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Modelowanie właściwości efektywnych i pękania w kompozytach  

o wzajemnie przenikających się fazach metalu i ceramiki 

Streszczenie 

Kompozyty metalowo-ceramiczne typu wzajemnie przenikających się faz 

(Interpenetrating Phase Composites, IPC), będące podmiotem tej rozprawy, charakteryzują 

się specjalną mikrostrukturą, w której zarówno osnowa jak i zbrojenie są ciągłe we 

wszystkich trzech kierunkach w przeciwieństwie do kompozytów ze zbrojeniem nieciągłym 

w postaci, np. cząstek bądź włókien. Metalowo-ceramiczne kompozyty IPC są najczęściej 

wytwarzane w procesie ciśnieniowej lub bezciśnieniowej infiltracji ciekłego metalu w 

porowatą preformę ceramiczną. Jeśli jedna z faz zostałaby usunięta z IPC, druga faza 

tworzyłaby otwarto-komórkową piankę o niezerowej sztywności.  

Kombinacja specyficznej mikrostruktury i właściwości materiałów fazowych IPC 

powoduje, że kompozyty te wyróżniają się doskonałymi właściwościami mechanicznymi, 

cieplnymi i użytkowymi. Cechy wyróżniające IPC to m. in. większa jednorodność 

mikrostruktury, stabilność mikrostruktury w podwyższonej temperaturze, podwyższone 

właściwości mechaniczne (wytrzymałość, odporność na pękanie), lepsze właściwości 

termiczne (żaroodporność i odporność na zmiany temperatury, wyższa przewodność cieplna) i 

użytkowe (odporność na ścieranie, odporność na korozję). Wymienione cechy powodują, że 

kompozyty IPC są atrakcyjnymi materiałami konstrukcyjnymi i funkcjonalnymi dla 

przemysłu transportowego, energetycznego czy elektronicznego, co stanowi silną motywację 

dla rozwoju badań w zakresie technologii wytwarzania, badania mikrostruktury i właściwości 

oraz modelowania materiałów IPC. 

Tematem rozprawy doktorskiej jest modelowanie makroskopowych (efektywnych) 

właściwości sprężystych i termicznych oraz procesów deformacji i pękania kompozytów IPC 

pod działaniem obciążeń quasi-statycznych. Praca rozpoczyna się od wprowadzenia i 

przeglądu literatury na temat modelowania właściwości efektywnych i pękania materiałów 

IPC. Następnie przedstawiono uzasadnienie podjęcia przedstawionych badań. 

Zaproponowano modele analityczne i numeryczne do szacowania efektywnych stałych 

sprężystości kompozytów IPC. Mechanizmy deformacji i pękania badanych kompozytów 

zostały przedstawione w serii modeli numerycznych przy przyjęciu uproszczonej 

reprezentacji mikrostruktury IPC oraz z uwzględnieniem rzeczywistej mikrostruktury 

materiału, otrzymanej za pomocą mikrotomografii komputerowej (computed 

microtomography, micro-CT). W dodatku do rozprawy zamieszczono wyniki własnych badań 

doświadczalnych związanych z wytwarzaniem i charakteryzacją materiałów IPC, jako 

informacji pomocniczych przy konstruowaniu modeli IPC. 

Zaproponowano modele analityczne do wyznaczania efektywnych stałych sprężystości 

(modułu Younga, liczby Poissona, modułu ścinania i modułu objętościowego) IPC jako 

rozszerzenia rozwiązań Tuchinskiiego (1983) i Fenga et al. (2003, 2004) bazujących na 

reprezentatywnej komórce jednostkowej IPC w formie krzyżaka. Modele Tuchinskiiego 

(1983) i Fenga et al. (2003, 2004) zostały wyprowadzone m. in. z modułu Younga i liczby 

Poissona, według serii podziałów komórki jednostkowej. W zaproponowanej modyfikacji 
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modeli Tuchinskiiego (1983) i Fenga et al. (2003, 2004) stałe efektywne wyprowadzono z 

modułu objętościowego i modułu ścinania, będących modułami własnymi izotropowego 

tensora sztywności. Modele te nazwano „modelami rozszerzonymi V-V-R” i „R-V-V”. 

Przeanalizowano również trzeci możliwy sposób podziału komórki jednostkowej, nazwany 

„rozszerzonym V-R-V”. Opracowane „rozszerzone” modele analityczne zastosowano do 

oszacowania efektywnych stałych sprężystości w funkcji udziałów objętościowych fazy 

metalu dla kompozytów infiltrowanych Al2O3/Cu i Al2O3/Al. Wyniki  porównano z granicami 

Voigta i Reussa oraz z oryginalnymi modelami Tuchinskiiego (1983) i Fenga et al. (2003, 

2004). 

Modele analityczne do szacowania efektywnych współczynników rozszerzalności cieplnej 

kompozytów IPC zostały wyprowadzone z oszacowań Rosena i Hashina (1970). Oszacowania 

Rosena i Hashina z uwzględnieniem granic Voigta i Reussa zostały utworzone poprzez 

podstawienie odpowiednich oszacowań na efektywny moduł objętościowy. Uprzednio 

wyprowadzone oszacowania na efektywny moduł objętościowy według modeli rozszerzonych 

V-V-R, R-V-V i V-R-V zostały podstawione do odpowiednich równań w celu uzyskania 

oszacowań Rosena i Hashina z uwzględnieniem ww. modeli rozszerzonych. Wyniki 

oszacowań porównano dla kompozytów Al2O3/Cu i Al2O3/Al. 

Numeryczny dwuwymiarowy model Mishnaevsky’ego (2006, 2007b) zastosowano do 

porównania wpływu modelu mikrostruktury na makroskopowe stałe sprężystości. Analizę 

przeprowadzono na przykładzie modelu cząstek i modelu krzyżaka dla kompozytu Al2O3/Cu. 

Trójwymiarowy model krzyżaka będący uproszczoną reprezentacją przenikających się faz 

mikrostruktury IPC został zastosowany w modelu numerycznym MES do szacowania 

efektywnych stałych sprężystości, modułu Younga, liczby Poissona i modułu ścinania, w 

przypadku jednoosiowego rozciągania i prostego ścinania. Anizotropia mikrostruktury 

krzyżaka została pominięta. Obliczenia przeprowadzono z użyciem programu FEAP 7.5 dla 

kompozytu Al2O3/Cu IPC. 

Zaproponowano trójwymiarowy model MES uwzględniający rzeczywistą mikrostrukturę 

materiału IPC otrzymaną z mikrotomografii komputerowej (micro-CT). Opracowano dwie 

niezależne metody przekształcenia trójwymiarowych obrazów mikrostruktury w siatkę 

sześciennych ośmiowęzłowych elementów skończonych: metodę zawierającą m. in. własne 

kody napisane w języku FORTRAN oraz metodę wykorzystującą komercyjne 

oprogramowanie Simpleware ScanIP/FE. W obu metodach przetwarzane są trójwymiarowe 

dane mikrostruktury kompozytu z micro-CT, tworzone siatki elementów skończonych 

odtwarzające mikrostrukturę materiału, oraz wykonywane obliczenia MES za pomocą 

programu FEAP lub ABAQUS. Wyniki modeli numerycznych dla kompozytu infiltrowanego 

Al2O3/Cu zostały porównane z istniejącymi w literaturze oszacowaniami analitycznymi oraz z 

modelami „rozszerzonymi” opracowanymi w ramach tej rozprawy.  

Druga część rozprawy jest poświęcona modelowaniu pękania w materiałach typu IPC. 

Zaproponowano dwa zestawy modeli numerycznych: (i) modele wstępne (przygotowawcze), 

przeznaczone do analizy deformacji w sprężysto-plastycznym włóknie wzmacniającym 

szczelinę w sprężystej osnowie, (ii) modele próby Compact-Tension (C-T), do numerycznego 



iii 

 

wyznaczania całki J w kompozytach IPC z uwzględnieniem propagującej szczeliny w próbie 

C-T. 

W grupie modeli wstępnych opracowano dwuwymiarowy model MES ukośnego włókna 

wzmacniającego dwa rozłączne bloki materiałów (idealizacja szczeliny) dla ustalonych 

wartości długości odspojenia włókna od osnowy. Obliczenia wykonano w programie FEAP 

7.5 dla przypadku sprężysto-plastycznego włókna miedzi podlegającego dużym deformacjom 

umieszczonego w sprężystej osnowie korundowej Al2O3 oraz dla przypadku sprężystego 

włókna korundowego Al2O3 umieszczonego w sprężysto-plastycznej osnowie miedziowej. 

Ponadto, w grupie modeli wstępnych przygotowano osiowosymetryczny model elementów 

skończonych pojedynczego włókna wzmacniającego z ustalonymi długościami odspojenia w 

programie FEAP 7.5 dla sprężysto-plastycznego włókna miedzi podlegającego dużym 

deformacjom w sprężystej osnowie z ceramiki Al2O3. Obliczenia zostały wykonane za 

pomocą oprogramowania ABAQUS (2010). Zależności naprężenie-przemieszczenie we 

włóknie wzmacniającym zostały porównane z analitycznymi wynikami Matagi (1989). 

Zaproponowano osiowosymetryczny model problemu wyciągania włókna z osnowy 

(pullout), będący rozszerzeniem modelu Bheemreddy’ego et al. (2013), z uwzględnieniem 

dużych deformacji sprężysto-plastycznych włókna miedzi, a także kohezyjnej granicy między 

fazami Cu i Al2O3. Celem modelu było zbadanie zachowania się układu włókno/osnowa oraz 

identyfikacja właściwości mechanicznych tego układu podczas zjawiska wyciągania włókna, 

które może zachodzić podczas pękania w kompozytach IPC, gdy rozwijająca się szczelina w 

osnowie napotyka na włókno. Model MES oraz obliczenia zostały przeprowadzone w 

programie ABAQUS (2010). 

Osiowosymetryczny model pojedynczego włókna wzmacniającego z uwzględnieniem 

rozwoju odspojenia został opracowany jako kolejny etap w identyfikacji procesów 

zachodzących podczas zjawiska powstawania metalowych mostków łączących powierzchnie 

szczeliny (crack bridging) w kompozytach Al2O3/Cu IPC. Powierzchnia międzyfazowa 

pomiędzy miedzianym włóknem a korundową osnową została zamodelowana jako kohezyjna. 

Model elementów skończonych oraz obliczenia zostały wykonane przy pomocy programu 

ABAQUS (2010). Wyniki porównano z wynikami dla modelu wyciągania (pullout) oraz z 

analitycznymi wynikami Matagi (1989).  

Kolejny zestaw modeli numerycznych został opracowany dla próby rozciągania Compact-

Tension kompozytów IPC z zamiarem numerycznego wyznaczenia całki J, aby stworzyć 

numeryczne podstawy określania odporności materiałów IPC na pękanie (KIc) bez potrzeby 

wykonywania kosztownych eksperymentów. Wymiary próbek C-T zostały dobrane na 

podstawie normy ASTM E399. Pierwszy z modeli to dwuwymiarowy model C-T z 

pojedynczym skośnym włóknem wzmacniającym. W próbce ze sprężystego korundu 

znajdowała się wstępnie zainicjowana szczelina oraz sprężysto-plastyczne włókno miedzi, 

prostopadłe lub nachylone pod kątem do płaszczyzny szczeliny. Całka J została wyznaczona 

przy użyciu programu FEAP 7.5, w oparciu o przyrost energii potencjalnej ΔΠ względem 

nieskończenie małego przyrostu długości szczeliny Δa. Dla porównania, obliczenia 

wykonano także dla próbki z jednolitej ceramiki. Kolejny model to dwuwymiarowy model z 

wieloma włóknami wzmacniającymi w sprężystej osnowie korundowej. Quasi-statyczna 
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propagacja szczeliny została zamodelowana w programie ABAQUS (2010). Wynikiem tego 

modelu było wyznaczenie całki J w funkcji przyrostu długości szczeliny. 

W pierwszym z trójwymiarowych modeli C-T, cylindryczne włókna wzmacniające zostały 

umieszczone w pobliżu wierzchołka szczeliny. Położenie i wymiary włókien dobrano jak w 

eksperymencie Hoffmana et al. (1997), tzn. były to dwie rodziny równoległych sprężysto-

plastycznych włókien. Otaczający materiał osnowy zamodelowano jako ośrodek sprężysty o 

efektywnych stałych sprężystości wyznaczonych za pomocą opracowanego wcześniej modelu 

rozszerzonego V-R-V. Całka J nie została wyznaczona dla tego modelu, jedynie pola 

naprężenia. 

Drugi z trójwymiarowych modeli C-T uwzględniał rzeczywistą mikrostrukturę kompozytu 

infiltrowanego Al2O3/Cu otrzymaną z mikrotomografii komputerowej (micro-CT). Z powodu 

znacznych rozmiarów modelu numerycznego przyjęto założenia upraszczające: (i) dla 

analizowanego problemu Compact-Tension (C-T) zastosowano submodelling z rzeczywistą 

mikrostrukturą materiałową w pobliżu wierzchołka szczeliny (dane z micro-CT) oraz 

ujednorodnionymi stałymi materiałowymi poza wierzchołkiem szczeliny, (ii) do wykonania 

obliczeń z modelu próbki C-T z karbem i wstępną szczeliną wycięto numerycznie „plaster”, 

dla którego przeprowadzono obliczenia MES. Podobnie jak w poprzednich modelach, 

przyjęto model sprężysto-plastyczny dla fazy miedzi w plastrze materiału z mikrostrukturą 

rzeczywistą. Opracowany model uwzględnia ewolucję szczeliny wywołaną quasi-statycznym 

obciążeniem przemieszczeniowym. Do obliczeń zastosowano Extended Finite Element 

Method (XFEM). Wyznaczone wartości całki J odniesione do przyrostu długości szczeliny, 

odpowiadają początkowi procesu rozwoju szczeliny. Stwierdzono jakościową zgodność z 

wynikami innych autorów dot. wyznaczania całki J dla kompozytów MMC wytwarzanych na 

drodze infiltracji. 

Na zakończenie przedstawiono podsumowanie modeli zamieszczonych w pracy oraz 

sformułowano najważniejsze wnioski i kierunki dalszych badań. 

W Załączniku opisano własne badania doświadczalne związane z wytwarzaniem i 

charakteryzacją kompozytów Al2O3/Cu IPC, które służyły jako dane pomocnicze dla modeli 

przedstawionych w rozprawie. Opisano kolejne etapy procesu wytwarzania kompozytów IPC 

z mikrostrukturą na bazie skrobi kukurydzianej i ryżowej jako czynników porotwórczych 

(pore forming agent, PFA) z różnymi udziałami objętościowymi fazy miedzi, wytworzonych 

w procesie infiltracji pod ciśnieniem. Dokonano pomiarów porowatości determinującej 

zawartość fazy metalu w IPC oraz modułów sprężystości kompozytów Al2O3/Cu. Pomiary 

modułu Younga przeprowadzono w temperaturze pokojowej i w cyklach termicznych do 

800°C za pomocą techniki wzbudzania impulsowego. 

Praca zawiera szereg elementów nowatorskich w zakresie modelowania właściwości 

mechanicznych kompozytów o wzajemnie przenikających się fazach metalu i ceramiki (IPC). 

Szczegółowo zostały one omówione w Rozdziale 7. Jednym z głównych osiągnięć pracy jest 

zaproponowanie metodologii wykorzystania danych mikrostrukturalnych z mikrotomografii 

komputerowej w problemach wyznaczania stałych efektywnych i parametrów pękania 

materiałów IPC i jej praktyczna numeryczna implementacja w ramach MES. 
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Abstract 

Metal-ceramic interpenetrating phase composites (IPCs), which are the subject of this 

dissertation, are composites with special microstructure, in which phases are continuous in 

three dimensions, in contrary to composites with discrete reinforcements. Metal-ceramic IPCs 

are typically manufactured by pressure-assisted or pressureless infiltration of molten metals 

into porous ceramic preforms. If one phase was removed from an IPC, the other phase would 

form an open-celled foam with a non-zero rigidity.  

The combination of specific microstructure of IPCs and properties of its constituents is 

expected to result in an outstanding performance of this class of metal-ceramic composites. 

The main features of IPCs include improved homogeneity, microstructure stability at elevated 

temperature, enhanced mechanical properties (strength, fracture toughness), improved thermal 

(heat resistance and thermal stability, increased thermal conductivity) and service properties 

(wear resistance, corrosion resistance). These superior characteristics make the IPCs attractive 

structural and functional materials for e.g. transport, power and electronic industry sectors. 

The industry push for new materials and technologies provides a strong motivation for 

research in the fields of processing, characterisation and modelling of IPCs. 

This dissertation is focused on modelling of the effective elastic and thermal properties, 

deformation and fracture of IPCs. It begins with the introduction and the state of the art in 

modelling of the effective material properties and fracture of IPCs. Then, the motivation for 

the thesis theme is given. Analytical and numerical models are proposed to predict the 

effective elastic properties of the IPCs. The problems of deformation and fracture of IPCs are 

addressed numerically in a set of models aiming at the determination of the fracture 

parameters taking into account the crack bridging mechanism. A particular attention is given 

to creation of numerical models for effective elastic constants and fracture parameters of IPCs 

based on their real microstructure obtained from computed microtomography (micro-CT) 

images. Additional information from own experimental research on manufacturing and 

characterization of IPCs is reported in Appendix as a supporting material used in the 

modelling.  

The models of effective material properties developed in this thesis are presented starting 

with analytical estimates based on a unit cell mimicking the IPC microstructure, then simple 

numerical models follow, to end up with some FEM models based on micro-CT 

representation of real IPC microstructures. Below the most essential results are summarized in 

this order.  

Analytical models for the effective elastic constants (Young’s modulus, Poisson’s ratio, 

shear modulus and bulk modulus) are proposed as extensions of Tuchinskii (1983) and Feng 

et al. (2003, 2004) approximations. The models of Tuchinskii (1983) and Feng et al. (2003, 

2004) were derived from Young’s modulus and Poisson’s ratio, according to a series of 

divisions of the unit cell. In this dissertation, the modifications of the models of Tuchinskii 

(1983) and Feng et al. (2003, 2004) consist in the derivation of the effective constants from 

the eigenmoduli of the isotropic stiffness tensor. These modified models are called “extended 

V-V-R” and “R-V-V” models. Also, the third possible way of unit cell partitioning is proposed, 
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leading to the “extended V-R-V” model. The effective elastic constants are estimated with 

respect to the volume fraction of the metal phase. The three extended models are implemented 

for Al2O3/Cu and Al2O3/Al IPC compositions and compared with the Voigt and Reuss bounds 

on the effective moduli and with the models of Tuchinskii (1983) and Feng et al. (2003, 

2004).  

Analytical models for the effective coefficients of thermal expansion are derived based on 

the Rosen and Hashin (1970) estimates. First, the Rosen and Hashin estimates with regard to 

the Voigt and Reuss bounds are determined by substituting the estimates of the effective bulk 

modulus for the respective bound. Then, the previously derived relationships for the bulk 

modulus using the extended models are applied to obtain the Rosen and Hashin estimates for 

CTEs of IPCs. The CTE models are shown at work on the examples of Al2O3/Cu and 

Al2O3/Al IPCs.  

The numerical two-dimensional model of Mishnaevsky (2006, 2007b) is adapted to 

compare the influence of particle-like and cross-like microstructure on the effective properties 

of Al2O3/Cu composite.  

A numerical Finite Element model with simplified three-dimensional cross-like 

interpenetrating microstructure is proposed for estimation of the effective elastic constants: 

Young’s modulus, Poisson’s ratio and shear modulus. The effective elastic constants are 

derived for uniaxial tension and simple shear neglecting the anisotropy of the cross-like 

microstructure. The calculations are performed with the FEAP 7.5 (Taylor, 2005) programme 

for Al2O3/Cu IPC. 

As the next logical step a numerical three-dimensional Finite Element model with 

microstructure of a real IPC material obtained with micro-CT is constructed. Two 

independent methods of transferring of the volumetric data into eight-node cubic finite 

elements are proposed using (i) the self-written codes in FORTRAN, and (ii) the commercial 

software Simpleware ScanIP/FE. Both methods involve acquisition of the three-dimensional 

data of the composite microstructure from micro-CT scans, creation of the FE mesh of the 

material microstructure, and finally performing FEM calculations within FEAP or ABAQUS 

environment. The results of the numerical models implemented for Al2O3/Cu IPCs are 

compared with analytical estimates from the literature and with the extended models 

developed within this thesis.  

 The second part of the thesis is devoted to modelling of crack initiation and growth in IPC 

materials. Two sets of numerical models are proposed: (i) “prerequisite models” to analyze 

the deformation of an elastic-plastic fibre reinforcing the crack in an elastic matrix, and (ii) 

models of the Compact-Tension (C-T) test to numerically determine the J-integral in an IPC 

with a growing crack. Within the first set, a two-dimensional FE model of a skew reinforcing 

fibre with fixed debonding lengths is created and implemented using FEAP 7.5 programme. 

The model includes the case of an elastic-plastic copper fibre undergoing large deformations 

embedded in an elastic alumina Al2O3 matrix and the opposite case of an elastic alumina fibre 

embedded in an elastic-plastic copper matrix. Also, an axisymmetric FE model of a single 

reinforcing fibre with fixed debonding lengths is prepared with FEAP 7.5 for an elastic-plastic 

aluminum- or copper fibre in an elastic alumina Al2O3 matrix. The FE mesh is created with 
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FEAP 7.5 but the calculations were effectively done with ABAQUS (2010) software. The 

stress-displacement relationships in the bridging fibre are compared with the analytical results 

of Mataga (1989). 

An axisymmetric model of the pullout problem is proposed as an extension of the 

Bheemreddy et al. (2013) model by including the large plastic deformations of the copper 

fibre and by modelling the interface between the copper fibre and alumina Al2O3 matrix as 

cohesive. The aim of the model is to investigate the behaviour of a fibre/matrix material 

system and to identify the fibre/matrix interface mechanical properties during pullout. The 

pull-out phenomenon often accompanies fracture in IPC materials when a crack growing 

through the matrix meets the fibre. The FE model and calculations are done using ABAQUS 

(2010).  

An axisymmetric model of a single reinforcing fibre with debonding evolution is created 

as a next step to identify the effects  taking place during crack bridging in an Al2O3/Cu IPC. 

The interface between copper fibre and alumina Al2O3 matrix is modelled as cohesive. The 

FE model and calculations are made in ABAQUS (2010). The results are compared with the 

pullout results and the analytical results of Mataga (1989).  

Another set of numerical models is proposed to mimic the compact tension (C-T) 

experimental test with the main goal to determine the J-integral, and eventually, to give 

grounds for numerical prediction of the fracture toughness of IPCs in the future. The 

dimensions of the C-T specimens are specified according to the ASTM E399 standard.  

The first model of the C-T test is two-dimensional with a single elastic-plastic copper fibre 

reinforcing a pre-crack in an alumina matrix. The reinforcing fibre is either perpendicular or 

inclined to the crack plane. The J-integral is calculated using FEAP 7.5 based on the potential 

energy increase ΔΠ related to infinitesimal crack length increase Δa. For comparison, the J-

integral is also computed for an unreinforced crack in the ceramic C-T specimen. The second 

model of the C-T test is two-dimensional with multiple reinforcements (elastic-plastic copper 

fibres in alumina matrix) along the crack trajectory. The quasi-static crack propagation is 

modelled in ABAQUS (2010). The outcome of the model is the J-integral as a function of the 

increasing crack length. 

A three-dimensional model of the C-T experiment is proposed next in which cylindrical 

reinforcing fibres are placed in the vicinity of the crack tip, reproducing the special fibre 

arrangement used in the physical experiments of Hoffman et al. (1997). The matrix material 

surrounding the crack is modelled as elastic with the effective moduli calculated according to 

the extended V-R-V model developed earlier in this thesis. The fibres are modelled as elastic-

plastic. This model of the C-T specimen with a family of parallel fibres is considered as a 

prerequisite for the 3D model of a real IPC microstructure described in the next chapter. The 

J-integral was not calculated for this model, only the stress fields. 

Finally, a three-dimensional numerical model is proposed in ABAQUS (2010) for the 

compact tension (C-T) test that accounts for the real Al2O3/Cu IPC microstructure obtained 

from the computed microtomography X-ray (micro-CT) images. Due to the large size of the 

numerical model the following simplifications are made at this stage of development: (i) a 
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submodel with the real IPC microstructure from micro-CT scans is employed in the vicinity 

of the crack tip, (ii) the rest of the C-T specimen is modelled as a homogenized material with 

effective properties derived from the extended V-R-V model, (iii) the submodel is applied only 

to a slice of the C-T specimen to enable effective computations on a high performance 

computer. As in the previous models, the copper phase in the real IPC slice is modelled as 

elastic-plastic. The crack propagation in the C-T probe under displacement-controlled quasi-

static loading is modelled with Extended Finite Element Method (XFEM). The resulting J-

integrals vs. crack length increase are obtained for the initial stage of the crack propagation 

process.  

In the Appendix some experimental data concerning the manufacturing and 

characterization of Al2O3/Cu IPCs are included as a supporting material for the modelling 

presented in the thesis. The process of manufacturing of the IPCs with microstructures based 

on corn and rice starch pore forming agents (PFA) of different copper volume fractions, made 

with gas pressure assisted infiltration technique is described. The Al2O3/Cu IPCs with 

different microstructures and copper volume fractions are characterized. The porosity and 

copper content measurements as well as Young’s modulus at room temperature and in thermal 

cycles of up to 800°C with the impulse excitation technique are reported.  

This thesis contains several novel elements in the modelling of mechanical properties of 

IPCs, which are addressed in detail in Chapter 7. Succinctly stated, one of the main 

contributions of this research to the field of IPCs modelling is the proposed methodology of 

using micro-CT images of real interpenetrating microstructure in the Finite Element Method 

approach when calculating the effective elastic constants and the J-integral for the 

interpenetrating phase composites. 
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1. Introduction 

 

A composite material is usually defined as a man-made material composed of at least two 

chemically different and clearly separated materials that both are distributed throughout the 

whole volume of the composite, and for which the properties of the whole composite are 

different than the properties of its components (Broutman and Krock, 1974).  

Metal-ceramic composites are advanced engineering materials combining mechanical and 

physical properties of both components aiming to ensure durable and reliable functioning 

under demanding in-service conditions such as high temperature, high pressure, chemically 

aggressive environment, complex mechanical loading, or combinations of these factors. They 

exhibit superior mechanical and service properties compared to conventional structural 

materials, e.g. high mechanical strength, good wear resistance, resistance to high temperature 

and thermal shocks, corrosion resistance and low specific weight. They may also be designed 

as multifunctional materials with specific properties like electric conductivity, heat 

conductivity, or special magnetic properties. Owing to these unique combinations of 

properties metal-ceramic composites are being used in automotive, aerospace and rail 

transport substituting steels or metal alloys in certain structural elements subject to intensive 

frictional wear, elevated temperature and corrosive environment. Examples of metal-ceramic 

composites applications in transport sector include brake discs, clutches, valves, nozzles, 

combustion chambers and exhaust systems. Other applications of metal-ceramic composites 

can be found in energy, electronics and medical equipment sectors. 

The main improvements in material properties of composites compared to the properties 

of their components can be achieved with the proper choice of the matrix and reinforcement 

materials, their form, volume fraction and distribution throughout the composite structure, as 

well as by a proper method of manufacturing (Pietrzak, 1998). The still unresolved issues in 

metal-ceramic composites are the relatively high manufacturing cost and the necessity of 

using suitable joining techniques to integrate them with other materials in structural 

components.  

One of the main drivers of development of metal-ceramic composites is the inherent 

brittleness and low fracture toughness of ceramics. The brittleness of ceramics is the origin of 

their low resistance to crack growth, which limits their potential technological applications as 

structural materials. Improving fracture toughness of ceramics has been a serious concern for 

a long time. Additional toughness can be brought to ceramics through the mechanisms like 

transformation toughening, reinforcing with whiskers, platelets or ceramic fibers, microcrack 

shielding, ductile particle toughening, and toughening with metallic phase infiltrated into a 

ceramic porous matrix. In the case of ceramics reinforced with metal particles typical 

toughening mechanisms are crack trapping, crack bridging and crack deflection. For example, 

a sixtyfold fracture toughness increase for a glass reinforced with dispersed partly oxidized 

aluminum particles, four time increase of fracture toughness for Al2O3 infiltrated with Ni3Al 

intermetallic as compared with monolithic Al2O3 (cf. Basista and Węglewski, 2006), or a 

twofold fracture toughness increase for a WC/Co composite as compared with pure WC (cf. 

Felten et al., 2008), were reported in the literature.  
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In general metal-ceramic composites are often divided into metal-matrix composites 

(MMCs) where ceramic reinforcement is added to a metal matrix, and cermets in which bulk 

ceramics (e.g. oxides, borides, or carbides) are strengthened with metal particles. Depending 

on the physical structure of the composite cermets can also be considered as metal matrix 

composites, but their metal content is usually less than 20% by volume. In MMCs the 

reinforcement may be of different forms (e.g. particles, fibres, or porous skeletons) and sizes 

(e.g. continuous or finite). For the sake of completeness it should be added that a subgroup of 

composite materials called ceramic-matrix composites (CMCs) are not considered as metal-

ceramic composites as the reinforcement of ceramic matrices are typically ceramic fibres (e.g. 

carbon, silicon carbide, aluminium oxide, etc.).  

Interpenetrating phase composites (IPCs), which are the subject of this thesis, are a special 

type of composites containing no discrete reinforcements but consisting of completely 

interconnected networks of solid phases, which form almost porosity-free interpenetrating 

structures. If one phase was removed from the IPC, the other phase would form an open-

celled foam with a non-zero rigidity. If the IPC is made of metal and ceramic it is typically the 

metallic phase that fills out the porous ceramic preform.  

In the literature, interpenetrating phase composites (IPCs) are often classified as metal-

matrix composites (MMCs) obtained with a specific production technology that is liquid 

metal infiltration into a porous ceramic preform. In the MMC nomenclature the porous 

ceramic preform is considered as the reinforcement, while metal filling the pores as the matrix 

(e.g. Léger et al., 2012). Conversely, other authors (e.g. Skirl, 1998) describe IPCs as 

ceramic-matrix composites (CMCs) reinforced with an interpenetrating ductile metal phase. 

The interpenetrating composites form spatially complicated microstructures that are more 

difficult to describe than those formed by fibres or inclusions in the matrix. Exemplary 

microstructures of real two-phase interpenetrating Al2O3/Cu and Al2O3/Al composites are 

shown in Fig. 1.1. Here, the material microstructure is composed of networks of metallic 

struts with alumina between them. As both phases form irregular 3D patterns the IPC 

microstructures can be described as three-dimensional objects only (they do not have their 2D 

equivalents). 

Based on the properties of the constituent phases and geometrical features of the 

composite, the main characteristics of the IPCs can be determined. The simplest and often 

used parameter is the volume fraction of phases enabling comparison of composites with 

different types of microstructures or phase materials, comparison of different methods of 

modelling, and also comparison of the analytical, numerical and experimental results all 

together. However, for geometrically complicated microstructures of IPCs more detailed 

characteristics are necessary. Such geometrical characteristics are phases’ shape basis and 

characteristic dimension of the ligament – its length, diameter, or aspect ratio. If a pore 

forming agent (PFA) is used to obtain a porous ceramic preform for metal infiltration, the 

phases’ shape basis depends on the traces left in the ceramic’s structure by the PFA after 

burnout. Otherwise, if a liquid phase (metal) is infiltrated into a porous solid phase (ceramic) 

the phases’ shape basis depends on the shape of the solid phase that was formed previously. 

For example, the solid phase (ceramic) may have the form of a fibrous skeleton made of 

https://en.wikipedia.org/wiki/Oxide
https://en.wikipedia.org/wiki/Boride
https://en.wikipedia.org/wiki/Carbide
https://en.wikipedia.org/wiki/Metal_matrix_composite
https://en.wikipedia.org/wiki/Metal_matrix_composite
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interconnected ceramic fibres (e.g. Saffil fibres), or a porous foam, whose geometrical 

characteristics are predetermined by the polyurethane foam used.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Examples of metal-ceramic composite materials with interpenetrating microstructure 

(IPCs): a) Al2O3/Cu composite, red colour - alumina phase, blue - copper phase (courtesy of G. Geier, 

Leoben), b) image of copper phase in Al2O3/Cu composite obtained with Simpleware ScanIP software, 

c) SEM image of fracture surface of Al2O3 preform of 34% open porosity pressure infiltrated with Al 

alloy 44200 (courtesy of PZMK IPPT PAN).  

 

Elastic properties are important characteristics of IPCs as they can easily be compared 

with the relevant properties of other materials. The most commonly used are Young’s 

modulus and Poisson’s ratio. Bulk and shear moduli are also used, however they are more 

difficult to measure and, thus, less popular. Typical thermal properties are the coefficient of 

thermal expansion (CTE), thermal conductivity, and specific heat. Fracture parameters (e.g. 

a) 
b) 

c) 
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fracture toughness, J-integral, crack opening displacement) are key mechanical characteristics 

of interpenetrating phase composites because of brittleness of the ceramic phase.  

In IPCs both phases have more or less equivalent interpenetrating geometry. Therefore, 

the usual matrix-inclusion terminology is not used as it would be difficult to say which phase 

is the “matrix” and which serves as the ”inclusions”. A separate terminology has been created 

instead for these composites. There are different names used in the literature. The term “co-

continuous composites” was used by Daehn et al. (1996), Agarwal et al. (2003), Park et al. 

(2005), and Del Rio et al. (2007). “Composites with interpenetrating phases” was used by 

Rödel and coworkers (e.g. Rödel et al. 1995, Prielipp et al. 1995; Skirl et al. 2001). The term 

“interpenetrating multiphase composites” was used by Torquato et al. (1999), and Feng et al. 

(2003, 2004). In the present thesis the term “interpenetrating phase composites”, abbreviated 

as “IPCs”, will be used throughout.  

There are also IPCs made of other materials than metals and ceramics, and also having 

different properties and purposes than their components. To this end multi-walled carbon 

nanotubes-polystyrene nanocomposite, alumina-epoxy coatings, or glass-ceramic, metal-metal 

and ceramic-epoxy resin dental composites can be mentioned. These materials, however, are 

beyond the scope of the present thesis and will not be described in detail. 

A rationale behind designing an IPC is to achieve a highly durable material that would 

combine the most desirable properties of the constituent phase materials: the high hardness 

and wear resistance of the ceramic and improved fracture toughness, ductility, and thermal 

conductivity of the metal. Unlike fibre reinforced composites, which are typically designed to 

obtain enhanced properties in preferred directions, the interpenetrating spatial networks can 

improve material properties in all directions, although for specific applications anisotropic 

IPCs can be designed, too. Also, when compared with particle reinforced composites, IPCs 

take advantage of the continuous material networks making up the interpenetrating 

microstructure.  

A review of modelling and processing methods of interpenetrating phase composites was 

published 10 years ago by Basista and Węglewski (2006). At that time there were many 

works on manufacturing and experimental testing of IPCs but only a few investigations 

concerning modelling of fracture and crack growth. Mechanical and thermal properties of 

IPCs, such as fracture strength, fracture toughness, elastic moduli and thermal expansion 

coefficients were measured in Rödel et al. (1995), Skirl et al. (2001), Hoffman et al. (1999), 

Prielipp et al. (1995), Raddatz et al. (1998). The obtained results were promising as compared 

to the respective values for the phase materials. For example, the Al2O3/30%Ni3Al composite 

manifested the fracture toughness KIc = 9.2 MPa m
1/2 

, which exceeded the fracture toughness 

of monolithic Al2O3 by a factor of 4 (Skirl et al., 2001). Del Rio et al. (2007) manufactured 

Al2O3/Al and Al2O3/NiAl interpenetrating composites and examined their behavior in thermal 

cycles, which proved good applicability of these materials in high-temperature regimes. 

Analytical and numerical modelling of interpenetrating phase composites have been given 

much less attention in the past than the processing techniques and characterization of their 

properties. A model of a simple interpenetrating network was proposed almost a century ago 

in a seminal paper by Frey (1932) for estimation of the electrical conductivity of binary 
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aggregates. This model was and is still being used by a number of authors dealing with 

modelling of IPCs. The interpenetrating microstructure considered by Frey (1932) had the 

form of a unit cell with a 3D-cross structure (cf. Fig. 2.1). Inspired by the idea of the 3D-cross 

unit cell, Tuchinskii (1983) derived a model for bounds for effective elastic constants of an 

interpenetrating phase composite.  

The simple 3D-cross model of interpenetrating networks (Fig. 2.1) was used by Daehn et 

al. (1996) in a numerical and experimental study of uniaxial deformation of Al2O3/Al IPC. 

The same 3D-cross structure was employed in numerical modelling of thermal residual 

stresses in Al2O3/Al and Al2O3/Cu IPCs by Agarwal et al. (2003). The models by Frey (1932) 

and Tuchinskii (1983) were also pivotal for some of the effective properties estimates 

developed in this PhD thesis and will be discussed in detail in the following chapters. 

Image analysis and concept of connectivity could be useful in modelling the effective 

properties of IPCs. Torquato et al. (1999) discussed the bounds on effective elastic moduli of 

interpenetrating composites and evaluated bounds involving three-point structural correlation 

functions, extracting information on microstructure from an image of a sample of B4C/Al 

composite. Feng et al. (2003, 2004) developed a model for calculating the effective elastic 

constants of anisotropic multiphase composites, containing both interpenetrating phases and 

disconnected inclusions. Park et al. (2005) proposed an RVE of the IPC microstructure to 

investigate stiffness and nonlinear behavior of ceramic metal composites and developed new 

material processing method for improving contiguity at the same level of volume fraction.  

