transiently realizes more aggressive control than the LQG and H∞ counterparts and the
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Table 5.8: The performance criteria for the Kobe earthquake. Each value is normalized to
the adaptive controller case.

Kobe
Crit. Adapt. LQG H∞
J1 1.0000 1.0148 1.0256
J2 1.0000 1.3599 1.9983
J3 1.0000 1.0772 1.2165
J4 1.0000 1.1071 1.1793
J5 1.0000 1.0398 1.0331
J6 1.0000 1.0566 1.2102
J7 1.0000 1.1106 1.2455
J8 1.0000 1.0812 1.1197

Jx(T ) 1.0000 1.1137 1.4121
Avg. 1.000 1.1762 1.2669

Table 5.9: The performance criteria for El Centro earthquake. Each value is normalized to
the adaptive controller case.

El Centro
Crit. Adapt. LQG H∞
J1 1.000 1.0109 1.005
J2 1.000 1.1224 1.6362
J3 1.000 1.141 1.3143
J4 1.000 1.1266 1.1365
J5 1.000 1.0017 1.0104
J6 1.000 1.0551 1.0518
J7 1.000 1.1024 1.2307
J8 1.000 1.0925 1.1251

Jx(T ) 1.0000 1.0838 1.2199
Avg. 1.000 1.0921 1.1922

amplitudes of the force generated by the actuators are on some time intervals higher than
when the comparative controllers are in use. For this reason, the amplitude of vibrations
induced in the adaptively controlled structure is very quickly reduced to a small value, but
the peak values of the structure’s levels’ deflection, velocity and acceleration can be high.
Because of that, both the maximal interstory drift and the maximal base shear (which
linearly depends on the accelerations) are larger for the adaptive control than for both
remaining controllers. However, the criteria for normalized accelerations J6 and base shears
J8, which take into account the whole simulation interval, clearly shows that the adaptive
method gives better results.

Regarding the normalized interstory drift, the adaptive control results in 5.2%–50.1%

range of improvement compared to the other two controllers. This confirms that the
proposed control method can also reduce the risk of inelastic deformation of the structure
which may be beneficial for preventing the structural damages.

In order to evaluate the overall stabilizing performance, mean values of the considered
criteria are also investigated. Compared to the LQG controller, the adaptive method results
in a 9.2% to 29.7% reduction of the mean value. When compared to the H∞ controller this
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Table 5.10: The performance criteria for the sine signal excitation. Each value is normalized
to the adaptive controller case.

Sine
Crit. Adapt. LQG H∞
J1 1.0000 1.3975 1.8881
J2 1.0000 0.99319 1.1995
J3 1.0000 1.4087 1.5358
J4 1.0000 1.2054 0.85829
J5 1.0000 1.4361 1.7241
J6 1.0000 1.4026 1.5008
J7 1.0000 1.318 1.4212
J8 1.0000 1.1568 1.2114

Jx(T ) 1.0000 1.3579 1.9204
Avg. 1.0000 1.2974 1.4733

Table 5.11: The performance criteria for the polyharmonic signal excitation. Each value is
normalized to the adaptive controller case.

Polyharmonic
Crit. Adapt. LQG H∞
J1 1.0000 1.0223 1.0862
J2 1.0000 1.022 1.2661
J3 1.0000 1.2507 1.2964
J4 1.0000 1.4402 1.3507
J5 1.0000 1.1285 1.1235
J6 1.0000 1.1338 1.1444
J7 1.0000 1.1015 1.2364
J8 1.0000 1.0869 1.1223

Jx(T ) 1.0000 1.2823 1.3912
Avg. 1.0000 1.1631 1.2241

reduction varies from 19.2% to 47.3%.
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5.3 Semi-active stabilization of beam under moving load

In this section, the adaptive semi-active control method that has been presented in Section
3.4 is tested numerically. The method is employed to stabilise the beam subjected to a
moving load.

The problem of the stabilisation of a structure under a moving load is widely recognized
by the scientific community. In [111], the semi-active control of the beam under a moving
load is introduced. The switching times are obtained via trial and error approach. Authors
of [112] propose the active shape control of the railway track to minimize vibrations during
the movement of a train. The control is applied to the system by the set of smart sleepers.
After the separate procedure identifies the weight and mass of the train, the heuristic
method computed the near-optimal control. [113] analyses the switching control strategy of
the semi-active control of the beam under a moving load. The performance of the control is
defined in the framework of the optimal control theory. The switching times are assumed as
optimization parameters. This work shows that the switching strategy outperforms passive
control. The extension of [113] is proposed in [30], where the stabilized system is the set of
two coupled elastic beams subjected to the moving load. The optimal switching times of the
dampers have been computed using the pattern search method. The heuristic distributed
and semi-active control for the moving load problem is proposed in [114]. The simple but
effective control law is based solely on the measurements of the velocity of the deflection
of the beam above the damper. In [115], the stabilization of the plate subjected to two
moving masses is considered. The control is realized via the smart damping layer. The
proposed control strategy is developed via optimization of the switching hyperplane. [37]
formulates closed-loop near-optimal control method based on sensitivity analysis for the
problem of a beam subjected to the moving load. The method adapts the control signal to
the change of the velocity of the load. The control signal is computed using measurements
of the position, the velocity of the load and the state of the beam. Fast revaluation of
the control is guaranteed by the use of the precomputed optimal trajectories for reference
velocities of the load.

Model description

The scheme of the control system is depicted in Figure 5.37. The mechanical object to
be stabilized is a simply supported, homogeneous and isotropic beam that has linear
density µ, flexural rigidity EI and length L. It is assumed that the deflection w(ξ, t) of
the beam during excitation is elastic and that Hooke’s law holds. The beam is excited via
the concentrated constant force P < 0 moving with varying velocity v(t) > 0 along the
structure. It is assumed that the value of the force P is known and the instantaneous value
of the velocity v(t) and the position of the load p(t) =

∫ t
0 v(τ) dτ can be measured online.