It is commonly known that not only the volume fractions of constituent phases, but also 

their spatial distributions influence the properties of IPCs such as the fracture toughness, 

mechanical strength, elastic constants, thermal expansion coefficient, etc. Therefore it was 

necessary to develop models for IPCs that would reflect real spatial distributions of the 

interpenetrating phases. Since the interpenetrating phases cannot be extracted as disconnected 

inclusions, methods used previously for matrix-inclusions composites based on the Eshelby 

tensor of micromechanics (such as effective media and effective field models) were not 

adequate for calculation of the effective properties of interpenetrating phase composites (Feng 

et al, 2003). Similarly, the rule of mixtures was shown to yield incorrect predictions of the 

effective coefficients of thermal expansion (Hoffman et al., 1999).  

In the last decade the research efforts in the field of IPC modelling were put on case 

studies and specific microstructures by means of the finite element method (FEM), the effect 

of phase interpenetration being one of the major issues considered. For example, Sharma et al. 

(2012) applied object-oriented finite-element method for microstructural modelling of 

Ni/Al2O3 IPC. Agarwal et al. (2013) modelled elastic properties of IPCs with an effective 

medium approximation approach using mesh-free element-free Galerkin method. Gao and 

Rayess (2014) proposed an FE model of a tetrakaidecahedral unit cell and compared with 

experimental results. Xie et al. (2015) used the phase-field method with Cahn-Hilliard 

equation of pattern evolution to model an IPC. In the paper of Ai and Gao (2016), Galerkin 

method was applied to three unit cell models of IPCs, namely simple cubic (SC), face-

centered cubic (FCC) and body-centred cubic (BCC). The results were compared with FEM 

results and Voigt-Reuss, Hashin-Shtrikman and Tuchinskii bounds. 
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Effective material properties are an essential issue in almost any research investigation of 

advanced composites with complex microstructures. Fracture processes (i.e. crack inception 

and growth) are of vital importance in practical applications of metal-ceramic composites in 

various industry sectors, transportation and energy being the most prominent examples. For a 

relatively novel type of composites like the IPCs these two research topics posed a scientific 

challenge with potentially wide industrial impact. It can be stated that the inspiration for this 

thesis was cognitive in nature, but the results may contribute to solving engineering problems. 

Anticipating further considerations the modelling of effective elastic properties and fracture, 

besides their individual importance in the field of composites, are interrelated because the 

material surrounding the growing macrocrack will be assumed to have effective elastic 

properties.  

The structure of the dissertation is as follows. The state of the art in modelling of the 

effective material properties and fracture of interpenetrating phase composites is presented in 

Chapter 2 and Chapter 3, respectively. The motivation, aim and theses of the dissertation are 

formulated in Chapter 4. The original research results obtained by the author are presented in 

Chapters 5 and 6: the proposed analytical and numerical models of the effective elastic and 

thermal properties of IPCs in Chapter 5, whereas the numerical models of fracture of IPCs in 

Chapter 6. Summary and final conclusions are given in Chapter 7. References cited in the text 

are collected in Chapter 8. 

Modelling of the elastic and fracture parameters of interpenetrating metal-ceramic 

composites is the main theme of the thesis. Nevertheless to give a wider background of the 

materials investigated essential information on processing methods and experimental 

characterization of the IPCs have been added in Appendix A. It includes some original results 

of experimental work done by the author during her research stays abroad. 
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2. State of the art in modelling of effective elastic and thermal properties  

of IPCs 

 

This Chapter is an overview of available modelling methods of the effective elastic and 

thermal properties of interpenetrating phase composites. As it was stressed in Chapter 1, 

composites with interpenetrating microstructure require special approaches when modelling 

the effective properties. Only the methods that are microstructure independent, or are devised 

specifically for composites with spatially continuous microstructures can be applicable for the 

composites investigated in this thesis.   

 

2.1. Analytical modelling of effective elastic and thermal properties of IPCs 

 

The overall properties of composites are typically investigated due to their practical 

importance. Numerous analytical models have been proposed in the open literature aiming at 

an estimation of the effective mechanical properties of composites with different types of 

reinforcement. Nemat-Nasser and Hori (1999) discussed the existing models of the overall 

mechanical properties of inhomogeneous materials. A comprehensive overview of available 

models including the dilute approximation, the composite spheres model, the self-consistent 

and generalized self-consistent scheme, the differential scheme, the Mori-Tanaka theory, the 

Eshelby equivalent inclusion method and the method of cells, is given in Aboudi (1991). A 

detailed study on modelling of effective elastic properties of composites with different types 

of microstructures can also be found in Mura (1987). Many models of the effective elastic 

properties of composite materials with relatively simple geometry of phases, such as layered, 

unidirectional fibrous, or particulate composites are already well established and used in 

applications. 

The interpenetrating phases in IPCs cannot be treated as separate inclusions or fibres, 

hence modelling methods developed for composites of the matrix-inclusion typology are not 

suitable for IPCs. Consequently, it was necessary to develop new procedures relevant for the 

particular microstructure of IPCs. However, most researchers kept on using methods that were 

either developed for microstructures different than interpenetrating, or were modifications of 

those methods.  

Currently, there are different methods available for estimating the effective properties of 

interpenetrating phase composites. Before presenting the state-of-the art in this field it should 

be recalled that (i) mechanical properties of the IPC depend on spatial (anisotropic) 

distributions of the constituent phases, (ii) methods based on the Eshelby tensor shall not be 

used for IPCs due to substantially different microstructure that cannot be approximated by the 

matrix/inclusion model underlying the Eshelby elasticity solution (Feng et al. 2003, 2004), 

(iii) there is a need for more suitable methods of estimating thermal expansion coefficients of 

IPCs than the rule of mixtures (Hoffmann et al., 1999), (iv) effective properties estimation of 
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IPCs should be supported with the image analysis and concept of connectivity (cf. Feng et al. 

2003).  

Janus-Michalska and Pęcherski (2003) provided a micromechanical model of 

determination of the macroscopic properties of open-cell foams. The foam microstructure was 

modelled with a tetragonal unit cell of cubic symmetry, including the set of four identical 

half-struts forming a diamond-like structure. The effective constitutive matrix, representing 

the elasticity tensor, was given for the unit cell. Uniaxial extension and pure shear cases of the 

unit cell were considered. It was concluded that the considered unit cell was elastically 

isotropic, and thus its elastic behaviour was described by two Kelvin moduli, describing also 

the macroscopic properties of the foam. The macroscopic elastic properties were derived from 

the Kelvin eigenmoduli.    

Moon et al. (2005) modelled the effective elastic Young’s modulus of Al/Al2O3 

composites with interpenetrating network structures, manufactured with pressure-assisted 

liquid metal infiltration, using different analytical models. The Ravichandran, Tuchinskii, 

Hashin-Shtrikman, and the effective medium approximation (EMA) analytical methods were 

applied. The results of analytical methods were compared with the results of experimental 

Young’s modulus measurements with resonance frequency technique. 

Jhaver (2009) presented manufacturing methods, characterization and modelling of the 

effective elastic properties of aluminium and syntactic polymer foam lightweight 

interpenetrating polymer composites. The IPCs were produced with a pressureless infiltration 

method. The FEM model of the IPC unit cell based on the Kelvin cell was developed to 

calculate stress-strain response of the composite in the uniaxial compression. For estimation 

of the effective elastic modulus of the IPC, models of Hashin-Shtrikman, Tuchinskii and 

Ravichandran were used. 

Agarwal et al. (2013) developed two models: the unit cell and the self-consistent model to 

find the elastic properties of IPCs. Volume fraction and random microstructure were 

accounted for. The mesh-free, element-free Galerkin method was used. The effective medium 

approximation approach was adopted to calculate the effective properties of IPCs.  

He (2013) presented a unit cell based finite element model developed to estimate the 

effective Young’s modulus, Poisson’s ratio and the coefficient of thermal expansion of triply 

periodic IPCs. Five IPCs of different volume fractions of constituents were investigated. 

ANSYS software was used for FE simulations. The predicted results were compared with 

existing theoretical and experimental results. 

The elastic-plastic behavior of stainless-steel/bronze interpenetrating phase composites 

with damage evolution was described in Cheng et al. (2014). Tippur (2012) studied epoxy 

based Syntactic Foam (SF) and open-cell aluminum scaffolds IPC foams. The composite 

specimens were subjected to quasi-static compression tests. A finite element model based on 

the Kelvin cell was developed to perform an analysis of compression with regard to elastic-

plastic large deformations.  
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2.1.1. Bounds on the effective properties of composites with interpenetrating 

microstructures  

 

Voigt and Reuss bounds  

The Voigt and Reuss models are the most popular methods of estimation of effective 

mechanical properties of composites irrespective of their microstructure. They provide the 

widest bounds on the effective elastic properties. Only the elastic properties and volume 

fractions of the phase materials are taken into account. Thus, these models are universal for all 

possible structures of composites and enable comparison of different methods. 

The Voigt model, often called the rule of mixtures, is based on the iso-strain assumption. 

For an n-phase composite with each phase elastic and isotropic, the formulae for the 

components of the effective stiffness tensor: shear modulus μEff and bulk modulus KEff, take 

the form 
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where μi is the shear modulus of the i-th phase, Ki – the bulk modulus of the i-th phase, ci - 

volume fraction of the i-th phase.  

From equations (2.1a,b), using the well-known relations between the elastic constants 
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the formulae for the effective Young’s modulus and Poisson’s ratio for a two-phase 

composite can be written as 
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where E  denotes Young’s modulus, ν - Poisson’s ratio, subscripts: A, B and Eff denote phase A, 

phase B and the effective property, respectively, f – is the volume fraction of phase B.  

The Reuss model is based on the iso-stress assumption. For an n-phase composite, each 

phase being elastic and isotropic, the formulae for shear modulus μEff and bulk modulus KEff, 

have the form 
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Using relations (2.2), the formulae for the effective Young’s modulus and Poisson’s ratio 

for a two-phase composite can be rewritten as 
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The Voigt and Reuss models are simple and easy to use. However, Aboudi (1991) stressed 

that both the iso-strain and the iso-stress assumption might not be fully accurate. For the 

Voigt approximation this is due to the lack of equilibrium of tractions at phase boundaries, 

and for the Reuss approximation this is due to the fact that under implied strains both phases 

may not remain bonded. 

 

Rosen-Hashin bounds on effective thermal properties 

The bounds of Rosen and Hashin (1970) for the effective coefficients of thermal 

expansion are analogous to Hashin-Shtrikman bounds for the effective elastic constants. 

Levin (1967) showed the relationship for a two-phase isotropic composite between 

coefficients of thermal expansion of the components and the effective bulk moduli. Rosen and 

Hashin (1970) proposed a generalized relation between the effective coefficients of thermal 

expansion and the effective mechanical properties for a two-phase anisotropic composite. 
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They derived formulae for bounds on the effective coefficient of thermal expansion from the 

components of the compliance tensors of the effective composite material and its constituents.  

For an isotropic composite with isotropic constituent materials, Rosen and Hashin (1970) 

expressed components of the compliance tensor as functions of the bulk moduli. As a result, 

the effective coefficient of thermal expansion      of such a composite is a function of the 

bulk moduli of its constituents KA and KB, and the effective bulk modulus KEff, derived 

according to a relevant model (e.g. according to Hashin-Shtrikman, 1963), namely 
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where the indices denote: A, B – composite phases, Eff – effective quantity, 
Voigt

 denotes volume 

average according to Voigt model,                  – Voigt estimate of averaged 

coefficient of thermal expansion,  
 

 
 
     

 
  

  
 

  

  
 – Voigt estimate of averaged inverse of 

bulk modulus, fA, fB – volume fractions of the respective phases. 

 

 

2.1.2. Models designed specifically for composites with interpenetrating microstructures  

The effective elastic properties of composites depend on many parameters. The parameters 

that are common for all models of the effective elastic properties are material constants and 

volume fractions of the phases. However, such factors as geometrical shape of particles, 

presence of discontinuities and damage, or effect of temperature also contribute to the overall 

material constants. Thus, it was necessary to develop methods suitable for composites with 

specific microstructures like the interpenetrating phase composites that would account for 

these factors. For IPCs relevant methods were proposed by e.g. Tuchinskii (1983), Feng et al. 

(2003, 2004) and Mishnaevsky (2005, 2007a). They are different combinations of the Voigt 

or Reuss estimates. The works of Aboudi (1991), Mura (1987), Milton (2002), or Gross and 

Seelig (2006) should also be mentioned in this context.  Since the analytical estimates by 

Tuchinskii and Feng are essential as the reference solutions in this thesis, they will be outlined 

in more detail in the following sections. 

 

Models of Frey and Tuchinskii  

Due to complex spatial structure of the IPCs, a workable model of effective elastic 

properties should be straightforward but at the same time capable of accounting for the salient 

features of the IPC microstructure. The idea of a simple geometrical model for co-continuous 

networks microstructure may be found in the early paper by Frey (1932) on modelling of 

electrical conductivity of binary aggregates. Based on the model of Frey (1932), Tuchinskii 

(1983) developed a model for calculation of bounds for effective elastic constants of a 

bimetallic composite. Tuchinskii assumed macroscopically homogeneous and isotropic 



12 

 

V

1

a

B

A

 

material. The unit cell was cubic with interpenetrating phases having quadratic cross sections 

and symmetric within the unit cell. Two division directions of the unit cell using the iso-strain 

and iso-stress assumptions were proposed. A detailed discussion of Tuchinskii’s derivation 

methodology is given in Poniznik et al. (2008).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Unit cell representing two-phase interpenetrating microstructure, according to Frey (1932) 

and Tuchinskii (1983).  

 

The Tuchinskii’s lower bound for the effective Young’s modulus is as follows 
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where A, B denote respective phases as in Fig. 2.1 (A for the outer white phase, B for the inner 

dark phase), a denotes a normalized size parameter of the phase B.  

The Tuchinskii’s upper bound for the effective Young’s modulus is 
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The expressions for the bulk and shear moduli follow from the relationships between the 

elastic constants. The expressions for the effective Poisson’s ratio in Tuchinskii (1983) seem 

to contain errors. The values for upper and lower bounds are calculated from the Poisson 

ratios called “parallel” and “perpendicular” that correspond to different unit cell sectioning 

directions. The “parallel” value is calculated according to the rule of mixtures as 



13 

 

 

                        (2.9) 

 

The “perpendicular” value is calculated according to the following formula  

                                 (2.10) 

From the expression (2.10) one can see that it is a proportionality relation between the 

Poisson ratios and the Young moduli. Such an assumption is not legitimate for an isotropic 

material. Moreover, one bound for the Poisson ratio is derived from both bounds for the 

Young modulus. This approach leads to erroneous formulae for the bounds for the Poisson 

ratio. Consequently, also the bounds for   and  , derived with the use of bounds for the 

Poisson ratio, are incorrect.  

There are also some doubts with regard to Tuchinskii’s formulation of the bounds for 

Poisson’s ratio calculated from (2.9) and (2.10) as remarked by Poniżnik et al (2008). The 

expression for the upper bound in Tuchinskii (1983) 
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is not in accordance with the model due to misprints. It is believed that the correct upper 

bound for   in Tuchinskii’s (1983) model should read 
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with a misprint removed in the denominator of the expression for n, i.e. 
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The lower bound for   given in the original paper by Tuchinskii (1983)  
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is correct. However, it can be shown that this bound falls outside the Voigt and Reuss bounds, 

which give the widest range of admissible effective moduli. It may, thus, be concluded that 

Tuchinskii’s assumptions taken to evaluate the effective Poisson ratio are not fully justified. 

There are also formulae in Tuchinskii (1983) for the shear and bulk moduli. However, due to 

the errors in the formula for Poisson’s ratio as discussed above, the estimates for G  and K

should also be taken with caution.  

 

The model of Feng  

Feng et al. (2003, 2004) developed models for calculating the effective elastic constants of 

anisotropic multiphase composites, containing both interpenetrating phases and disconnected 

inclusions. His idea of a unit cell enabled investigation of various microstructures, more 

complex than in the Tuchinskii unit cell. As shown in Fig. 2.2, the Feng unit cell enables 

consideration of multiple 3-D cross phases that have different dimensions in each direction.  

The microstructure of composite material in the Feng model is represented by the unit cell 

model. The representation of the phases depends on their connectivity which describes spatial 

arrangement of each phase and gives the number of dimensions in which each component is 

self-connected. The general assumptions of the Feng model are such that macroscopically the 

composite material is homogeneous and may consist of n phases. Elastic properties and 

spatial arrangements of individual phases may be anisotropic. The generic model allows n1 

phases that are continuously self-connected in three dimensions, and n2 (n1 + n2 = n) phases 

that are well-defined, disconnected inclusions. Phases that are continuously self-connected, in 

the unit cell have the form of three orthogonal branches with rectangular cross sections. The 

material existing both in the form of a continuous network and dispersed inclusions should be 

considered as two different phases: the matrix (denoted with m) comprising all the continuous 

phases which, in turn, contain all the inclusions.  

In the Feng model the effective elastic constants for the composite containing inclusions 

are obtained by means of the Mori–Tanaka method (cf. Mura, 1987). The interpenetrating 

phase composite (with no inclusions) can be described using two or more continuous 

materials, i.e. when the composite consists of n1 = n continuous phases only. An example of 

such model with two interpenetrating phases is depicted in Fig. 2.3a.  

In this case a cubic unit cell is assumed, so the linear dimension of each side of the cell is 

equal to unity 

1111  nnn ccbbaa              (2.14) 

Hence, the dimensions of interpenetrating phases can be represented by non-dimensional 

size parameters aα, bα, cα that are related to the size of the cell. The volume fraction fα of the 

α-th phase becomes (Feng et al., 2003) 

 cbacbcabaf 2   (no sum)         (2.15) 
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The computation of the effective elastic constants is based on a combination of the iso-

stress and iso-strain assumptions. The unit cell (consisting of n1 self-connected phases) is 

divided into n1 × n1 sub-cells, each consisting of n1 series blocks. The effective moduli of 

each sub-cell are determined by adopting the iso-stress assumption. Finally, the elastic moduli 

of the whole cell can be calculated from the n1 × n1 parallel sub-cells by using the iso-strain 

assumption. The boundary conditions are assumed as periodic. The unit cell is first 

decomposed along the boundaries between the phases, parallel to the coordinates (Fig. 2.3b).  

The effective Young’s modulus is given as 

1 1 1 1 1

1

1 1 1 1 1

n n n n nV
E V V

E



 

    



    

    
          

                (2.16) 

where α, β, γ are serial numbers of a sub-cell in the x1, x2, x3 directions and Vαβγ is the volume 

of the (α, β, γ) sub-cell. 

The effective shear modulus has the same form as Young’s modulus, namely 

1 1 1 1 1

1

1 1 1 1 1

n n n n nV
G V V

G



 

    



    

    
          

                (2.17) 

For the isotropic composite it is assumed that all the directions of decomposition are equal 

(although for different directions of decomposition of the unit cell different formulas are 

obtained) and after averaging over the whole composite volume the differences between the 

results of decomposition in different directions will vanish. However, for the anisotropic 

composite it was not specified in Feng et al. (2003, 2004) original papers how the 

decomposition directions should correspond to the anisotropy. 

From the assumed uniform spatial distribution of both phases it follows that  

acbaacba  1, 222111              (2.18) 

The “reinforcing phase” and the “matrix” are further denoted as phase 1 and 2, 

respectively. The volume fraction of the phase 1 is 

  aaf 232

1                    (2.19) 

Using Equations (2.16), (2.18) and (2.19) the effective elastic moduli based on the Voigt 

and Reuss models were derived in Feng (2003, 2004) as 

   
1

22

1 2

1 2

1
1 2 1

a a
E a E a E a a

E E



 
      

 
          (2.20) 

   
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1
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G G



 
      

 
          (2.21) 
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Even though the Feng model was designed for a two-phase interpenetrating composite, a 

generic model can easily be adopted for a variety of multi-phase composite geometries. It may 

be potentially very useful for different types of multi-phase composites as well as for two-

phase interpenetrating composites with voids (damage) as a third phase.  

 

 

 

Figure 2.2 The Feng et al. (2003, 2004) unit cell of an interpenetrating four-phase 

composite with phases that have different dimensions in each direction x, y, z; blue a, 

yellow b and green c phases visible, fourth phase invisible (based on Feng et al. (2003, 

2004), with the permission of publishers). 

 

 

 

 

 

 

 



17 

 

H

V

V V

H

c1

c2

a2

a1

b1 b2

b)

x1

x3

x2

a)

 

Figure 2.3 (a) Feng et al. (2003, 2004) unit cell of an interpenetrating two-phase 

composite model and (b) its vertical (V) and horizontal (H) decomposition (based on 

Feng et al. (2003, 2004), with the permission of publishers). 
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2.2. Numerical modelling of effective elastic properties of IPCs 

 

In order to account for complicated, real microstructure of multi-phase materials, models 

using randomly generated microstructures were developed. However, to generate a 

microstructure that forms interpenetrating networks, it is necessary to apply some restrictions 

on the data (Poniznik et al., 2008). It may be seen in Fig. A.6  (Appendix) that real 

interpenetrating microstructures may have different, specific topologies depending on 

manufacturing. Such differences cannot be properly addressed with a random generation of 

the composite phases. Therefore, the attention will be focused on arranged microstructures 

that ensure interpenetration of the phases either by generation of a simple interpenetrating 

microstructure, or by considering real IPC microstructures obtained from micro-CT 

experiments. It should also be noted, that in case of microstructures obtained from spherical 

or ellipsoidal particles, fulfillment of the conditions for percolating microstructure (that is, 

with volume fractions of phases within percolation limits), will not assure bearing tensile 

loads and thus, the non-zero stiffness of the percolating phase network. Arbitrarily created 

random microstructures can have quite high volume ratio of separate particles and do not need 

to be interpenetrating at all. Therefore, some additional conditions need to be applied to 

assure connectivity between neighbouring particles, and, in effect, interpenetrating 

microstructure.  

 A case described by Poniznik et al. (2008) may serve as an example of such an approach. 

To sum up, random modelling in application to interpenetrating microstructures is limited and 

should not be taken without special caution. Deterministic approximations of interpenetrating 

microstructures have also been developed for numerical modelling of the effective material 

properties (Daehn et al., 1996; Leßle, Dong and Schmauder, 1999; Jhaver, Jhaver and Tippur, 

2009a,b; Tippur, 2012).  

 

Random numerical models of IPC microstructure 

Mishnaevsky (2005) developed a numerical programme for generation of multiparticle or 

percolating bimaterial unit cells. The generated voxel-based FE models of composite 

microstructures were used to calculate the effective properties. The RVE was represented as 

an array of voxels carrying information about the local properties and, thus, representing the 

spatial distribution of phases. Three-dimensional random chessboard or graded 

microstructures were generated with the proposed programme, using a random number 

generator. The random distributions of phases were generated in three directions in space to 

create 3D random chessboard microstructure. To create graded microstructure, along one of 

the directions graded distribution was applied, according to the formula allowing varying 

gradient interface smoothness. The percolation analysis of the obtained microstructures was 

performed. Percolating random microstructures were obtained for volume fractions of the 

phases between 32% and 68%. 

A model of creating random composite microstructures is described in Poniznik et al. 

(2008). Two-phase, macroscopically homogeneous and isotropic materials were considered. 
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A cubic piece of composite was created with a given voxel number and volume fraction of 

phases by assigning material properties of one of the phases to randomly chosen elements, 

and the properties of another phase to the remaining ones. Interpenetrating microstructure was 

ensured with the procedure checking the interconnections between voxels belonging to the 

same material. Voxels of the same material with common faces were considered as connected. 

Percolating microstructures were obtained for volume fractions of phases between 31.16% 

and 68.84%. 

A random interpenetrating unit cell was proposed by Agarwal et al. (2013a) to evaluate 

the elastic properties of an IPC and to obtain the stress-strain curves for an elasto-plastic IPC 

with element free Galerkin method (Agarwal et al., 2013b). However, it was not explained in 

these works how the microstructure was created in 3D. 

Randomly created composite microstructures were used also by Xie et al. (2015) to model 

the effective mechanical properties of IPCs. These authors used the phase field method and 

the Cahn-Hilliard equation to create a random IPC microstructure. 

Different methods of reconstruction of complex microstructures of engineering materials 

are given by Wejrzanowski et al. (2008). Quantitative image analysis techniques aimed at the 

determination of global parameters characterizing geometrical features of the microstructure 

(e.g. mean intercept length or mean grain volume) such as methods describing the geometry 

of the grain boundaries, di-sector, point sampled intercepts or Saltykov reconstruction, were 

described. The methods of reconstruction of the microstructure of the ceramic foams from the 

micro-CT images based on statistical characteristics of the geometry of the pores, were 

proposed by Nowak et al. (2013) and Nowak et al. (2015). The method of designing cellular 

microstructures with prescribed distribution of size and orientation of grains or cells was 

proposed by Wejrzanowski et al. (2013a). The Laguerre-Voronoi tesselations (LVT) were 

applied to obtain the microstructure of the self-supporting foam composed of interconnected 

cyllindrical struts by Wejrzanowski et al. (2013b). Also the limitations of the methods of 

randomized tesselations were pointed out therein. 

 

Deterministic and micro-CT based numerical models of IPC microstructure 

Besides random numerical models different deterministic numerical models with 

simplified IPC geometry were developed (cf. Daehn et al., 1996, Jhaver, Jhaver and Tippur, 

2009a,b, Tippur, 2012). In these models the IPC microstructure is often approximated as 

periodic, with unit cells consisting of different composite components of simple geometry. 

For example in the models of Jhaver, Jhaver and Tippur (2009a,b) and Tippur (2012), the unit 

cell model is based on Kelvin cell, approximating the microstructure of syntactic foam based, 

lightweight polymer IPCs.  

The most accurate representation of real IPC microstructures may be achieved with 

techniques of 3D microstructure mapping, such as slicing a composite piece to obtain series of 

2D images (cf. Michailidis et al., 2010). Nondestructive methods of reconstruction of 

composite microstructure include DVI (Digital Volume Imaging) technique delivering a 
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series of 2D files, or computed microtomography (micro-CT), providing 3D images. Both 

DVI and micro-CT techniques were used by Jaganathan et al. (2008a,b) to represent the 

microstructures with non-woven fibers with finite element meshes. For the creation of the 

FEM mesh from 3D microstructure image, the Simpleware ScanIP/FE software was used. 

Also particle reinforced metal-matrix composites were modeled using micro-CT spatial 

images by Kenesei et al. (2006a,b). The model of mapping the small geometry features such 

as small pores and fissures below the micro-CT resolution, was proposed by Doroszko and 

Seweryn (2016). Roux et al. (2008) used X-ray computed tomography to estimate the three-

dimensional deformation fields in polypropylene solid foam undergoing compression test. 

SiC/Al IPC was modeled by Li et al. (2014) using real microstructure micro-CT images, 

transferred into ANSYS/LS DYNA FE meshes with Simpleware ScanIP/FE software. The 

issue of representative volume element (RVE) size for microstructure images of IPCs 

obtained from micro-CT was analyzed by Heggli et al. (2005),  cf. also Nowak et al. (2013).  
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3. Modelling of deformation and fracture of IPC 

 

The mechanical and thermal properties of the phase materials in metal-ceramic composites 

usually manifest significant differences, which affect the fracture mechanisms of the 

composite. Additionally, in the case of IPCs the complex microstructure of mutually 

interpenetrating phases makes modelling of the crack onset and growth quite difficult. 

Experimental measurements of fracture properties of IPCs are cumbersome and expensive due 

to the high cost of pressure-assisted infiltration of ceramic preforms and tough machining of 

notched specimens for the fracture tests (e.g. SEVNB or Compact Tension). Therefore, 

reliable predictions of the stress intensity factors or J-integral for IPCs along with their critical 

values (fracture toughness) by modelling are of considerable scientific and practical 

importance.  

According to Seweryn (2003) three main stages of the fracture process computations may 

be distinguished: (1) establishing the shape, initial and boundary conditions, load history for 

the structural element, and computation of stress and displacement fields, (2) indication of 

element “hot spots” most prone to failure and estimation of the failure load, (3) computation 

of the fracture process until the element failure with the use of fracture mechanics criteria and 

methods. Numerical approach is required for the analysis of stress fields with singularities in 

elements of complicated shapes. This observation is quite relevant for irregular 

microstructures of the interpenetrating phase composites investigated in this thesis.  

For quasi-brittle materials two ways of modelling of fracture may be followed (de Borst et 

al., 2004). The continuum mechanics approach, when damage and fracture are modelled 

within the constitutive models at the continuum level, was developed e.g. in the works of de 

Borst and Pamin (1996) or de Borst et al. (2004). Another approach to modelling of fracture 

in quasi-brittle materials is the discontinuum approach, where the crack in the numerical 

model is treated as a geometric discontinuity (cf. de Borst et al., 2004). The methodology of 

modelling the crack problem in metal-ceramic IPCs undertaken within the present thesis, will 

represent the discontinuum approach.   

Different toughening mechanisms may impede the crack growth in metal-ceramic 

composites. The most frequently observed ones are (Fig. 3.1): crack bridging (Emmel, 1995; 

Rödel, 2001; Grassi and Zhang, 2003; Kruzic et al., 2003; Cartie et al., 2004; Fünfschilling et 

al., 2011; Shao et al., 2012), crack deflection (Cotterell and Rice, 1980; Gilbert, 2001), crack 

shielding (Evans et al., 1989, Shum and Hutchinson, 1990), crack branching (Kobayashi and 

Ramulu, 1985; Ha and Bobaru, 2010) and fibre pullout (Hutchinson and Jensen, 1990; Stang 

et al., 1990; Nairn et al., 2001; Jia et al., 2011, 2012; Bheemreddy et al., 2013).  

While numerous experimental reports on fracture of IPCs were recently published (Bansal, 

2006; Sun et al., 2009; Chang et al., 2010; Scherm et al., 2010; Roy et al., 2012; Wang et al., 

2014), there are still not too many works on analytical and numerical modelling of the crack 

growth in this specific type of composites. In the general context of metal-ceramic composites  
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a)    

   

b) 

 

c) 

 

d) 

 

e)  

 

Figure 3.1. Schemes of crack toughening mechanisms in metal-ceramic composites (yellow arrows 

mark respective physical mechanisms); (a) crack bridging (reproduced from Poniżnik et al., 2015 with 
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permission of Int. J. Damage Mechanics, (b) crack deflection, (c) crack branching, (d) crack shielding, 

(e) fibre pullout with matrix decohesion (SEM image – courtesy of TU Darmstadt). 

 

(including MMCs, cermets and IPCs) the literature relevant to this issue is substantial. A state 

of the art in modelling of fracture of metal-ceramic composites with ductile reinforcements, 

including the subclass of IPCs, was presented e.g. by Basista and Węglewski (2006) and 

updated in Poniżnik et al. (2015).  

Budiansky et al. (1988) described bridging-spring model. The authors studied the small-

scale bridging case and the fracture toughness of ceramics reinforced with particles. Sigl et al. 

(1988) considered ductile particles bridging the crack in ceramics and proposed a necking 

particle model. Beldica and Botsis (1996) presented BEM numerical model of Compact 

Tension specimen of a composite with long aligned fibres. In their model fibres were parallel 

to the loading direction. No bridging model was given. The bridging mechanism was 

extensively modelled by Mataga (1989) with the main objective to determine the nominal 

stresses in the reinforcing ductile ligament. Once the nominal stresses are determined the 

elastic energy release rate increase ΔG due to crack bridging can be computed. Emmel (1995) 

studied the problem of a plastically deformable bridging fibre embedded in an elastic matrix 

with numerical models based on the model of Mataga (1989) and experiments of Hoffman et 

al. (1997). The σ–u relationships resulting from the model of axisymmetric fibre 

perpendicular to the crack plane were then used in a model of the Compact Tension test for a 

metal fibre reinforced composite. The J-integral and K–factors were calculated numerically 

using ABAQUS.  

Grassi and Zhang (2003) developed a FEM model of interlaminar fracture of a carbon-

epoxy composite with z-fibre reinforcements with nonlinear interface elements and showed 

that the bridging reinforcements increase the crack growth resistance and delay the 

delamination growth. Lapczyk and Hurtado (2007) developed an anisotropic model of 

damage to describe failure and post-failure behaviour of linear elastic materials with fibres in 

plane strain, using various criteria for damage initiation and modes of failure. Bobiński and 

Tejchman (2011) compared continuous and discrete constitutive models of fracture in 

concrete. A micromechanical elastoplastic damage model to estimate the overall mechanical 

behaviour and interfacial microcrack growth in fibre-reinforced composites was proposed by 

Ju and Ko (2008).  

The behaviour of composites with ductile reinforcements and crack bridging is related to 

the effect of debonding at the fibre/matrix interface (Poniżnik et al., 2015). The fracture 

toughness and the failure mode of the composite are affected by the mechanical properties of 

the fibre/matrix interface. The gradual decohesion and failure of the cohesive interface was 

modelled in ABAQUS for the heat curing epoxy adhesive layer by Sadowski et al. (2013a), 

hybrid, single lap, and double lap joints by Sadowski and Golewski (2013b), or the interface 

in WC/Co composite by Postek and Sadowski (2016). An important factor influencing not 

only the interface behaviour but also the overall behaviour of the composite, is porosity (cf. 

Węglewski et al., 2013, 2014; Dandekar and Shin, 2011). The interfacial strength is often 

evaluated experimentally using the fibre pullout test. The fibre pullout test was used by Stang 

et al. (1990) to obtain material properties of a composite reinforced with fibres assuming 
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different models for frictional stresses on the debonded interface. This test was also modelled 

analytically and numerically e.g. by Zhong and Pan (2003), Tsai et al. (2005), Zhang et al. 

(2012) and Bheemreddy et al. (2013).  

The cohesive zone model (CZM) relates the interfacial force with the crack opening 

displacement. The zone of fracture process is reduced to a zero-thickness zone made up of 

two coinciding cohesive surfaces that separate under loading according to a certain traction–

separation law. Analytical and numerical modelling of the pullout problem and comparison 

with experiments was given by Nairn et al. (2001). Cohesive elements were used by Bobiński 

and Tejchman (2011) to model crack nucleation and propagation at the interfaces between 

matrix and grains in concrete. The pullout test of a single fibre was analysed numerically with 

the use of CZM by Jia et al. (2011). The pullout problem of a brittle composite with 

embedded fibre, where the process of fibre debonding was modelled as a mode II crack with 

frictional sliding, was discussed by Hutchinson and Jensen (1990). Cohesive damage 

modelling was used by Bheemreddy et al. (2013) to develop a FEM model for a single fibre 

pullout with debonding, aiming at determination of the load-displacement relationship for the 

fibre. An extension of the Bheemreddy et al. (2013) model is a part of this thesis and will be 

described in Chapter 6.  

Real material microstructure images obtained with micro-CT technique were used for 

modleling of fracture in concrete bending beams by Skarżyński and Tejchman (2016). The 

concrete was modelled as a four-phase material, with regard to interfacial transition zones 

(ITZ) and macrovoids. The microstructure of concrete and the developing crack were 

observed with micro-CT technique before and after four-point bending test. Microstructure 

image obtained from micro-CT was applied in 2D numerical model of four-point bending test. 

Kozicki and Tejchman (2008) modelled fracture using discrete lattice model for concrete 

reinforced with randomly distributed short steel fibres during three-point bending test.  

Emmel (2002) proposed a numerical model of a Compact-Tension specimen made of 

layered Al2O3/Cu/Al2O3 composite, with elastic ceramic outer parts and an inner thin stripe of 

elasto-plastic copper, in which a crack propagated along the metal-ceramic interface due to 

the fact that the pre-crack was co-linear with the interface between alumina and copper. The 

presence of spherical cavities and spherical inclusions of copper oxide in the copper layer was 

included in the model. The spherical inclusions of copper oxide were modelled at the copper-

alumina interface. Cavity growth was analysed in the plastically deformable copper phase. 

The other materials, i.e. alumina and copper oxide, were taken as linear elastic. The problem 

of the macrocrack growth in a compact-tension specimen made of such a composite was 

investigated and modelled numerically.  

 

3.1.  Crack toughening by bridging – basic concepts and overview  

of  the main models 

 

One of the primary objectives in fracture modelling of IPC materials is the determination 

of fracture energy and fracture toughness increase due to plastically deforming ligaments 
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connecting the crack surfaces. A key ingredient of all such models is the force-displacement 

relationship in the reinforcing ligament. It is a challenging issue in analytical and numerical 

models due to a complex state of deformation comprising i.a. large plastic strains and necking 

of the ligament, ligament/matrix decohesion and crack opening and growth. Among the crack 

toughening mechanisms encountered in metal-ceramic composites (cf. Fig. 3.1) crack 

bridging is typically reported as the dominating mechanism in IPCs as shown in Fig. 3.2.  

In order to make a review of the existing crack bridging models more comprehensive and, 

at the same time, prepare the ground for the introduction of own numerical models for 

fracture parameters of a bridged crack (cf. Chapter 6), the basic concept of J-integral and its 

relation to the elastic energy release rate G and the stress intensity factor KI in mode I will 

now be recalled (see also Seweryn, 2003; Gross and Seelig, 2006 for further discussion).  

 

a) 

 

  

b) 

 

c) 

 

    

Figure 3.2. Crack bridging by metal ligament undergoing plastic deformation and decohesion from 

the surrounding ceramic matrix; (a) Al2O3/Al infiltrated composite (courtesy of PZMK IPPT PAN); 

(b) Al2O3/Cu infiltrated composite (reproduced from Poniżnik et al. 2015 with permission of Int. J. 

Damage Mechanics); (c) Al2O3/Cu infiltrated composite. 
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The J-integral introduced independently by Rice (1968) and Cherepanov (1967) is defined 

as the integral of the strain energy density U and tractions               , acting inside 

and along contour Γ in a homogeneous elastic material under a two-dimensional small 

deformation field, with the assumptions of zero volume forces acting on the material.  

For a straight traction-free crack and a contour Γ connecting the opposite sides of a crack 

and surrounding its tip, the J-integral takes the following form (e.g. Broek, 1974) 

          
  

  
   

 
                 (3.1) 

where u – displacement vector, ds – arc element of Γ, n – unit outward vector normal to Γ.  

The J-integral may also be formulated using the configurational forces approach, 

originating from Eshelby (1951) solution. The concept and applications of the configurational 

forces may be found in Maugin (1993, 2009), Miehe and Gürses (1999), Müller et al. (2004), 

Gross et al. (2002, 2003) or Plate (2015). Using the configurational forces approach, the J-

integral may be expressed in vector form (cf. Gross and Seelig, 2006). If the crack develops 

within a homogeneous elastic material with arbitrary nonlinearities and anisotropy, zero 

volume forces and small deformations assumed, the J-integral vector is  

  
 


V V

jkiijjkjkjk dAnuUdAnbJ ,    k ,j = 1, 2, 3        (3.2) 

where: U(εij) - strain energy density, nj - unit vector, normal and directed outward to closed 

surface ∂V, 
kiijjkkj uUb ,   - the Eshelby stress tensor. The components Jk of the J-integral 

vector depend on loading modes. For pure mode I and pure mode II the component J2 

vanishes, while for mixed mode loading J2 is nonzero and depends on the path.  

For a crack-free material Jk = 0. In the plane case the J-integral (3.2) becomes a contour 

integral of the form 

    
C

xii

C

ii dcutUdydcnuUJJ ,1,11              (3.3) 

where: C denotes an  open contour from one crack face to another surrounding the crack tip;  

β = 1, 2 are directions parallel and perpendicular to the crack propagation direction, 

espectively.  

It has been shown in fracture mechanics that for elastic material, the J-integral is equal to 

the energy release rate G during the crack development 

GJ                         (3.4) 

As shown by Irwin (1957) the energy release rate G may be related to the stress intensity 

factors. In mode I these relations take the following simple forms 

  
 

 
           

  
 

       
                     (3.5) 
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 
C

dtG



0

in plane stress or plane strain conditions, respectively. 

Calculation of the J-integral for a composite material with ductile reinforcements, thus 

inhomogeneous with discontinuities in material properties on the interfaces, has been 

undertaken only recently in the literature. There were analytical and numerical analyses 

performed for the materials with continuous spatial variation of mechanical or thermal 

properties, e.g. by Eischen (1987), Honein and Herrmann (1997), Anlas et al. (2000), Kim 

and Paulino (2003). Simha et al. (2003) investigated the crack-driving force in elastic and 

elastic-plastic bimaterials. 

The problem of the crack with ductile reinforcements and modelling of the increase of the 

energy release rate due to bridging, can be analyzed with the use of the cohesive zone model, 

as described by Gross and Seelig (2011). The cohesive zone models assume the presence of 

the cohesive zone within the narrow band along the crack faces. In the cohesive zone, 

opposite crack faces interact with each other by the cohesive stresses. The J-integral is 

calculated along the contour C close to crack faces. The cohesive models can be applied to 

elastic materials reinforced with particles or fibres as in Fig. 3.1a, materials with microcracks, 

or to ductile materials with cavities. The continuous cohesive stress distribution t(δ) can be 

replaced with a discrete distribution of stresses σ(u) in the reinforcing bridging ligaments 

depending on the displacements u in these bridges.  

The cohesive zone model can be adapted for determination of the energy release rate 

increase ΔG in IPCs due to presence of the crack reinforcing bridges. The energy release rate 

increase may be calculated taking discrete stress distribution σ(u) in the bridging fibres 

instead of the continuous distribution of cohesive stresses t(δ). Gross and Seelig (2011) 

expressed the J-integral for the cohesive zone model using the relationship between stresses t 

and displacements δ in the bridging fibre 

 

           (3.6)  

 

where: a is the crack length, d - cohesive zone length, d   a, δ - relative displacement of the 

crack faces (separation), δ = υ
+
 ‒ υ

‒
, δc = δ

r
 (cf. Fig. 3.1) - crack opening displacement at the 

physical crack tip, i.e. at the point of rupture of the reinforcing ligament, t – intermolecular 

cohesive stress.  

Thus, the value of J-integral depends on the cohesive stress distribution t(δ) related to 

separation δ. Assuming that equality (3.4) holds for the bridged crack in elastic matrix, the 

elastic energy release rate becomes (Gross and Seelig, 2011)  

 

                    (3.7) 

  

Existing theoretical models assume some form of the stress-displacement relationship for 

the ligament. Mataga (1989) assumed that the necking ligament has the geometrical shape of a 

paraboloid of rotation. Gross and Seelig (2011) assumed this relation in an exponential form 
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 , which results in a characteristic shape of the σ-δ relationship with 

softening.  

To avoid prior assumptions as to the stress-displacement relationship for the ligament, it 

was decided in the present study to solve this problem numerically (cf. Chapter 6). In 

preparation for that some reference models from the literature will be reviewed in the 

following sections. 

 

 

3.2. The model of Mataga  

 

Mataga (1989) proposed an analytical approach to the problem of a plastic ligament 

surrounded by an elastic matrix to compute the increase of fracture toughness based on the 

crack bridging model (Fig. 3.1a). His work was motivated by the experimental investigations 

of Sigl et al. (1988), which showed that an addition of a ductile phase to brittle material could 

cause a rise in the fracture toughness.  

The main objective of the Mataga model was to determine the nominal stresses in the 

reinforcing ligament. If the bridging stresses are determined the elastic energy release rate 

increase ΔG due to bridging is also obtained according to the following formula (Mataga, 

1989) 

      

           (3.8) 

where G is the elastic energy release rate of the composite, Gm ‒ elastic energy release rate of 

the matrix, σ – nominal stress carried by the reinforcing ligament at displacement u (σ→0 at 

u=δ
r
, δ

r
 – crack opening displacement COD at failure), f – volume fraction of the ductile 

phase (assumed to be equal to the area fraction intercepted by the crack).  

In Eq. 3.8, the term -fGm  reflects the fact that the area of matrix fracture is reduced by the 

area of reinforcement sections. A scaled form of relationship 3.8 is (Mataga, 1989) 

 

                 (3.9) 

 

where rf
0
 is the initial radius of the ligament, σ0 denotes the initial yield stress of the ductile 

phase; w is a scalar carrying the information on the geometric constraints experienced during 

the deformation of the ligament, strain-hardening and the ligament rupture, and can further be 

expressed as  
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
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f
r r

fr

u
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




                       (3.10) 

Hence, to determine G it is necessary to derive the relationship between dimensionless 

stresses (σ/σ0) and displacements (u/rf
0
) in the reinforcing ligament. 

  mf GfwrfG  10

0
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After relating the critical energy release rate to the fracture toughness (plane strain case) 

the formula for w takes the form  

         

                   (3.11) 

 

where (Km, Em, νm) and (K, E, ν) denote the bulk modulus, the Young modulus and the 

Poisson ratio of the matrix material and the composite, respectively. 

 

Figure 3.3. Geometry of the necking ligament in the model of Mataga (1989). 

Assuming the shape of the reinforcing ligament at necking as a paraboloid of rotation of 

constant volume, applying the result of Bridgman (1964) and the power law form of the true 

stress-strain relationship of Ashby et al. (1989), one can obtain the relationship for the 

nominal stress in the reinforcing ligament. Such a relationship was obtained by Mataga (1989) 

and reformulated by Poniżnik et al. (2015), with corrected misprint, as follows 

 

 

    

(3.12) 

 

 

 

where: 2h0 ‒ initial length of the bridging part of the fibre, 2h = 2h0 + u ‒ current length of the 

reinforcing fibre part (see Fig. 3). 

In the solution obtained by Mataga (1989) a softening part of the σ(u) relationship is 

included which is due to necking of the ligament. This softening behaviour indicates that the 

bridging ligaments undergo large stretches across the growing crack faces and reduce the 

crack opening. The normalized stresses in Mataga’s model evaluated with Eq. 3.12 were used 

as a reference analytical solution for comparison of the numerical results obtained by FEM in 

Poniżnik et al. (2015). This numerical approach will further be used in this thesis. 
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3.3. The model of Emmel 

 

Emmel (1995) studied numerically the problem of a plastically deformable bridging fibre 

embedded in an elastic matrix in order to apply the results in a 2D numerical model of 

Compact-Tension test for a metal fibre reinforced composite. His model of the bridging fibre 

was based on the model of Mataga (1989) and was intended as a numerical reproduction of 

the experiments by Hoffman et al. (1997).  

Firstly, the case of a single reinforcing ceramic fibre (Al2O3) in an elasto-plastic matrix 

(Al-alloy) was investigated. The axisymmetric metal fibre was embedded in two separate 

blocks of ceramics at both ends (mimicking an open crack) and subject to a tensile loading. 

The calculations were made for a chosen set of nondimensional fibre/matrix debonding 

parameters, which were assumed constant during the deformation process. In addition the 

Gurson damage model (Gurson, 1977) was assumed for the fibre reinforcing the crack faces. 

The calculations were made in ABAQUS. The obtained σ(u) relationships were compared 

with the results of theoretical model of Mataga (1989). They were further applied in a simple 

2D ABAQUS model of a Compact-Tension test as the stress-displacement response of 

reinforcing fibres considered as truss elements (only axial force, no bending moment). The 

material with multiple reinforcing elasto-plastic metal fibres in a linear elastic ceramic matrix 

was modelled taking the computed σ(u) relationship and applying the obtained data via 

UMAT procedure in ABAQUS. The truss element T2D2 was taken as the fibre model. The 

crack opening simulation was made with the MPC procedure. The J-integral and K–factors 

were calculated with the use of author’s procedure written in FORTRAN.  

In the present thesis the model of Emmel (1995) was used when developing two- and 

three-dimensional numerical models of reinforcing fibres and the Compact-Tension test 

described in Chapter 6.  

 

 

3.4. Other approaches in modelling of fracture of IPC 

 

The issue of fracture toughness in advanced materials was discussed by Launey and 

Ritchie (2009) for different types of materials, including composites. The fracture in 

composite materials was discussed e.g. in the book by Argon (2013), for the domain restricted 

to fibre reinforced shells having one of the dimensions significantly smaller than the 

remaining two, and thus regarding mainly planar properties of sheets. Schmauder and 

Mishnaevsky (2009) discussed micromechanical analyses and numerical simulations of 

damage and fracture in different types of composites of complex microstructures, including 

IPCs. Element removal method, embedded unit cells, or microvoid growth methods were 

described. The matricity model was developed and applied for graded IPCs. Voxel based 

method of 3D FE mesh generation was also described. 

Węglewski et al. (2012, 2014) and Basista et al. (2016) developed a generic modelling 

methodology for thermal residual stresses, damage and fracture in arbitrary composites,  

making use of the computed microtomography images of the real composite microstructure to 
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generate FE mesh. The FE mesh generation was performed with the use of Simpleware 

ScanIP+ScanFE commercial software. Damage in IPC’s was also modelled by Mishnaevsky 

(2007), together with deformation analysis, using numerical approach. 3D finite element mesh 

generation models were compared for isotropic and gradiented IPCs. 

 

 

3.5.  Numerical modelling of crack propagation by XFEM 

 

The crack propagation in real IPCs can be modelled numerically using Extended Finite 

Element Method (XFEM) that is implemented in ABAQUS software. The idea of XFEM 

method was introduced by Belytschko and Black (1999) and was described in detail e.g. by 

Dumstorff and Meschke (2007). Bobiński and Tejchman (2011) applied XFEM approach to 

modelling of fracture in concrete. Zangmeister (2015) analysed numerical aspects of 

application of XFEM to modelling of heterogeneous materials undergoing elastic-plastic 

deformation. The XFEM is suitable to model discontinuities in the material as an enriched 

feature, where cracks are represented in the finite elements as the embedded discontinuities. 

As a consequence the re-meshing with the evolution of the crack can be avoided. XFEM 

enables the crack propagation of arbitrary, solution dependent direction and path. The crack 

path is not restricted to edges of the elements but may continuously propagate through them 

due to arbitrary enhancement functions that are incorporated in the finite element 

approximation.  

In ABAQUS (2010) used for calculations in Chapter 6 of this thesis, the solution of the 

displacement field u obtained with XFEM is formulated as the following sum: 

        
 
                      

  
                             (3.13) 

where:       - nodal shape functions, ui – continuous part of the displacement field vector, 

H(x) – discontinuous jump function across the crack surfaces, ai ,   
 – vectors of the nodal 

enriched degrees of freedom,        - elastic asymptotic crack tip functions.  

The displacement field u is, thus, composed of three terms, of which the first one applies 

to all the nodes in the model, while the other two apply only to the nodes linked with the 

crack: the second term applies to nodes with shape function support cut by the crack interior, 

and the third one applies for nodes with shape function support cut by the crack tip. 

The results of literature search on modelling of fracture in IPCs presented in this Chapter 

show that this problem is still not well covered. More often the published research was 

devoted to experimental characterization of fracture properties of IPCs than to modelling of 

their mechanical properties. A substantial effect of interpenetrating microstructure on the 

improvement of measured fracture properties has been reported. Following Launey and 

Ritchie (2009), the strength and fracture toughness are almost mutually exclusive for most of 

the materials, while limitations on engineering materials are in most cases connected with 

fracture toughness. It is, thus, important to develop toughening mechanisms in the regarded 

materials. 
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At the same time, there is a lack of numerical attempts to the problem of fracture in IPCs. 

The existing numerical works treat the problem using simple geometry and plane case 

situations (e.g. Emmel, 1995 or Wang et al., 2014).  

In line with the specific objectives stated in Chapter 4, the main goal of this thesis is to 

provide numerical analysis of the deformation and crack development in interpenetrating 

metal-ceramic composites taking into account the real material microstructure and the main 

crack toughening mechanism occurring in the IPCs.  
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4. Motivation, aim and theses of the dissertation 

 

In the previous Chapter, a background for modelling of elastic properties and fracture in 

metal-ceramic interpenetrating phase composites was outlined. The experimental 

investigations of IPC materials show that detailed investigation of the deformation and 

fracture processes is necessary for a proper identification and description of the IPC behavior 

under in-service conditions. Due to the high costs of the IPCs processing and difficulties that 

occur during their characterization, numerical modeling can be very helpful to reach this goal.  

Motivation of this thesis comes from the necessity to investigate mechanical and physical 

properties of newly designed IPC materials. While numerous IPC materials were already 

manufactured and tested, there is still lack of reliable analytical models, appropriate for 

special IPC microstructures. There is also a need for reliable numerical models that would be 

both detailed enough to catch the most important features of the IPC microstructure, and, at 

the same time, not too complicated to apply. The present work is intended to fulfill these 

needs by proposing a number of analytical and numerical models to predict effective elastic 

properties and fracture parameters of IPCs. 

Succinctly stated, the main objectives of this work are as follows: 

1. to develop analytical and numerical models predicting the effective elastic properties 

of metal-ceramic composites with interpenetrating microstructure, and to verify the 

obtained models by comparison with other methods and experimental data; 

2. to develop analytical and numerical models of deformation of IPCs with account of 

large plastic deformations of metal ligaments, matrix-reinforcement delamination and 

toughening mechanism by crack bridging; 

3. to develop numerical models for the macroscopic fracture in IPC materials with 

account of real material microstructure from micro-CT images. 

 

Since the present study is concerned with the effective elastic properties and deformation 

and fracture parameters of IPCs, it is divided into two main parts:  the first one concerning 

modeling of the effective material properties of IPCs, and the second one focused on 

modeling of deformation and fracture in IPCs. As novel materials are being modelled here 

some relevant experimental background of material manufacturing and characterization are 

included in Appendix. 

The main theses of this dissertation may be formulated as follows: 

1. The microstructure of IPC materials has a significant effect on their macroscopic 

properties. 

2. Numerical procedures for calculating the effective elastic and thermal properties, 

when combined with computed micro-tomography images make it possible to analyze 

different actual microstructures and their impact on the IPC properties on macroscale. 
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3. Comparison of analytical predictions and experimental measurements of elastic 

properties at room temperature enables fast identification of a composite 

microstructure with optimum properties. 

4. Numerical models are capable to account for phenomena that may occur in real IPC 

materials, such as interconnected fibers, delamination, skew fibers, contact between 

delaminated fiber and matrix, interaction between bridging fibers. 

5. Crack growth in metal-ceramic interpenetrating composites is best captured by 

numerical models due to complexity of IPC microstructure. 

In the following chapters an attempt will be made to give evidence in support of these 

theses using analytical and numerical methods of contemporary mechanics as applied to 

composite materials with interpenetrating metal-ceramic networks. 
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5. Effective elastic and thermal properties of IPCs - analytical  

and numerical modelling 

 

In this Chapter analytical and numerical models for the effective elastic and thermal 

properties of interpenetrating phase composites will be proposed. The main objective, besides 

prediction of effective material properties, is to investigate the influence of different 

composite microstructures and volume fractions of phases on macroscopic mechanical and 

thermal characteristics of IPCs.  

A part of research reported in this Chapter was conducted by the author in the framework 

of the KMM-NoE Project of the 6
th

 EU Framework Programme (http://aisbl.kmm-

vin.eu/node/180), including research stays at the Institute of Mechanics of Darmstadt 

University of Technology (TUD) in Germany.  

The models of effective properties to be presented were developed for material 

microstructures that were either idealized and simplified, or obtained from the real composites 

via computed microtomography (micro-CT). The obtained models were numerically 

implemented for specific composite materials Al2O3/Al and Al2O3/Cu. Manufacturing and 

characterization of the Al2O3/Cu IPC was performed in part within this thesis, and will be 

described in the Appendix.  

For the purposes of this thesis, it is assumed that metal (copper or aluminum) and ceramic 

Al2O3 phases of the composite are isotropic (for details on the crystallographic microstructure 

see cf. Dobrzański (2013), for detailed analysis of symmetry properties and anisotropy 

analysis of single crystals check Ostrowska-Maciejewska and Kowalczyk-Gajewska (2013). 

A simplified unit cell (cross) with idealized internal structure representing interpenetration of 

phases shown in Fig. 5.1a will be used in analytical and numerical estimations of the effective 

elastic constants. The IPC microstructure, depicted in Fig. 5.1a, has cubic symmetry and is 

generally anisotropic. However, real IPCs have irregular microstructure (cf. Fig. A6 in 

Appendix), in which such a unit cell can be regarded for different material points, as 

positioned at different angles to the macroscopic loading direction. The effects occuring due 

to different positions mutually annihilate, and, thus, the macroscopic composite body may be 

considered as isotropic. Moreover, Young’s moduli of IPCs measured within this thesis in 

two orthogonal directions generally did not differ more than 1% (cf. Table A2 in Appendix). 

Hence, it was assumed that the investigated composites are macroscopically isotropic (Feng et 

al., 2003, 2004; Poniznik et al., 2008). 

The following effective elastic constants, selected for their practical importance, will be 

modelled analytically: Young’s modulus, shear modulus, bulk modulus and Poisson’s ratio in 

Section 5.1.1, and the effective coefficient of thermal expansion in Section 5.1.2. Besides 

analytical estimates, numerical models of the effective Young’s modulus, shear modulus and 

Poisson’s ratio will be presented in Section 5.2. 

The state of the art in modelling of the overall mechanical constants of IPC’s has been 

presented in Chapter 2. The results presented below were partially published in Poniznik et al. 

(2008) and Basista and Poniżnik (2010).  

http://aisbl.kmm-vin.eu/node/180
http://aisbl.kmm-vin.eu/node/180


36 

 

5.1. Analytical approximations 

 

The main issue in deriving analytical extensions of the existing models and bounds on the 

overall material constants, was determination of the effective elastic constants for IPCs 

directly from the stiffness tensor. In what follows analytical extensions of the Tuchinskii 

(1983) and Feng et al. (2003, 2004) models and bounds on the effective Young’s modulus, 

shear modulus and Poisson’s ratio will be obtained directly from the stiffness tensor. The 

effective coefficient of thermal expansion as derived from the Rosen and Hashin (1970)  

relationship will also be provided. 

 

 

5.1. Modified Feng-Tuchinskii model for effective elastic properties 

 

 The models of Tuchinskii (1983) and Feng et al. (2003, 2004) of the effective elastic 

moduli of composites with interpenetrating microstructure described in Section 2.1.2, were 

derived from i.e. Young’s moduli and Poisson’s ratio. Below, the modification to the 

approximations of Tuchinskii (1983) and Feng et al. (2003, 2004) will be shown. The results 

presented in this Subsection, i.e. analytical formulae and their graphical representations, were 

first published in the paper of Poniznik et al. (2008). However, neither detailed derivation nor 

the final full-length formulae for the effective Young’s moduli and Poisson’s ratios, were not 

included therein due to their enormous size and will be shown in this Subsection. 

 The idea of Tuchinskii (1983) and Feng et al. (2003, 2004) for derivation of the 

effective elastic moduli of IPCs was based on a series of divisions of the unit cell till it was 

decomposed into pieces made up of only one material phase, and thus having the effective 

material properties equal to the properties of this phase. According to the iso-strain and iso-

stress assumptions, the effective properties of groups of neighbouring pieces can be 

calculated. Then, these groups can be put together to form layers and their effective properties 

can also be derived. Finally, the effective properties of the whole unit cell, composed of these 

layers, can be obtained. Tuchinskii (1983) divided the unit cell according to the iso-strain and 

iso-stress assumptions relative to the applied uniaxial stress direction. However, the unit cell 

can be divided into layers in two different ways. Then, for one of these ways, layers can be 

divided into sublayers also in two different ways. In total, there are three ways of unit cell 

division possible (cf. Table 5.1) and all of them lead to different results, what will be shown 

below. The iso-stress and iso-strain assumptions lead to bounds on effective constants. Such 

bounds were considered by Tuchinskii (1983). The third division direction procedure (Fig. 

5.1b) could be considered as a model for a particular effective response of the material.  
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Figure 5.1. (a) Unit cell of a simplified interpenetrating  microstructure (“cross microstructure”) based 

on the models of Frey (1932), Tuchinskii (1983) and Feng et al. (2003, 2004), used in modelling of 

effective mechanical properties of IPCs, (b) decomposition sequence of the unit cell according to the 

“extended” V-R-V model in vertical (V) and horizontal (H) directions (reprinted with permission of 

Computational Materials Science). 

 

 

 

 

 

 

 

a 

   

 
    

 
 

b) 1 2 3 

I 

II 

III 

vertical sectioning – iso-strain assumption 

– Voigt model 
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Table 5.1. Different ways of division of the unit cell depicted in Fig. 5.1a.  

 

 

Procedure 

stages i ii iii 

Naming 

convention  
layers sublayers 

elementary 

cells 

V-R-V  

vertical – iso-

strain – Voigt 

model 

horizontal – 

iso-stress – 

Reuss model 

vertical – iso-

strain – Voigt 

model 

V-V-R  

vertical – iso-

strain – Voigt 

model 

vertical – iso-

strain – Voigt 

model 

horizontal – 

iso-stress – 

Reuss model 

R-V-V  

horizontal – 

iso-stress – 

Reuss model 

vertical – iso-

strain – Voigt 

model 

vertical – iso-

strain – Voigt 

model 

 

 

Both Tuchinskii (1983) and Feng et al. (2003, 2004) derived the effective Young’s 

modulus as if it would be one of eigenmoduli of the isotropic stiffness tensor, which is not the 

case. If formulae for Young’s modulus and effective Poisson’s ratio were derived from the 

effective bulk and shear moduli, they would have different forms as will be shown below. In 

this thesis, extended models will be proposed for the effective bulk and shear moduli, which 

are the eigenmoduli of the isotropic stiffness tensor.  

According to the definition of effective elastic moduli (cf. Aboudi, 1991; Nemat-Nasser 

and Hori, 1999 or Gross and Seelig, 2006), the average stress σ tensor in a representative 

volume element (RVE) of a composite subjected to homogeneous displacement boundary 

conditions is related to the average strain ε  tensor by the effective elastic stiffness tensor C
*
 

 

klijklij Cor  ** :,  εCσ                  (5.1) 

 

Alternatively, when homogeneous traction boundary conditions are imposed on the RVE the 

average strain tensor is related to the average stress tensor by the effective compliance tensor 

S
*
  

 

klijklij Sor  ** :,  σSε                  (5.2) 

The components of the stiffness tensor Cijkl for an isotropic material can be expressed as 

(cf. Ostrowska-Maciejewska, 1994; Ostrowska-Maciejewska and Kowalczyk-Gajewska, 

2013) 

 



39 

 

     
 

 
          

 

 
          

 

 
     

                        (5.3 a,b) 

 

 
jkiljlikklijijklC                    

where 1 is a 2
nd

 rank unity tensor, 1 = δij, I
s
 is the symmetric part of a 4

th
 rank unity tensor I, 

Iijkl = δik δjl,      
  

 

 
               , with       

 

 
    – deviatoric part and       

   
 

 
    – spherical part,  λ and μ are Lamé constants, δij is the Kronecker delta.  

Thus, according to the relationships between Lamé constants and the elastic constants 

(Young’s modulus E, Poisson’s ratio ν, bulk modulus K, and shear modulus μ), only the bulk 

modulus K and shear modulus μ are the eigenvalues of the stiffness tensor: 
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while the other elastic constants are interrelated, for instance Young’s modulus E and 

Poisson’s ratio ν, namely 

 

 
  

  









211

211

1
2









E

E

                 (5.5) 

 

 Consequently, the formulae for the effective elastic constants in Tuchinskii (1983) and 

Feng et al. (2003, 2004) should have been derived from direct components of the stiffness 

tensor, e.g. bulk modulus K and shear modulus μ, but neither Young’s modulus E nor 

Poisson’s ratio ν. Moreover, the Tuchinskii model (1983) contains some errors and misprints  

as shown in Poniznik et al. (2008). 

 According to the idea of unit cell sectioning (cf. Fig. 5.1b and Table 5.1), the effective 

elastic properties for IPC modelled by the cross microstructure (Fig. 5.1a), can be derived as 

described below (note that for isotropic materials, the engineering constant G known as shear 

modulus, is equal to the Lamé constant μ, thus for convenience μ will be replaced by G in the 

sequel). 

 A 3D-cross cubic unit cell shown in Fig. 5.1a is composed of two mutually 

interpenetrating phases A and B, where phase B has ligaments with geometry of a square 

section characterized by the dimension a (0 ≤ a ≤ 1). The total volume fraction f of the phase 

B in the cubic unit cell from Fig. 5.1a may be expressed as the sum of the volumes of one 

cube with the phase B in the middle and six “branching” cuboids with the phase B of identical 

dimensions, as related to the total volume of the unit cube 
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                                                (5.6) 

 

 When tensile loading acts along the axis “2”, the unit cell can be divided by planar 

surfaces perpendicular to the axes of the coordinate system into layers and then sublayers 

until elementary cells, where each cell is composed of only one phase material. Let us first 

consider the division direction presented in Fig. 5.1b according to the following “extended” 

V-R-V model.  

 

 

 

The “extended” V-R-V model 

 

 First, the unit cell is divided into layers perpendicularly to the axis “1”, according to the 

Voigt iso-strain assumption. The effective shear and bulk modulus of the unit cell may be 

formulated in terms of the respective properties of each layer 

 

2211332211
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  

                        (5.7 a,b) 
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* 2 KcKcKcKcKcKcK
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  

 

where: i - identifier of the layer, ci - volume fraction of the i-th layer, c1 = c3, c2 = 1 - 2c1, Gi - 

shear modulus of the i-th layer, Ki - bulk modulus of the i-th layer, G1 = G3, K1 = K3, G
*
 

effective shear modulus of the whole unit cell, 
*K - effective bulk modulus of the whole unit 

cell.  

The volume fraction of the i-th layer is related to the characteristic dimension a of the 

phase B as 

 

      
    
     

     
   

 
 
   

 
                       

                        (5.8 a,b) 

         
  

     
                                

 

 Then, each layer is divided into sublayers according to the Reuss iso-stress assumption 

perpendicularly to the axis “2” 
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where: j –identifier of the sublayer, cj - volume fraction of the j-th sublayer, cI = cIII, cII = 1 - 

2cI, Gsublayer,j - shear modulus of the j-th sublayer, Ksublayer,j - bulk modulus of the j-th sublayer, 

GI = GIII, KI = KIII, 
*

layerG  - effective shear modulus of the layer composed of sublayers, 
*

layerK  

- effective bulk modulus of the layer composed of sublayers.  

Depending on the layer, the volume fractions of sublayers related to the volumes of layers 

(for we calculate now the effective properties of layers), may be expressed as 

for layers 1 and 3 

 

        
      
    

 
  
   
  

   
 

   
 

 
   

 
 

                                                 (5.10 a,b)  

          
   
    

 
    

   
 

   
 

   

 

for layer 2 
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 Each sublayer can be divided into elementary cells composed of only one phase A or B, 

perpendicularly to the axis “3”, according to the Voigt iso-strain assumption in each of the 

sublayer’s elementary cell. However, sublayers should be characterized in three groups.  
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For sublayers (1, II), (2, I), (2, III), (3, I) 
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                           (5.12 a,b) 
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where k –identifier of the phase A or B, Gk - shear modulus of the k-th phase, Kk - bulk 

modulus of the i-th phase, ck - volume fraction of the k-th phase in each sublayer, cB = 1 - cA = 

a, cB - volume fraction of the phase B in each sublayer, 
*

sublayerG  - effective shear modulus of 

the sublayer composed of elementary cells, 
*

sublayerK  - effective bulk modulus of the sublayer 

composed of elementary cells.  

For sublayers (1, I), (1, III), (3, I), (3, III) 

 

Asublayer GG *
 , 

Asublayer KK *                    (5.13 a,b) 

 

while for sublayer (2, II): 

 

Bsublayer GG *
 ,  

Bsublayer KK *                  (5.14 a,b) 

 

 Now, the effective properties of layers may be calculated. For layers 1 and 3, according to 

Eq. (5.9) combined with (5.10) and (5.13) gives 
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 The effective elastic properties of layer 2, according to Eq. (5.9) with the use of Eqs (5.11) 

and (5.14) can be expressed as 
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 Upon substitution of Eqs (5.8), (5.15) and (5.16), to (5.7) the effective elastic shear and 

bulk moduli of the unit cell may be written as 
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 The formula (5.17a) was first published in Poniznik et al. (2008). It was noted that the 

formula for the effective bulk modulus (5.17b) would have the same form with substitution of 

G by K.  

 The formulae for the “extended” V-R-V model of the effective Young’s modulus and 

Poisson’s ratio may be obtained from the well-known relationships between elastic constants, 

such as (5.4) and (5.5) as follows 
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 The full-length Eq. (5.18) for the effective elastic Young’s modulus and Poisson’s ratio 

according to the “extended” V-R-V model, due to their enormous size, will be additionally 

presented on separate pages in the final part of this Subsection.  

The relationships (5.17) and (5.18), related to the volume fraction of metal phase with the 

formula (5.6) are graphically represented as the “extended V-R-V model”  in Figs 5.2 ‒ 5.5 at 

the end of this Chapter. 

 

The “extended” V-V-R model 

 To derive the formulae for the “extended” V-V-R models to the effective elastic constants, 

the unit cell is divided into layers as in the previous case, perpendicularly to the axis “1” (cf. 

Fig. 5.1 and Table 5.1), according to the Voigt iso-strain assumption.  

The effective shear and bulk moduli of the unit cell will, thus, have identical form as the 

formulae (5.7) 
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where: i - identifier of the layer, ci - volume fraction of the i-th layer, c1 = c3, c2 = 1 - 2c1, Gi - 

shear modulus of the i-th layer, Ki - bulk modulus of the i-th layer, G1 = G3, K1 = K3, G
*
- 

effective shear modulus of the whole unit cell, 
*K - effective bulk modulus of the whole unit 

cell.  

Volume fractions of the layers related to the characteristic dimension a of the phase B, 

regardless of the unit cell division direction, remain the same according to formulae (5.8), 

(5.10) and (5.11). 

 The second division direction of layers into sublayers follows the Voigt iso-strain 

assumption again and is made perpendicularly to the axis “3” 
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where: j –identifier of the sublayer, cj - volume fraction of the j-th sublayer, cI = cIII, cII = 1 - 

2cI, Gsublayer,j - shear modulus of the j-th sublayer, Ksublayer,j - bulk modulus of the j-th sublayer, 

GI = GIII, KI = KIII, 
*

layerG  - effective shear modulus of the layer composed of sublayers, 
*

layerK  

- effective bulk modulus of the layer composed of sublayers.  

 Finally, each sublayer is divided into elementary cells, composed of only one phase A or 

B, perpendicularly to the axis “2”, according to the Reuss iso-stress assumption of equal stress 

in each of the sublayer’s elementary cell. As for the previous case, sublayers are characterized 

in three groups. For the sublayers respective to (1, II), (2, I), (2, III), (3, I) from Fig. 5.1b 
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where k –identifier of the phase A or B, Gk - shear modulus of the k-th phase, Kk - bulk 

modulus of the i-th phase, ck - volume fraction of the k-th phase in each sublayer, cB = 1 - cA = 
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a, cB - volume fraction of the phase B in each sublayer, 
*

sublayerG  - effective shear modulus of 

the sublayer composed of elementary cells, 
*

sublayerK  - effective bulk modulus of the sublayer 

composed of elementary cells.  

For sublayers respective to (1, I), (1, III), (3, I), (3, III) and (2, II) from Fig. 5.1b, the 

relations 5.13 and 5.14 remain as 

  

   Asublayer GG *
, 

Asublayer KK *                  (5.22 a,b) 

 

while for a sublayer with regard to (2, II) from Fig. 5.1b we get 

 

   Bsublayer GG *
 ,  

Bsublayer KK *                     (5.23 a,b) 

 

 The effective properties of layers may now be calculated. For layers 1 and 3, according to 

Eq. (5.20)  with the use of (5.10), (5.21) and (5.22) it follows that 
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 The effective elastic properties of layer 2, according to formulae (5.20) combined with 

(5.11), (5.21) and (5.23) can be expressed as 
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 Using the formulae (5.8), (5.24) and (5.25) the expressions (5.19) for the V-V-R models of 

the effective shear and bulk moduli of the unit cell may be written as 
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with the same relations (upon substitution of K by G) for V-V-R model for shear modulus G*.  

The formula for the V-V-R model for shear modulus (5.26a) is identical with formula 

(2.21) of the Feng model. The formula (5.26b) was first published in Poniznik et al. (2008), 

with a misprint (wrong bracket placement) in the equation (6) therein. It was noted, that the 

formula for the effective shear modulus (5.26a) would have the same form with K substituted 

by G. 

 Using the well-known relationships between elastic constants (5.4) and (5.5), the V-V-R 

models for the effective Young’s modulus and Poisson’s ratio may be obtained 

 

    
  

     
     

 

     
      

  

                              (5.27 a,b) 

    
  

     
       

 

     
       

  

 

The relationships (5.26) and (5.27), related to the volume fraction of metal phase with the 

formula (5.6), are depicted in Figs 5.2 ‒ 5.5 as the “extended” V-V-R models. 
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The “extended” R-V-V model 

 

 For derivation of the “extended” R-V-V model the unit cell is first divided into layers 

perpendicularly to the axis “2”, according to the Reuss iso-stress assumption (cf. Fig. 5.1 and 

Table 5.1). The effective shear and bulk moduli of the unit cell formulated in terms of the 

respective properties of each layer read 
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where: i - identifier of the layer, ci - volume fraction of the i-th layer, c1 = c3, c2 = 1 - 2c1, Gi - 

shear modulus of the i-th layer, Ki - bulk modulus of the i-th layer, G1 = G3, K1 = K3,
* - 

effective shear modulus of the whole unit cell, 
*K - effective bulk modulus of the whole unit 

cell.   

 Volume fractions of the layers related to the characteristic dimension a of the phase B, 

regardless of the unit cell division direction, remain the same and are given by formulae (5.8), 

(5.10) and (5.11). 

 The second division direction of layers into sublayers follows the Voigt iso-strain 

assumption again and is made perpendicularly to the axis “3”: 
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where: j –identifier of the sublayer, cj - volume fraction of the j-th sublayer, cI = cIII, cII = 1 - 

2cI, Gsublayer,j - shear modulus of the j-th sublayer, Ksublayer,j - bulk modulus of the j-th sublayer, 

GI = GIII, KI = KIII, 
*

layerG  - effective shear modulus of the layer composed of sublayers, 
*

layerK  

- effective bulk modulus of the layer composed of sublayers.  

 The division of the sublayers into elementary cells, composed of only one phase A or B, is 

made perpendicularly to the axis “1”, according to the Voigt iso-strain assumption of equal 
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strain in each of the sublayer’s elementary cell. Sublayers are characterized in three groups, as 

in previous cases. For the sublayers respective to (1, II), (2, I), (2, III), (3, I) from Fig. 5.1b we 

obtain  
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                            (5.30 a,b) 
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where: k –identifier of the phase A or B, Gk - shear modulus of the k-th phase, Kk - bulk 

modulus of the i-th phase, ck - volume fraction of the k-th phase in each sublayer, cB = 1 - cA = 

a, cB - volume fraction of the phase B in each sublayer, 
*

sublayerG  - effective shear modulus of 

the sublayer composed of elementary cells, 
*

sublayerK  - effective bulk modulus of the sublayer 

composed of elementary cells.  