Four supports are placed below the beam at distances aj , j = 1, 2, 3, 4 and consist of
springs with stiffness k and controllable dampers with damping friction cj(uj) ∈ [cmin, cmax],
j = 1, 2, 3, 4, where u =

[
u1 u2 u3 u4

]T is the vector of the control signal. The resultant
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Figure 5.37: Scheme of the control system.

damping coefficient is assumed to depend linearly on the control value, i.e.

cj(uj) =
cmax − cmin

2
uj +

cmax + cmin

2
, uj ∈ [−1, 1], j = 1, 2, 3, 4. (5.59)

The boundary conditions are assumed as:

w(0, t) = w(L, t) = 0, t ∈ [0, Tf ],

∂2w(ξ, t)

∂ξ2

∣∣∣∣
ξ=0

=
∂2w(ξ, t)

∂ξ2

∣∣∣∣
ξ=L

= 0, t ∈ [0, Tf ],

w(ξ, 0) = ẇ(ξ, 0) = 0, ξ ∈ [0, L].

(5.60)

The goal of the control is to minimize the quadratic performance criterion J on the finite
horizon Tf that depends on the overall deflection of the beam w(ξ, t):

J =
1

2

∫ Tf

0

∫ L

0
w2(ξ, t) dξ dt. (5.61)

The parameters of the system are summarized in Table 5.12. The mathematical model of

Table 5.12: The parameters of the model and the simulation.

Parameter Value
µ 1.38 · 103 kg/m
EI 616 · 106 Nm2

L 120 m
P 5000 · 9.81 N
k 0.05 · 48EI · 1/L3

cmin 8 · 103 Ns/m
cmax 8 · 105 Ns/m
a1 0.205L
a2 0.205L
a3 0.205L
a4 0.205L

the system is formulated via Euler-Bernoulli beam theory and is represented by the partial
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differential equation with boundary conditions:

µ
∂2w(ξ, t)

∂t2
+ EI

∂4w(ξ, t)

∂ξ4
= −

4∑
j=1

[(
kw(aj , t) + cj(uj)

∂w(aj , t)

∂t

)
δ (ξ − aj)

]

− Pδ
(
ξ −

∫ t

0
v(τ) dτ

)
,

(0, t) = w(L, t) = 0, t ∈ [0, Tf ],

∂2w(ξ, t)

∂ξ2

∣∣∣∣
ξ=0

=
∂2w(ξ, t)

∂ξ2

∣∣∣∣
ξ=L

= 0, t ∈ [0, Tf ],

w(ξ, 0) = ẇ(ξ, 0) = 0, ξ ∈ [0, L].

(5.62)

The critical speed of the Euler-Bernoulli beam is calculated as follows:

vcrit. =
π

L

√
EI

µ
≈ 17.49

m

s
. (5.63)

State-space approximation

To obtain the preferable model in the state-space form, the spatial discretization of the
formulation (5.62) is conducted. The weak formulation is developed with the employment
of sine function as the orthogonal basis.

Let the deflection w(ξ, t) of the system defined in Eq. (5.62) be expanded via Fourier
series:

w(ξ, t) =
2

L

∞∑
l=1

Vl(t) sin

(
lπξ

L

)
, (5.64)

where Vl, l = 1, 2, . . . , ∞ are series of functions to be determined and functions sin
(
lπξ
L

)
,

l = 1, 2, . . . , ∞ form the basis that respects the boundary conditions of (5.62).

After inserting (5.64) into (5.62), the result is:

µ
2

L

∞∑
l=1

V̈l(t) sin

(
lπξ

L

)
+ EI

2π4

L5

∞∑
l=1

l4Vl(t) sin

(
lπξ

L

)
=

− 2

L

4∑
j=1

∞∑
l=1

[(
kVl(t) + cj(uj)V̇l(t)

)
sin

(
ajlπ

L

)]
δ (ξ − aj)

− Pδ
(
ξ −

∫ t

0
v(τ) dτ

)
,

Vl(0) = V̇l(0) = 0, l = 1, 2, . . . , ∞.

(5.65)

By multiplying (5.65) by sin
(
pπξ
L

)
, p = 1, 2, . . . , ∞ and integrating with respect to ξ
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on the interval [0, L], the weak formulation of (5.62) is obtained:

2µ

L

∞∑
l=1

V̈l(t)

∫ L

0
sin

(
lπξ

L

)
sin

(
pπξ

L

)
dξ + EI

2π4

L5

∞∑
l=1

l4Vl(t)

∫ L

0
sin

(
lπξ

L

)
sin

(
pπξ

L

)
dξ

= − 2

L

4∑
j=1

∞∑
l=1

[(
kVl(t) + cj(uj)V̇l(t)

)
sin

(
ajlπ

L

)]∫ L

0
δ (ξ − aj) sin

(
pπξ

L

)
dξ

− P
∫ L

0
δ

(
ξ −

∫ t

0
v(τ) dτ

)
sin

(
pπξ

L

)
dξ, p = 1, 2, . . . , ∞

Vl(0) = V̇l(0) = 0, l = 1, 2, . . . , ∞.
(5.66)

Recall that: ∫ L

0
sin

(
lπξ

L

)
sin

(
pπξ

L

)
dξ =

L
2 , if l = p,

0, if l 6= p
(5.67)

and ∫ L

0
δ (ξ − a) f(ξ) dξ =

f(a), if a ∈ [0, L]

0, if a /∈ [0, L]
. (5.68)

Eq. (5.66) reduces then to the set of dynamical equations:

µV̈p(t) + EI
π4

L4
p4Vp(t) =

− 2

L

4∑
j=1

∞∑
l=1

[(
kVl(t) + cj(uj)V̇l(t)

)
sin

(
ajlπ

L

)]
sin
(ajpπ

L

)

− P sin

(
pπ
∫ t

0 v(τ) dτ

L

)
, p = 1, 2, . . . , ∞

Vp(0) = V̇p(0) = 0, p = 1, 2, . . . , ∞.