For the sublayers respective to (1, I), (1, III), (3, I), (3, III) and (2, II) from Fig. 5.1b, the 

relations (5.13)/(5.22) and (5.14)/(5.23) hold as before: 

 

 Asublayer GG *
 , 

Asublayer KK *                      (5.31 a,b) 

 

and for the sublayer respective to (2, II) from Fig. 5.1b 

 

 Bsublayer GG *
 ,  

Bsublayer KK *                    (5.32 a,b) 

 

 The effective properties of layers 1 and 3, according to formulae (5.29) with regard to 

(5.10), (5.30) and (5.31), take the form  
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 The effective elastic properties of layer 2, according to formulae (5.20) combined with 

(5.11), (5.21) and (5.23) become 

 

        
                                  

   

 
                   

               
                          

                          (5.34 a,b) 

        
                                  

   

 
                   

               
             

             

 

 Substituting (5.8), (5.33) and (5.34) to Eqs (5.28) for the R-V-V model of the effective 

shear and bulk moduli of the unit cell, may be written as 
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with the same relations (with substitution of K by G) for R-V-V model for shear modulus G*. 

The formula (5.35b) was first published in Poniznik et al. (2008), with a misprint (missing 

power) in the equation (7) therein. It was noted, that the formula for the effective shear 

modulus (5.35a) would have the same form with substitution of K by G. 

 Using the relationships (5.4) and (5.5) between elastic constants the formulae for the 

effective Young’s modulus and Poisson’s ratio, respectively, according to the “extended” R-

V-V model can be expressed in usual way 
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                      (5.36 a,b) 

    
  

     
       

 

     
       

  

 

with     
  and     

  given by Eqs (5.35 a,b). 

 

The relationships (5.35) and (5.36) with the volume fraction of metal phase defined by the 

formula (5.6), are depicted in Figs 5.2 ‒ 5.5 as the “extended” R-V-V models.  

 

 

Comparison of analytical models for the effective elastic constants  

 

 The relationships of the “extended” models of the effective elastic moduli of IPCs, 

expressed with formulae (5.17), (5.18), (5.26), (5.27), (5.35) and (5.36), with the volume 

fraction of metal phase given by the formula (5.6), are depicted in Figs 5.2, 5.3, 5.4 and 5.5. 

These relationships are collected and compared with existing bounds and models for the 

effective elastic constants described in Chapter 2. 

 The material constants of the investigated IPCs’ components: alumina Al2O3, aluminum 

Al and copper Cu, that were used for calculations, are collected in Table 5.2.  

 The full-length formulae (5.18) for the effective elastic Young’s modulus and Poisson’s 

ratio according to the “extended” V-R-V model, are presented separately on the next page due 

to their enormous size. Similarly obtained full-length formulae (5.27) and (5.36), will not be 

presented. 

 

Table 5.2. Material constants used in calculations. The data were obtained from: Moon et al. (2005) 

for alumina and aluminum, material data tables of Deutsches Kupferinstitut Cu-ETP (2005) and Lipka 

(1990) for Cu; the values of bulk and shear moduli were calculated from Young’s moduli and 

Poisson’s ratios for the respective materials using relations (5.4) and (5.5) between the elastic 

constants. 

 

 Al2O3 Cu Al 

EA, EB[GPa] 390.0 110.0 69.0 

GA, GB [GPa] 162.5 40.7 25.9 

KA, KB [GPa] 216.7 122.2 76.0 

νA, νB 0.2 0.35 0.33 
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Figure 5.2. Effective Young’s moduli vs. volume fractions of metal phase (graph for Al2O3/Cu based 

on Poniznik et al. (2008), Basista et al. (2010) and Basista et al. (2016), reprinted with permission of 

the publishers). 

Al2O3/Cu 

Al2O3/Al 
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. 

  
 

  
 

Figure 5.3. Effective shear moduli vs. volume fractions of metal phase (graph for Al2O3/Cu based on 

Poniznik et al. (2008), reprinted with permission of the publisher). 
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Figure 5.4. Effective Poisson’s ratio vs. volume fractions of metal phase (graph for Al2O3/Cu based 

on Poniznik et al. (2008), reprinted with permission of the publisher). 
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Figure 5.5. Effective bulk moduli vs. volume fractions of metal phase. 
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 In Figs 5.2 – 5.5, the effective elastic constants developed according to the “extended” 

models, are compared with the Voigt and Reuss bounds and the models of Tuchinskii (1983) 

and Feng et al. (2003, 2004).  

 The widest bounds for the effective material properties, according to the principles of 

minimum potential and complementary energy, are given by the Voigt and Reuss 

approximations (cf. Gross and Seelig 2006). The estimated values for composite effective 

properties should fit between these bounds. As it can be seen from Figs 5.2 – 5.5, all the 

presented models for Young’s modulus, shear modulus and Poisson’s ratio, fulfill this 

requirement and fit between the Voigt and Reuss bounds.  

 The “extended” V-V-R model estimates of the effective Young’s modulus and shear 

modulus (Eqs 5.26a and 5.27a), are in accordance with estimates of Tuchinskii (1983) and 

Feng et al. (2003, 2004). The “extended” V-V-R estimate of the effective Young’s modulus 

(Eqs 5.27a) is close to Tuchinskii (1983) and Feng et al. (2003, 2004) models. The 

“extended” V-V-R estimate of the effective shear modulus (Eq. 5.26a) is identical with Feng et 

al. (2003, 2004) model.   

 As it can be seen in Fig. 5.4, the “bounds” for the Poisson’s ratio are reversed: the Reuss 

model serves as the upper bound on the effective Poisson’s ratios, while the Voigt model 

serves as the lower bound. Also the “extended” V-V-R and R-V-V models behave this way
1
 

and that is the reason for the lower bound at higher Poisson’s ratio values than for the upper 

bound.  

 The results yielded by the “extended” V-R-V model (cf. Figs 5.2 – 5.5) for both material 

compositions and for all the presented effective elastic constants i.e. Young’s modulus, shear 

modulus, bulk modulus and Poisson’s ratio, are close to the “extended” V-V-R model, and for 

the metal volume fractions higher than 0.6, both models almost coincide. The reason for that 

can be the same initial sectioning of the whole unit cell according to the Voigt model for both 

the V-V-R and V- R-V  “extended” models. 

 For the Al2O3/Al material composition the differences between respective models are 

greater than for Al2O3/Cu composites due to greater differences between the elastic constants 

of the alumina ceramic and the respective metal components: Al and Cu. 

 

 

                                                 
1
 In Fig. 9 in Poniznik et al. (2008) both “extended” bounds were named according to their actual roles – the 

“lower” was changed to “upper” and “upper” to “lower”. 
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5.1.2. Estimates for the effective coefficient of thermal expansion 

 

 

 The effective coefficient of thermal expansion for a composite with interpenetrating 

microstructure was modelled in this thesis according to the estimate of Rosen and Hashin 

(1970). The Voigt and Reuss approximations, as well as the modified Feng-Tuchinskii models 

described in the preceding Subsection, were included in the model. The effective coefficients 

of thermal expansion were estimated relative to the volume fraction of the metal phase. 

Calculations were made for Al2O3/Al and Al2O3/Cu IPCs. It was assumed that both metal and 

ceramic phases were elastically and thermally isotropic, so was the whole composite on the 

macroscale.  

The Duhamel-Neumann law in the representative volume element (RVE) of a composite 

subjected to homogeneous displacement boundary conditions and uniform temperature 

increase from T1 to T2  relates the average stress tensor    with the average strain tensor    as 

 

                                                       (5.37) 

 

where C
*
 denotes the effective stiffness tensor and α

* 
denotes

 
the effective coefficient of 

thermal expansion, 1 is the unit 2
nd

 rank tensor; the average strain tensor    may be 

decomposed into the elastic part ε
E
 and thermal part ε

T
 (cf. Ostrowska-Maciejewska, 1994; 

Gross and Seelig, 2006). 

 The estimates of the effective coefficients of thermal expansion α
* 

were derived from the 

equation (2.6) of Rosen and Hashin (1970): 

 

                  
 

  
 

 

  
 
  

 
 

  
  

 

 
 
     

         (5.38) 

 

where the indices denote: A, B – composite phases, 
*
 – effective quantity, 

Voigt
 -volume average 

according to Voigt model,                  – Voigt estimate of averaged coefficient of 

thermal expansion,  
 

 
 
     

 
  

  
 

  

  
 – is the Voigt estimate of averaged inverse of bulk 

modulus, fA, fB are volume fractions of the respective phases.  

Depending on the approximation method to obtain the effective bulk modulus K
*
, different 

formulae for the effective coefficient of thermal expansion α
*
 can be obtained. In what 

follows the Rosen and Hashin (1970) estimates of the effective coefficients of thermal 

expansion will be formulated with substitution in the formula (5.38) of the upper and lower 

bounds on the effective bulk modulus according to Voigt and Reuss, by the expressions (2.1b) 

and (2.4b). The relationship for the Rosen and Hashin (1970) estimates of the effective 

coefficients of thermal expansion putting the Voigt upper bound on the bulk modulus K
*

Voigt 

(2.1b) in place of K
*
 takes the form  
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      (5.39) 

 

 When the Reuss lower bound on the bulk modulus K
*

Reuss (2.4b) is substituted for K
*
 in 

Eq. (5.38), the Rosen and Hashin (1970) relationship (5.38) for the effective coefficients of 

thermal expansion becomes 

  

         
                 

 

  
 

 

  
 
  

 
 

      
   

 

 
 
     

   

                
 

  
 

 

  
 
  

 
 

               
    

 

 
 
     

   

                
 

  
 

 

  
 
  

 
   

  
 

 

  
  

 

 
 
     

        (5.40) 

 

In the equations (5.39) and (5.40) i – denotes identifier of the phase A or B, a - denotes 

volume fraction of the phase B, αi - denotes coefficient of thermal expansion of the i-th phase, 
*
 - denotes the effective quantity.  

 Substituting the relations (5.17b), (5.26b) and (5.35b) for the “extended” effective bulk 

moduli from the preceding Subsection into the expression (5.38), the Rosen and Hashin 

(1970) estimates of the effective coefficients of thermal expansion with the “extended” V-R-V, 

V-V-R and R-V-V models for bulk modulus, were obtained as shown below.  

 Using the “extended” V-R-V model for the effective bulk modulus (5.17b), the Rosen and 

Hashin (1970) estimate of the effective coefficient of thermal expansion (5.38) takes the form 
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 The Rosen and Hashin (1970) bound on the effective coefficient of thermal expansion 

(5.38) with applied “extended” V-V-R model on the effective bulk modulus (5.26b) can be 

expressed as follows   

 

        
                 

 

  
 

 

  
 
  

 
 

    
   

 

 
 
     

        

                   
 

  
 

 

  
 
  

                      

   
 

  
 

   

  
 
  

 
  

  
 

 
 
     

               (5.42) 

 

 The Rosen and Hashin (1970) bound on the effective coefficient of thermal expansion 

(5.38) with applied “extended” R-V-V model of the effective bulk modulus (5.35b), reads 

 

       
                 

 

  
 

 

  
 
  

 
 

    
   

 

 
 
     

      

                
 

  
 

 

  
 
  

    
   

             
 

 

                 
 
  

 
  

  
 

 
 
     

 

   

                
 

  
 

 

  
 
  

  
   

             
 

 

                 
  

 

 
 
     

   (5.43) 

 

 The Rosen and Hashin (1970) estimates (5.41), (5.42) and (5.43), with the Voigt and 

Reuss bounds, (5.39) and (5.40), and with the V-R-V, V-V-R and R-V-V models are depicted in 

Figs 5.6 and 5.7 for two material compositions: Al2O3/Cu and Al2O3/Al. Material parameters 

of alumina Al2O3, aluminum and copper, that were used for calculations, are shown in Table 

5.3. 

 

Table 5.3. Material properties used in calculations. The data were obtained from: Moon et al. (2005) 

and Zimmermann et al. (2001) for alumina and aluminum, material data tables of Deutsches 

Kupferinstitut Cu-ETP (2005), and Lipka (1990) for Cu; the values of bulk and shear moduli were 

calculated from Young’s moduli and Poisson’s ratios for the respective materials using relations (5.4) 

and (5.5) between the elastic constants. 

 

 Al2O3 Cu Al 

EA, EB[GPa] 390.0 110.0 69.0 

GA, GB [GPa] 162.5 40.7 25.9 

KA, KB [GPa] 216.7 122.2 76.0 

νA, νB 0.2 0.35 0.33 

αA, αB [ppmK
-1

] 6.55 16.8 25.0 
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Figure 5.6. Effective coefficient of thermal expansion vs. volume fraction of metallic phase for 

Al2O3/Cu composite 

 

  

Figure 5.7. Effective coefficient of thermal expansion vs. volume fraction of metallic phase for 

Al2O3/Al composite 

 

Al2O3/Cu 

Al2O3/Al 
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 As it can be seen in Figs 5.6 and 5.7, for both IPC material compositions, Al2O3/Cu and 

Al2O3/Al, the outermost estimates on the effective coefficients of thermal expansion are 

provided by the Rosen and Hashin (1970) estimates with the Voigt and Reuss approximations 

used. According to Christensen (1979), these estimates with applied bounds on the effective 

elastic moduli, may be regarded as bounds on the effective coefficients of thermal expansion. 

All three remaining Rosen and Hashin estimates incorporating the “extended” V-R-V, V-V-R 

and R-V-V models, fit between these bounds.  

 In can be noted from Figs 5.6.and 5.7 that the Rosen and Hashin (1970) approximations 

with the Voigt and Reuss bounds and with the V-V-R and R-V-V models manifest reversed 

behavior as compared to the Voigt and Reuss bounds and the V-V-R and R-V-V models 

themselves for the effective elastic moduli: Young’s modulus, shear modulus and bulk 

modulus. The Rosen and Hashin estimate with the Reuss approximation takes high values and 

may be regarded as the upper bound on the effective coefficients of thermal expansion. The 

Rosen and Hashin estimate with the Voigt model, takes low values and may serve as the 

lower bound. Similarly, the Rosen and Hashin estimate with the V-V-R model takes high 

values, in opposite to low values for the V-V-R model for the elastic moduli. The Rosen and 

Hashin estimate with the R-V-V model takes low values in opposite to high values for the R-

V-V model for the elastic moduli. 

 For both material compositions and for metal volume fractions less than appox. 0.5, the 

Rosen and Hashin estimations with the V-R-V and R-V-V models, almost coincide.  

 For the Al2O3/Al composite the differences between respective models are greater than for 

the Al2O3/Cu , which may be due to the larger contrast in phase properties between the elastic 

constants: shear modulus and bulk modulus, for alumina (Al2O3) and aluminum than for 

alumina and copper. 

 



63 

 

 

5.2.  Numerical models 

 

In this Section numerical models for estimation of the effective elastic constants of IPCs 

will be proposed. The influence of the microstructure on the effective composite properties 

will be shown on a simple example using Mishnaevsky (2005, 2006, 2007b) codes. Then, 

Finite Element Method (FEM) models for two kinds of IPC microstructures: simplified 3D 

“cross” microstructure and real IPC microstructure obtained with computed microtomography 

(micro-CT), will be presented. For the real IPC microstructure, the mesh of the voxel type and 

the mesh with smoothed boundaries between composite’s phases containing tetragonal and 

hexagonal elements, will be used. The results of the effective elastic constants obtained with 

different numerical models will be presented and compared with the analytical models 

developed in Subsection 5.1.1 and with the experimental results described in Appendix. 

 The models and results presented in this Subsection were published in part in Poniznik et 

al. (2008), Basista et al. (2010) and Basista et al. (2016).  

 

5.2.1. Mishnaevsky model  

 

 It is commonly known that the microstructure of a composite influences its overall 

properties (see for example Schmauder, 1999 or Torquato, 2000). Analytical models for the 

effective elastic properties work fairly well for idealized and simplified microstructures but 

usually fail for more complex material microstructures. In such cases numerical approaches 

are usually applied as they enable estimation of the effective material moduli for irregular and 

complicated microstructures like those manifested by the interpenetrating phase composites. 

The models of Mishnaevsky (2005, 2006, 2007b), may serve as an example of using 

numerical approach to calculate the effective elastic constants of two-phase composites with 

various types of microstructures.  

 The programme of Mishanevsky (2006, 2007b) was used in a simple example that will be 

shown below to examine the influence of the composite’s microstructure on the effective 

elastic properties (Poniznik et al., 2008). The two- or three-dimensional composite 

microstructure was represented with square or cubic cells, respectively. The programme can 

generate a random microstructure, or an input from prescribed microstructure data can be 

used.  

In the 2D case a cell may be composed of one or both materials. The microstructure of the 

material is mapped and the effective mechanical properties for all particular cells, rows of 

cells, and finally of the whole composite, are derived. A procedure with the Voigt iso-strain 

assumption is used for the rows of cells (Mishanevsky, 2007b), namely 

 

                                        (5.44) 
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where c
layer

 is the area fraction of the phase A, EA, EB are Young’s moduli of the A nad B 

phase, respectively.  

The effective Young moduli of the composite E
*
 are obtained using the Reuss iso-stress 

assumption: 

 

     
 

  
 
     

 
    

  

                (5.45) 

  

 In Fig. 5.8 the effective Young’s moduli estimated with the Mishnaevsky code (2006) are 

compared for two different microstructures of Al2O3/Cu composite. The material data of 

alumina and copper used in the numerical calculations of this Subsection are shown in Table 

5.4. It is seen in Fig. 5.8 that for the same volume fractions of the “black” Cu phase (white 

colour denotes Al2O3) the effective moduli are substantially different for different 

microstructures. Hence, it can be deduced that the composite microstructure affects its overall 

elastic properties. 

 

Table 5.4. Material properties used in numerical models of this Subsection; for alumina ceramic the 

data were adopted from Moon et al. (2005) and Zimmermann et al. (2001), whereas for copper the 

material data tables of the Deutsches Kupferinstitut Cu-ETP (2005) and Lipka (1990) were used; the 

values of bulk and shear moduli were taken from Poniznik et al. (2008) as calculated from Young’s 

moduli and Poisson’s ratios for the respective materials using the relations (5.4) and (5.5) between the 

elastic constants. 

 

 Al2O3 Cu 

EA, EB [GPa] 390.0 110.0 

GA, GB [GPa] 162.5 40.7 

KA, KB [GPa] 216.7 122.2 

νA, νB 0.2 0.35 
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Figure 5.8. Influence of the model microstructure on the effective Young’s modulus of Al2O3/Cu 

composite: the results of Mishnaevsky (2006, 2007b) procedure implemented for two different 

microstructures ‒ “cross” microstructure and matrix – inclusion “square” microstructure (reproduced 

from Poniznik et al. (2008) with permission of the publisher) 

 

 

5.2.2. Three-dimensional cross model 

 

 A numerical model for a two-phase IPC microstructure from Fig. 5.1a was created using a 

three-dimensional cross unit cell with a varying branch section, as presented in Fig. 5.9 (cf. 

Poniznik et al., 2008). The numerical models for the effective Young’s modulus, Poisson’s 

ratio and shear modulus were developed and implemented using FEAP 7.5 (Taylor, 2005) 

programme. At this stage of model development the effect of anisotropy of the cross 

microstructure (Fig. 5.9) was neglected.  
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 

 

Figure 5.9. FEM model of the cubic unit cell created with FEAP 7.5 for different metal volume 

fractions; red phase – alumina, green phase – copper. (a, b) Unit cell model used for the calculations of 

the effective Young’s modulus and Poisson’s ratio, (c, d) – one of the phases with another phase 

invisible, (e, f) –1/8
th
 of the unit cell used for the effective shear modulus calculations. Volume 

fractions of metal: a), d) 0.93, b), c) 0.74, e) 0.26, f) 0.50, finer mesh. 

 

 The unit cubic cell with three-dimensional cross microstructure composed of two mutually 

interpenetrating phases is shown in Fig. 5.9a,b. The varying cross section made it possible to 

analyze the influence of metal volume fractions on the effective moduli. For the effective 



67 

 

Young’s modulus and Poisson’s ratio the unit cell shown in Fig. 5.9a,b was used. Due to the 

problem symmetry, only 1/8
th

 of the unit cell (Fig. 5.9a,b) was considered. The unit cell was 

cut along three symmetry planes perpendicular to the coordinate system axes and relevant 

symmetry conditions were applied 

 

  

                                                             
                                                             
                                                             

        (5.46a,b,c) 

 

where ui – component of the displacement in i
th

 direction, xi – i
th

 axis of the Cartesian 

coordinate system, i = 1..3.  

The applied boundary conditions were of mixed type (cf. Huet, 1999), as described in 

Poniznik et al. (2008). The Young’s modulus and Poisson’s ratio were determined simulating 

the material behaviour during tensile test (cf. ASTM E 111 - 97 and ASTM E 132 – 97 

standards, respectively; see also: Ruud et al. (1993), who measured Young’s modulus and 

Poisson’s ratio for thin Cu, Ag and Ni films in tensile tests, or Benito et al., 2005, where 

tensile tests were used to measure Young’s modulus of polycrystalline pure iron), with the 

following gradient of deformation E applied (cf. Ogden, 1997; Petryk, 2006): 

 

    
   
       
       

   
        

        
        

            (5.47) 

  

where   
 

  
  is the principal stretch along the axis 1. 

 For the effective shear modulus, the unit cell as in Fig. 5.9e,f, being 1/8
th

 of the unit cell 

for the effective Young’s modulus and Poisson’s ratio, was applied. Displacement loading 

was applied to simulate simple shear. Simple shear state was addressed e.g. by Ogden (1997) 

or Petryk (2006) and used to determine shear modulus by Naruse (2003), who modelled 

simple shear with a FE model supporting experimental measurements of shear modulus of 

wood. Hussnätter and Merklein (2008) used simple shear for experimental determination of 

the shear modulus of lightweight alloys of aluminum AA6016 (wrought alloy) and 

magnesium AZ31. Nunes (2011) and Nunes and Moreira (2013) analysed simple shear under 

large deformations of polydimethylsiloxane (PDMS), modelled as a nonlinear elastic solid. It 

has been noted in the literature (Timoshenko, 1953; Destrade et al., 2012 or Moreira and 

Nunes, 2013) that for small deformations the effects of simple shear and pure shear are the 

same. Therefore, in this thesis simple shear was applied, with the deformation gradient E in 

the form (cf. Ogden, 1997; Petryk, 2006): 

 

    
   
   
   

   
        
   
   

              (5.48) 

  

where γ denotes the amount of shear. 
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 The model was meshed with eight-node brick elements amounting to 17551 nodes and 

13824 elements (Fig. 5.9e). Finer mesh with 237367 nodes and 216000 elements shown in 

Fig. 5.9f was used, too. The materials of the phases: alumina Al2O3 and copper Cu, were 

assumed to be linear elastic. The material data of Al2O3 and Cu from Table 5.4 were used for 

calculations. The iterative solution method was employed. The chosen displacement and 

stress distributions are depicted in Fig. 5.10. The effective elastic properties resulting from 

calculations are collected and compared with other results in Figs 5.14 ‒ 5.16  at the end of 

this Subsection. 

 

a) b) 

  
c) d) 
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e) f) 

  
g) h) 

  

 

Figure 5.10. Sample results of the calculations for the 3D cross FEM model in FEAP 7.5, (a‒e) 

uniaxial tension, 0.93 of metal volume fraction, (f‒h) simple shear, 0.16 of metal volume fraction: a)  

distribution of displacements in loading direction u1, showed in deformed state enlarged 100 , (b, c) 

distributions of normal stresses in loading direction σ11, (d, e) distributions of shear stresses in loading 

direction τ23, f) distribution of displacements in loading direction u1, showed in deformed state 

enlarged 100 , (g, h) distributions of shear stresses in direction perpendicular to loading τ12. 
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5.2.3. Real microstructure model 

 

 In this Subsection the FE models representing the real material microstructure of an IPC 

obtained with computed microtomography (micro-CT) technique will be described. The 

original research results presented herein were published in part  in Poniznik et al. (2008), 

Basista et al. (2010) and Basista et al. (2016).   

As already stated in this thesis the basic motivation for using micro-CT images in 

mechanical models was to represent the details of the real IPC material microstructure with no 

necessity to make any assumptions as to the geometry of the composite’s phases. The 

microstructure of the real composites is usually complicated and irregular, thus difficult to 

model. Any geometrical simplification may suppress important details of the microstructure 

and affect the modelling output. This is especially true in fracture problems as these are 

sensitive to local effects. In the case of effective elastic properties the exact representation of 

internal composite structure is deemed to be less important as these properties are governed 

by the volume fractions of phases and not by the exact morphology of the ceramic matrix and 

the interpenetrating metal reinforcement. The micro-CT based modelling of the effective 

elastic properties will shed some light on this statement. 

 The Al2O3/Cu IPCs manufactured at the Institute of Materials Science of Darmstadt 

University of Technology in Germany by pressure-assisted infiltration of molten copper into 

porous alumina preforms were used for the modelling purposes of this Subsection. The 

manufacturing procedure was described in a concise form in Basista et al. (2016), whereas the 

investigated IPC materials and their characterization in the Appendix to this thesis. The 

microstructures of the IPCs were pre-determined by the structure of compressed polymer 

foam and natural wool felt as the sacrificial pore forming agents (PFA) into which alumina 

slurry made of 0.1 μm grain diameter alumina powder (TAIMICRON TM DAR) was cast to 

form porous preforms after sintering (Nabertherm HT 16/17 furnace). The infiltration of high 

purity copper (99.95%, Bikar Metalle) into porous alumina preforms was performed in the 

Fine Ceramics Technology FPW furnace at 1200°C and 100 bar. 

 The micro-CT input data used in the present numerical models  were provided by G. Geier 

from the Osterreichisches Gießerei-Institut (Austrian Casting Institute) in Leoben. The 

Al2O3/Cu IPC specimens were cylinders of approx. 5 mm in diameter and 5 mm in height. 

The procedure of obtaining the microstructure data and transferring it into a FE mesh was 

described in detail by Basista et al. (2016). In micro-CT technique the density of the material 

is detected and represented as a grayscale value. The whole volume of the examined specimen 

is divided into a regular grid of cubic or cuboid voxels – “volumetric picture elements”, being 

the smallest distinguishable parts of the volume. The size of voxels is generally determined by 

the resolution of the micro-CT device. Each voxel carries the number representing its density. 

The volumetric density array is then composed of densities measured at the middle of each 

voxel. Such volume of voxels is written as a binary file, either single volumetric data file, or a 

set of planar images.  

The volumetric data obtained for the investigated IPCs in the form of single 3D 

microstructure data files, were transferred into eight-node cubic finite elements in two ways. 
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The first way, named “voxel 1”, operated on the integer microstructure data, that was earlier 

obtained from the binary volumetric microstructure data file and provided by the Institute of 

Mechanics of Darmstadt University of Technology (TUD) in Germany. The transfer of the 

integer microstructure data into FEAP and ABAQUS FE meshes was made with a set of self-

written codes in FORTRAN. The material data can be assigned to finite elements according to 

the data set of the scan, setting the threshold value between material phases based on density 

gradients. The volumetric density array was, for a two phase composite, binarized, by 

extracting from it voxels containing one of the phases and assigning a common digit to them 

(i.e. 1) instead of the density value, and then assigning other digit (i.e. 2) to voxels belonging 

to the other phase. It was remembered which digit had been assigned to which density range, 

corresponding to one of the materials. The coordinates of nodes and then the eight-node brick 

elements were created by replicating the grid of voxels. Both materials were assigned to 

respective elements. The FE meshes created this way were adapted for FEAP 7.5 and 

ABAQUS 6.10 programmes and named as a “voxel 1” type.  

The second way of transferring a single 3D microstructure data file into eight-node cubic 

finite elements in this thesis made use of the commercial software Simpleware 

ScanIP/ScanFE. The ScanIP programme enables an import of the graphic files. The graphical 

editing with relevant tools and filters is followed by separating of the image masks 

representing two or more phases of the material. The programme divides the surfaces that are 

bounding the phases into finite elements, and initially prepares finite element meshes for the 

chosen masks. The files with the FE meshes containing hexagonal, tetragonal or mixed 

elements that are input files for commercial FEM software (e.g. ABAQUS) are created with 

the ScanFE programme. The microstructure can be divided into voxels (“voxel 2” mesh type); 

smoothing of the boundaries between different materials and mesh optimization are also 

possible. 

 The scheme of the generic numerical method for real microstructures can be described as 

follows: 1) acquiring the 3D data of the composite microstructure via micro-CT scans  

 

 

Figure 5.11. Scheme of the numerical approach used for the real composite microstructures.  
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or similar technique, 2) creating FEM mesh of the material microstructure using commercial 

software Simpleware ScanIP/FE, 3) performing FEM calculations using the obtained FEM 

mesh for the material microstructure (cf. Fig. 5.11). 

 For the segmented pieces of the real Al2O3/Cu IPC microstructures the effective elastic 

constants, Young’s modulus, Poisson’s ratio and shear modulus, were numerically estimated 

using ABAQUS 6.10 or FEAP 7.5 programmes, as voxel 1 (based on self-written FORTRAN 

codes) and voxel 2 (based on Simpleware ScanIP/FE software) modelling approaches were 

used alternatively (in fact, meshes resulting from the same input data, voxel size and threshold 

value, should be the same in both approaches). For the calculations, inner cubes of a polymer 

foam PFA-based sample (“microstructure 1”) of 400  400  400 voxels and of a wool PFA-

based sample (“microstructure 2”) of 105  105  105 voxels were cut out. Since these 

models were too big for the available hardware and software, the cubes were divided into 512 

(microstructure 1) and 27 (microstructure 2) smaller cubic subvolumes, each of 50  50  50 

voxels and 35  35  35 voxels, respectively. For microstructure 2 also other mesh sizes were 

tested. The calculations for each subvolume were conducted separately. Two types of FE 

meshes were used: voxel and smoothed, the latter had smoothed interfaces between phases 

with tetragonal elements.   

 The images of the microstructures and the FEM meshes used for calculations, created with 

Simpleware ScanIP/FE software, are presented in Fig. 5.12. The comparison between voxel 

and smoothed meshes is depicted in Fig. 5.13. 

 

 

a) 

 

b) 

 
c) 

 

d) 
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e) 

 

f) 

 

g) 

 

h) 

 

i) 

 

j) 

 

 

Figure 5.12 Microstructure images obtained with Simpleware ScanIP programme: (a-f), FE meshes 

used for calculations (g-j), (e-h) - voxel meshes, (i, j) - smoothed meshes: g) microstructure “1”, image 

created with FEAP 7.5, (h, i) microstructure “2” image created with ABAQUS 6.10, j) mesh created 

with Simpleware ScanIP/FE. Figures a), b) and i) reprinted with permission of Advanced Engineering 

Materials. 

 

 The procedure of calculations was similar to the procedure presented in the previous 

Subchapter for the 3D-cross-microstructures, with the exception of boundary conditions 

suited for irregular, non-symmetric microstructure of a real IPC. Unit tensile loading was used 

to simulate uniaxial tension and to calculate the effective Young’s modulus and Poisson’s 

ratio, unit shear loading was used to simulate simple shear and to calculate the effective shear 

modulus. The results of numerical calculations are presented in Figs 5.14 – 5.16, together 

with analytical estimations.  
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Figure 5.13 Effect of mesh smoothing microstructure images obtained with ABAQUS 6.10. 

 

 
 

Figure 5.14. Effective Young’s modulus of Al2O3/Cu IPC in function of copper volume fraction; 

numerical results for three different microstructures – 3D cross and two real microstructures 

distinguished with different colours; for one of the real microstructures (yellow marks) two different 

FEM mesh variants (voxel and smoothed) were used. 
 

voxel FE mesh 

smoothed FE mesh 
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Figure 5.15. Effective shear modulus vs. copper volume fraction; numerical results for two 

microstructures – 3D cross and real microstructure 2, modelled with both voxel and smoothed meshes. 

 

 

Figure 5.16. Effective Poisson’s ratio vs. copper volume fraction; numerical results for two different 

microstructures – 3D cross and real microstructure “2” of voxel 2 type mesh. 
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 In Figs 5.14 – 5.16 the proposed analytical and numerical models for estimation of the 

effective elastic properties of IPCs are compared. It can be seen that all the analytical and 

numerical results fit between the Voigt and Reuss bounds. It is also noted that the numerical 

results fit between the curves obtained with the extended V-V-R and R-V-V models. The 

numerical results for Young’s modulus and shear modulus are closer to the extended V-V-R 

models, while for Poisson’s ratio results for numerical models are closer to the extended R-V-

V model.  

When two modelling approaches – voxel and smoothed are compared, it can be seen in 

Fig. 5.14 that they give similar results for the effective Young’s modulus, however the results 

for the voxel model are lower than for the model with smoothed interfaces. The opposite 

occurs for the effective shear modulus (Fig. 5.15), where the results for the voxel model are 

higher than the results for model with smoothed interfaces. These results also differ more 

significantly between each other. A reason for that may be the local microstructure 

irregularities of the relatively small, thus insufficient, sample dimensions that also caused 

quite a low volume ratio of the copper phase (approx. 0.15) compared to the expected nominal 

value measured (cf. Appendix) for the macroscopic specimens (approx. 0.25).    
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6. Deformation and fracture of metal-ceramic interpenetrating phase 

composites  

 

In this Chapter a numerical modeling approach will be proposed to determine fracture 

parameters of IPCs in order to support complex and costly experimental measurements like 

those in Compact Tension (C-T) tests. Experience from C-T tests shows that measuring of 

fracture toughness of IPCs can be technically cumbersome and expensive (cf. Section 6.1). 

One of the main problems is the small size of composite specimens due to manufacturing 

techniques, which is often insufficient for a standard C-T test. Another issue is the machining 

of test specimens made of ceramic-metal composites.  

 The objective pursued in this part of the thesis is to determine the J-integral for a crack 

with ductile bridging ligaments that grows in a composite with interpenetrating 

microstructure. As it was shown by Eq. 3.6 in Chapter 3, the J-integral for the cohesive zone 

model depends on the relationship between stresses t and displacements δ (or u) in the 

bridging fibre. This relationship will be sought numerically assuming that the bridged 

macroscopic crack grows in an elastic material with effective elastic constants calculated 

according to a model relevant for the IPC microstructure. 

 

Figure 6.1. Fracture of IPC composites: a) interconnected fibres forming interpenetrating 

microstructure (connections between fibres marked with circles), different angles between fibres and 

crack surface (marked with red arrows), and debonding between fibre and matrix (marked with green 

arrows), b) and c) – different shapes and sizes of debonding on examples of alumina-copper and 

alumina-aluminum composites (SEM images from reports of KMM-NoE FP6 EU project by L. 

Weiler, TU Darmstadt and J. Dusza, IMR SAS).  

 

 

Al2O3/Cu Al2O3/Al 

10 μm 

100 μm 



78 

 

In real interpenetrating phase composites (cf. Fig. 6.1) the fibres reinforcing the crack 

surfaces are positioned at different angles. Nevertheless, for the purpose of modelling and by 

observing the symmetry effects in fibre positions a simplifying assumption can be made that 

they are perpendicular to the crack plane. In the following numerical models the initially 

skewed fibre will be then replaced with the fibre perpendicular to the crack plane.  

 The specific effects occurring during fracture of real IPCs should be taken into account 

during modelling. The main effects are: interconnection of both phases, deformation-induced 

debonding between the IPC phases, and different slope angles between the reinforcing fibres 

and the crack surface. These effects are visible in Fig. 6.1.  

In what follows two sets of numerical models for determining the fracture toughness 

increase due to crack bridging will be presented: (i) models of elastic-plastic fibre reinforcing 

the crack in an elastic matrix (the reverse case with an elastic fibre reinforcing elastic-plastic 

matrix is also conceivable) and (ii) models of Compact-Tension test to calculate the fracture 

toughness increase of IPCs via the J-integral. 

The first set of models presented in Section 6.2.1. is aimed at numerical determination of 

the fundamental relationship σ(u) in the elastic-plastic bridging fibre undergoing large plastic 

deformations, necking and debonding from the surrounding ceramic preform. The evolution 

of debonding will be modelled to identify the fibre-matrix interface properties that are 

prerequisite for the model of the Compact-Tension presented in Section 6.2.2. 

 The second set of models presented in Section 6.2.2 is aimed at modelling crack 

propagation in real IPC during Compact-Tension test and estimation of the elastic energy 

release rate increase due to the bridging effect. Two- and three-dimensional models of the C-T 

test are proposed. Real microstructure of an IPC obtained by means of computed 

microtomography (micro-CT) method are included in the model. The elastic-plastic metal 

fibre behaviour and large deformations are taken into account in FEM calculations made with 

the ABAQUS programme.  

 

 

6.1.  Experimental observations and measurements  

 

In this Section experimental characterization of fracture properties of IPCs will be 

presented on an example of Al2O3/Cu composite to collect information for modelling 

purposes and for comparison with results of analytical and numerical modelling. The 

experiments were performed  at the Institute of Materials Science of Darmstadt University of 

Technology (TUD) in Germany during the research stay of the author within the fellowship 

made possible by the KMM-NoE project of the 6
th

 Framework Programme (http://aisbl.kmm-

vin.eu/node/180). 

 

 

 

 

 

http://aisbl.kmm-vin.eu/node/180
http://aisbl.kmm-vin.eu/node/180
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6.1.1.  Crack propagation 

 

 Microscopic observations of crack propagation were made on an Al2O3/Cu infiltrated 

composite with microstructure based on a polymer foam as the pore forming agent (PFA). 

Specimens placed in a testing machine during the four-point bending tests were at the same 

time observed with the optical microscope Leica 301-371.011, Wetzlar. The four-point 

bending tests were performed under the load control. The test description is given in Section 

6.1.2. 

 The aim of the observations of specimens’ surfaces was to detect the developing crack, to 

localize the crack tip, and to identify the phenomena that occur during crack propagation in 

the IPC composite.  

 It was difficult to catch the position of the crack tip with the microscope. For the most part 

of the experiment the crack was invisible and only multiple microcracks and interfaces near 

the notch tip were getting broader. That could be due to local strengthening of the observed 

surface caused by polishing one (observed) side of the specimen. The crack in an 

inhomogeneous material probably developed first in the more prone to cracking part under the 

observed surface, staying invisible for most part of the experiment. Thus the evident crack 

shape appeared only nearly the end of the test. This is the reason of very few points caught 

during experiments. It could be thus postulated to polish both opposite specimen’s surfaces 

before microscope observations and R-curve measurements in IPCs. 

 The cracks developed mostly along the interfaces between copper and ceramics, that 

showed weak bonding between these phases. In some places the cracks developed from the 

already existing microcracks in the ceramics. It was not possible to break completely any of 

the specimens during the tests. After the crack fully developed there was still a strong copper 

bridging that kept the specimen together.  

 The microscopic pictures shown in Fig. 6.2a-d confirm the existence of large plastic 

strains, debonding and microcracks that accompany the growing crack. The effect of IPC 

microstructure on the crack growth trajectory is shown in Fig. 6.3. 
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Figure 6.2. Crack development in Al2O3/Cu IPC specimen: a) initial load (~40 N), notch end area with 

widening debonding (arrow indicates a copper bridge that hinders crack growth, b) crack developing 

along interfaces in the middle of the specimen (load ~100 N), c) notch end area with copper ligament 

that just has broken (indicated by arrow) with visible large plastic deformation, d) middle of the 

specimen with strong crack bridging 

 

 
 

Figure 6.3. Panoramic view of the crack path in Al2O3/Cu IPC specimen. 

 

 

6.1.2. Measurement of fracture toughness 

 

 The fracture toughness of the Al2O3/Cu IPC was measured in the four-point bending test 

(Fig. 6.4), with simultaneous observation of the crack growth using Leica 301-371.011 

Wetzlar microscope equipped with Leica QWin and Leica Remote software. The advantage, 

a
) 

b
) 

c
) 

d
) 
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kn=20 mm 

l=30 mm 

n=4 mm 

km=10 mm 

b=3 mm 

c=1 mm 

P/2 P/2 

and justification of four-point bending test here, is constant bending moment between loading 

supports. Assuring constant bending moment between loading supports is important when 

inhomogeneous materials (such as IPCs) are tested, since the crack may propagate outside of 

the specimen symmetry plane (cf. Fig. 6.3).  

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

Figure 6.4. Scheme of the four-point bending test   

 

 The microstructure of the measured Al2O3/Cu IPC was based on polymer foam PFA. Four 

specimens with dimensions l  n  b as in Fig. 6.4 were chosen for this experiment (2, 7, 9 

and 11). One side (along the length l and width n) of the specimens was polished. The 

specimens 2 and 7 were notched with a razor blade and had V-shaped notches, the specimens 

9 and 11 were notched with a diamond wire saw and had U-shaped notches. All the notch tips 

were additionally sharpened with a razor blade according to ISO 23146 standard. The 

dimensions of the notches (depths and tip radii) are presented in Table 6.1.  

 

Table 6.1. Depths and tip radii of the notches 

 

Specimen No. Notch depth [mm] Notch tip radius [μm] 

2 0.90 30 

7 0.95 15 

9 1.13 15 

11 1.10 15 

 

 The fracture toughness KIC was calculated according to ISO 23146 standard: 

kn=20 mm 

l=30 mm 

n=4 mm 

km=10 mm 

b=3 mm 

c=1 mm 

P/2 P/2 P/2 P/2 

c=1 mm 

l=30 mm 

km=10 mm 

kn=20 mm 

n=4 mm 
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where P is the maximum recorded load, b, n denote specimen thickness and width, 

respectively, km, kn are distances between loading and supporting pins, respectively, c is the 

crack length (cf. Fig. 6.4), 








n

c
f  - dimensionless function of crack length to specimen width 

ratio given by  
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The results of fracture toughness measurements are presented in Fig. 6.5. 

 

Figure 6.5. Experimental measurements of fracture toughness of Al2O3/Cu IPC in four-point bending 

as a function of crack length (R-curves).  

  

 As can be seen from the obtained R-curves (Fig. 6.5) the initial fracture toughness was 

above 5 MPa·m
1/2 

but the resistance to crack growth increased significantly with the crack 

length. This growth in fracture toughness was apparently due to the increase of area fraction 

of copper reinforcing the crack faces as the growing crack encountered more and more of 

copper ligaments along its path. High values of the resistance to crack growth at the end of 

measurements correspond to fracture toughness values for pure copper and copper alloys 

reported e.g. by Ashby (2009). 

 Moreover, Winzer (2011) who investigated Al2O3/Cu IPCs with varying ligament 

diameters of up to 30 μm, observed an increase in R-curves values with coarsening of the 

microstructures, and at the same time tendency of R-curves to grow with the crack length 

rather than reaching a plateau. It was pointed out that the propagated crack length was not 

long enough to allow series of measurements at constant number of ligaments bridging the 
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propagating crack. Thus the results presented in Fig. 6.5 for microstructures with ligament 

diameter of approx. 100 μm, are in accordance with the results obtained by Winzer (2011). 

 The cracks developed mostly along the interfaces between copper and ceramic because of 

the inferior bonding between these phases. The weak bonding between alumina and copper 

may be compared in Fig. 6.1.b with the strong bonding between alumina and aluminum (Fig. 

6.1.c). In some places the cracks developed from the existing microcracks in the ceramic. It 

can be interpreted that the existing microcracks weakened the composite significantly.  

  

 

6.1.3.  Fracture surfaces 

 

The SEM micrographs of fracture surfaces of specimens 2 and 7 are shown in Figs 6.6- 

6.8. It can be seen that crack bridging in this alumina-copper composite is mostly due to 

plastic deformation of copper ligaments. Sliding of copper fibers is less important because of 

a weak bonding between copper and alumina.  

 
 

Figure 6.6. The fracture surfaces of specimens 2 (left pair) and 7 (right pair). Fracture surfaces are 

uneven with visible very weak bonding between copper and ceramic – copper was just pulled out of 

alumina. 

 

 
Figure 6.7. On the left - slices of the ceramics torn away from the grain with visible triangle form of 

torn copper; on the right - microcrack in the alumina 
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Figure 6.8. Fracture surface of copper with visible smoother zone of necking. 

 

The results of observations of crack propagation and the measurements of fracture 

toughness of IPCs presented in this Section will further be used in numerical calculations of 

J-integral in Section 6.2. 

 

 

6.2.  Numerical determination of J-integral in IPCs  

 

In this Section numerical FEM models for determination of the J-integral in 

interpenetrating phase composites with account of the crack bridging effect will be presented. 

As a prerequisite for that some auxiliary models (called “prerequisite models” in the sequel) 

will be developed to predict the bridging fibre behaviour and to identify material and failure 

parameters of the fibre/matrix interface.  

The prerequisite numerical models of a single reinforcing fibre presented in this thesis in 

Subsection 6.2.1 were inspired by the experiments of Ashby et al. (1989), analytical model of 

Mataga (1989) and numerical model of Emmel (1995), investigating the stress–displacement 

relationships in the metallic ligament reinforcing the crack faces. As a first step, a 2D model 

of a skew reinforcing fibre will be shown. Then, a model with axisymmetric reinforcing fibre 

with fixed debonding lengths based on the model described by Emmel (1995) will follow. In 

the prerequisite models of the pullout problem with and without debonding evolution a 

cohesive interface between fibre and matrix is introduced. These two models were recently 

published in Poniżnik et al. (2015).  

In Subsection 6.2.2 the FEM models of the Compact-Tension test for the determination of 

the energy release rate increase that is due to the presence of the ligaments reinforcing the 

crack faces, will be presented. First, 2D models with either single or multiple reinforcements 

will be described. Then, a 3D model with multiple cylindrical reinforcing fibres will be 
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shown. Finally, a 3D model of the specimen with real IPC microstructure obtained with 

micro-computed tomography (micro-CT), will be presented. The initial results obtained for 

this model were described in Basista et al. (2016).  

The prerequisite model of the skew reinforcing fibre and the model of the C-T test with 

single reinforcing fibre, were partially developed during the research stays at the Institute of 

Applied Mechanics at University of Kaiserslautern, Germany. 

 

6.2.1. Prerequisite numerical (FEM) models of single reinforcing fibre 

 

In this Subsection the mechanism of crack bridging with a single reinforcing fibre will be 

investigated with series of models. The purpose of these models is to help identify the 

material properties of the interface between fibre and matrix. Four numerical models of an 

elastic-plastic reinforcing copper (Cu) fibre embedded in an elastic alumina (Al2O3) matrix 

will be presented. Aluminum (Al) fibre was also considered, and some results for the case of 

Al fibre will also be presented. The reinforcing fibre is subjected to large deformations and 

debonding from the matrix. The debonding is modelled in a twofold manner: (i) using finite 

values of the debonding length, and (ii) as progressing debonding  using cohesive model for 

the matrix-fibre interface.  

As was shown in the preceding subsections bridging metalic ligaments undergo debonding 

from the ceramic matrix (cf. Fig. 6.1.).  Prior to modelling real IPC with multiple reinforcing 

fibres it is first necessary to know the behaviour of a single bridging fibre. According to the 

literature studies there are no credible experimental data on the mechanical properties of the 

Al2O3/Cu interfaces existing up to date. Thus, the following prerequisite models will be used 

to provide the missing  input data on the alumina-copper interface behaviour necessary in 

modelling of fracture parameters of the IPC.  

 

Two-dimensional model: skew reinforcing fibre 

The first prerequisite model to be considered is a simple 2D model of a skew metallic fibre 

reinforcing ceramic matrix which inclined to the loading direction at an angle different than 

90°. The influence of the varying slope angles between fibres and loading direction on the 

stress-displacement behaviour of an extending ductile fibre was described by Hoffman et al. 

(1997). From the observations of IPC fracture surface presented in the previous Chapter (cf. 

Fig. 6.1), it can be noticed that the fibres reinforcing the crack are inclined at different angles 

to the crack face. However, for the reasons explained at the beginning of Chapter 6  in the 

latter parts of this thesis the assumption will be taken of the bridging fibres’ influence on the 

IPC fracture toughness coming only from ligaments either perpendicular to the crack faces, or 

from the respective projections of the other ligaments on the direction normal to the crack 

faces.   

Consider an elastic-plastic fibre (e.g. copper) reinforcing the crack in an elastic matrix 

(e.g. alumina ceramic). The reverse case with an elastic fibre reinforcing elastic-plastic matrix 
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was also analyzed and will be presented at the end of this Subsection. This is a plane strain 

model with the fibre and matrix materials assumed to be isotropic. The interface between fibre 

and matrix is assumed as fully bonded. As the deformation process proceeds the fibre may 

undergo necking and debonding from the matrix. The evolution of debonding is not yet 

modelled but its effect is analyzed for a few fixed values of the debonding length.  

The nondimensional debonding parameter ψ is defined as the ratio of the debonding length 

ld to the initial fibre radius rf
0
:  

 

                     

                     (6.4) 

 

The results of the performed calculations will be presented for three values of the 

debonding parameter ψ = 0.5, 1.0 and 1.5.  

In order to avoid contact in the debonding regions between the fibre undergoing 

debonding and the surrounding matrix, the parts of the matrix FE mesh that have penetrated 

the necking fibre, were removed.  

To model the plastic response of the fibre material (Cu) the plasticity model implemented 

in FEAP (Taylor, 2005), described by Marciniak et al. (1965), also by Życzkowski (1981) or 

Lubliner (1990), was applied. The material of the fibre is described by the J2 flow plasticity. 

A quasi-static tension simulation of the skew reinforcing fibre was performed in FEAP using 

the elastic-plastic model with Huber-Mises-Hencky yield condition and isotropic hardening 

law. The geometrical and material properties: rf
0
 – radius of the fibre, α – inclination angle for 

which the results will be presented, Em, Ef, νm, νf, - Young’s moduli and Poisson’s ratios of 

alumina (Al2O3) matrix and copper (Cu) fibre, respectively, Y0 - yield stress of Cu, Hiso - 

isotropic hardening modulus of Cu, used in calculations are collectively displayed in Table 

6.2. The displacement control and tensile loading were applied. The FEM mesh and applied 

boundary conditions are depicted in Figure 6.10.a. The materials are marked in Figure 6.10.b. 

FEM calculations were made with FEAP 7.5 programme. As a result, the stresses in the 

bridging fibre are obtained and depicted in Fig. 6.10.c-e. The comparison of the influence of 

the debonding size on stress distributions is depicted in Fig. 6.11.a-c for normal stresses 

parallel to the loading direction. The influence of debonding on composite’s load-

displacement behaviour is presented in Fig. 6.11.d. 
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Table 6.2. Material and geometrical parameters used in the skew reinforcing fibre model 

 

  Al2O3  Cu  

E [GPa] 390.0 110.0 

ν 0.2 0.35 

Y0 [MPa] - 130.00 

Hiso - 8000 

rf
0
 [mm] - 0.9474 

α[°] - 62.5 

 

 

  

 

 

  

  

 

 

 

 

 

a) b) 

c) d) 
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a) b) 

  

c) d) 

 

 

 

Figure 6.11. Influence of nondimensional debonding parameter ψ on normal-vertical stress 

distribution (parallel to the loading direction ): a) ψ = 0.5, b) ψ = 1.0, c) ψ = 1.5;  

d) effect of nondimensional debonding parameter ψ on composite’s load-displacement behaviour 

e) 

Figure 6.10. a) FEM mesh and 

boundary conditions, b) materials: red 

- Al2O3, green – Cu, c-e) stress 

distributions for nondimensional 

debonding parameter ψ = 1.0: normal 

– horizontal (c), normal –vertical (d), 

and shear (e)  
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From the stress distributions shown in Fig. 6.10.b-d, the regions of stress concentrations 

near the interfaces between fibre and matrix, may be identified. From the stress distributions 

shown in Fig. 6.11.a-c it can be seen that the stresses near the matrix-fibre interface decrease 

with the increasing debonding size. Thus, the debonding increase has an amplifying effect on 

stresses between the fibre and the matrix. However, from Fig. 6.11.d it can be noted that 

increase in debonding causes a reduction in the composite’s stiffness and a significant effect 

on the composite’s characteristics.  

Also the case of elastic fibre in elastic-plastic matrix was considered. Exemplary results of 

the numerical calculations are shown in Fig. 6.12. 

 

a) b) 

  

 

Figure 6.12. Stress distributions for elastic fibre in elastic-plastic matrix: a) normal stress in vertical 

direction b) shear 

 

From the comparison of the normal vertical stress distributions in Figs 6.10.c,d and 

6.12.a,b, respectively it may be seen that the peak stress values are larger for the case of 

elastic-plastic reinforcing fibre in an elastic matrix than for the opposite case. This can be due 

to the plastically deformable matrix in which the stresses are relaxed.  

 

 

Axisymmetric single reinforcing fibre model with fixed debonding lengths 

 

In this Subsection a numerical model for an axisymmetric problem of the uniaxial tension 

of two disconnected blocks of ceramic matrix reinforced with a metal fibre will be presented 

assuming elastic-plastic model for the Cu or Al fibre and linear elastic model for the Al2O3 

matrix.  
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The geometrical assumptions of the model represent in a simplified way a macrocrack 

which is reinforced with a single metal ligament (cf. Poniżnik et al. 2015). The tip of a crack 

and the corresponding stress concentrations are not modelled. Axial symmetry assumption 

made the calculations considerably simpler while furnishing information on the most 

important deformation and failure mechanisms. 

The fibre undergoes large plastic deformations leading to necking and debonding from the 

matrix (Fig. 6.13). As in the previous case, the evolution of debonding is not yet modelled but 

its effect is analyzed using few fixed values of the debonding length. The nondimensional 

debonding parameter ψ defined by Eq. 6.4 is the ratio of the debonding length ld to the initial 

fibre radius rf
0
. 

The calculations were performed for three values of the debonding parameter ψ = 0.4, 0.6 

and 2.0.  

 

Figure 6.13. Scheme of  axisymmetric model of uniaxial tension of two elastic blocks with reinforcing 

elastic-plastic fibre at fixed debonding lengths (reproduced with permission of International Journal 

of Damage Mechanics). 

 

The interface between fibre and matrix is modelled as fully bonded. The materials of fibre 

and matrix are assumed to be isotropic. The alumina matrix material is assumed to be elastic, 

the copper or aluminum fibre materials are assumed to be elastic-plastic. The geometrical and 

mechanical properties of fibre and matrix materials are shown in Table 6.3.  

Cu 

u 
Decohesion length 2ld 

2rf
0 

 
    crack 

Al2O3 Al, 
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The elastic-plastic model described in detail in Poniżnik et al. (2015), based on elastic and 

isotropic hardening plasticity model implemented in ABAQUS is applied here for a copper 

fibre. The material of the fibre is described by the J2 flow plasticity. Large strains that can 

locally occur in the necking zone, are determined with an incremental algorithm. Spectral 

decomposition allows the use of the return mapping procedure for models with an isotropic 

yield function. The stress update algorithm is used for the integration of the J2 plasticity 

constitutive equations.  

 

Table 6.3. Material and geometrical parameters used in axisymmetric reinforcing fibre model with 

fixed debonding lengths, Ef , Em, f and m denote Young’s moduli and Poisson’s ratios of fibre and 

matrix, respectively 

 

 Al2O3 Cu Al 

Em, Ef [GPa]  390.0 110.0 69.0 

νm, νf  0.2 0.35 0.33 

σ0 [MPa]  - 50.0 270.0 

n  - 5.8 15.0 

rf
0
 [μm]  - 175.0 175.0 

  

a) 

 

b) 

 

c) 

 

 

Figure 6.14. FEM model (FEM mesh created with FEAP); displacement loading and boundary 

conditions for three values of nondimensional debonding parameter ψ: a)ψ=0.4, b) ψ=0.6 and c) ψ=2.0  



92 

 

 

The FEM meshes for this case were prepared with the FEAP 7.5 package. The axial and 

horizontal displacements at the bottom surface of the fibre and the matrix are blocked. The 

displacement loading is applied to the top surface of both fibre and matrix. This is done to 

mimic the behaviour of the ligament as an element of an interconnected network of metallic 

reinforcements in a real composite with interpenetrating microstructure. The calculations were 

performed with ABAQUS (2010), with the use of four node bilinear axisymmetric CAX4 

elements. The full finite elements model consisted of 2,691 nodes and 2,544 elements for the 

case of ψ=0.4, 2,809 nodes and 2,656 elements for ψ=0.6, and 2,623 nodes and 2,440 

elements for ψ=2.0. Two material systems were used: alumina-copper (Al2O3/Cu) and 

alumina-aluminum (Al2O3/Al). However, the results will be presented mainly for the alumina-

copper case. The FEM meshes for three nondimensional debonding parameters ψ are 

presented in Fig. 6.14. The obtained distributions of axial stresses and equivalent plastic 

strains are shown in Figs 6.15 and 6.16. 

 

a) b) c) 

 
  

 

 

 

 

 

 

 

 

 

 

     

debonding 

crack 
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d) e) f) 

   

 

Figure 6.15. Axisymmetric model of uniaxial tension of cracked elastic matrix with reinforcing 

elastic-plastic fibre at fixed debonding lengths. ABAQUS results: (a-c) for Al2O3/Al, (d-f) for 

Al2O3/Cu, at loadings u2: (d) 0.16 mm, (e) 0.175 mm, (f) 0.2 mm. Distributions of axial stresses σ22: 

(a, d) ψ=0.4, (b, e) ψ=0.6, (c, f) ψ=2.0 (images not in the same scale) 

 

a) b) c) 

   

 

Figure 6.16. Axisymmetric model of uniaxial tension of cracked elastic matrix with reinforcing 

elastic-plastic fibre at fixed debonding lengths. Distributions of equivalent plastic strains εpl
EQ

 (for 

different loadings u2), for Al2O3/Cu: (a) ψ=0.4, u2=0.16 mm, (b) ψ=0.6, u2=0.175 mm, (c), ψ=2.0, 

u2=0.2 mm (images not in the same scale). 
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In Fig. 6.17 the stress-displacement relationships σ(u) in the reinforcing fibre are 

compared with the analytical solutions of Mataga (1989) for both considered material systems 

and for three values of the debonding parameter ψ = 0.4, 0.6 and 2.0.  

A softening part of the σ(u) relationship due to necking of the ligament can be observed 

for all three values of the debonding parameter and for both material systems. The normalized 

stresses obtained with the present numerical model are for both material systems slightly 

higher than the normalized stresses furnished by the analytical model of Mataga for ψ = 0.4 

and 0.6, with greater difference for the ψ = 0.4 case. For ψ = 2.0, however, normalized 

stresses from the analytical Mataga model are visibly higher than the stresses obtained from 

the present FEM model. For such a high value of ψ this could be due to a significant 

difference between the assumed shape of the necking ligament in the model of Mataga (1989), 

which is a paraboloid of rotation, and the shape of the necking ligament resulting from the 

present numerical model. Mataga (1989) did not consider ψ’s greater than 1.0, hence it is 

difficult to say if his model is applicable for such high values of ψ.   

The peak of the σ(u) relationship shifts to lower σ/σ0 values as ψ increases. This 

observation holds for both material systems, for the analytical model of Mataga (1989), and 

for the present numerical model alike. 

It can also be observed for both Al2O3/Al and Al2O3/Cu composites, that the softening 

behaviour becomes less steep with the increasing ψ. This could be interpreted that for lower 

values of ψ more intensive necking is needed to make the ligament elongate at the applied 

displacement. 

 

a) 

 

 

Al2O3/Al 
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b) 

 

 

Figure 6.17. Normalized stress-displacement relationships in the reinforcing fibre from the numerical 

model with fixed debonding lengths, compared with the analytical solutions of Mataga (1989) for 

different values of debonding parameter ψ: a) Al2O3/Al, b) Al2O3/Cu. 

Al2O3/Cu 
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Pullout problem model with debonding evolution 

In this Subsection a FEM model for the fibre pullout with account of fibre-matrix 

debonding evolution will be presented and applied to predict stress-displacement relationships 

for Cu and Al fibres embedded in Al2O3 matrix. The main parts of this model and its 

implementation for Al2O3/Al composites were published in Poniżnik et al. (2015). The results 

concerning Al2O3/Cu composites shown herein have not been published yet. 

The model of pullout problem is one of the prerequisites for modelling of crack bridging 

in real IPC materials as the pullout mechanism occurs in IPCs and it is, thus, necessary to 

know how the reinforcing fibre behaves. The pullout model presented below is an extension 

of the model of Bheemreddy et al. (2013) by using elastic-plastic material model for the fibre. 

Bheemreddy et al. (2013) investigated an axisymmetric elastic silicon-carbide (SiCf) fibre 

which was embedded in an axisymmetric elastic silicon-carbide (SiC) matrix. The free end of 

the fibre was loaded with homogeneous displacements field to find the load-displacement 

characteristics. It was assumed that the load-displacement behaviour was not influenced by 

the matrix. 

Consider the axisymmetric problem of an isotropic elastic-plastic metal fibre that 

undergoes debonding from the surrounding ceramic matrix modelled as isotropic elastic (Fig. 

6.18). In the numerical model of this problem developed in Poniżnik et al. (2015) with 

ABAQUS (2010) software the cohesive surface formulation was used to model contact at the 

interface between the fibre and matrix. Local large strains were admitted in the debonded and 

free parts of the fibre. 

 

a) b) 

  

Figure 6.18. Pullout model: a) geometry, b) FEM mesh and boundary conditions (reproduced with 

permission of International Journal of Damage Mechanics) 

The geometry of the problem, FEM mesh and boundary conditions are depicted in Fig. 

6.18 where rm denotes the outer radius of the matrix, rf
0
 - initial radius of the fibre, rf - actual 
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fibre radius, lm - length of the embedded part of the fibre, lm + l0 - total fibre length. The 

pullout displacement was applied uniformly as a quasi-static loading in the axial direction on 

the top surface of the fibre. The contact friction at the interface is activated after the 

fibre/matrix interface has debonded on a distance ld. Friction was assumed to be spatially 

uniform and independent of time and rate. To eliminate the influence of the surrounding body 

on the results, a high value for the ratio of matrix to fibre radii was assumed rm/ rf
0
 = 71.43 

(cf. Table 6.5). The displacements were blocked in both radial and axial directions at the 

bottom of the matrix, while the side belonging to the symmetry axis was constrained only in 

the radial direction.  

The mesh with element size of approx. 0.02 mm × 0.02 mm was used in the vicinity of the 

interface between the fibre and matrix. The model consisted of 2205 nodes and 2360 elements 

in total. Four-node bilinear axisymmetric elements CAX4 modelled the fibre and matrix parts. 

The cohesive zone surface at the interface between fibre and matrix was applied to model the 

contact behaviour. The zero thickness cohesive zone was defined with four-node, two 

integration points, axisymmetric cohesive elements COHAX4. The geometrical and 

mechanical properties of the fibre and matrix materials are collected in Table 6.5.  

It was assumed that the J2 flow plasticity describes the behaviour of the fibre material. 

Large strains that can locally occur in free segments of the fibre and may reach 50-100% were 

determined with an incremental algorithm. The unloading can also take place locally. It was 

further assumed that the strain rate tensor ε  can be decomposed into elastic e
ε  and plastic p

ε  

parts  

                       (6.5) 

The elastic part obeys isotropic Hooke’s law 

 

                         

                         (6.6) 

 

where G is the shear modulus, K is the bulk modulus. The plastic part  obeys associated 

flow rule:      
   
  

, where  
 
 is a non-negative plastic scalar. Loading and unloading 

conditions can be expressed in the Kuhn-Tucker form:   
 
        

 
       

 

 The general yield criterion          is satisfied by the stress tensor σ, where   is the 

equivalent plastic strain depending on the plastic loading history.  

The quasi-static pullout process with an elastic-plastic fibre was modelled with 

ABAQUS/Standard for Huber-Mises-Hencky yield condition and isotropic hardening law. A 

power law was adopted for the uniaxial stress-strain response of the metal material, which is 

 p
εεCσ   :

11IC  KG '2

p
ε
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often used in the literature for aluminum and copper (Życzkowski, 1981; Ashby et al., 1989; 

Emmel, 1995) 

 

  
  

 

  
 

 

 
                       (6.7) 

where:            is the equivalent plastic strain,    - initial yield stress equal 50 MPa, 

   
  

 
        , is the corresponding strain,  n = 5.8 for copper. 

The traction-separation model implemented in ABAQUS first shows linear elastic 

behaviour followed by initiation and evolution of fibre debonding. For the elastic behaviour, 

elastic stiffness tensor relates nominal stresses to nominal strains across the fibre/matrix 

interface. The cohesive law can be expressed in the following general vector form 

       , where              and                    (6.8) 

with: τ - the cohesive stress vector, δ - vector of the opening displacement, f(δ) - local 

constitutive traction-separation relationship in the cohesive zone, e - unit vector, n, t - 

components normal and tangential to the separation plane, respectively.  

The general loading case can be simplified to the mode II cracking due to the assumption 

of axial symmetry. The debonding propagation direction along the fibre-matrix interface is 

parallel to the fibre axis. Following the model implemented in ABAQUS (2010), damage 

initiation in the cohesive zone is defined by the following criterion for the maximum nominal 

stress ratio 

 
    

         
 

  

         
 

  

         
                   (6.9) 

where           denote peak nominal stress in the respective direction and the Macaulay 

brackets applied on the nominal stresses      means that pure compressive stress or 

deformation state would not initiate damage. Similar approach in modelling of damage 

initiation can be found in Sadowski et al. (2013a). 

Damage evolution in the cohesive zone is based on the fracture energy of the interface 

defined by the area under traction-separation curve. The normal and shear deformations in the 

cohesive zone are interrelated through the mode-mix based on energies. The work 

respectively in the normal and shear directions is described by 

               
,                  

,                  
,    

                                     (6.10) 

where   ,   ,    are tractions in the respective normal and both shear directions and     ,    , 

    are their respective conjugate relative displacements.  

The mode mix formulations are denoted as 
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,      

  

  
,     

  

  
                 (6.11) 

The condition for failure is formulated in a power law form (cf. Sadowski et al., 2013a) 

 
  

  
  

 

  
  

  
  

 

  
  

  
  

 

                     (6.12) 

where   
 ,   

 ,   
  denote critical fracture energies in respective directions, with applied α = 1.  

Due to the limited available literature data for Cu/Al2O3 interfaces, material parameters of 

the interface for the present modelling purposes have been estimated based on observations 

from experiments (cf. Section 6.1) and from few reference sources. Jarząbek et al. (2016) 

reported tensile strength of Cu/Al2O3 bond of 68 and 74 MPa, depending on the alumina grain 

size. Juvé et al. (2013) reported shear strength of copper-alumina bonds in the range of 10÷50 

MPa, depending on manufacturing process parameters such as temperature, pressure, or solid 

state bonding time. An interesting effect was observed in Juvé et al. (2013) for changing 

alumina roughness: up to Ra= 0.2 μm the shear strength of copper-alumina bonds made by 

solid state was almost constant (around 40 MPa), then increased above 50 MPa at ca. 0.4 μm 

to experience a drastic drop at around 0.5 μm down to 20 MPa followed by a decrease to less 

than 10 MPa at 2.0 μm.  

In the present work relatively low interface strength values are assumed. This is due to the 

fact that in the above mentioned papers specifically prepared small-scale Cu/Al2O3 bonds 

were measured, while in the macroscopic Cu/Al2O3 composites samples investigated in this 

thesis imperfect bonds are likely to occur causing inferior interface strength. The material 

parameters of the Cu/Al2O3 interface used for the present modelling purposes are shown in 

Table 6.4. 

 

Table 6.4.  Material parameters for Cu/Al2O3 surface-based cohesive bond used for calculations in FE 

simulations   

 

Bond Component Description Constant Value 

Tangential 

behaviour 

Coefficient of friction µ 0.1 

Normal behaviour “Hard” contact   

 

Cohesive behaviour 

 

Stiffness in normal 

Stiffness in shear 1 

Stiffness in shear 2 

 

Kit [N/m
3
] 

 

1.2×10
11

 

Damage initiation Failure stress max,0 [MPa] 10.0 

Damage evolution Damage parameter 

Fracture energy 

D 

     [J/m
2
] 

0.9 

10 
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A detailed description of the cohesive zone (CZ) modelling with a literature review, 

explanation of the ABAQUS procedures and identification of the material parameters of the 

Al/Al2O3 interface are given in Poniżnik et al (2015).  

Selected results of the numerical calculations in ABAQUS for the Cu/Al2O3 case are 

depicted in Figures 6.19 - 6.20. In Figure 6.19 the distributions of von Mises stresses, radial 

displacements, axial and shear stresses for the chosen set of parameters are shown for 

different pullout stages. It may be observed that due to applied displacement loading large 

plastic deformations occur in the fibre, preventing it from being pulled out from the matrix. 

Initially the fibre undergoes plastic deformations and thinning on the entire pulled out length. 

Then, the localization of the plastic strains occurs and formation of the necking zone takes 

place.  
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a) b) c) d) 

    

 

 

e) f) g) h) 
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i) j) 

  

 

Figure 6.19. (a) ‒ (f): Distributions of von Mises stresses at pullout stages for Cu/Al2O3: a) elastic 

deformation of the fibre, b) after initiation of yielding, c) thinning of the fibre visible on the entire 

pulled out length, d) maximum stresses start to localize, e-f) neck formation; g) Radial displacements 

u1 distributed in the pulled out fibre; h) Axial stresses σ22 in the necking zone; (i) –(j): Distributions of 

shear stresses τ12: (i) before initiation of the interfacial crack, (j) after initiation of the interfacial crack. 

The debonding shear stress in the interface max,0 = 10.0 MPa. 

 

The stress-displacement relationships, which are the main result of this model of the fibre 

pullout, are presented in Fig. 6.20 for two sets of interfacial parameters. It may be seen that at 

the initial stage of the loading process curves are nearly linear, which corresponds to a steady 

response of the interface to the static load. Progressive interface failure that occurs with the 

increasing load results in a gradual reduction in stiffness. Plastic deformation elongates the 

fibre while keeping the stresses in the fibre nearly constant. The final fall in the load value 

occurs due to catastrophic failure. 
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a) 

 

 

b) 

 

 

Figure 6.20. Normalised stress-displacement relationships obtained from present numerical model of 

the pullout problem; a) at debonding shear stress in the interface max,0 = 3.0 MPa with the main stages 

of the pullout process marked with letters O ÷ D, b) at parameters from Table 6.4. 

It is to be noted that Bheemreddy et al. (2013) model was implemented for a ceramic-

matrix composite made of SiC fibre embedded in SiC matrix (CMC). Hence, a direct 

comparison with the present results for Cu/Al2O3 system is not feasible. Nevertheless, the 

phases of the pullout process identified in Bheemreddy et al. (2013), described also in 

Poniżnik et al. (2015) with regard to elastic-plastic behaviour of the fibre, are clearly 

recognizable in Fig. 6.20a: elastic elongation of the protruding fibre part before the onset of 

O 

A 

B 

D 

C 
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debonding (O-A), elastic and possibly plastic elongation and thinning of the debonded and 

protruding parts of the fibre (A-B) till debonding completion at maximum overall stress (B), 

load drop with rapid growth of deboding with interface undergoing shear, elastic and possibly 

plastic elongation accompanied by thinning of the debonded and protruding parts of the fibre 

(B-C), and unrestricted frictional pull out of the fibre completely separated from the matrix, 

with elastic strains recovery stalled by frictional matrix/fibre contact (C-D). Due to friction, 

the fall in the load value takes place at limited displacement, in contrary to the immediate 

drop in frictionless model of Bheemreddy et al. (2013). 

The pullout problem is regarded as one of the most important tests to find the expected 

behaviour of a fibre-matrix material system. If the interface in such a system is sufficiently 

weak, the fibre debonding from the matrix will occur when a crack growing through the 

matrix meets the fibre. The identification of the fibre/matrix interface mechanical properties is 

very important for the proper estimation of the mechanical behaviour of the whole composite. 

The bond between fibre and matrix has an important role in the ability of the fibres to stabilize 

the microcracks created during loading. The pullout of the reinforcing fibres also influences 

the total energy needed for the cracking process. It is then important to have a reliable pullout 

model capable to correctly identify the material parameters and cover the complete pullout 

process. 

 

Axisymmetric single reinforcing fibre model with debonding evolution 

A FEM model for the axisymmetric case of a single fibre reinforcing crack faces with 

account of the effect of debonding evolution will be analyzed in this Subsection as another 

prerequisite model to better understand the crack bridging mechanism in real IPC materials. 

The model itself and the results of numerical simulations for Al fibre reinforcing Al2O3 matrix 

were published in Poniżnik et al. (2015). The results for an elastic-plastic Cu fibre reinforcing 

two separate blocks of elastic Al2O3 alumina matrix have not been published yet. Evolution of 

debonding between fibre and matrix is modelled using ABAQUS (2010). The interface 

between fibre and matrix is modelled with cohesive elements. Three debonding regions in the 

matrix-fibre interface can be distinguished: full bond, frictional slip and radial detachment as 

shown in Fig. 6.21. As before, the debonding length may be characterized with the 

nondimensional debonding parameter ψ, defined by Eq. (6.4) as the ratio of the debonding 

length ld to the initial fibre radius rf
0
. 

The model was calibrated with parameters given in Table 6.5. Similarly as in the pullout 

case the matrix/fibre radii ratio was taken as     
         (cf. Table 6.5) to avoid the effect 

of the surrounding medium on the numerical results.  
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Figure 6.21. Single fibre reinforcing two blocks of elastic matrix separated by a crack with interface 

and debonding regions under tensile loading: full bonding, sliding against friction and radial 

detachment (reproduced with permission from International Journal of Damage Mechanics).  

 

This case is similar to the second prerequisite model (cf. Fig. 6.13) considered in 

Subsection 6.2.1. However, the main difference is that the effect of fibre/matrix debonding is 

not simulated by a series of fixed values of debonding parameter ψ but the debonding 

evolution is included in the overall model. The elastic-plastic model with J2 flow plasticity 

and isotropic hardening was implemented in ABAQUS to model the copper fibre bahaviour. 

Large strains that could locally occur in the necking zone, were determined with an 

incremental algorithm. Spectral decomposition allowed the use of the return mapping 

procedure for models with an isotropic yield function. The stress update algorithm was used 

for the integration of the J2 plasticity constitutive equations. The traction-separation was 

modelled with cohesive elements as described in detail by Poniżnik et al. (2015).  

The assumed boundary conditions (cf. Fig. 6.22) represent the situation in a real IPC 

material where the reinforcing ligament is interconnected at its ends with the metal phase 

network. Consequently, both axial and horizontal displacements are blocked at the bottom 

surface of the fibre and matrix. At the top surface of the fibre and matrix the displacement 

loading is applied.  

 

t 2ld
0 2ld 

2rf
0 

Interface with: 

 shear strength 

 normal strength 

 friction coefficient 

detached 
 

frictional slip 
 

bonded 

U0 

matrix 

matrix 

fibre 
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Figure 6.22. FEM mesh with boundary conditions for axisymmetric single fibre reinforcing two 

disconnected matrix blocks with evolution of fibre/matrix debonding; fibre-matrix interface modelled 

with cohesive elements (reproduced with permission from International Journal of Damage 

Mechanics).   

The FEM mesh and boundary conditions are depicted in Figure 6.22. The fibre and matrix 

were modelled with four-node bilinear axisymmetric elements CAX4. The whole FEM model 

consisted of 9652 nodes and 8921 elements. Geometrical and material parameters used for 

calculations are presented in Tables 6.4 and 6.5. 