(5.69)

Observe that in terms of the weak formulation (5.69), the performance criterion (5.61)
takes the form:

J =
2

L

∞∑
p=1

∫ Tf

0
V 2
p (t) dt. (5.70)

In the subsequent sections, the approximate solution to the infinite formulation (5.69)
is considered. The approximation is conducted by neglecting the impact of higher-order
terms in Eqs. (5.69). Such an approximation strategy is commonly used in literature, e.g.
in [30, 37, 116]. In the present case, only first n = 5 terms are considered. The resulting
set of ordinary equations is as follows:

µV̈p(t) + EI
π4

L4
p4Vp(t) =

− 2

L

4∑
j=1

5∑
l=1

[(
kVl(t) + cj(uj)V̇l(t)

)
sin

(
ajlπ

L

)]
sin
(ajpπ

L

)

− P sin

(
pπ
∫ t

0 v(τ) dτ

L

)
, p = 1, 2, . . . , n

Vp(0) = V̇p(0) = 0, p = 1, 2, . . . , n.

(5.71)
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For brevity, define the series of matrices

Gj =


sin
(ajπ
L

)
sin
(

2ajπ
L

)
...

sin
(najπ

L

)

 ·
[
sin
(ajπ
L

)
sin
(

2ajπ
L

)
. . . sin

(najπ
L

)]
, j = 1, 2, 3, 4 (5.72)

and the matrix
H = diag (1, 2, . . . , n). (5.73)

Notice that matrices Gj , j = 1, 2, 3, 4 are positive semi-definite and the matrix H is
positive definite. Eq. (5.71) can be rewritten in the state-space form as follows:

ẋ(t) =



V̇1

V̇2

...
V̈5

V̈1

V̈2

...
V̈5


= Ax(t) +

4∑
j=1

uj(t)Bjx(t) + F(t, v(t)), (5.74)

where the matrices A ∈ R10×10 and Bj ∈ R10×10, j = 1, 2, 3, 4 are built as follows:

A =

[
0 I

−M−1K −M−1C

]
, Bj =

cmax − cmin

L

[
0 0

0 −M−1Gj

]
, (5.75)

with

M = µI, K = EI
π4

L4
H4 +

2k

L

4∑
j=1

Gj , C =
cmax + cmin

L

4∑
j=1

Gj . (5.76)

The vector F(t, v(t)) corresponding to the excitation by the moving load is defined as
follows:

F(t, v(t)) = −P
µ



0

0
...
0

sin

(
π
∫ t
0 v(τ) dτ

L

)
sin

(
2π

∫ t
0 v(τ) dτ

L

)
...

sin

(
nπ

∫ t
0 v(τ) dτ

L

)



. (5.77)

The performance criterion (5.70) for the approximate model (5.74) takes the form:

J =

∫ Tf

0
xT (t)Qx(t) dt, (5.78)
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where

Q =
2

L

[
I 0

0 0

]
(5.79)

Observe that matrix K is positive definite and matrix C is positive semi-definite. Since
the rank of the matrix

[
C

CM−1K

]
is equal to n, Theorem 3.1 guarantees that the matrix A

is stable. This implies that the constant zero control u0 = 0 stabilizes the system (5.74).
Matrix Q of the performance criterion (5.78) is positive semi-definite. Observe that the
matrix consisting of the first two terms of the observability matrix:

 Q

Q
(
A +

∑4
j=1 uj(t)Bj

) =
2

L


I 0

0 0

0 I
0 0

 (5.80)

has full rank and therefore the pair
(
A +

∑4
j=1 uj(t)Bj ,Q

)
is observable for any u ∈

[−1, 1]m. Both Assumptions 3.5 and 3.6 are satisfied and the adaptive semi-active control
scheme formulated in Section 3.4 can be applied.

Controllers setting

Parametric identification

The semi-active adaptive control method described in Section 3.4 is verified via the
simulation of the beam under a moving load. To operate, the control method needs the
online procedure for the identification of the disturbance model:

ẋz,i(t) = Az,i(γi)xz,i(t), xz, i(ti) = xz0,i(γi),

F̃i(t) = Cz,i(γi)xz,i(t), such that: F̃i(t) ≈ F(t, v(t)).
(5.81)

The proposed parametric identification scheme is based on a particular form of the distur-
bance defined in Eq. (5.77).

Observe that the measurement of the position of the load pi = p(ti) =
∫ ti

0 v(τ) dτ at
the adaptation time ti fully identifies the vector F(ti, v(ti)):

F(ti, v(ti)) = −P
µ



0

0
...
0

sin
(πpi
L

)
sin
(

2πpi
L

)
...

sin
(nπpi

L

)


. (5.82)

At each iteration i of the adaptive scheme the simplifying assumption that the load moves
with the constant velocity vi = v(ti) is imposed, i.e.

p(t) ≈ pi + vi(t− ti), ∀t ∈ [ti, ti+1) . (5.83)
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Let F̂(t, v(t)) ∈ Rn denote the vector of non-zero components of F(t, v(t)):

F̂(t, v(t)) = −P
µ


sin
(
πp(t)
L

)
sin
(

2πp(t)
L

)
...

sin
(
nπp(t)
L

)

 . (5.84)

With the assumption of the piecewise constant velocity defined in Eq. (5.83), F̂(t, v(t))

takes the form:

F̂(t, vi) = −P
µ


sin
(
π(pi+vi(t−ti))

L

)
sin
(

2π(pi+vi(t−ti))
L

)
...

sin
(
nπ(pi+vi(t−ti))

L

)

 , ∀t ∈ [ti, ti+1) . (5.85)