 

Table 6.5. Material and geometrical parameters used in the models of fibre pullout and axisymmetric 

reinforcing fibre with debonding evolution. Ef , Em, f and m denote Young’s moduli and Poisson’s 

ratios of the fibre and matrix, respectively. 

 

 Pullout model Bridging fibre 

model 

Al2O3 Cu Al2O3 Cu 

Em, Ef, E [GPa]  390.0 110.0 390.0 110.0 

νm, νf, ν  0.2 0.35 0.2 0.35 

σ0 [MPa]  - 50.0 - 50.0 

n  - 5.8 - 5.8 

rf
0
 [μm]  - 175.0 - 175.0 

rm [mm] 12.5 - 12.5 - 

l0 [mm] - 3.0 - - 

lm [mm] 3.0 6.0 - - 

ld [mm] - 0.0 ÷ 3.0 - - 

t [mm] - - 6.0 6.0 
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The results of numerical simulations for selected displacement, stress and strain 

components are shown in Fig. 6.23. The main outcome of the model, i.e. the stress-

displacement relationship in the reinforcing fibre under progressive fibre/matrix debonding is 

graphically depicted in Fig. 6.24. 

 

 

a) b) c) 

   

 

Figure 6.23. Distributions of radial displacements (a), axial stresses (b), and equivalent plastic strains   

   (c) at axial displacement u2 = 0.25mm.   
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Figure 6.24. Stress-displacement relationship in the reinforcing fibre obtained with the FEM model 

accounting for the fibre/matrix debonding evolution. 

 

It can be noticed in Figs 6.23 - 6.24 that a relatively small necking in the reinforcing fibre 

results from extensive debonding. Only a smaller part of the stresses is supported by the 

interface, the main part being carried with the actual fibre cross section. It is also reflected in 

Fig. 6.24, where the stresses in the reinforcing fibre on the curve of the evolution of 

debonding model are only slightly declining. In other words at large displacements the axial 

stress in the fibre is still not far from the maximum value.  

 

Comparison of the prerequisite models with the Mataga model 

The stress-displacement characteristics obtained from the pullout problem model and, the 

axisymmetric reinforcing fibre model with and without debonding evolution were compared 

with the analytical results of Mataga (1989). The respective curves are shown if Fig. 6.25 

divided into two diagrams (a,b) for visual clarity. The fracture parameters used in numerical 

simulations regarding evolution of debonding were taken as GIIC =10.0 Jm
-2

, τmax,0 = 10.0 

MPa.  

It can be seen in Fig. 6.25a that according to the fixed debonding model the maximum 

stresses sustained by the reinforcing ligament for ψ = 0.4, 0.6 or 2.0 occur at very small 

displacements (corresponding to crack openings, COD), whereas for the model with 

debonding evolution the maximum stresses are reached at much larger displacement (and, 

thus, COD). The model with debonding evolution shows smooth stress-displacement 

behaviour and only a slight drop in stresses supported by the bridging ligament, in contrast to 

the fixed debonding model. The model with debonding evolution yields the results that are in 

accordance with observations of Winzer (2011), who reported extensive delamination of 

copper from the alumina on fracture surfaces of wool felt PFA based IPCs. It could be then 
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supposed that the model with debonding evolution yields results that are more reliable and 

closer to the behaviour of the real material. It can also be seen that for the fixed debonding 

model, stresses supported by the bridging fibre rapidly fall to nearly zero with the increasing 

displacement. For the model with debonding evolution, however, the stress decrease is much 

slower and relatively high stresses supported by the bridging fibre remain even for large 

displacements. 

It can be seen from Fig. 6.25b that Mataga results differ from the results obtained with the 

numerical model of the bridging fibre with debonding evolution. Similarly as for the model 

with fixed debonding lengths, this is due to the dissimilarities between the paraboloid of 

rotation shape of the necking ligament assumed in the model of Mataga, and necking ligament 

shape resulting from the present numerical model. For the numerical model with debonding 

evolution, relatively large displacements reflecting the crack opening COD are needed to 

reach the maximum stresses. For the numerical model of the bridging fibre with debonding 

evolution the stresses inside the fibre decline slowly and smoothly. Compared with 

observations of Winzer (2011), it could be presumed that the results of this model may be the 

closest to the behaviour of the real material.  

 

 

 

a) 
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b) 

 

  

Figure 6.25. Comparison of the stress-displacement relationships in Cu fibre obtained according to the 

“pullout” and “evolving debonding” models with (a) fixed debonding model, and (b) Mataga model 

(for different values of ψ). 
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6.2.2.  FEM model of Compact Tension test 

 

As it was mentioned in Section 6.1, the Compact Tension (C-T) test when used for 

fracture toughness determination in novel composite materials like IPCs is experimentally 

rather challenging because of the lack of well-established standards and technical protocols. 

Thus, the main aim of modelling presented in this work is to support experimental 

measurements of IPC’s fracture toughness by a numerical approach taking into account real 

composite microstructure and the crack bridging mechanism.  

Before the FEM calculations for a real IPC microstructure were finally possible, many 

attempts were needed to arrive at a model with all the necessary features. Initially a set of 

models with simplified fibrous microstructure, both in 2D and 3D, was investigated. Only 

then the final model of the C-T test of the real IPC with microstructure obtained from 

computed micro-tomography (micro-CT) scans could be developed.  

In the numerical models of the C-T test described in the following Subsections the 

dimensions of C-T specimens were adjusted to the ASTM E 399 standard. 

 

Two-dimensional C-T model with single reinforcing skew fibre 

 

The first of the 2D models was devised for a pre-cracked alumina specimen with crack 

faces reinforced with a single copper fibre. This model can be seen as an illustrative example 

of calculating the J-integral based on the potential energy approach described by Plate (2015).  

The fibre was either perpendicular or inclined to the crack plane. The test specimen made 

of monolithic ceramic was also considered for comparison. The Al2O3 ceramic phase was 

modelled as isotropic elastic, the metallic Cu fibre as isotropic elastic-plastic, using the 

plasticity model implemented in FEAP (Taylor, 2005) described in Section 6.2.1 for the 2D 

model of skew reinforcing fibre. Material data of ceramics and fibre is given in Table 6.2. The 

boundary conditions were applied at the geometrical centres of the pins. The point 

displacement was applied as a load. FEAP logarithmic stretch model was used to model the 

deformation. The model is schematically presented in Fig. 6.26a-b for unreinforced C-T 

specimen with pre-crack and in Fig. 6.26c-d for a single skew fibre bridging the crack 

developing from the notch. 

 

 

 

 

 



112 

 

a) 

 

b) 

 

c) 

 

d) 

 

 

Figure 6.26. Scheme of C-T test to determine energy release rate and fracture toughness increase due 

to bridging: (a), (b) specimens from monolithic ceramic material, (c), (d) ceramic specimens with 

metallic reinforcements; (a), (c) – initial state, (b), (d) – state at infinitesimally increased crack length. 

 

The J-integral was calculated based on the potential energy increase ΔΠ for the 

infinitesimal increase of crack length Δa (Gross and Seelig, 2006; Plate, 2015). The energy 

release rate, or the crack extension force G can be defined in the following form 

 

dA

d
G


                        (6.13a) 

 

where: dA is the infinitesimal crack surface increase,  dΠ – potential energy increase,  Π = Π
int

  

+ Π
ext

 denotes the potential of external and internal forces, Π
int

  - strain energy representing 

internal energy: 
V

WdVint
, W- strain energy, V - body volume, Π

ext
 - potential of the 

external loads F: 



V

ext dSuF , u - displacements, ∂V - boundary surface of the body 

volume V, dS - area element.  

In two-dimensional case, where dΠ is linked with the unit thickness as 

 

da

d
G


 ,                                          (6.13b) 

 

the energy release rate G is associated with infinitesimally small crack length increase da. The 

energy release rate is related to the stress intensity factors K as in Eq. (3.5), namely 

 

                                  (6.14) 

 

 Kf
da

d
G 



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The J-integral introduced in Chapter 3 for an elastic material is equivalent to the energy 

release rate G (Eq. 3.4). Thus, for determination of the J-integral the increase of the potential 

energy for infinitesimally small crack length increase Δa is to be found (cf. Plate, 2015) 

 















 a
J

a 0
lim                                                           (6.15) 

 

Calculating the difference ‒ΔΠ = Π2 ‒ Π1, where Π1 denotes the potential energy in the 

initial state at crack length a1, and Π2 in the final state at infinitesimally elongated crack of 

length a2 = a1 + Δa, Δa → 0 one obtains the energy release due to the crack length increase 

Δa (cf. Plate, 2015). The energy release due to the crack length increase a2 –a1 was used in the 

present model to estimate the J-integral 

 

12

12

aa
J




                                     (6.16) 

 

This model of calculating the energy release (‒ΔΠ) was applied to the case of 

unreinforced pre-cracked ceramic C-T specimen (Fig. 6.26a,b) and the C-T specimen with 

metal reinforcement spanning the crack faces (Fig. 6.26c,d). Two inclination angles of the 

reinforcing fibre to the crack plane were considered: 60° and 90°.   

The energy release rate increase ΔG due to the presence of reinforcement was obtained 

comparing the results for the ceramic matrix with fibre-reinforced crack with the results for 

the homogeneous material with no crack-bridging fibre for the two inclination angles 

considered. 

The calculations were made with FEAP 7.5 programme. The FE mesh in the vicinity of 

the crack is shown in Fig. 6.27 for the cases of monolithic Al2O3 ceramic (a, b) and Al2O3 

ceramic reinforced with Cu fibre at two inclination angles to the crack plane: 90° (c, d) and 

60° (e, f). Due to the mesh geometry the radii of the crack tip are equal to zero. The meshes in 

the crack tip vicinity for crack lengths a1 = a are presented in Figs. 6.27 (a), (c) and (e), the 

meshes for crack lengths a2 = a+Δa are presented in Figs. 6.27 (b), (d) and (f).  

 

   

a) 

 

b) 
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c) 

 

d) 

 
    

e) 

 

f) 

 
 

Figure 6.27. Pre-cracked C-T specimen model in FEAP – FE mesh in the vicinity of the crack tip (red 

colour – ceramic, green colour – metal): (a), (b) monolithic ceramics; (c), (d) with reinforcement 

inclined 90° to the crack plane; (e), (f) with reinforcement inclined 60° to the crack plane; (a), (c), (e) 

– before, and (b), (d), (f) – after the crack length increase (images are not in the same scale). 

 

The potential energies Πi in the above cases were calculated from the reaction forces and 

displacements at the nodes along contours surrounding the crack tip. The 3
rd

 contour from the 

crack tip was taken for the calculations (cf. Fig. 6.28). The J-integral values were then 

obtained according to Eq. 6.16.   
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Figure 6.28. Nodes forming the 3
rd

 contour for the J-integral (yellow arrow indicates crack tip) 

 

In Fig. 6.29 the stress distributions obtained for the initial and elongated crack lengths are 

compared.  

 

a) b) 

  

 

Figure 6.29. Horizontal stress distributions for fibre inclined at 60°to the crack plane for: (a) initial 

and (b) increased crack length .  

 

The calculated J-integrals for the cases of (i) unreinforced ceramic C-T specimens and (ii) 

C-T specimens with reinforcing fibres inclined at 60° and 90° to the crack plane, along with 

the corresponding energy release rate increase ΔG, are collected in Table 6.6. 
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Table 6.6. Numerical values of J-integral and ΔG for alumina C-T specimens with crack reinforcing 

copper fibre obtained for contour no. 3. 

 

Unreinforced 

Al2O3 sample 

Fibre reinforced 

sample, Al2O3 –

Cu, fibre 

inclination 60° 

Fibre reinforced 

sample, Al2O3 –

Cu, fibre 

inclination 90° 

ΔG for fibre 

inclination of 

60° 

ΔG for fibre 

inclination of 

90° 

JC [10
3
 N/m] J60 [10

3
 N/m] J90 [10

3
 N/m] ΔG60 = JC – J60 ΔG90 = JC – J90 

2.038 0.821 0.145 1.217 1.893 

 

From Table 6.6. it can be seen that the presence of the fibre reinforcing crack faces causes 

an increase in the energy release rate, thus, will enhance the material fracture energy. This 

increase is higher for the fibre perpendicular to the crack plane than for the fibre inclined at 

the angle of 60°. This is due to the active (projected on the crack surface) fibre cross section, 

which is the largest for the fibre perpendicular to crack plane. Also, the influence of mode II 

loading, which was not considered in the theoretical model, reduces the fracture energy in the 

inclined fibre case. 

 

Two-dimensional model with multiple reinforcements  

 

The second 2D FEM model of the Compact Tension test is the model with multiple 

reinforcing fibres. The linear elastic Al2O3 ceramic was taken as the matrix material. The 

elastic-plastic constitutive model was assumed for the Cu fibre. The material and geometrical 

details of the fibre are listed in Table 6.3. The plasticity in the fibre was modelled using the 

σ(u) relationship yielded by the model of the reinforcing fibre for the delamination parameter 

ψ = 0.4 and applying these data via UMAT procedure in ABAQUS (2010). The FEM mesh 

for the ceramic matrix prepared in ABAQUS with the boundary conditions and force loading 

are presented in Fig. 6.30. 

The J-integral was calculated according to the procedure in ABAQUS along the contour 

C: 

  
C

xii dcutUdyJ ,

                     
(6.17) 

where U is the  strain energy density given by  

 



0

ijij dU , σ, ε – stress and strain tensors,              (6.18) 

and t is the stress vector defined as  
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 nt ii                          (6.19) 

n – unit vector normal to the contour, u – vector of displacements (ui,x denotes derivative in x 

direction: 
x

ui




).  

It was impossible to obtain some of the above stress components with FEAP, thus the 

calculations were made with ABAQUS.  

 The bridging fibres were modelled in ABAQUS as plane strain elements connecting crack 

faces. Material model of the fibre remained the same as in the previous case. Calculations 

were made for quasi-static crack propagation. The FEM mesh with bridging fibres modelled 

as plane strain elements, the boundary conditions and displacement loading are presented in 

Fig. 6.30. 

 

 

Figure 6.30. Compact-Tension (C-T) test model in ABAQUS (mesh created with FEAP) with 

bridging fibres modelled as plane strain elements (light colour), boundary conditions and displacement 

loading 

 

The resulting distributions of horizontal stresses for increasing crack length are presented 

in Fig. 6.31. For the plane strain quasi-static crack propagation model, J-integral was 

determined numerically using ABAQUS procedures taking 42 contours for four different 

crack lengths. The resulting relation of J-integral vs. crack length increase Δa for an 

exemplary material is presented in Figure 6.32. It can be seen that the J-integral increases 

with the increasing crack length of the growing crack. 
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b) 
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c) 

 
d) 

 
 

 

Figure 6.31. Distributions of horizontal stresses for increasing crack length in plane strain C-T model 

with multiple fibres. 

 



120 

 

 

Figure 6.32. Illustrative example of J-integral vs. crack length increase Δa curve for plane strain C-T 

of alumina specimen toughened with copper fibres - results from ABAQUS. 

 

It is to be emphasized that the proposed plane model of the C-T test for pre-cracked 

ceramic material reinforced with multiple ductile fibres accounts for the delamination, large 

deformations and necking of the reinforcing fibres. The σ-u characteristics of the individual 

elastic-plastic fibre were obtained with separately developed model accounting for the same 

phenomena. 

 

Three-dimensional model for simplified composite microstructure with fibres 

 

In this model the Al2O3/Cu IPC material is modelled as the effective material in which a 

cuboid containing bridging fibres perpendicular to the predicted crack plane is placed in the 

vicinity of the crack tip. The fibres’ locations and dimensions were taken according to 

Hoffmann et al. (1997) experiments. The surrounding material is modelled as elastic with the 

effective elastic properties calculated using the extended V-R-V model developed in Chapter 

5. The dimensions of the C-T specimen comply with the ASTM E399 standard. The material 

and geometrical data of the fibre are given in Table 6.3. In Fig. 6.33 an overall scheme of this 

Compact-Tension test model is presented.  

 

 

 

 

 

J [N/m] 

Δa [mm] 
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Figure 6.33. Scheme of three-dimensional Compact-Tension  model for composite with multiple 

crack reinforcing parallel fibres, with perspective view and orthogonal projections from ABAQUS 

The overall view of the model in ABAQUS with one of FE meshes and boundary 

conditions is shown in Fig. 6.34. The details of the crack tip vicinity with fibres are shown in 

Fig. 6.35. Selected stress and strain distributions in the reinforcing fibres obtained with this model 

are presented in Figs 6.36 and 6.37.  

The crack propagation and the J-integral were not analysed with this simplified C-T 

model. It served merely as a necessary step towards a more accurate C-T model where a 

cuboid with prescribed topology of perpendicular cylindrical fibres would be replaced by 

micro-CT images of the interpenetrating microstructure with ductile ligaments in front of the 

growing crack. The rationale behind using such a material insert with a specific composite 

microstructure near the crack tip was to prepare the numerical ground in ABAQUS for the 

more complex FEM model when the growing crack encounters real microstructure of an IPC. 

a) 

 

b) 

 

Figure 6.34. Simplified 3D model of Compact-Tension test with parallel fibres near the crack tip:  

a) sample FE mesh, b) boundary conditions 

effective  
material 

Cu bridging 
ligaments  

in Al2O3 matrix 
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Figure 6.35.  Detailed view of the crack tip neighbourhood with family of parallel reinforcing fibres. 

 

 

b) 

 

 

Figure 6.36. Numerical model and results from ABAQUS: a) FEM mesh, b) von Mises stress 

distributions for a chosen increment of loading. 

crack tip 

a) 
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a) 

 

b) 

 

Figure 6.37. Numerical model and results from ABAQUS: a) vertical logarithmic strain distribution in 

reinforcing fibres, b) vertical stress distribution in reinforcing fibres. 

 



124 

 

Numerical model with real IPC microstructure 

 

 In this Subsection the energy release rate increase will be determined for an IPC material 

in Compact-Tension (C-T) with account of a real interpenetrating microstructure obtained 

with computed microtomography (micro-CT). A solution of such a complex problem requires 

the use of special software and high performance computer (total number of elements = 

946322, total number of degrees of freedom = 3583413). However, the analysis of this 

problem is possible with the use of the ABAQUS software package carrying out the 

computations in two steps: (i) solving of the Compact Tension problem with homogenized 

material properties, followed by (ii) a “submodelling” approach for the chosen smaller 

volume of the material in the region of interest.   

 The idea of the proposed model is depicted in Fig. 6.38. 

 

 

b) 

 

 

Figure 6.38. Scheme of the Compact-Tension test model of the IPC with real material microstructure 

obtained from micro-CT: (a) FE mesh in the vicinity of the crack based on the micro-CT data, (b) 

analytical and numerical models for effective elastic properties used for the remaining part of the C-T 

specimen (based on Poniżnik et al., 2008, Basista et al., 2010 and Basista et al., 2016, with the 

permission of publishers). 

 

The composite material under consideration is an Al2O3/Cu IPC with 25% Cu content. It 

was manufactured within the KMM-NoE
1
 FP6 project by Jami Winzer at the Institute of 

Materials Science of Darmstadt University of Technology in Germany. The gas pressure-

assisted infiltration of a molten copper into a ceramic preform was performed at  the 

temperature of 1200°C and pressure of 100 bar. The interconnected pore network in the 

ceramic preform was obtained using a natural wool felt as the sacrificial pore forming agent, 

PFA (Winzer et al., 2011, see also Appendix).  

                                                 
1 Network of Excellence “Knowledge-based Multicomponent Materials for Durable and Safe 

Performance” (contract no. 502243-2) 
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A three-dimensional representation of the Al2O3/Cu IPC microstructure was obtained with 

micro-CT by Georg Geier at the Österreichisches Gießerei-Institut (Austrian Casting Institute) 

in Leoben. Volumetric micro-CT images of the IPC microstructure were obtained for a 

cylindrical specimen cut in two smaller pieces. The obtained micro-CT images were 

transformed into FE meshes with Simpleware ScanIP/FE commercial software according to 

the procedure described in Basista et al. (2016): first, the image was imported into ScanIP 

programme, then a representative volume of the 3D microstructure was chosen for further 

processing. For the chosen volume the segmentation into separate phases was done to 

distinguish the composite phases, i.e. alumina and copper. Then the FE mesh was obtained 

with ScanFE programme. In view of the expected singularities such as the crack tip, and 

intended J-integral calculations necessitating the use of quadrilateral and not tetrahedral 

elements, smoothing of the FE mesh could not be applied and the mesh of voxels was created 

instead. The finite element 3D model was created and analysed with ABAQUS (2010). 

Due to the presence of dense metallic phase the dimensions of the Al2O3/Cu composite 

samples that could successfully be replicated with X-Ray micro-CT were very small 

compared to standard Compact Tension (C-T) test specimens. Therefore, it was decided to 

model the whole C-T composite specimen using the effective material properties model V-R-

V developed in Chapter 5 (cf. Fig. 6.38b) and inserting a piece of the real composite 

interpenetrating microstructure in the vicinity of the expected crack growth trajectory, as 

illustrated in Figs. 6.38 and 6.39. The longer side of the real material piece was positioned 

along the predicted crack tip front, i.e. along the width of the C-T specimen.  

The dimensions of the C-T specimen were taken according to the ASTM E399 standard.  

A cuboid image was cut out of the micro-CT image of cylindrical IPC specimen using the 

Simpleware ScanIP software. The specimen dimensions were then adjusted to the dimensions 

of the cuboid image.  

The characteristic dimensions of the C-T test specimen resulted from the resolution of the 

micro-CT device and the voxel size of 9.12 μm, and were as follows: W = 14.7 mm, A = 7.12 

mm, width of the C-T test specimen: B = 7.35 mm (see Fig. 6.38 a). The real composite 

cuboid piece in the vicinity of the crack tip was composed of two cuboids cut out from the 

same composite piece. The composite piece had to be divided into two parts because of the 

size limitations of the micro-CT equipment. Consequently, two separate micro-CT images of 

these two pieces were obtained. From each of these images a cuboid of the dimensions of 

60×60×403 voxels (0.547 × 0.547 × 3.67 mm) was extracted. Both cuboid pieces originated 

from the material parts separated with the distance of approx. 0.5 mm. Finally, from these two 

cuboids one cuboid piece of IPC was composed by shifting them next to each other. The 

dimensions of the resulting cuboid IPC piece were: 60×60×806 voxels (0.547 × 0.547 × 7.35 

mm).  

In numerical simulations due to a large number of elements in the C-T test model with 

IPC microstructure, a submodelling had to be applied with a global model of the effective 

material and the real composite microstructure in the crack tip vicinity. The idea of 

submodelling is presented in Fig. 6.39. The displacement field was taken from the surface of 

the boundary of real microstructure piece in the global model, and applied as the boundary 
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conditions on the real material piece (cf. Fig. 6.43). Since the model is huge it was impossible 

to be solved with the available hardware capabilities. As a way out a slice of 60 voxels wide 

was cut out of the whole C-T test specimen and taken for calculations, as depicted in Fig. 

6.39.  

  
 

Figure 6.39. Schematic diagram of the real IPC microstructure model with submodelling applied to 

reduce the problem size. 

 The slice cut out of the whole C-T test specimen had the outer dimensions (W and A) of 

the global C-T test model, with width of the diminished C-T test specimen: B
slice

 = 0.547 mm. 

The cube with real microstructure had the dimensions of 60×60×60 voxels (0.547 × 0.547 × 

0.547 mm).  

 The FE mesh of the outer, global model part of the Compact Tension test specimen had to 

be fine-tuned to the size of the elements of the submodel. This caused large difficulties in the 

FE mesh design, compromising between the necessary very fine element size in the regions 

near the real material piece and near the loading and the boundary conditions application 

surfaces (pin holes), and the need to optimize the mesh size in the less important areas. The 

FEM model for the global model part of the Compact-Tension “sliced” specimen had 778746 

nodes, 730322 solid 8-node C3D8 elements, and 2282964 variables. The FEM model of the 

real microstructure cube part of the Compact Tension test “sliced” specimen had 433483 
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nodes, 216000 solid 8-node C3D8 elements, and 1300449 degrees of freedom. The details of 

the real microstructure cube are shown in Fig. 6.40, in which the horizontal cuts through the 

piece from bottom to top with bridging ligaments and interconnections between fibres, are 

visible.  

 

 

Figure 6.40. Details of the microstructure of real IPC cube - horizontal cuts through the piece from 

bottom to top, with visible bridging ligaments and interconnections between fibres. 

 

 The material models of the composite phases were described in Poniżnik et al. (2015) and 

also in the previous Subsections treating the single axisymmetric fibre pullout/reinforcing 

fibre with debonding evolution. The ceramic Al2O3 phase was modelled as isotropic elastic, 

the metallic Cu phase was modelled as isotropic elastic-plastic undergoing large plastic 

deformations. In the elastic-plastic model applied for the copper phase the J2 flow plasticity 

and isotropic hardening model was used and implemented in ABAQUS. The J2 plasticity 

constitutive equations were integrated with the stress update algorithm. Large strains that 

might locally take place, were determined with an incremental algorithm. For the models with 

isotropic yield function, the spectral decomposition made possible the use of the return 

mapping procedure. Material parameters used for calculations are shown in Table 6.7. 

 

Table 6.7. Material parameters used in calculations 

 Al2O3  Cu  

Em, Ef [GPa]  390.0 110.0 

νm, νf  0.2 0.35 

σ0 [MPa]  - 50.0 

n  - 5.8 
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 In order to model the material discontinuities represented in finite elements as the 

embedded discontinuities, the Extended Finite Element Method (XFEM), introduced by 

Belytschko and Black (1999) and developed further among others by Dumstorff and Meschke 

(2007) was used (cf. Section 3.4). The XFEM was employed to model crack propagation in 

the elastic ceramic phase. At this stage of the model development it was assumed that copper 

ligaments may deform plastically but their damage and final rupture was not included in the 

analysis.  

 Using ABAQUS (2010) it is possible to model damage initiation and damage evolution. 

The damage initiation criterion can be expressed in terms of maximum nominal stress MAXS 

or maximum principal stress, maximum nominal or principal strain, maximum separation 

displacements, or with their quadratic interaction functions. In the present numerical model 

the MAXS criterion is used for damage initiation in ceramic elements and at cohesive 

interfaces. According to Prielipp et al. (1995), or the NIST Structural Ceramics Database 

(Munro, 1997), the value of flexural strength of dense alumina at room temperature varies 

between 330-430 MPa. For present modelling purposes the damage initiation stress in 

alumina was assumed to be 300 MPa. The ENERGY criterion for the damage evolution in 

ceramic elements is defined in terms of the fracture energy that is required for the element 

total failure. The energy required for fracture in the mixed mode is expressed as a power law.  

 A displacement-controlled quasi-static loading was applied to make the crack growing. 

During laboratory C-T tests the boundary conditions and the loading were applied at roller 

pins. In the present model the boundary conditions and the loading were applied to the C-T 

test specimen as a pressure on the pin holes surfaces. One of the pin holes was kept fixed to 

simulate real C-T test conditions. The displacement u from 0.0 to 0.25 mm was applied at the 

other pin hole. The boundary conditions and the loading are depicted in Fig. 6.41. 

 The model with FE mesh is depicted in Fig. 6.42. The pre-crack tip was assumed as sharp 

(with zero radius). The crack tip angle was of the order of 0.03 rad (Fig. 6.43). The initial 

opening angle of the simulated crack developing in the real material piece was 0.0 rad (there 

was no pre-crack in the real material). The applied displacements were small, hence the 

opening angle in the real material piece did not grow substantially. 

 The results obtained with the global model of the C-T test are presented in Fig. 6.44 for 

selected displacement, stress and strain fields. The results for the submodel with the real IPC 

microstructure in both ceramic and metal phases are shown in Fig. 6.45.  

The calculations were made with ABAQUS software using multiprocessor computer 

cluster GRAFEN at the Institute of Fundamental Technological Research of the Polish 

Academy of Sciences. The calculations of both models: global model and submodel, due to 

their large sizes, needed considerable computation time.  

 The J-integral was calculated along the crack front at 25 contours using ABAQUS 

procedure. The J-integral values were taken for contours contained within the ceramic phase. 

These values rose gradually to saturate at the 11
th

contour, which was then chosen for 

calculations. The calculated J-integrals vs. crack length increase Δa are presented in Fig. 6.46.  
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a) b) 

 

 

 

Figure 6.42. The FEM model for C-T test with account of real IPC microstructure developed in 

ABAQUS (a) outer, global model of C-T specimen with effective elastic properties, node set from 

which displacements are taken for the submodel marked in red, (b) submodel of real Al2O3/Cu IPC 

microstructure obtained with micro-CT imaging (displacement boundary conditions marked in 

yellow).  

  

 

 
 

Figure 6.43. The shape of pre-crack tip. 

 

 

 

crack tip 
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a) b) 

  
c) d) 

  
e) f) 

  

 
 

Figure 6.44. (a) Boundary conditions and (b-f) selected results from the global model of the C-T test 

at applied u1 = 0.157 mm: (b) displacements in the loading (horizontal) direction u1, (c) von Mises 

stresses in the crack tip vicinity, (d) stresses in the loading (horizontal) direction in the crack tip 

vicinity, (e) vertical stresses in the crack tip vicinity, (f) logarithmic strains in the loading (horizontal) 

direction in the crack tip vicinity. 
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a) b) 

 
 

c) d) 

 
 

e) f) 
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g) h) 

  
i) j) 

  
k)  

 

 

 
Figure 6.45. Selected model results obtained for the real IPC piece: (a) propagated crack marked with 

red (white – copper phase), (b) displacements in the loading direction in the copper phase, (c-g) von 

Mises stresses, (d-f) - in the copper phase, (e) – left half, (f) – right half, (g) –left half of the ceramic 

phase, (h) stresses in the loading direction in the ceramic phase, (i) logarithmic strains in the loading 

direction in the ceramic phase, (j) plastic equivalent strains in the copper phase (right half), (k) 

propagated crack marked with red in the ceramic phase (left half). 
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Figure 6.46. J-integral vs. crack length extension (reprinted with permission of Advanced Engineering 

Materials)  

 

 From the numerical results depicted in Fig. 6.45 it can be seen that the applied 

displacement loading caused stresses in the middle plane of the IPC piece initiating crack 

propagation in the ceramic phase and plastic yielding in the copper phase. The calculations 

were stopped when the time increment was lower than the minimum allowed. The propagated 

crack length reached approximately 0.1 mm. 

 The results of J-integral calculations for the 3D case, recently published in Basista et al. 

(2016), are presented in Fig. 6.46. They represent the very beginning of the crack propagation 

process as the crack has grown up to 0.1 mm, only. The convex shape of J(Δa) curve for the 

3D case (Fig. 6.46) is different than the concave shape obtained for the 2D case (Fig. 6.32). 

On the other hand since the 3D crack front has grown only by a small size increment, the 

plateau reached in Fig. 6.46 may correspond to the initial part of the J(Δa) curve in the 2D 

case, which assumes a concave shape as the crack keeps growing. A more plausible 

interpretation of different characters of J(Δa) curves may be attributed to the effect of three-

dimensionality that favours less steep increase of the J-integral and its tendency to reaching a 

plateau.   

Δa [mm] 

J 
[N

/m
] 
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 The numerical predictions of the J-integral in the 3D case are in qualitative agreement 

with the experimental results reported by Miserez et al. (2004) for gas pressure infiltrated α-

Al2O3 preforms with liquid high purity Al and Al/Cu2% alloy, measured in the Compact 

Tension test. Even though the microstructure of their composites differs from the 

interpenetrating microstructure considered in the present model the crack behaviour 

represented by the J-integral vs. crack extension curves is very much the same in shape. An 

explanation for this observation can be sought in similar crack toughening mechanisms. 

However, this statement needs further studies to be claimed true. 
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7. Summary, conclusions and future research  
 

The objectives of the research presented in this dissertation were twofold: (i) to propose 

analytical and numerical models for estimation of the macroscopic mechanical properties, and 

(ii) to propose numerical models for deformation and fracture capable of determination of the 

fracture parameters of novel metal-ceramic composites with interpenetrating microstructure 

(interpenetrating phase composites, IPCs).  

A number of different analytical and numerical models have been developed for the 

effective material properties and the fracture related parameters of the IPCs. In what follows a 

concise account of these models will be given with the original elements highlighted, 

wherever relevant. 

Mishnaevsky (2005, 2006, 2007b) codes were used to model in two dimensions the 

effective elastic properties of a particle-like microstructure and of a cross-like microstructure. 

The particle-like microstructure was compact in shape, while the cross-like microstructure 

was branched. The results were compared to the Voigt and Reuss estimates in order to 

examine the influence of the microstructure on the macroscopic properties of IPC materials. 

The effective elastic constants: Young’s modulus, Poisson’s ratio, bulk and shear moduli, 

related to the volume fraction of the phases, were estimated on the examples of Al2O3/Cu and 

Al2O3/Al interpenetrating phase composites, using models based on the decomposition of the 

cross unit cell mimicking an interpenetrating microstructure. The analytical models of Voigt, 

Reuss, Tuchinskii (1983) and Feng et al. (2003, 2004) were applied. Extensions of the 

Tuchinskii (1983) and Feng et al. (2003, 2004) models were proposed, as derived from the 

eigenmoduli of the stiffness tensor (bulk and shear moduli), which is a novel approach. A 

third way of unit cell division was implemented, which is also an original contribution to the 

IPCs’ effective properties estimation. Young’s modulus, bulk modulus, shear modulus and 

Poisson’s ratio were predicted with the novel extended models.  

Three new analytical models, based on three directions of decomposition of the cross 

unit cell, derived from the eigenmoduli of the stiffness tensor, were developed for estimation 

of the overall coefficient of thermal expansion (CTE) of IPCs.  

Two original numerical methods were developed for estimation of the effective elastic 

constants of IPC materials: (i) method for the simplified microstructure of three-dimensional 

cross, and (ii) generic method for real IPC microstructures based on three-dimensional 

microstructure images obtained with computed microtomography (micro-CT). For two-phase 

three-dimensional cross microstructure model, the whole range of phases’ volume fractions 

were addressed. For the generic method for real microstructure, two different Al2O3/Cu IPCs 

of different microstructures and copper volume fractions were modelled. Two kinds of finite 

element meshes were created for this method: a voxel type mesh and a mesh with smoothed 

boundaries between phases containing both hexagonal and tetragonal elements.  

The analytical and numerical modeling of the effective elastic properties and fracture of 

IPCs was enriched with experimental investigations of IPCs of different microstructures. 

Preparation of IPC samples together with analysis of the influence of different processing 
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parameters on the resulting materials’ microstructure and properties, measurements of the 

elastic properties in RT and in thermal cycles, and observations and measurements of fracture 

in IPCs, were performed. The results of experimental measurements were further compared 

with the results of analytical and numerical models of the effective elastic properties and 

fracture of IPCs. They also served as a basis of modelling assumptions and necessary 

simplifications. 

The modelling of fracture parameters and crack evolution in IPCs, which constitutes the 

second main part of this thesis, was preceded by experimental observations of crack 

propagation and fracture surfaces, and measurements of fracture toughness. A set of models 

were explored in order to finally determine the increase of the fracture toughness that occurs 

in IPC composites due to crack bridging. The prerequisite models of a single elastic-plastic 

fibre reinforcing elastic matrix were developed in order to determine the stress-displacement 

characteristics in the reinforcing ligament, necessary for the determination of the J integral in 

the whole composite. Numerical models of the Compact-Tension tests were developed in two 

and three dimensions. The Compact-Tension test was modelled in three dimensions for the 

real IPC microstructure obtained from micro-CT images. The J integral was calculated for 

two- and three dimensional cases.  

The deformation mechanisms of IPCs including large plastic deformations and necking of 

metal ligaments, delamination of reinforcements from the matrix, and crack bridging was 

determined using the finite element models originally developed within this thesis. The 2D 

model of a skew reinforcing fibre, inspired by the experimental investigations of Hoffman et 

al. (1997), enabled analysis of the deformation of either elastic-plastic copper reinforcement 

embedded in elastic alumina matrix, or conversely, of elastic reinforcement in elastic-plastic 

matrix. The influence of the nondimensional debonding parameter on the force – 

displacement characteristics was examined in detail. 

The stress – displacement curves for elastic-plastic reinforcing fibres were obtained for 

Al2O3/Al and Al2O3/Cu composite systems with the finite element model of an axisymmetric 

elastic-plastic metallic fibre in an elastic alumina matrix, undergoing large plastic deformation 

and necking. The influence of fibre-matrix debonding on the σ-u characteristics was also 

analysed with this model. 

A finite element model of the fibre pullout, being an original extension of the model of 

Bheemreddy et al. (2013) by introducing the elastic-plastic model for the fibre, was proposed. 

The model accounted for the large plastic deformation and necking in the fibre and for the 

evolution of fibre debonding from the matrix. The purpose of the fibre pullout model was the 

identification of the interfacial material properties which could subsequently be used in the 

numerical determination of J-integral for IPCs. This systematic approach to model parameters 

identification in numerical modelling of J-integral in IPCs can be seen as another original 

element of the thesis. 

A novel finite element model was developed for an axisymmetric reinforcing fibre with 

the evolution of fibre-matrix debonding. The model was intended to help understand the 

mechanism of crack bridging in real IPC materials. The material parameters used for 

Al2O3/Cu composite, including those of the cohesive interface, were assumed the same as for 
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the pullout model. The stress – displacement characteristics obtained from this model were 

compared with the results of pullout model and with analytical results of Mataga (1989), 

reflecting well the behaviour of the reinforcing fibres in Al2O3/Cu IPC observed in 

experiments by Winzer (2009).  