Calculate the first and the second derivative of F̂(t, v(t)):

˙̂
F(t, vi) = −P

µ

πvi
L


cos
(
π(pi+vi(t−ti))

L

)
2 cos

(
2π(pi+vi(t−ti))

L

)
...

n cos
(
nπ(pi+vi(t−ti))

L

)

 , ∀t ∈ [ti, ti+1)

¨̂
F(t, vi) =

P

µ

π2v2
i

L


sin
(
π(pi+vi(t−ti))

L

)
4 sin

(
2π(pi+vi(t−ti))

L

)
...

n2 sin
(
nπ(pi+vi(t−ti))

L

)


= −π

2v2
i

L2
H2F̂(t, vi), ∀t ∈ [ti, ti+1) ,

(5.86)

where H is defined as in Eq. (5.73).
Let the vector of the state of the excitation be defined as

xz,i(t) =

[
F̂(t, vi)
˙̂
F(t, vi)

]
, (5.87)

the initial conditions as:

xz0,i(pi, vi) = −P
µ

[
F̂(ti, vi)
˙̂
F(ti, vi)

]
=



sin
(πpi
L

)
sin
(

2πpi
L

)
...

sin
(nπpi

L

)
πvi
L cos

(πpi
L

)
2πvi
L cos

(
2πpi
L

)
...

nπvi
L cos

(nπpi
L

)


(5.88)
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and let the matrices Az,i(pi, vi) and Cz,i be defined as follows:

Az,i(pi, vi) =

[
0 I
0 −π2v2i

L2 H2

]
, Cz,i =

[
0 0

I 0

]
, Cz,i ∈ R2n×n. (5.89)

Then the trajectory of the excitation (5.77) with the assumption denoted in Eq. (5.83) can
be approximated by the linear dynamical system:

ẋz,i(t) = Az,i(pi, vi)xz,i(t), xz,i(ti) = xz0,i(pi, vi)

F(t, v(t)) ≈ Cz,ixz,i(t).
(5.90)

Observe that the only parameters that are needed for computation of the dynamical model
of the moving load are the velocity vi and position pi.

As a conclusion, the stabilization of the beam subjected to the moving load is conducted
via the semi-active control method summarized in Algorithm 3.5 with the measurement
vector γi =

[
pi vi

]
.

Remark 5.2. Observe that the proposed identification method is based solely on the
special choice of the basis function of the weak formulation. If the boundary conditions
of the partial differential equation (5.62) were chosen differently or the dynamical model
of the beam was different, the sine functions could not be used. In that case, the vector
F(t, v(t)) corresponding to the impact of the load would have a different form that could
not be transformed directly to the linear model (5.90).

However, the knowledge of the instantaneous values of the position pi and velocity
vi would allow for exact determination of the future trajectory of F(t, vi). It is believed
that the linear autonomous model of the disturbance (5.90) could be then established
using the continuous AR model analogous to the discrete method defined in Algorithm 3.1
that is fitted to the known signal F(t, vi). For the review of the continuous autoregressive
identification method, see [117].

Comparative controls

The adaptive method is compared to the results of two different types of control:

1. maximal constant control u0 = 1,

2. open-loop optimal control u∗(t).

The maximal constant control corresponds to the situation, where the supports of the beam
generate the greatest damping ratio on the whole simulation interval.

The open-loop optimal control is computed separately for each considered excitation
scenario. The optimization procedure is assumed to possess whole information about the
future value of the disturbance, i.e, the exact trajectory of the moving load is known. The
optimal control problem is assumed not in the MPC form defined in Eq. (3.78) but rather
it corresponds to the explicit formulation defined in Eq. (2.3) without approximation of
the disturbance. The optimal control is computed via a direct multiple shooting method
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implemented using the CasADi package [118]. This open-loop optimal control could
not be employed in a real-life scenario, because the movement of the load is in general
nondeterministic. However, computation of such an optimal control and its performance
gives theoretical lower bound on the semi-active performance and allows to assess the
near-optimality of the proposed adaptive control method.

Numerical results

Excitation signals

The performance of the proposed control method is tested via four different excitation
scenarios. The trajectory of the load i presented in Figures 5.38 and 5.39.
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(b) Second scenario.

Figure 5.38: Movement of the load at the first and second scenario.
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(b) Fourth scenario.

Figure 5.39: Movement of the load at the third and fourth scenario.

The first excitation depicted in Figure 5.38(a) corresponds to the load moving with
constant acceleration. The motion is defined as:

p1(t) = min

{
L,

5

6
t2
}
, t ∈ [0,∞). (5.91)

In the second scenario, presented in Figure 5.38(b), the velocity of the load remains constant,

p2(t) = min {L, 13t}, t ∈ [0,∞). (5.92)

The decelerated movement corresponds to the third scenario, with the position of the
load presented in Figure 5.38(b). The load has initial non-zero velocity and moves with
constant deceleration until it stops at the centre of the beam. The equation of motion is as
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follows:

p3(t) =

12t− 3
5 t

2, t ∈ [0, 10) s

1
2L, t ∈ [10,∞) s.

(5.93)

In fourth scenario, the movement of the load consists of three distinctive parts: firstly, the
load moves with constant deceleration, until it halts at the centre of the beam. It remains
at the centre of the beam for 1 s. Finally, it starts to move with constant acceleration until
it leaves the beam. The movement is described as follows:

p4(t) =


12t− 3

5 t
2, t ∈ [0, 10) s

1
2L, t ∈ [10, 11) s

min
{
L, 1

2L+ 3
5(t− 11)2

}
, t ∈ [11,∞)

(5.94)

The horizons of the simulations of the first and third scenario are equal to the times at
which the loads arrive at the end of the beam, i.e. L. In the second scenario, the simulation
time is equal to Tf = 25 s. In the fourth scenario, the simulation horizon is longer than
the movement of the load, Tf = 30 s. Such a choice of the horizon allows to assess the
performance of the control methods when no load acts on the structure, but the beam is
not in its equilibrium state. The parameters of simulations are summarized in Table 5.13

Table 5.13: The parameters of the model and the simulation.

Scenario Maximal velocity Duration of movement Duration of simulation Tf
1 1.14vcrit. 12 s 12 s
2 0.74vcrit. 9.23 s 9.23 s
3 0.69vcrit. – 25 s
4 0.69vcrit. 21 s 30 s

Control systems’ responses

Results of the simulations are presented in Figures 5.40–5.47 and in Table 5.14. Instanta-
neous deflection of the beam at two instances during the first simulation scenario is depicted
in Figure 5.40. Observe that the deflection of the beam controlled via the adaptive method
is close to the deflection of the beam that is stabilized optimally. Although the constant
control results in smaller deflection on the first half of the movement, its performance is
significantly worse on the next part of the simulation.

This statement is also visible in Figure 5.41(a), where the evolution of the quadratic
performance criterion defined in Eq. (5.78) is presented. On the first 9 seconds of the
simulation, the constant control outperforms the adaptive and optimal ones. Nonetheless,
the constant control is not optimal, which is reflected by the significant increase of the
performance criterion on the last 3 seconds of the movement.

Figure 5.41(b) shows the shape of the control of the adaptive and optimal controllers.
Observe the similarity of both control signals, especially for the first three dampers. It
can be argued that the proposed adaptive method generates near-optimal control but, in
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Figure 5.40: Deflection of the beam during first scenario. The black dot represents the
position of the load.
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Figure 5.41: Performance and control during the first simulation.

contrast to the optimal control, it is in the robust closed-loop form and its computation is
of significantly lower computational complexity.

Figure 5.42 shows the deflection of the beam during the second simulation scenario.
Similarly to the results of the first scenario, the beam controlled via adaptive method has
deflection close to the optimal one. The constant control provides better performance on
the first part of the simulation, but its overall performance is worse than for the adaptive
and optimal control. Figure 5.43(a) presents the performance criterion associated with all
three control methods. It proves that the adaptive controller provides near-optimal control.
The final performance criterion associated with the constant control is approximately two
times larger than for the adaptive and optimal cases. The control signal of the adaptive
and optimal methods is presented in Figure 5.43(a). The shape of the adaptive control is
close to the optimal for the first three dampers. The control of the fourth damper diverges
on the first half of the simulation, but on the second half it behaves almost like the optimal
one.

The third scenario corresponds to the load stopping at the centre of the beam. In
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Figure 5.42: Deflection of the beam during the second scenario. The black dot represents
the position of the load.
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Figure 5.43: Performance and control during the second simulation.

this case, the beam does not return to the initial state and its deflection grow over time.
However, Figure 5.44(b) shows that the adaptive and optimal control results in smaller
amplitude of deflection than the constant control. It is reflected also in Figure 5.45(a), where
the performance criterion is depicted. Adaptive control provides near-optimal performance
and smaller overall value of the criterion than passive control. The shape of the optimal
control is constant and maximal on the majority of the simulation interval. The adaptive
control is close to optimal on the second, third and fourth damper.

The optimal control of the first damper is minimal in the first part of the simulation.
It causes the initial deflection of the optimally controlled beam to be directed upwards,
which results in smaller downward deflection on the further stages of the simulation. This
behaviour is not fully reproduced by the adaptive controller but the overall difference of
the performance is not significant.

The results of the last simulation scenario are depicted in Figures 5.46 and 5.47.
Deflections of the beam at t = 6 s are presented in Figure 5.46(a). Observe that the upward
deflection associated with the optimal case is greater than in the constant and adaptive
case. Interesting results can be observed in Figure 5.46(b), where the deflection of the
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Figure 5.44: Deflection of the beam during the third scenario. The black dot represents
the position of the load.
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Figure 5.45: Performance and control during the third simulation.

beam five seconds after the finish of the movement is depicted. The optimal control, in
this case, is to generate the smallest damping force, which results in the fast return of the
beam to its equilibrium state. The maximal constant control fails in this case to effectively
stabilize the beam because large damping forces prevent the movement of the beam.

The evolution of the performance criterion is depicted in Figure 5.47(a). Observe that
after the finish of the movement, both adaptive and optimal control quickly steers the
system to its origin. At t = 22 s the performance criterion stabilizes. On the other hand,
the constant control fails to stabilize the beam and the associated criterion grows during
the whole simulation interval.

The control signals are presented in Figure 5.47(b). As in the cases of previous
simulations, the adaptive control is close to the optimal. It can be noticed, that the optimal
control displays the chattering behaviour at the time interval t ∈ (21, 26) s. This interval
corresponds to the beam being close to its equilibrium state. The adaptive controller does
not display such behaviour.

Final values of the performance criteria for all simulation scenarios are summarized in
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Figure 5.46: Deflection of the beam during the fourth scenario. The black dot represents
the position of the load.
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Figure 5.47: Performance and control during the fourth simulation.

Table 5.14. The values of the criteria have been normalized to the values generated via
the optimal control. It can be noticed that for each scenario, the adaptive control method
results in the smaller value of the performance criterion than the constant control. The
value of the criterion associated with the adaptive controller ranges from 1.071 to 1.185,
while the criterion associated with the constant control ranges from 1.434 to 3.008. The
average value of the performance of the adaptive controller is equal to 1.114 and mean
performance of the constant control is equal to 2.226. The closeness of the performance of
the adaptive controller to 1.000 proves the near-optimal property of the adaptive method.

Table 5.14: Normalized performances J(Tf ) of the controllers.