Numerical models were proposed for the determination of the energy release rate 

increase ΔG due to crack bridging mechanism in IPCs. Two-dimensional numerical models 

for the Compact-Tension (C-T) test were developed in several variants. Different techniques 

of modelling of the reinforcing fibres and propagation of the crack were used to determine the 

J integrals. The two-dimensional original models include the C-T test model with a skew 

reinforcing elastic-plastic copper fibre embedded in an elastic alumina matrix and the C-T test 

model with multiple elastic-plastic copper fibres embedded in an elastic alumina matrix. For 

the case with multiple bridging fibres and quasi-static crack propagation, the J integral related 

to the crack length increase Δa was numerically determined. 

The original three-dimensional finite element models of the Compact-Tension (C-T) 

test included the model for a simplified composite microstructure with cylindrical fibres and 

the model of a real composite microstructure obtained from microtomography (micro-CT) 

experiments. Submodelling was applied in the case of the real IPC microstructure due to the 

large size of the problem. Additionally, it was necessary to cut out a slice from the model of 

the C-T specimen. The submodel of a vicinity of the crack tip was made of the cube of voxels 

with real Al2O3/Cu IPC microstructure obtained from micro-CT scans, according to the 

original modelling scheme (cf. Chapter 5). The alumina ceramic phase was modelled as 

elastic with possibility of initiation and evolution of damage using the Extended Finite 

Element Method (XFEM). The copper metallic phase was modelled as elastic-plastic 

undergoing large plastic deformations. The global model consisted of the linear elastic 

material with effective properties of the investigated Al2O3/Cu IPC estimated with the newly 

developed methods described in Chapter 5. The global model was subjected to quasi-static 

loading and the resulting displacement field from the area bounding the submodel was applied 

at the submodel as the boundary conditions. Under the applied quasi-static loading, the crack 

propagation was modelled in the ceramic phase of the submodel. The J integral was 

calculated in function of the crack length Δa.  

The main objectives of this dissertation have been achieved with the mentioned above 

analytical and numerical models of metal-ceramic IPCs, aiming at prediction of the overall 

elastic properties, deformation mechanism with account of large plastic deformations of the 

metal phase, debonding of the reinforcement from the matrix and crack bridging, as well as 

the macroscopic fracture parameters and crack evolution in real IPCs with microstructure 

modelled by means of micro-CT images. The results of the analytical and numerical models 

were compared not only with the existing results from the literature, but also with the 

experimental results obtained within this work during research stays abroad. The analytical 

models estimating the overall elastic properties of IPCs, compared with the experimental 

measurements, enabled fast finding of a microstructure with the optimum properties. The 

main phenomena occurring in real IPC materials, such as interconnections between fibres, 

debonding, skew fibres, contact between delaminated fibre and matrix, or interaction between 

bridging fibres, were addressed. 
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The main theses of this dissertation formulated in Chapter 4 have been verified and 

confirmed. The influence of the composite microstructure on the effective elastic properties 

was shown using Mishnaevsky (2005, 2006, 2007b) codes and significant differences 

between the effective elastic properties for different microstructures in planar case were 

disclosed. The results obtained for particle-like microstructure were closer to the upper Voigt 

estimate, while the results for cross-like microstructure had lower values, closer to the Reuss 

estimate, confirming the strong influence of the microstructure on the macroscopic properties 

of IPC materials. The microstructure influence on the effective elastic properties was visible 

also when the experimental results of Young’s modulus measurements were compared for 

different IPC microstructures (cf. Appendix).  

The analytical models of the effective elastic constants (i.e. the extensions of the 

Tuchinskii (1983) and Feng et al. (2003, 2004) models and the model based on the third way 

of unit cell division), for both Al2O3/Cu and Al2O3/Al IPC composites, together with the 

numerical models based on the three-dimensional cross-like microstructure and of the real 

Al2O3/Cu microstructure obtained from micro-CT experiments fit between the Voigt and 

Reuss bounds. Two Al2O3/Cu IPCs of different microstructures and copper volume fractions 

were modelled using the newly developed generic numerical methods for estimation of the 

effective elastic and thermal constants of real IPC composites, with the use of 3D 

microstructure images obtained from the computed microtomography (micro-CT). These 

numerical procedures enabled analyses of different actual microstructures and their influence 

on the macroscopic IPC properties. The main difficulty when modelling the real IPC 

microstructure obtained from micro-CT was the large size of finite element meshes requiring 

long computational time and the necessity to divide the real material piece into a number of 

smaller parts, and then performing calculations for each of them separately. However, the 

latter task was partially automated with a FORTRAN code. 

The overall coefficients of thermal expansion (CTE), calculated according to the proposed 

models for Al2O3/Cu and Al2O3/Al IPC composites, were contained within the Rosen and 

Hashin (1970) bounds.  

By comparison of the results of analytical and numerical modelling of the overall elastic 

constants and of experimental measurements at room temperature, fast identification of a 

microstructure providing optimum properties is possible.   

The proposed numerical models accounting for large plastic deformations and necking of 

metal ligaments, delamination of reinforcements from the matrix, and crack bridging 

toughening mechanism have proven their capability of reflecting the phenomena that may 

occur in real IPC materials. The difficulties with these models included the lack of necessary 

material properties of the interfaces, large size of the models causing long computational 

times and numerical instabilities that might occur due to damage in the cohesive interface. 

Numerical models using micro-CT scans of real IPC microstructures and a commercial 

software to automatically generate FE mesh were proposed as a ready to use computational 

tool for the investigation of crack propagation in IPCs. As compared with the results for the 

two-dimensional case, the resulting J integrals were obtained for the initial stage of the crack 

propagation process, thus different shapes of the characteristics were obtained in 2D and 3D 
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cases. In particular, for the three-dimensional case a less steep increase of the J-integral was 

noted. Excessive computational time was needed to perform calculations for the real 

microstructure model. The use of high power computers was necessary and even then the 

computations of the single calculation process (global model and submodel) for only a slice 

cut out of the C-T specimen, required a very long time. Moreover, due to specifics of the 

crack propagation and J integral calculations, it was impossible to perform calculations in 

parallel on multiple processors to speed them up. Nevertheless, the obtained results were in 

qualitative agreement with the results obtained by Miserez et al. (2004) for similar composite 

materials.  

The use of computed micro-tomography images in the proposed numerical models makes 

them a versatile modelling tool for different microstructures with no need to make any 

simplifying assumption as to the geometry of reinforcements that are usually made in 

micromechanical models of composite materials. With the analytical and numerical models 

developed in this thesis the overall elastic properties, deformation and fracture parameters of 

IPCs may be predicted supporting complicated and costly experimental measurements, at the 

same time reflecting the most important characteristics of the IPC microstructure and 

providing reliable results.  

Directions of future research shall include analytical and numerical estimation of the 

effective elastic constants of IPCs taking into account a material anisotropy using definitions 

of the directional stiffness constants given by Ostrowska-Maciejewska and Kowalczyk-

Gajewska (2013), expansion of the numerical models for other material phases like porosity, 

impurities or interfaces, or incorporation of plasticity and large deformations in metallic phase 

in modelling of the overall mechanical properties of IPCs. The IPCs with microstructures 

based on corn or rice starch PFA, which had shown promising characteristics in laboratory 

measurements in thermal cycles with almost no microcracking upon cooling and good shape 

stability, should be further investigated experimentally in elevated temperatures. Unforeseen 

behaviour of IPCs with microstructures based on natural wool PFA observed during high 

temperature cycles, also renders these composites valuable for further examinations.  

The pullout tests and Ashby et al. (1989) tests of a single reinforcing fibre, would be 

highly recommended to experimentally determine the alumina-copper interface properties 

during crack bridging and pullout, and to apply these results in the respective numerical 

models.  

As for the models of the determination of the energy release rate increase due to bridging 

in the compact tension test, introduction and calculation of the configurational crack tip forces 

according to the theoretical basis described by Plate (2015), would be important. Also further 

effort should be invested in (i) performing calculations for the global model with crack 

propagation that yield more realistic displacement fields for the submodel, (ii) performing 

calculations for the whole C-T specimen and for the larger real material piece enabling longer 

crack propagation, or (iii) introduction of the cohesive interface. Analyses of the 

computations paralleling for the Compact Tension test model would also be necessary, as well 

as the experimental characterization of the fracture parameters to validate the numerical 

models.  
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Appendix. Experimental background for the models developed in the thesis 

This Appendix provides a concise overview of the manufacturing methods of interpenetrating 

phase composites (IPCs). It also contains results of own experimental work on IPCs 

manufacturing and characterization that are beyond the main theme of thesis, which is 

modelling, but contribute to a better understanding of the material properties and fracture 

mechanisms considered in the main text. 

 

A1. Manufacturing of interpenetrating phase composites: an overview 

The commonly used methods of IPC manufacturing are based on pressure-assisted or 

pressure-less infiltration of molten metals into ceramic preforms (cf. Basista and Węglewski, 

2006; Skirl et al., 2001, Winzer, 2011). Preform preparation techniques including sintering of 

coarse powders, foam based methods, or methods using sacrificial pore forming agents are 

described in Mattern et al. (2004) followed by a detailed parametrical analysis of the 

infiltration process. The gas pressure infiltration of liquid metallic phase into a porous 

ceramic perform is a commonly used fabrication technique of IPCs. The ceramic preform may 

form a random porous network of a sintered aluminum oxide or contain hollow parallel 

channels or regular grids if special processing techniques are applied (Raddatz et al., 1998). In 

what follows a set of representative works with different processing techniques of IPCs will 

be briefly discussed and examples of IPCs’ essential mechanical properties will be given. 

Clarke (1992) investigated processing and properties of interpenetrating phase 

composites defined as multiphase with each phase topologically interconnected throughout 

the microstructure. Manufacturing and characterization of titanium trialuminide (Al3Ti) / 

aluminium (Al) metal-intermetallic interpenetrating composites was presented by Wang et al. 

(2007). Processing techniques of glass-containing IPCs were reviewed in Bansal (2006). 

Scherm et al. (2010) manufactured interpenetrating lightweight metal matrix composites, 

based on porous Al2O3 ceramics infiltrated with aluminum alloy AlSi9Cu3. The ceramic 

preforms were produced by cold pressing of fine grained ceramic alumina powders with 

pyrolysable pore formers, followed by burnout and partial sintering. Porous preforms were die 

casted with Al alloy. Both metal and ceramic phases were distributed isotropically. 

Mechanical characterization was performed in tensile and compression tests. Thermal 

properties such as thermal diffusivity (conductivity), coefficient of thermal expansion and 

specific heat capacity were also measured. The strengthening mechanisms such as stress 

transfer from metal matrix to the ceramic reinforcements, dislocation strengthening, and 

refinement of the metal grain size, were identified. The composites showed enhanced 

mechanical properties compared to the matrix alloy: ultimate tensile strength and Young’s 

modulus but were slightly less ductile. Strong bonding between ceramic and metal was 

observed on fracture surfaces of tensile specimens. 

Hemrick et al. (2010) investigated low and high temperature fabrication methods of 

nano-scale IPCs. Infiltration of metal (Cu, Al or alloy) into a nanoporous ceramic matrix 

(alumina, silica or titania) was one of the routes for low temperature processes. Low 
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temperature co-sintering of mixed ceramic and metallic nanopowders, infiltration of metal 

into nanoporous cellular ceramicss or ceramic nano-foams, and co-formation of bi-continuous 

block copolymer microphases with ceramic and metal precursors were also evaluated as 

methods to produce improved nano-scale IPCs. The influence of the composition on the 

mechanical strength was examined. 

Hein (2014) used the powder injection moulding method to fabricate metal ceramic 

interpenetrating composites. Different material combinations were tested and the produced 

materials were characterised in terms of density, mechanical properties and microstructures. 

The advantage of the powder injection moulding method is the ability to produce near-net 

shape parts in large quantities. 

Sun et al. (2009) developed an Mg-based metallic-glass/titanium IPC exhibiting 

enhanced mechanical performance: high fracture strength of 1783 MPa and large fracture 

strain of 31%. The composite was manufactured with pressure assisted infiltration of a Mg-

based metallic glass alloy into a porous titanium with a pore size of 30-200 μm and nominal 

porosity of 30%. The composite samples were tested in quasistatic compression test. The IPC 

fractured at 1783 MPa, compared to 800 MPa for porous titanium and 825 MPa for BMG 

alloy. The microstructure of the manufactured IPC materials was examined using different 

microscopy techniques. Shear bands in the specimens that underwent compression to the 

preset strains were observed. It was concluded that the interpenetrating microstructure had a 

highly positive influence on the mechanical properties of the composite. The interpenetrating 

microstructure ensured throughout constraint of the shear bands propagation, promoted 

homogeneously distributed local shear deformations and decentralized the deformation of the 

composite, and also introduced a mutual reinforcement between metallic glass and titanium.  

Roy et al. (2012) investigated internal load transfer and compressive damage evolution in 

an interpenetrating Al2O3/AlSi12 composite. The composites fabricated by squeeze-casting of 

eutectic aluminium–silicon alloy melt in a porous alumina preform, were investigated in 

micromechanical load partitioning between the three phases of the composite. The failure of 

the composite occurred by propagation of cracks in the regions rich with the ceramic phase.  

In the work of Kailash (2013) interpenetrating polymer networks were investigated, with 

particular emphasis on fracture behavior in tensile, quasi-static and dynamic tests. Both quasi-

static and dynamic tests showed decrease of fracture toughness with the decrease of the 

volume fraction of the stiffer PMMA phase. In quasi-static tests the stability of the crack and 

fracture toughness depended on the volume fractions of the components. The quasi-static 

fracture toughness had an optimum for higher volume fractions of PMMA.  

Moro and Solomon (2012) designed and manufactured IPCs for vibration damping. The 

novel shape memory alloy-ceramic composites using reactive metal penetration technique, 

were produced. Mu et al. (2014) developed a Ti/Ti-based-metallic-glass interpenetrating 

phase composite (IPC) by infiltrating Ti34.3Zr31.5Ni5.5Cu5Be23.7 melt alloy into porous Ti 

preform. A mutual reinforcement effect, for both amorphous and crystalline phases was 

observed during characterization of the composite. 
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Chang H. et al. (2010) investigated the effects of the dynamic impact load at high 

velocities on Al-Mg/Al2O3 IPC coatings of Al backing. The coatings were manufactured 

using pressureless infiltration of Al2O3 foams of densities in the range of 15-30% and of 

approximately 25-75 μm cell radii. Split Hopkinson’s Pressure Bar (SHPB) and Depth of 

Penetration (DoP) methods were used to acquire ballistic properties of IPCs. The tests showed 

that IPCs themselves cannot sustain the impact of high velocity armour piercing rounds. On 

the other hand, when covered with the dense Al2O3 front layer of 4 mm thickness, no 

penetration into Al backing was observed and the specimen remained unbroken. Moreover, 

there was no delamination between ceramic front and IPC. The bridging of the crack with the 

metal phase was observed, which must have contributed to the structural integrity and 

composite performance. The authors concluded that IPCs, whilst inappropriate to use as a 

front face to resist dynamic impact load, backed dense Al2O3 front very effectively and 

provided well-performing and impact-protecting interlayer phase between Al2O3 front and Al 

backing. That could be due to the reduction in the acoustic impedance mismatch between 

Al2O3 and Al, provided by the IPC layer. 

 

A2. Fabrication of IPCs by pressure assisted infiltration: results of own research 

work 

 

The aim of this Subsection is to show experimental investigations and comparison of the 

influence of different parameters of manufacturing on the resulting microstructure, 

mechanical and thermal characterisation of Al2O3/Cu composites.  

A process of pressure assisted metal infiltration of ceramic preforms will be presented 

which was carried out at the Institute of Materials Science, TU Darmstadt, Germany during 

the research stay of the author at the TUD in the framework of KMM-NoE
1
 project, as 

supervised by Dr Jami Winzer, Dr Ludwig Weiler and Prof. Jürgen Rödel.  

The gas pressure infiltration technique was used to obtain dense interpenetrating phase 

composites Al2O3/Cu. The pore networks were obtained using different types of starch as the 

pore forming agents. Microscopic analyses showed that a rice starch based composite 

microstructure is finer and more uniform than the microstructure based on a corn starch. 

Composite samples were made out of 30%, 50% and 60% porosity preforms. The complete 

manufacturing process comprised (i) preparations of slurries from alumina powder and starch, 

(ii) preparations of porous alumina bodies from cast slurries, (iii) sintering of alumina bodies 

to obtain porous ceramic preforms, and finally, (iv) fabrication of the composite by gas 

pressure infiltration of alumina preforms with molten copper (Winzer et al., 2009).  

 

 

 

                                                 
1
 KMM-NoE was a Network of Excellence in the 6th EU Framework Programme entitled „Knowledge-based 

Multicomponent Materials for Durable and Safe Performance” coordinated by IPPT PAN. 
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A2.1. Preparation of the slurry 

The samples were made from water-based slurries of Almatis GmbH CT3000 powder 

alumina of grain 0.7 μm and starch as a pore forming agent (PFA). There were two kinds of 

starch used: corn and rice. To improve the properties of the slurry Dolapix (dispersant) and 

Contraspum (to remove air bubbles) were added. There slurries contained 35%, 40% and 45% 

volume fraction of solid phase, as bases for composites of 60%, 50% and 30% 

starch/porosity/copper contents, respectively. 

The components were mixed and de-agglomerated with magnet stirrer and ultrasonic Dr 

Hielscher GmbH stirrer. After mixing the slurries were evacuated to remove the air. Before 

using slurries were homogenized on roller mixer for at least 24 hours and evacuated. The 

scheme of the preparation of the slurry is depicted in Fig. A1. 

 

 

Figure A1. The scheme of the preparation of the slurry 

 

 

A2.2. Drying process 

After preparing the slurries, the samples were slip cast into the forms with frames and 

plaster base. Then the samples were dried in controlled ambient conditions to remove the 

largest possible amount of humidity from the samples in order to avoid damage of the 

samples due to excessive drying. The drying process was controlled by mass measurements. 

During each step the ambient temperature and humidity were kept constant. Each step of the 

drying process was regarded as finished when the mass of the sample stopped to decrease and 

reached constant value for at least two subsequent measurements. As long as the sample was 

in a liquid state, mass estimations were made with regard to the mass of empty form and the 

total mass of the slurry together with the form. During drying the temperature and humidity 

were controlled. After casting into the forms, one set of the samples was put into the Binder 

humidity cupboard under controlled temperature and humidity. The initial parameters were 

set to 20ºC and 80% or 90% of relative humidity. The other samples were kept under the 

cover in the room temperature and humidity. After the samples of both sets have dried in 

these conditions they were moved to the Memmert furnace and gradually heated up to 95ºC. It 

was observed that too rapid changes in temperature and humidity conditions caused cracking 

of the samples. 
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The rate of mass decrease was usually highest in the initial step of drying, while the 

samples were in the forms. After removal from the form, the drying rate gradually decreased. 

When the mass of the sample remained constant for at least two subsequent measurements, 

the drying conditions were changed to lower the humidity and rise the temperature. The 

drying rate then increased and remained constant for some measurements. The drying step 

was then repeated. The drying process is presented as drying curves in Fig. A2. It may be seen 

that the mass loss related to the initial sample mass was proportional to the starch content. 

Samples were taken out for sintering when their masses remained constant while being kept in 

95ºC. For some of the samples evacuation at 40 mbar was additionally carried out, giving yet 

more mass losses. Five green alumina-PFA samples were manufactured, with: 30%, 50% and 

60% corn starch PFA contents, and 30% and 50% rice starch PFA contents. 

 

 

Figure A2. Drying curves for green alumina-PFA samples. Except for C60% sample, all curves start 

at the moment of casting the slurries into forms. The lines connect these points with points after 

removing samples from frames, from where the direct mass of the sample was measured. Arrow 

indicates point after removing the sample C60% from frames, as it was not possible for this sample to 

indicate the value of the mass of just poured slurry. 

 

 

A2.3. Sintering of the porous preforms 

Before sintering the samples were ground to remove any flaws and notches that could 

initiate cracks during sintering. The samples were then sintered in the Arnold Schroeder 

Nabertherm oven. The sintering programme was as follows: first, slow heating at the rate of 

0.5ºC/min up to 650ºC – the temperature higher of the temperature of burning out of starch, 

the slow rate was used to enable air removal during starch burnout; then faster heating rate of 
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2ºC/min up to 900ºC; heating rate increased to 10ºC/min up to 1550ºC - the sintering 

temperature; 2h hold at the sintering temperature; cooling down to the room temperature. The 

scheme of the sintering process is presented in the Fig. A3. 

 
 

 
Figure A3. Scheme of preform burnout and sintering process 

 

 

A2.4. Metal infiltration 

After sintering, the samples were prepared for pressure assisted infiltration with pure 

copper (99.999%). The dimensions of porous samples for infiltration were of 50×50×8 mm. 

Before infiltration the alumina samples and pieces of copper were cleaned in acetone and 

isopropanol.  

Prepared and assembled samples were infiltrated in the Fine Ceramics Technologies 

F8028 FPW furnace. The samples in a holder were put over the crucible with pieces of 

copper. The infiltration programme started with applying vacuum. Then the temperature was 

increasd to 1200ºC to melt the copper. The crucible was moved up so porous alumina samples 

were immersed in the molten copper. The argon pressure was applied to facilitate infiltration 

and to ensure inert atmosphere. After infiltration the crucible was moved down to take 

infiltrated samples out of the molten copper. The argon pressure was kept constant until the 

solidification of copper to avoid copper leakage from the preforms. The temperature was then 

lowered to the room temperature. The scheme of infiltration process is shown in Fig. A4. 
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Figure A4. Scheme of infiltration process  

 

The structural and process parameters such as the pore forming agents, porosity, 

temperature, pressure and humidity have significant effect on the quality of the manufactured 

composites (Winzer et al., 2009).  

 

 

A3. Characterization of material properties of Al2O3/Cu IPC 

 

The experiments described below were conducted in order to collect information for 

modeling purposes, in particular for comparison with the results of analytical and numerical 

modeling. The influence of copper fraction and composite microstructure on Young’s 

modulus was investigated. The characterization of Al2O3/Cu composites was performed 

during research stays within KMM-NoE Project at the Institute of Materials Science, TU 

Darmstadt, Germany under scientific guidance and supervision of Dr Ludwig Weiler (TUD). 

 

A3.1. Description of specimens and their microstructures 

The measurements were made on prismatic specimens of infiltrated Al2O3/Cu composites 

with different microstructures and different copper contents. The interpenetrating 

microstructures were based on the following pore forming agents (PFA): polypropylene wool 

felt (composite with 25vol.% Cu), natural wool felt (composites with 25 and 50 vol.% Cu), 

and also corn and rice starch (composites with 40 vol.% Cu).  

The specimens were labelled according to the PFA used and the porosity/metal content: P 

- polypropylene wool felt, W - natural wool felt, R - rice starch, M - corn starch, Mp - porous 

Al2O3 porous 
preform 

molten Cu 

infiltrated 
Al2O3-Cu 

composite 
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preform based on corn starch PFA. The numbers denote percentage of volume 

porosity/copper fraction in a preform/composite.  

In Fig. A5 the microstructure of Al2O3/Cu composites is presented as micro-CT images. It 

may be seen that the microstructure of the rice starch based IPC (Fig. A5b) is very fine and 

falls below the resolution level. The IPCs based on natural wool felt (W) were analyzed under 

optical microscope (Fig. A6). Those based on corn starch and rice starch are depicted in Figs 

A6a-b and c-d, respectively. 

It can be seen that the microstructure based on corn starch is more coarse. In this case the 

copper struts have rounded shapes, replicating corn starch grains. Inside many of the grain-

shaped struts ceramic agglomerates can be observed, created due to starch swelling. This 

phenomenon and its importance for the resulting composite is explained in Mattern et al., 

2004. Rice starch-based microstructure is finer and different in shape than the microstructure 

based on corn starch. The copper struts are more elongated and the shape of the grains is more 

diffused (elongated ligaments of the thickness near to the grains diameters often occur, 

making the microstructure more similar to fibrous one). In Figs. A6e-f, IPCs with two felt-

based microstructures, polypropylene (e) and natural (f) wool felt, can be compared. In the 

IPC based on the polypropylene wool felt the surfaces of copper struts are smooth, whereas in 

the IPC with microstructure based on the natural wool felt the copper struts keep the details of 

natural wool fibers microstructure, replicating tiny hooks that cover wool fibres.  
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

 Figure A5. Microstructure of the infiltrated 

Al2O3/Cu IPC composites (micro-CT images, 

courtesy of G. Geier, Leoben):  

a) corn starch PFA, 30% Cu (M30),  

b) rice starch PFA, 30% Cu (R30) (very fine 

microstructure below resolution level), c)  

natural wool felt PFA, 25% Cu (W25), d) 

natural wool felt PFA, 50% Cu (W50), e) 

polypropylene wool felt PFA, 25% Cu (P25). 

Light gray – copper, dark gray - alumina 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

 

Figure A6. Microstructures of infiltrated Al2O3/Cu composites (microscopic images, courtesy of J. 

Winzer, L. Weiler, J. Rödel, TUD): a) corn starch PFA, 40% Cu (M40), magnification 1000x, b) corn 

starch PFA, 40% Cu (M40), magnification 8000x, c) rice starch PFA, 40% Cu (R40), magnification 

1000x, d) rice starch PFA, 40% Cu (R40), magnification 8000x, e) polypropylene wool felt PFA, 45% 

Cu, magnification 1000x, f) natural wool felt PFA, 30% Cu, magnification 1000x. Light gray – 

copper, dark gray - alumina 

 

 

A3.2. Porosity measurements  

To determine the actual amount of copper in the infiltrated Al2O3/Cu composite samples, 

porosity measurements were made. First, the Archimedes method was used to find the density 

of the composite 
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,                  (A3.1) 

 

where: mdry – mass of the dry specimen, ρH2O – water density, msatd – mass of the specimen 

infiltrated with water, msuspend – mass of the specimen suspended in water.  

The apparent specific gravity  was calculated according to the formula 
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where      - mass of the volume of water equal to the volume of the specimen.  Then the 

amount of copper in the composite was calculated using densities of pure copper and alumina 

according to the formula 

 

     
                 

          

                                                                                    (A3.3) 

 

The density of copper was taken as 8.94 g/cm
3
, the density of monolithic alumina as 3.96 

g/cm
3
.  

The density was measured for composite samples where corn starch and rice starch PFAs 

were used to obtain open porosity. The density measurements were obtained with two 

different methods: (i) calculating density from the dimensions and mass of the specimen, and 

with (ii) the Archimedes method. It can be seen in Table A5.1 that the results obtained with 

both methods do not differ more than 1%. From the results in Table 5.1 it can also be seen 

that there is a residual porosity, which does not exceed 0.5%. The presence of residual 

porosity means that the infiltration process was not fully completed as some pores might not 

be accessible for infiltrating metal. For this and other microstructural reasons the actual 

copper content was, thus, less by approximately 3% than the nominal value of 40% for the 

measured samples.  

 

Table A.1. Measurements of density and copper content of Al2O3/Cu composites 

 

Specimen Density of composite Residual 

Porosity 

Cu 

content 

Al2O3 

content from 

dimensions 

from Archimedes 

method 

[g/cm
3
] [g/cm

3
] [%] [%] [%] [%] 

R40 5.775 5.774 99.52 0.48 37.00 63.00 

M40 5.818 5.855 99.74 0.26 38.36 61.64 
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A3.3. Measurements of Young’s modulus at room temperature 

The mechanical and physical characteristics of the phase materials of metal-ceramic 

composites may differ radically from each other according to the composite material design. 

These differences in properties may, however, cause problems during manufacturing. Since 

IPCs combine ceramics and metals, materials with dissimilar mechanical and thermal 

properties, during manufacturing at high temperatures and cooling to room temperature 

different thermal expansion coefficients of both phases may cause delamination and large 

residual stresses. In brittle materials like ceramics, large residual stresses may lead to 

microcracking. It is, thus, important to know the material data of phase materials of the 

composite. One of the simplest methods of identification of the presence of microcracks and 

other impurities that may weaken the material, is measurement of the Young modulus. The 

impulse excitation of vibration method was used by Galal-Yousef (2004) and Galal-Yousef et 

al. (2005) to measure Young’s moduli as a function of temperature for alumina ceramics with 

different average grain sizes. The description and comparison of available mechanical and 

non-destructive methods of measurements of Young’s modulus used for metal-ceramic 

composites that may also be applied to IPCs was given by Węglewski et al. (2013). Three-

point bending test, resonance frequency damping analysis, ultrasonic pulse-echo technique 

and scanning acoustic microscopy tests are described in detail and compared therein.  

The method of Young’s modulus measurement used for the purpose of this thesis was the 

impulse excitation of vibration. The measurements at room temperature were made with 

Grindosonic - the Impulse Excitation Technique J. W. Lemmens equipment, and, at the 

beginning of a thermal cycle, with the Integrated Material Control Engineering (IMCE) N. V. 

Resonant Frequency and Damping Analyser (RFDA) HT 1750, Diepenbeek, Belgium. Both 

types of equipment use the method of detecting the fundamental mode I (flexural) resonant 

frequency ff of a freely vibrating material, according to ASTM E1876-99 standard. The 

specimen was put on the supports at a distance L, and at 0.224 L from each end to fit onto 

flexural vibration node lines (see Fig. A7), where for mode I of vibrations zero displacements 

occur. The microphone was put over the antinode, where the maximum amplitude of mode I 

vibrations occurs, either in the middle or at specimen’s end. Then, the specimen was 

singularly hit with the impulser rod at another antinode to induce the elastic vibrations. The 

microphone collected the signal of vibrations. The fundamental frequency of this signal was 

identified via by the signal analyser and recorded. 
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Figure A7. Detection of fundamental flexural resonant frequency of a vibrating specimen 

 

Resonant frequency of a freely vibrating material depends on its mass, dimensions and 

elastic modulus. Thus, Young’s modulus can be calculated from the measured resonant 

frequency. In ASTM E1876-99 standard, dynamic Young’s modulus E is related to the 

fundamental resonant frequency ff according to the following formula 

 

             
   

 

 
  

  

     ,                (A3.4) 

 

where: m – mass of the specimen, L – length of the specimen, B – width of the specimen, H – 

thickness of the specimen, T1 – correction factor defined as 

 

                                                

  
                              

                                    
                           

  

where ν is the Poisson’s ratio.  

The results of Young’s modulus measurements made with both devices are given in Tab. 

A2. 

 

 

 

 

 

microphone 

impulser rod 

node node antinode antinode antinode 
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Table A2. Measurements of Young’s modulus of IPC composites and porous performs made with 

impulse excitation technique at room temperature using Grindosonic and IMCE RFDA test equipment. 

E1 and E2 denote Young’s moduli measured in out-of-plane flexure and in-plane flexure, respectively.  

 

 

Specimen 

 

E1, Out-Of-Plane Flexure E2, In-Plane Flexure 
[GPa] [GPa] 

Measuring equipment 
Grindosonic IMCE RFDA Grindosonic 

Composite  

samples: 
   

W25 244.26 - 246.63 
W50 182.54 183.93 173.99 
P25 274.10 274.34 272.77 
M40 266.46 267.05 267.39 
R40 254.45 254.71 253.85 
Porous  

preforms: 
   

Mp15 253.60 - 256.08 
Mp30 155.53 - - 

 

 

 In Tab. A2 the Young’s moduli for IPC composites and porous preforms measured with 

the impulse excitation technique at room temperature are shown. For the out-of-plane flexure 

the measurements were made with both Grindosonic and IMCE RFDA impulse excitation 

equipment. It can be seen that both devices gave similar results and the differences between 

measured Young’s moduli did not exceed 1%. The in-plane flexure measurements were made 

to check anisotropy of the investigated IPC microstructures. From the results in Tab. A2 it is 

clear that the out-of-plane flexure and in-plane flexure measurements gave similar results, not 

exceeding 1%, with the only exception being the specimen W50 for which the results did not 

exceed 5%. It can be interpreted that anisotropy of the investigated IPCs is not significant, an 

they can, thus, be regarded as isotropic. The differences between Young’s moduli in out-of-

plane flexure and in-plane flexure measurements occur due to locally non-uniform dispersions 

of the composite’s phases. The difference between Young’s moduli in both directions was 

smallest for both IPCs with microstructures based on starch PFAs (M and R), and larger for 

fibruous PFAs (P and W) and porous alumina (Mp) specimens. This occurred probably due to 

finer and more uniform microstructures of starch PFA-based composites. Fibrous PFA-based 

composites were less uniform showing local anisotropy due to specific placement of the 

fibres. This effect was most significant for the specimen W50.  
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Figure A8. Effect of microstructure and copper content on Al2O3/Cu composites Young’s moduli. 

Measurements done with Grindosonic impulse excitation of vibration equipment and compared with 

Voigt and Reuss bounds, extended V-V-R, R-V-V and V-R-V models and numerical models of 3D cross 

and of real microstructure for alumina-copper composites at room temperature. 

 

In Fig. A8 the influence of the copper content and composite microstructure on Young’s 

modulus is shown. It can be seen that the Young’s modulus values for all the IPCs fit between 

the Reuss and Voigt bounds and are below the extended V-V-R model. With the exception of 

corn starch PFA-based composite all measured Young’s modulus values for IPCs are also 

below the results for 3D-cross numerical model. On the example of natural wool PFA based 

composite, it may be observed that for IPC of the same kind of microstructure Young’s 

modulus decreases with increasing volume fraction of copper in the material. Accordingly, 

the same relationship may be observed for porous Al2O3 preforms when porosity was 

increasing (see Tab. A.2).  

For the composites with the same copper volume fraction, the microstructure influence on 

the elastic modulus of IPC composites can be analyzed on two examples of 25% and 40% of 

Cu content. For the IPC with 25vol.% Cu, the composite with microstructure based on 

polypropylene felt PFA showed higher Young’s modulus. For IPCs with 40% Cu, the 

specimen with microstructure based on the rice starch PFA had finer and more uniform 

microstructure than the IPC with microstructure based on the corn starch PFA. However, corn 

starch PFA-based IPC shows approximately 4.5% higher Young’s modulus than IPC with 

microstructure based on rice starch PFA.  

The Young’s moduli for natural wool PFAs based IPCs are lower than for other 

microstructures, and closest to the Reuss bound for the effective Young’s modulus. The 
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Young’s moduli for polypropylene and starch PFAs based IPCs are closer to the Voigt bound, 

what indicates IPCs with these microstructures are relatively stronger than IPCs with 

microstructures based on natural wool. The closest to the Voigt bound, and thus the best 

related to copper contents, appears to be the corn starch PFA-based composite. However, it 

should be noted that microscopic observations (Winzer et al., 2009) showed that the rice 

starch based IPCs have finer and more uniform microstructure than corn starch based IPCs. 

 

 

A3.4. Measurements of Young’s modulus in thermal cycles 

Measurements of Young’s modulus in thermal cycles were carried out to examine the 

behaviour of IPC composites in elevated temperatures. Measurements were made for different 

composite microstructures and copper volume fractions and temperatures up to 800°C. As 

described by Galal-Yousef (2004) and Galal-Yousef et al. (2005), for poly-phase materials 

Young’s modulus measurements in temperature cycles may indicate microcracking due to the 

thermal expansion coefficients mismatch between phases. Thus the Young’s modulus 

measurements in thermal cycles may provide evidence if the material is resistant to high 

temperatures. The composites with microstructures based on polypropylene wool felt (25% 

Cu), natural wool felt (25% and 50% Cu) and corn and rice starch (40% Cu) were investigated 

in this series of experiments. 

The measurements of Young’s modulus in temperature cycles were made with Integrated 

Material Control Engineering (IMCE) N. V. Resonant Frequency and Damping Analyser 

(RFDA) HT 1750, Diepenbeek, Belgium. The idea of measurements of Young’s  modulus 

with impulse excitation of vibration technique, is explained in the previous Section A3.3. The 

detailed description of IMCE RFDA equipment may be found in Galal-Yousef (2004). The 

idea of thermal measurements with this equipment is described in Galal-Yousef et al. (2005).  

The Young’s modulus was determined according to ASTM E1876-99 formula (Equation 

A3.4), from the measured fundamental flexural resonant frequencies of the vibrating material, 

in a similar manner than for measurements at RT. Resonant frequencies were measured in 

time intervals during temperature cycle. For each measurement the Young’s modulus was 

calculated. The specimen was positioned on the Pt-Rh wire supports inside the heating 

chamber. The position of the flexural nodes at which the measured specimens were to be 

supported, was calculated by the measuring unit based on the specimen’s length L, and equal 

to 0.224 L from each end of the specimen. For each measurement the specimen was excited 

with an impulse from a rod hitting at an antinode (for the fundamental flexural resonance 

placed at both ends and in the middle of the specimen), where the maximum amplitude of 

fundamental flexural vibrations occurs. Then a microphone placed above the sample at 

another antinode collects the sample vibration signal. The Fast Fourier Transform (FFT) of 

the signal was calculated and analysed by the measuring unit to find the fundamental resonant 

frequency. The Young’s modulus based on this resonant frequency was calculated within the 

measuring unit. The frequencies of up to 20
th

 order were additionally recorded by the system. 

For some measurements, FFTs were recorded to check if the resonant frequency of the 

specimen was chosen correctly by the system for that measurement point. 
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The temperature inside the chamber was measured with two independent thermocouples. 

The temperature of the sample was assumed to be equal to the indicated with the 

thermocouple. There were two thermal programmes applied: one up to 400ºC, with heating 

ratio of 2ºC/min and dwell time of 15 min at the maximum temperature, and the second up to 

800ºC with heating ratio of 5ºC/min and dwell time of 15 min at the maximum temperature. 

The measurements were taken at each 30 seconds.  