Scenario Passive Adaptive Optimal
1 1.985 1.073 1.000
2 2.476 1.071 1.000
3 1.434 1.127 1.000
4 3.008 1.185 1.000

Avg. 2.226 1.114 1.000
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5.4 Active stabilization of partially damaged structure

In this Section, the adaptive control method that has been presented in Section 4.1 is tested
numerically. The results of this section have been originally presented in the Author’s paper
[46]. The method is employed to the problem of vibration attenuation of the mechanical
system subjected to a sudden loss of its stiffness. Although the considered system is simple,
it may represent many real-life control problems. The proposed control method is compared
to the LQR controller.

The scheme of the considered object is presented in Figure 5.48. The controlled system

Figure 5.48: The scheme of the controlled system.

is composed of the two masses m1 and m2, linked to the rigid bases by the springs k1 and
k3 and joined by the spring k2. In the time instance Ts, the sudden degradation of the
stiffness k3 to k′3 occurs.

The object is controlled by the input force u ∈ R applied to the mass m2. The state
of the system consists of deflections q1, q2 and velocities q̇1, q̇2 of the masses m1 and m2,
respectively. The dynamical equation that governs this mechanical system is formulated in
the standard second-order form:[

q̈1(t)

q̈2(t)

]
M + K(t)

[
q1(t)

q2(t)

]
=

[
0

1

]
u(t). (5.95)

The matrices K(t) and M are defined as

K(t) =

[
k1 + k2 −k2

−k2 k2 + k3H(Ts − t) + k
′
3H(t− Ts)

]
, M =

[
m1 0

0 m2

]
, (5.96)

where H(t) denotes the Heaviside step function:

H(t) =

0, t < 0

1, t ≥ 0.
(5.97)

Observe that the spring k3 is affected by the sudden change: during the time interval [0, Ts)

it has stiffness k3 and for time after Ts this stiffness equals to k
′
3.
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The second-order system (5.95) is then transformed into the state-space form:

ẋ(t) =


q̇1(t)

q̇2(t)

q̈1(t)

q̈2(t)

 = A(t)x(t) + Bu(t), (5.98)

with

A(t) =

[
0 I

−M−1K(t) 0

]
, B =


0

0

0
1
m2

 . (5.99)

The goal of the control is to stabilize the mechanical system via minimization of the infinite
horizon quadratic performance index

J =

∫ ∞
0

[
xT (t)Qx(t) + u2(t)R

]
dt, (5.100)

where Q � 0 and R > 0. The simulation is conducted on time interval [0, Tend].

The values of the parameters of the system (5.95) are presented in Table 5.15. The

Table 5.15: The parameters of the model and the simulation.

Parameter Value
m1 1 kg
m2 1 kg
k1 1 N/m
k2 1 N/m
k3 30 N/m

k
′
3 0.3 N/m
Ts 30 s
Tend 60 s

assumed initial condition corresponds to the deflection of the mass m1 by 5 · 10−2 m,

x(0) =


5 · 10−2

0

0

0

 . (5.101)

The parameters of the performance criterion (5.100) are as follows:

Q = I, R = 1. (5.102)

At the time of the change of the stiffness k3, t = Ts, the state of the system x is set back
to the initial conditions (5.101). It allows for direct comparison of the performance of both
the adaptive and LQR controllers before and after the damage of the stiffness.



122 CHAPTER 5. NUMERICAL ANALYSIS

Controllers setup

The adaptive control method employed in the considered simulation is described in Section
4.1. Required parameters of the method, stated in Algorithm 4.1, are defined as follows.

The number of the required measurements N is equal to 10. The adaptation period
h is equal to 1.65 s. The measurement times dj , j = 1, 2, . . . , N are picked equidistant,
i.e. dj = 0.165j s. The time-shift ∆t is equal to 0.165 s. Since the shifted measurement
at time dj∆t is equal to dj+1, only N + 1 = 11 measurements are being made during one
adaptation interval.

Notice that, to maintain robustness of the control method against the system and
measurement noise, the number of the measurements N can be extended. In such a case,
the matrix (Γ(ti)− Γ(ti + ∆t)) of Eq. (4.39) is rectangular and the unknown vector θi is
computed as a least-square solution of the linear equation,

θi = (Γ(ti)− Γ(ti + ∆t))+


qi,1(ti,∆t)

qi,2(ti,∆t)
...

qi,N (ti,∆t)

 , (5.103)

where (·)+ denotes the pseudoinverse of a matrix.

The threshold values for the detection of the change and convergence of the iteration
are equal to εstart = 1 εstop = 10−10, respectively. The initial stabilizing control law
µ0(x) = K0x has been chosen as

µ0(x) =
[
0 0 0 −4

]
x. (5.104)

Observe that the control law µ0(x) acts like a damping force for the mass m2. For any
k1, k2, k3 > 0, this control law makes the system (5.95) asymptotically stable. This
statement can be verified via Theorem 3.1.

The infinite horizon LQR controller is computed using the same performance matrices
Q, R as the adaptive method. The feedback matrix KLQR of the LQ regulator is computed
with explicit knowledge of the state-transition matrix A(0) with the initial value of the
stiffness k3 and the matrix B, both defined in Eq. (5.99). The feedback matrix KLQR

is computed according to Eq. (4.14) and the algebraic Riccati equation (4.15). Notice
that the initial control law of the LQR controller is optimal during the initial phase of the
control, t ∈ [0, Ts). Because the initial control law of the adaptive scheme is not optimal, it
is expected to initially exhibit worse performance than the LQR.

Numerical results

The results of the simulation are presented in Figures 5.49–5.52. In Figures 5.49 and 5.50
the trajectories of the deflections and velocities of the system are presented.

In Figure 5.51 the values of the controls produced by both control method are provided.
Figure 5.52 shows how the objective functional defined in Eq. (5.100) changes over time, i.e.
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Figure 5.49: The comparison of the numerical results of the simulation of the adaptive
controller and the LQR regulator.
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(b) The velocity of the second mass ẋ2.

Figure 5.50: The comparison of the numerical results of the simulation of the adaptive
controller and the LQR regulator.
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Figure 5.51: The control values generated by the adaptive controller and the LQR regulator.
Dashed lines represents the change of the stiffness of the system, updates of the adaptive
control law and detection of the change of the parameters.

J(t) =
∫ t

0

(
xT (τ)Qx(τ) + u2(τ)R

)
dτ . One can see in the first part of simulation (when

the stiffness between mass m2 and the rigid base is equal to k3 = 30 N/m) that the best
performance is provided by the LQ regulator. This result is caused by the feedback matrix
KLQR being calculated before simulation, with exact knowledge of the system dynamics.
The adaptive method starts with no knowledge of the system and begin with the safe but
not optimal “damping-like” control denoted by the feedback matrix K0. From t = 1.65 s

to t ≈ 8.5 s one can distinguish the transition phase of the adaptive controller, where the
control law is updated at every adaptation interval. It is important to point out that after
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Figure 5.52: The objective functions achieved by the adaptive control and the LQR regulator.
Dashed line represents the change of the stiffness of the system.

this transition phase, the adaptive controller achieve the same effectiveness as the LQR
algorithm. The main advantage of this adaptive control method is then the ability to
converge to the optimal performance algorithm, without the full knowledge of the system’s
dynamics.

After Ts = 30 s, when dynamical properties of the system suddenly change and the
simulation starts over from the initial state, the LQR control destabilizes the mechanical
system. All system variables diverge exponentially and energy is added to the system In
addition, the envelope of the control increases.

Response of the adaptive controller is dramatically different. As presented in Figure
5.51, the change of the system’s properties is detected almost immediately. The control
law is set to initial, stabilizing form. The system is taken to the equilibrium state in
about 15 seconds. These observations are validated by the measure of the performance
presented in Figure 5.52. During the transition time, the objective functional for the
adaptive control quickly increases, but when the control policy converges, the difference
between both controllers became steady. When the stiffness is reduced, the adaptive control
quickly converges and steers the system to its equilibrium state. In contrast, the objective
of the LQR simulation starts to grow exponentially. Considering only the second part of
the simulation, the final objective functionals achieved by both algorithms are equal to
0.6679 for the LQR algorithm and 0.0555 for the adaptive method, the improvement of the
performance is equal to 91.690%.



Chapter 6

Conclusions

In Chapter 2, the general control problem of stabilization of the system affected by
unpredictable uncertainties has been stated. The necessary and sufficient conditions of
optimality of the control have been formulated via calculus of variations, Maximum Principle,
and Principle of Optimality. It has been shown that computation of the optimal control
requires full knowledge about the future value of the disturbance that affects the system.
This condition cannot be satisfied in the real-life application scenario. As a solution,
the general framework of the adaptive control has been proposed that makes simplifying
assumptions that allow for computation of the optimal or near-optimal control and updates
frequently enough to provide a satisfying approximation of the actual, time-varying control
problem. This framework is based on the Model Predictive Control scheme. The adaptive
control methods for particular variants of the general problem have been formulated in
Chapters 3 and 4.

In Chapter 3, the focus is on the stabilization of systems affected by an external
disturbance. The proposed control method is based on the subsequent identification of
the dynamical model of the disturbance. This approximate model transforms the original,
time-variant dynamical system into the autonomous one. Independence of time significantly
reduces the complexity of the solution to the optimal control problem.

In the case of the active control, the resulting optimal control has analytical form and
is known as the Linear Quadratic Regulator. The first control method proposed in Chapter
3 relies on the finite horizon LQR. The second approach reduces the computational burden
by the employment of the infinite horizon LQR. In this case, the alpha-shift modification
of the performance criterion has been introduced to guarantee, that the modified optimal
control problem is well-posed.

The third control method is designed to stabilize mechanical systems via semi-active
devices. In this case, the near-optimal control method is proposed that is based on the
Lyapunov control theory. It has been proven that the method stabilizes the control system
and provides better performance than the constant control.

Chapter 4 focuses on the stabilization of the actively-controlled system subjected to
a sudden change of its internal parameters. A novel adaptive control method has been
designed for this control problem. The approach relies on the online identification of the
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special Lyapunov function and computation of the series of control laws. This series has
been proven to be stabilizing and converging to the optimal control law.

Chapter 5 presents the results of the numerical verification of the designed control
methods. The method described in Section 3.2 is tested against LQG control in the problem
of stabilization of the drilling machine. The proposed controller has outperformed the
classical LQG regulator in every considered type of excitation. In addition, the dependence
of the performance of the controller on its parameters has been also analysed numerically.

The control method formulated in Section 3.3 is employed in the stabilization of the
building subjected to the earthquake. Its performance is compared to the LQG and
H∞ controls. Four different excitation signals have been used, two of them are the
historical earthquake signals and the next two are the polyharmonic signals with frequencies
corresponding to the natural frequencies of the building. In each scenario, the proposed
adaptive scheme provided better control results than the comparative controllers.

The problem of stabilisation of the beam under a moving load has been chosen as
a verification scenario for the method designed in Section 3.4. The results have been
compared to the passive control and the optimal control computed via the direct multiple
shooting method. The beam has been subjected to the load moving with varying velocity.
For each considered trajectory of the load, the proposed adaptive strategy outperformed
the passive case. In addition, the comparison to the optimal control has proved that the
adaptive method provides near-optimal performance.

The adaptive controller defined in Chapter 4 has been tested numerically via simulation
of the conjugate oscillators subjected to the sudden change of the internal stiffness. The
method has been compared to the classical LQR controller. It has been verified, that the
proposed control method quickly converges to the optimal control law after the change of
the system’s dynamics. The LQR controller in the same simulation destabilized the system.

The adaptive control methods designed in Thesis have been proved to be of low
computational complexity and are characterized by such beneficial properties as stability
and near-optimality. The numerical simulations have proven that the methods outperform
the classical, non-adaptive schemes.

Future works

The results of the present work are planned to be extended in future works. These include:

• design of the semi-active adaptive controller for the systems affected by the change of
parameters,

• theoretical and numerical analysis of the performance of the switching control law
defined in Section 3.4 in comparison to other switching control laws, such as clipped-
LQR or Prestress-Accumulation-Release strategy,

• adaptation of the control methods to the distributed control approach while main-
taining the stability and near-optimality of the controllers.



Appendix A

Identification of simplified model of
structure

In this appendix, the numerical identification procedure of the SM model (5.33) based on
the response of the RM model is presented. Stiffness parameters ki are determined by a
static testing of the reference model. Constant forces were applied to subsequent levels and
the static deflections of all floors were then measured. Let the force applied to each floor be
equal to fstatic and let the vector Xmeas.

i ∈ R20 represent the measured static deflections of
the on-ground levels under the force fstatic applied to i-th floor. The dependence between
the deformation of the simplified model and this set of static forces can be written as:[

Xmodel
1 Xmodel

2 · · · Xmodel
20

]
= (K (ξ))−1 fstatic. (A.1)

Obviously, the goal of the identification scheme is to find the parameters ξ such that
the static response of the simplified model

[
Xmodel

1 · · · Xmodel
20

]
fits the static response

of the reference model
[
Xmeas.

1 · · · Xmeas.
20

]
. The stiffness parameters that we seek are

the solution of the optimization problem:

ξ = arg min
ξ

∥∥∥[Xmeas.
1 · · · Xmeas.

20

]
− (K(ξ))−1 fstatic

∥∥∥2

2
. (A.2)

For the rest of the appendix we assume K = K(ξ) with ξ obtained in optimization problem
(A.2).

The remaining mass and damping parameters were determined by the harmonic charac-
teristics of the RM model. Analogously to the stiffness determining, the RM model was
excited by a sinusoidal force with constant amplitude that was applied subsequently to
every on-ground floor of the structure. In addition to these 20 excitations, the harmonic
excitation by the acceleration of the base was also carried out. The system was tested for
uniformly distributed frequencies in the range (0; 1.02] Hz. This frequency spectrum was
chosen to cover the first three modes of the RM model. The amplitudes Ampik(ω) of the
steady-state oscillations of the i-th floor deflection excited by k-th excitation source were
then measured.
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The analogous amplitude characteristic for the simplified model was obtained by the
Laplace transform. Let us rewrite (5.33) in the state-space form:[

q̇

q̈

]
(t) =

[
0 I

−M−1 (κ) K −M−1 (κ) C (λ)

][
q

q̇

]
+

[
0 0

M−1 (κ) 1

][
F(u)

ẍe

]
, (A.3)

where q and q̇ are vectors of the floor’s displacements and the floor’s velocities, respectively.
The frequency spectrum of the linear dynamical system (A.3) is closely related to the
transfer function

G (s,κ,λ) =[
I 0

](
sI40 −

[
0 I20

−M−1 (κ) K −M−1 (κ) C (λ)

])−1 [
0 0

M−1 (κ) 1

]
. (A.4)

This transfer function calculated for s = jω, G (jω,κ,λ) = (gik (jω,κ,λ)) ∈ C20×21 can
be interpreted as a complex steady-state response of the i-th floor displacement excited by
sinusoidal excitation of the k-th input (20 forces and base acceleration) with an angular
frequency ω. The steady-state amplitude is provided by |gik(jω)|.

The optimization procedure is used to determine the parameters that fit measured
amplitude of a harmonic response:

(κ,λ) = arg min
(κ,λ)

20∑
i=1

21∑
k=1

∑
w

[|gik (jω,κ,λ)| −Ampik(ω)]2. (A.5)

The established parameters are presented in Table A.1. It can be emphasized that the

Table A.1: The values of the simplified model parameters.

Index mass
[
105 · kg

]
stiffness

[
107 · N

m

]
damp. coeff.

[
Ns
m

]
1 3.3642 5.8212 9.4115 · 106

2 3.3988 10.865 2.9099 · 102

3 3.3894 9.0599 8.5249 · 106

4 3.4034 8.527 9.5108 · 106

5 2.305 8.1943 1.1999 · 107

6 2.3035 10.470 1.4528 · 107

7 3.1852 7.7363 9.8897 · 106

8 2.3181 7.3938 1.2645 · 107

9 2.2823 9.9801 2.064 · 107

10 2.2767 6.4702 4.9535 · 106

11 2.2893 7.9895 2.8286 · 102

12 3.3379 6.2556 1.4224 · 107

13 3.3844 7.2358 1.0301 · 107

14 3.367 6.5338 1.1744 · 107

15 2.7544 5.5089 1.1078 · 107

16 2.2899 6.0224 9.6148 · 106

17 2.2762 6.8858 6.8505 · 106

18 2.3288 5.0551 1.7492 · 102

19 3.4071 4.5663 7.3097 · 106

20 3.4095 3.399 1.008 · 107
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sum of estimated masses equals 5.7071 · 106 kg, which differs from the actual mass of the
structure (neglecting the mass of the basement and first levels) equal to 5.543 · 106 kg by
only 3%.

To verify the accuracy of the identification procedure, the time responses of the simplified
and reference models subjected to the same acceleration excitation were compared. The
signal that we used is the recorded earthquake in El Centro, 1940 (Figure A.1). Figure
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Figure A.1: Ground acceleration measured at El Centro 1940 earthquake.
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Figure A.2: Comparison of 2., 11., 21. floors deflection of the reference and simplified
models excited by the El Centro earthquake signal.

A.2 shows the course of deformation of the 1st, 2nd and 20th (roof) floors of SM model and
the corresponding 2nd, 11th and 21st floors of RM model. As can be seen, the simplified
model accurately reproduces the time characteristics of the reference model.
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