The low temperature cycle up to 400°C was carried out to check the behaviour of the P25, 

W25 and R40 composites in elevated temperatures before exposition to higher temperatures. 

The results of measurements in thermal cycles in both temperature ranges, from RT to 400°C 

and from RT to 800°C, are presented collectively in Fig. A9 and, only for starch based IPCs, 

in Fig. A10. The graphs were made from the results of the Young’s moduli calculated by the 

IMCE RFDA. Additionally, in Fig. A10 the resonant frequencies were chosen from the 

recorded FFTs and the Young’s moduli calculated for them were added to the graph. It was 

done to check the resonant frequencies taken by the measurement unit and thus, the 

correctness of measured Young’s moduli.  

The relationship between the Young and temperature can be used as an indicator if the 

material microstructure remained intact upon cooling. The Young modulus of an undamaged 

material increases linearly during cooling (cf. Galal-Yousef, 2004), while the presence of 

hysteresis indicates microcracking. For alumina-copper composites microcracking during 

cooling can occur due to high contrast between thermal expansion coefficients of both 

composite constituents. To compare the deviations from the linear Young’s modulus vs. 

temperature relationship regardless of composite microstructure or volume fraction of phases, 

a graph was prepared in Fig. A11, analogously to the graphs in Galal-Yousef (2004; 2005). 

Young’s moduli for each measurement (i.e. temperature point) were related to the theoretical 

value that would result for the same temperature in case of no microcracking. In this way, a 

graph of drop downs of Young’s moduli -ΔE from linear Young’s modulus – temperature 

relationship, related to temperature decrements - ΔT from the highest value reached during the 

cycle, was prepared. The linear Young’s modulus vs. temperature relationship was obtained 

taking Young’s moduli values measured in RT shown in Tab. A2 (IMCE readings; for sample 

W25 Grindosonic measurement of out-of-plane flexure instead), and Young’s moduli values 

measured at the highest temperature reached during thermal cycle. A scheme explaining 

described above procedure was added to the Fig. A9 on the example of W50 specimen.  

The copper oxidation in elevated temperatures can cause an increase in specimen’s mass 

and volume, and may lead to microcracking. The dimensions and masses of the specimens 

were measured after thermal cycles. Young’s moduli were recalculated with masses that were 

measured after the cycles. Only the final values of Young’s moduli were recalculated, because 

it could not be exactly stated from which temperature the change of the mass occurred (it is 

impossible to measure the dimensions of the specimen inside the closed furnace chamber 

during thermal cycles). The resulting points are added in Fig. A10. It can be seen that for both 

IPCs with microstructures based on starch, the recalculated Young’s moduli are nearly equal 

to the Young’s moduli that were based on initial masses, thus the increase of dimensions and 

masses for these microstructures was insignificant.  
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As it was observed for composites made with different PFA (Figs. A9 and A11), the 

microstructure influences the microcracking. For the IPC with microstructure based on 

polypropylene wool felt (P25), after a thermal cycle of up to 400ºC extensive microcracking 

occurred. Almost no microcracking was observed for IPCs with microstructures based on 

both kinds of starch. For IPCs based on natural wool as the PFA a very interesting behaviour 

was observed in temperature cycle of up to 400°C, namely a quite strong microcracking 

occurred lowering the Young modulus for about 30GPa for W25 IPC and almost 45GPa for 

W50 IPC (13% and 24% of the initial value before thermal cycle for the samples W25 and 

W50, respectively).  

However, after thermal cycling of the same specimens for up to 800°C, Young’s modulus 

decrease in W25 was very small (of the order of 10GPa) the same as for the starch based 

IPCs, indicating almost no microcracking. Also for W50 IPC the decrease in Young’s 

modulus was not large (less than 20 GPa). Additionally, in Fig. A9 it can be seen that the final 

values of Young’s moduli for W25 and W50 IPCs were noticeably higher than in the previous 

cycle. Compared with the initial values before thermal cycles, after the 800ºC cycle Young’s 

modulus decreased: 12.4 GPa (5%) for W25 IPC, and 19.05 GPa (10%) for W50 IPC. The 

decrease in Young’s modulus for these IPCs after 800ºC cycle is much less than the decrease 

in the 400ºC cycle, and indicates that both natural wool based composites improved their 

properties in the high temperature cycle. This could be due to the microstructure of the natural 

wool fibers, which are covered with tiny hooks as observed by J. Winzer and L. Weiler (see 

Fig. A6f). Such microstructure enables penetration of copper and reduces thermal stresses in 

the ceramics, preventing microcracking. 

After two thermal cycles, RT - 400ºC and RT - 800ºC, the composites with microstructures 

based on both kinds of starch showed no microcracking and only slight decrease of Young’s 

modulus, compared to Young’s modulus before thermal cycles: 13.06 GPa (5%) for corn 

starch based composite, and 10.1 GPa (4%) for rice starch based composite. It can be seen in 

Figs. A9 and A10 that the cooling curves for these composites are almost linear for both 

thermal cycles which indicates that no microcracking occurred due to elevated temperature 

within the measured range. For 800 ºC cycles for both composites, their cooling curves are 

almost parallel, however, rice starch based IPC appears to be slightly less deviated from linear 

shape. This can be interpreted as a higher resistance to high temperatures of the IPCs with 

microstructure based on rice starch.  
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Figure A9. Young’s moduli in temperature cycles RT-400°C and RT-800°C for Al2O3/Cu composites 

with different microstructures and copper contents. On the example of W50 IPC specimen, the idea of 

Galal-Yousef (2004; 2005) is presented how to obtain curves showing differences between theoretical 

and real Young’s moduli decrease upon cooling for two thermal cycles RT- 400°C and RT-800°C. 
 

 

 

Figure A10. Young’s modulus in temperature cycles for Al2O3/Cu IPCs based on corn and rice starch 
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Figure A11. Reduction of Young’s modulus vs. temperature decrease in cooling, temperature cycles 

up to 400°C and 800°C for Al2O3/Cu IPC composites with different microstructures and copper 

contents (the idea of the graph is explained in Figure A9). 

 

 

A4. Closing remarks on IPCs characterization. 

 

The measurements of the Young modulus of Al2O3/Cu IPCs with microstructures based 

on PFAs of polypropylene wool felt (25% Cu), natural wool felt (25% Cu and 50% Cu), and 

also corn and rice starch (40% Cu) have shown the influence of copper fraction and composite 

microstructure on Young’s modulus in RT and in thermal cycles of up to 800ºC. The results 

of Young’s modulus in RT were compared with the Voigt and Reuss bounds. Obviously, an 

increase of softer copper fraction in a composite of the same microstructure decreases 

Young’s modulus, as it can be seen on the example of W25 and W50 IPCs. However, the 

results have also shown that the microstructure of the interpenetrating networks has 

significant effect on its properties, especially during thermal cycles.  

The Young’s modulus measurements in room temperature were made in two 

perpendicular directions and showed no significant anisotropy of the investigated composites, 

regardless of the  microstructure. The composites could thus, be regarded as isotropic, which 

facilitated the models created in this thesis. 

From measurements in temperature cycles it was clear that for the microstructure based 

on corn and rice starch PFAs, the Young’s modulus relationship with temperature is almost 

linear and does not show microcracking, even in temperature range of up to 800 ºC. The 

Young’s moduli calculated for dimensions and weight measured after thermal cycles were 

nearly equal to the Young’s moduli calculated for initial dimensions and weight before 
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thermal cycles. This is a clear evidence that preforms manufactured with the starch-based 

PFA preserve well the IPC samples shape under thermal loading. 

Another observation from the reported experiments is that while the copper content 

increase in IPC generally decreases Young’s modulus in RT, its influence on thermal 

behaviour is not so obvious. During thermal cycles the microstructure appeared to be the most 

influencing factor on the IPC’s behaviour. The smoother and less complicated geometry 

microstructure of the phases, such as polypropylene wool felt based IPC (cf. Figs. A5e and 

A6e), the stronger microcracking and deeper decrease in Young’s modulus after thermal 

cycles. The microstructures that had rougher interfacial surfaces between phases (natural wool 

felt based IPCs and starch based IPCs) showed much less or nearly no microcracking after 

thermal cycles. The IPCs with finer and more complicated microstructures showed less 

microcracking – beginning with relatively coarse microstructure of natural wool based IPCs 

that showed quite strong microcracking in lower temperature cycles, but after higher 

temperature cycles showed an improvement in properties and almost no microcracking (cf. 

Fig. A9 and A11).  

Higher microcracking after lower and higher temperature cycles was observed (cf. Fig. 

A11) for the microstructure with higher copper content and, thus, more prone to contain 

coarse agglomerates of copper (cf. Fig. A5c and d). For much finer microstructure based on 

corn starch (cf. Figs. A5a and Figs. A6a,b), almost no microcracking occurred during cooling 

either in lower or in higher temperature cycles (cf. Figs. A10 and A11). For an IPC with the 

finest microstructure based on rice starch (cf. Fig. A6c,d), where both phases are dispersed to 

the most extent, the relationship of Young’s modulus with temperature during cooling is 

nearly linear (cf. Fig. A10). The explanation of such a behaviour may be that the finer and 

more rough the microstructure, the better and more efficiently can softened copper fill pores 

and microcracks in alumina at elevated temperatures.  

The IPC microstructures based on either corn or rice starch PFA showed almost no 

microcracking upon cooling from elevated temperatures down to RT and good shape stability. 

This is an encouragement for further investigations of IPCs with these microstructures in view 

of their potential applications as structural materials in high temperature regimes. Also, 

further research of natural wool based composites and explanation of interesting behavior of 

their Young moduli observed in high temperature cycles is worth pursuing. 

 

  



162 

 

 



163 

 

References 
 

ABAQUS (2010) SIMULIA ABAQUS 6.10 Documentation, Dassault Systems, Simulia Corp., 

 Providence, RI, USA. 

Aboudi J. (1991) Mechanics of Composite Materials, Elsevier. 

Agrawal P., Conlon K., Bowman K. J., Sun C. T., Cichocki F. R. Jr., Trumble K. P. (2003) 

 Thermal residual stresses in co-continuous composites, Acta Materialia, 51, 1143–1156. 

Agarwal A., Singh I. V., Mishra B.K. (2013a) Evaluation of elastic properties of 

 interpenetrating phase composites by mesh-free method, Journal of Composite Materials, 

 47, 1407-1423. 

Agarwal A., Singh I. V., Mishra B.K. (2013b) Numerical prediction of elasto-plastic 

 behaviour of interpenetrating phase composites by EFGM, Composites, 51, 327-336. 

Ai L., Gao X.-L. (2016) Evaluation of effective elastic properties of 3-D printable 

 interpenetrating phase composites using the meshfree radial point interpolation method, 

 Mechanics of Advanced Materials and Structures, published online: 25 Jan 2016, 11 

 pages, DOI:10.1080/15376494.2016.1143990. 

Anlas G., Santare M. H., Lambros J. (2000) Numerical calculation of stress intensity factors 

 in functionally graded materials, International Journal of Fracture, 104, 131-143. 

Argon A. S. (2013) Fracture of Composites, in: Treatise on Materials Science and 

 Technology: Materials Science Series, Vol. 1, ed.: H. Herman, Elsevier. 

Ashby M. F. (2009) GRANTA – The CES 2009 EduPack Resource Booklet, Part 2: Material 

 and Process Selection Charts, downloaded from: www.grantadesign.com/education/. 

Ashby M. F., Blunt F. J. and Bannister M. (1989) Flow characteristics of highly constrained 

 metal wires, Acta Metallurgica, 37, 7, 1847-1857. 

ASTM E111-97 (1999) Standard test method for Young’s modulus, Tangent modulus, and 

 Chord modulus, Annual Book of ASTM Standards, Vol. 03.01, American Society for 

 Testing and Materials, West Conshohocken, PA, 230-236. 

ASTM E132-97 (1999) Standard test method for Poisson’ ratio at Room Tempeature, Annual 

 Book of ASTM Standards, Vol. 03.01, American Society for Testing and Materials, West 

 Conshohocken, PA, 260-262. 

ASTM E399 (1999) Standard test method for plane-strain fracture toughness of metallic 

 materials, Annual Book of ASTM Standards, Vol. 03.01, American Society for Testing 

 and Materials, West Conshohocken, PA, 422-452. 



164 

 

ASTM E1876-99 (1999) Standard test method for dynamic Young’s modulus, shear modulus, 

 and Poisson’s ratio by Impulse Excitation of Vibration, Annual Book of ASTM Standards, 

 Vol. 03.01, American Society for Testing and Materials, West Conshohocken, PA, 1046-

 1054. 

Bansal N. P. (2006) Handbook of Ceramic Composites, Springer Science & Business Media.  

Basista M., Węglewski W., Bochenek K., Poniżnik Z. and Nowak Z. (2016) Micro-CT finite 

 element analysis of thermal residual stresses and fracture in metal-ceramic  composites, 

 Advanced Engineering Materials, DOI: 10.1002/adem.201600725. 

Basista M. and Poniżnik Z. (2010) Modelling of effective elastic properties and crack 

 bridging in metal-ceramic interpenetrating phase composites, World Journal of 

 Engineering, 7, 3, 95-96. 

Basista M. and Węglewski W. (2006) Modelling of damage and fracture in ceramic matrix  

 composites, Journal of Theoretical and Applied Mechanics, 44, 455–484. 

Beldica C. and Botsis J. (1996) Experimental and numerical studies in model composites Part 

 II: Numerical results, International Journal of Fracture, 82, 2, 175–192. 

Belytschko T. and Black T. (1999) Elastic crack growth in finite elements with minimal 

 remeshing, International Journal for Numerical Methods in Engineering, 45, 601-620. 

Benito, J.A., Manero, J.M., Jorba, J., Roca A. (2005) Change of Young’s modulus of cold-

 deformed pure iron in a tensile test, Metallurgical and Materials Transactions A, 36A, 

 3317-3324. 

Bheemreddy V., Chandrashekhara K., Dharani L. R., Hilmas G. E.. (2013) Modeling of fiber 

 pull-out in continuous fiber reinforced ceramic composites using finite element method 

 and artificial neural networks, Computational Materials Science, 79, 663–673. 

Bobiński J. and Tejchman J. (2011) Simulations of fracture in concrete elements using 

 continuous and discontinuous models, Mechanics and Control, 30, 4, 183‒193. 

de Borst R. and Pamin J. (1996) Gradient plasticity in numerical simulation of concrete 

 cracking, European Journal of Mechanics - A/Solids, 15, 2, 295-320. 

de Borst R., Pamin J., Schellekens J. C. J. and Sluys L. J. (2004) Continuum Methods for 

 Localized Failure, in: Fracture of Brittle Disordered Materials: Concrete, Rock and 

 Ceramics, eds.: G. Baker and B. L. Karihaloo, CRC Press, Taylor & Francis. 

Bridgman P. W. (1964) Studies of Large Plastic Flow and Fracture, Harvard University 

 Press, Cambridge. 

Broek D. (1974) Elementary Engineering Fracture Mechanics, Noordhoff International 

 Publishing, Leyden, The Netherlands.  



165 

 

Broutman L. J. and Krock R. H. (1974) Composite Materials. Vol. 1, Interfaces in Metal 

 Matrix Composites, ed.: A. Metcalfe, Academic Press, New York, London. 

Budiansky B., Amazigo J. C., Evans A. G. (1988) Small-scale crack bridging and the fracture 

 toughness of particulate-reinforced ceramics, Journal of the Mechanics and Physics of 

 Solids, 36, 2, 167-187. 

Cartie D. D. R., Cox B. N.,  Fleck N. A. (2004) Mechanisms of crack bridging by composite 

 and metallic rods. Composites Part A, 35, 1325–1336. 

Chang H., Binner J. and Higginson R. (2010) Ballistic evaluation and damage 

 characterization of metal-ceramic interpenetrating composites for light armor applications, 

 in: Advances in Ceramic Armor VI: Ceramic Engineering and Science Proceedings, ed.: J. 

 J. Swab, John Wiley & Sons, pp. 97- 104. 

Cheng F., Kim S. M., Reddy J. N., Abu-Al-Rub R. K. (2014) Modeling of elastoplastic 

 behavior of stainless-steel/bronze interpenetrating phase composites with damage 

 evolution, International Journal of Plasticity, 61, 94–111. 

Cherepanov G. P. (1967) Crack propagation in continuous media, Journal of Applied 

 Mathematics and Mechanics (Engl. transl. of PMM, 31, 3, 476‒488), 31, 3, 503‒512. 

Christensen R. M. (1979) Mechanics of Composite Materials, John Wiley & Sons, New York. 

Clarke D. R. (1992) Interpenetrating Phase Composites, Journal of the American Ceramic 

 Society, 75, 4, 739 – 758. 

Cotterell B., Rice J. R. (1980) Slightly curved or kinked cracks, International Journal of 

 Fracture, 16, 2, 155-169. 

Daehn G. S., Starck B., Xu L., Elfishawy K. F., Ringnalda J., Fraser H. L. (1996) Elastic and 

 plastic behavior of a co-continuous alumina/aluminum composite, Acta Materialia, 44, 1, 

 249-261. 

Dandekar C. R., Shin Y. C. (2011) Effect of porosity on the interface behavior of an Al2O3–

 aluminum composite: A molecular dynamics study, Composites Science and Technology, 

 71, 350–356. 

Del Rio E., Nash J. M., Williams J. C., Breslin M. C., Daehn G. S. (2007) Co-continuous 

 composites for high-temperature applications, Materials Science & Engineering A, 

 Structural Materials: Properties, Microstructure and Processing, 463, 115-121. 

Destrade M., Murphy J. G., Saccomandi G. (2012) Simple shear is not so simple, 

 International Journal of Non-Linear Mechanics, 47, 210–214. 



166 

 

Dobrzański L. A. (2002) Podstawy nauki o materiałach i metaloznawstwo. Materiały 

 inżynierskie z podstawami projektowania materiałowego, Wydawnictwa Naukowo-

 Techniczne, Gliwice – Warszawa. 

Doroszko M. and Seweryn A. (2016) Pore-scale modeling of the sintered porous 316L 

 deformation process using micro computed tomography, 40
th

 Solid Mechanics Conference 

 SolMech, 29.08-02.09, Warsaw, Poland, http://solmech2016.ippt.pan.pl . 

Dumstorff P. and Meschke G. (2007) Crack propagation criteria in the framework of X-FEM-

 based structural analyses, International Journal for Numerical and Analytical Methods in 

 Geomechanics, 31, 239-259. 

Eischen J. W. (1987) Fracture of nonhomogeneous materials, International Journal of 

 Fracture, 34, 3-22. 

Emmel T. (1995) Untersuchung des Bruchverhaltens von Metall-Keramik-

 Verbundverkstoffen, MSc Thesis, Technische Hochschule Darmstadt, Darmstadt. 

Emmel T. (2002) Theoretische und numerische Untersuchung von Versagensmechanismen in 

 Metall-Keramik-Verbundverkstoffen, Dr.-Ing. Dissertation, Institut für Mechanik, 

 Technische Universität Darmstadt, Darmstadt. 

Eshelby J. D. (1951) The Force on an Elastic Singularity, Philosophical Transactions of the 

 Royal Society A, Mathematical, Physical and Engineering Sciences,  

 https://doi.org/10.1098/rsta.1951.0016. 

Evans A. G., Dagleish B. J., He M. and Hutchinson J. W. (1989) On crack path selection and 

 the interface fracture energy in bimaterial systems, Acta Metallurgica, 37, 12, 3249–3254. 

Felten F., Schneider G. A., Sadowski T.  (2008) Estimation of R-curve in WC/Co cermet by 

 CT test, International Journal of Refractory Metals and Hard Materials, 26, 55-60. 

Feng X., Mai Y. and Qin Q. (2003). A micromechanical model for interpenetrating 

 multiphase composites, Computational Materials Science, 28, 486-493. 

Feng X., Tian Z., Liu Y. and Yu S. (2004) Effective elastic and plastic properties of 

 interpenetrating multiphase composites, Applied Composite Materials, 11, 33-55. 

Frey G.S. son (1932) Über die Elektrische Leitfähigkeit Binärer Aggregate, Zeitschrift für 

 Elektrochemie 38, 260–274. 

Fünfschilling S., Fett T., Hoffmann M. J., Oberacker R., Schwind T., Wippler J., Bӧhlke T., 

 Ӧzcoban H., Schneider G. A., Becher P. F., Kruzic J. J. (2011) Mechanisms of toughening 

 in silicon nitrides: The roles of crack bridging and microstructure. Acta Materialia, 59, 

 3978-3989. 



167 

 

Gao J., Rayes N. (2014) Modeling of the Mechanical Properties of a Polymer-Metal Foam 

 Interpenetrating Phase Composite, Mechanics of Solids, Structures and Fluids, ASME 

 2014 International Mechanical Engineering Congress and Exposition, Montreal, Quebec, 

 Canada, 9, IMECE2014-37608, V009T12A048; 6 pages, doi: 10.1115/IMECE2014-

 37608 

Galal-Yousef S. (2004) Mikrorissbildung durch anisotrope thermische Ausdehnung: 

 Experiment und numerische Simulation, Dr.-Ing. Dissertation, Fachbereich Material- und 

 Geowissenschaften, Technische Universität Darmstadt, Shaker Verlag, Aachen. 

Galal-Yousef S., Rödel J., Fuller Jr. E. R., Zimmermann A. and El-Dasher B. S. (2005) 

 Microcrack evolution in alumina ceramics: experiment and simulation, Journal of the 

 American Ceramic Society, 88, 10, 2809-2816. 

Gilbert R. I. (2001) Shrinkage, cracking and deflection - the serviceability of concrete 

 structures. Electronic Journal of Structural Engineering 1, 1, 2-14. 

Grassi M., Zhang X. (2003) Finite element analyses of mode I interlaminar delamination in z-

 fibre reinforced composite laminates, Composites Science & Technology, 63, 1815-1832.  

Gross D., Kolling S., Müller R., Schmidt I. (2003) Configurational forces and their 

 applications in solid mechanics, European Journal of Mechanics A/Solids, 22, 669‒692. 

Gross D., Müller R., Kolling S. (2002) Configurational forces ‒ morphology evolution and 

 finite elements, Mechanics Research Communications, 29, 529‒536. 

Gross D. and Seelig T. (2006) Fracture Mechanics with an Introduction to Micromechanics, 

 Springer, Berlin, Heidelberg, New York. 

Gross D. and Seelig T. (2011) Fracture Mechanics with an Introduction to Micromechanics, 

 Second Edition, Springer, Berlin, Heidelberg, Dordrecht, London, New York. 

Gurson A. L. (1977) Continuum Theory of Ductile Rupture by Void Nucleation and Growth: 

 Part I—Yield Criteria and Flow Rules for Porous Ductile Media, Journal of Engineering 

 Materials and Technology, 99, 1, 2-15, The American Society of Mechanical Engineers 

 ASME. 

Ha Y. D. H., Bobaru F. (2010) Studies of dynamic crack propagation and crack branching 

 with peridynamics, International Journal of Fracture, 162, 229–244. 

He Y. (2013) Computational modeling of interpenetrating phase composites, M. Sc. Thesis, 

 The University of Texas at Dallas, Dallas. 

Heggli M., Etter T., Wyss P., Uggowitzer P. J. and Gusev A. (2005) Approaching 

 representative volume element size in interpenetrating phase composites, Advanced 

 Engineering Materials, 7, 4, 225‒229. 



168 

 

Hein S. B. (2014) Powder injection moulding of metal ceramic interpenetrating phase 

 composites, Powder Metallurgy, DOI: 

 http://dx.doi.org/10.1179/1743290114Y.0000000116. 

Hemrick J. G, Hu M. Z., Peters K. M., Hetzel B. (2010) Nano-Scale Interpenetrating Phase 

 Composites (IPC’S) for Industrial and Vehicle Applications, Final Technical Report, Oak 

 Ridge National Laboratory, Oak Ridge, Tennessee. 

Hoffman M., Fiedler B., Emmel T., Prielipp H., Claussen N., Gross D., Rödel J. (1997) 

 Fracture behaviour in metal fibre reinforced ceramics,  Acta Materialia, 45,  9, 3609–3623. 

Hoffman M., Skirl S., Pompe W., Rödel J. (1999) Thermal residual strains and stresses in 

 Al2O3/Al composites with interpenetrating networks, Acta Materialia, 47, 565–577.  

Honein T. and Herrmann G. (1997) Conservation laws in nonhomogeneous plane 

 elastostatics, Journal of Mechanics and Physics of Solids, 45, 789-805. 

Huet Ch. (1999) Coupled size and boundary-condition effects in viscoelastic heterogeneous 

 and composite bodies, Mechanics of Materials, 31, 787–829. 

Hußnätter W. and Merklein M. (2008) Characterization of material behavior under pure shear 

 condition, International Journal of Material Forming, 1, Suppl. 1, 233. 

Hutchinson J. W., Jensen H. M. (1990) Models of fiber debonding and pullout in brittle 

 composites with friction,  Mechanics of Materials, 9, 2, 139–163. 

Irwin (1957) Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate, 

 Journal of Applied Mechanics, 24, 361‒364. 

ISO 23146 (2008) First edition 2008-06-01 Fine ceramics (advanced ceramics, advanced 

 technical ceramics) — Test methods for fracture toughness of monolithic ceramics — 

 Single-edge V-notch beam (SEVNB) method. 

Jaganathan S., Tafreshi H. V., Pourdeyhimi B. (2008a) Chemical Engineering Science, 63, 

 244-252. 

Jaganathan S., Tafreshi H. V., Pourdeyhimi B. (2008b) Two-Scale Modeling Approach to 

 Predict Permeability of Fibrous Media, Journal of Engineered Fibers and Fabrics, 

 SPECIAL ISSUE 2008 – FILTRATION, 13-18. 

Janus-Michalska M. and Pęcherski R. B. (2003) Macroscopic properties of open-cell foams 

 based on micromechanical modelling, Technische Mechanik, 23, 234‒244. 

Jarząbek D. M., Chmielewski M., Dulnik J. and Strojny-Nędza A. (2016) The influence of 

 the particle size on the adhesion between ceramic particles and metal matrix in MMC 

 composites, Journal of Materials Engineering and Performance, doi: 10.1007/s11665-

 016-2107-3. 



169 

 

Jhaver R. (2009a) Compression response and modeling of interpenetrating phase composites 

 and foam-filled honeycombs, M. Sc. Thesis, Auburn University, Auburn, Alabama. 

Jhaver R. and Tippur H. (2009b) Processing, compression response and finite element 

 modeling of syntactic foam based interpenetrating phase composite (IPC), Materials 

 Science and Engineering A, 499, 507–517. 

Jia Y. Y., Yan W., Liu H.-Y. (2011) Numetrical study on carbon fiber pullout using a 

 cohesive zone model, in: Proceeding of 18
th

 International Conference on Composite 

 Materials, International Committee on Composite Materials (ICCM), Jeju Island, South 

 Korea, August 21-26. 

Jia Y. Y., Yan W., Liu H.-Y. (2012) Numetrical study on residual thermal stresses in carbon 

 fiber pullout, in: Proceeding of 28
th

 International Congress of the Aeronautical Sciences, 

 International Council on The Aeronautical Sciences (ICAS), Brisbane, Australia, 

 September 23-28, 1855-1860. 

Ju J. W. and Ko Y. F. (2008) Micromechanical elastoplastic damage modeling of  progressive 

 interfacial arc debonding for fiber reinforced composites, International  Journal  of 

 Damage Mechanics, 17, 4, 307-356. 

Juvé D., Courbière M. and Tréheux D. (2013) Bonding of the Cu-Al2O3 interfaces. 

 Mechanisms, structure and mechanical properties, in: Metal-Ceramic Interfaces: 

 Proceedings of an International Workshop, Acta-Scripta Metallurgica proceedings series, 

 eds.: M. Rühle, A. G. Evans, J. P. Hirth, M. F. Ashby, Elsevier, 4, 152-158, 

 https://books.google.pl/books?id=AGchBQAAQBAJ 

Kailash C. J. (2013) Fracture Behavior of Particulate Polymer Composites (PPCs) and 

 Interpenetrating Polymer Networks (IPNs): Study of Filler Size, Filler Stiffness and 

 Loading Rate Effects, PhD Thesis, Auburn University, Auburn, Alabama. 

Kenesei P., Biermann H. and Borbély A. (2006a) Estimation of Elastic Properties of Particle 

 Reinforced Metal-Matrix Composites Based on Tomographic Images, Advanced 

 Engineering Materials, 8, 6, 500-506. 

Kenesei P., Klohn A., Biermann H. and Borbély A. (2006b) Mean Field and Multiscale 

 Modeling of a Particle Reinforced Metal-Matrix Composite Based on Microtomographic 

 Investigations, Advanced Engineering Materials, 8, 6, 506-510. 

Kim J. H. and Paulino G. H. (2003) Mixed-mode J-integral formulation and implementation 

 using graded elements for fracture analysis of nonhomogeneous orthotropic materials, 

 Mechanics of Materials, 35, 107–128. 

Kobayashi A., Ramulu M. (1985) A dynamic fracture analysis of crack curving and 

 branching, Journal de Physique Colloques, 46, C5, C5-197-C5-206. 



170 

 

Kozicki J. and Tejchman J. (2008) Simulation of fracture process in concrete elements with 

 steel fibres using discrete lattice model, in: Selected Topics of Contemporary Solid 

 Mechanics, eds.: Z. Kotulski, P. Kowalczyk, W. Sosnowski, Proceedings of the 36
th

 Solid 

 Mechanics Conference, Gdańsk, Poland, September 9-12, Prace IPPT-IFTR Reports 

 2/2008, Instytut Podstawowych Problemów Techniki PAN, Warszawa. 

Kruzic J. J., Nalla R. K., Kinney J. H., Ritchie R. O. (2003) Crack blunting, crack bridging 

 and resistance-curve fracture mechanics in dentin: effect of hydration, Biomaterials, 24, 

 28, 5209–5221. 

Lapczyk I., Hurtado J. A. (2007) Progressive damage modeling in fiber-reinforced materials, 

 Composites Part A, 38, 2333–2341. 

Launey M. E. and Ritchie R. O. (2009) On the Fracture Toughness of Advanced Materials, 

 Advanced Materials, 21, 2103–2110. 

Léger A., Calderon N. R., Charvet R., Dufour W., Bacciarini C., Weber L., Mortensen A. 

 (2012) Capillarity in pressure infiltration: improvements in characterization for high-

 temperature systems, Journal of Materials Science, 47, 24, 8419-8430. 

Leßle P., Dong M., Schmauder S. (1999) Self-consistent matricity model to simulate the 

 mechanical behaviour of interpenetrating microstructures, Computational Materials 

 Science, 15, 455‒465. 

Levin V. M. (1967) On the coefficients of thermal expansion of heterogeneous materials, 

 English translation: Mechanics of Solids, 2, 1, 58-61. 

Li G., Zhang X., Fan Q., Wang L., Zhang H., Wang F., Wang Y. (2014) Simulation of 

 damage and failure processes of interpenetrating SiC/Al composites subjected to dynamic 

 compressive loading, Acta Materialia, 78, 190–202. 

Lipka J. (1990) Wytrzymałość materiałów, Wydawnictwa Politechniki Warszawskiej, 

 Warszawa.  

Lubliner J. (1990) Plasticity Theory, Macmillan Publishing Company, New York. 

Marciniak Z., Mróz Z., Olszak W., Perzyna P., Rychlewski J., Sawczuk A., Szczepiński W., 

 Urbanowski W. and Życzkowski M. (1965) Teoria Plastyczności, eds.: Olszak W., Perzyna 

 P. and Sawczuk A., Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk, 

 Państwowe Wydawnictwo Naukowe, Warszawa. 

Mataga P. A. (1989) Deformation of crack bridging ductile reinforcements in toughened 

 brittle materials, Acta Metallurgica, 37, 3349-3359. 

Mattern A., Huchler B., Staudenecker D., Oberacker R., Nagel A., Hoffmann M. J. (2004) 

 Preparation of interpenetrating ceramic-metal composites, Journal of the European 

 Ceramic Society, 24, 3399-3408.  



171 

 

Maugin G. A. (1993) Material Inhomogeneities in Elasticity, Chapman & Hall, London. 

Maugin G. A. (2009) Configurational Forces, in: UNESCO Encyclopedia of Life Support 

 Systems (EOLSS), Volume: Continuum Mechanics, Article 6.161.18, 40 pages, eds.: J. 

 Merodio and G. Saccomandi, Developed under the Auspices of the UNESCO, Eolss 

 Publishers, Paris, France, [http://www.eolss.net]. 

Michailidis N., Stergioudi F., Omar H., Tsipas D. N. (2010) An image-based reconstruction 

 of  the 3D geometry of an Al open-cell foam and FEM modeling of the material response, 

 Mechanics of Materials, 42, 142–147. 

Miehe C. and Gürses E. (1999) A robust algorithm for configurational-force-driven brittle 

 crack propagation with R-adaptive mesh alignment, International Journal For Numerical 

 Methods In Engineering, 72, 127‒155. 

Milton G. (2002) The Theory of Composites, Cambridge University Press. 

Miserez A., Rossol A. and Mortensen A. (2004) Investigation of crack-tip plasticity in high 

 volume fraction particulate metal matrix composites, Engineering Fracture Mechanics, 71, 

 2385-2406. 

Mishnaevsky L. Jr (2005). Automatic voxel-based generation of 3D microstructural FE 

 models and its application to the damage analysis of composites, Materials Science and 

 Engineering A, 407, 11-23. 

Mishnaevsky L. Jr (2006) Private communication. 

Mishnaevsky L. Jr (2007a) A simple method and program for the analysis of the 

 microstructure-stiffness interrelations of composite materials, Journal of Composite 

 Materials, 41, 1, 73-87. 

Mishnaevsky L. Jr (2007b) Computational Mesomechanics of Composites, Wiley-

 Interscience.  

Moon R., Tilbrook M., Hoffman M. and Neubrand A. (2005) Al–Al2O3 composites with 

 interpenetrating network structures: composite modulus estimation, Journal of the 

 American Ceramics Society, 88, 3, 666-74. 

Moreira D. C. and Nunes L. C. S. (2013) Test method: Comparison of simple and pure shear 

 for an incompressible isotropic hyperelastic material under large deformation, Polymer 

 Testing, 32, 240-248. 

Moro M., Solomon V. C. (2012) Design and manufacturing of interpenetrating phase 

 composites for vibration damping applications, Proceedings of the 2012 American Society 

 for Engineering Education ASEE North- Central Section Conference. 



172 

 

Mu J., Zhu Z. W., Zhang H. F., Zhang H. W., Fu H. M., Li H., Wang A. M., Hu Z. Q. (2014) 

 A Ti/Ti-Based-Metallic-Glass Interpenetrating Phase Composite with Remarkable Mutual 

 Reinforcement Effect, Advances in Materials Science and Engineering, 2014, Article ID 

 127172, 6 pages, Hindawi Publishing Corporation. 

Müller R, Gross D., Maugin G. A. (2004) Use of material forces in adaptive finite element 

 methods, Computational Mechanics, 33, 421‒434. 

Munro R. G. (1997) Evaluated material properties for a sintered α-alumina, Journal of the 

 American Ceramic Society, 80, 8, 1919–28, NIST Structural Ceramics Database, SRD 

 Database Number 30. 

Mura T. (1987) Micromechanics of Defects in Solids, Martinus Nijhoff Publication, The 

 Hague. 

Nairn J. A., Liu C.-H., Mendels D.-A., Zhandarov S. (2001) Fracture Mechanics Analysis of 

 the  Single-Fiber Pull-Out Test and the Microbond Test Including The Effects of  Friction 

 and  Thermal Stresses, in: Proceedings of the 16th Ann. Technical Conference of the 

 American  Society of Composites, American Society for Composites, VPI, Blacksburg VA, 

 September  9-12. 

Naruse K. (2003) Estimation of shear moduli of wood by quasi-simple shear tests, Journal of 

 Wood Science, 49, 479–484. 

Nemat-Nasser S. and Hori M. (1999) Micromechanics: Overall Properties of Heterogeneous 

 Materials, Elsevier, Amsterdam. 

Nowak M., Nowak Z., Pęcherski R. B., Potoczek M., Śliwa R. E. (2013) On the 

 reconstruction method of ceramic foam structures and the methodology of Young modulus 

 determination, Archives of Metallurgy and Materials, 58, 4, 1219–1222. 

Nowak Z., Nowak M., Pęcherski R. B., Potoczek M., Śliwa R. E. (2015) Mechanical 

 properties of the ceramic open-cell foams of variable cell sizes, Archives of Metallurgy and 

 Materials, 60, 3, 1957–1963. 

Nunes L. C. S. (2011) Mechanical characterization of hyperelastic polydimethylsiloxane by 

 simple shear test, Materials Science and Engineering A, 528, 1799–1804. 

Nunes L. C. S. and Moreira D. C. (2013) Simple shear under large deformation: Experimental 

 and theoretical analyses, European Journal of Mechanics A/Solids, 42, 315-322. 

Ogden R. W. (1997) Non-Linear Elastic Deformations, Dover Publications, Inc., Mineola, 

 New York. 

Ostrowska-Maciejewska J. (1994) Mechanika Ciał Odkształcalnych, Wydawnictwo Naukowe 

 PWN, Warszawa. 



173 

 

Ostrowska-Maciejewska J. and  Kowalczyk-Gajewska K. (2013) Rachunek tensorowy w 

 mechanice ośrodków ciągłych, Wydawnictwo Instytutu Podstawowych Problemów 

 Techniki PAN, Warszawa. 

Park J. S., Sun C. T., Trumble K. P. (2005) Effect of contiguity on the mechanical behavior of 

 co-continuous ceramic metal composites, in: Proceedings of the American Society for 

 Composites: Twentieth Technical Conference, eds.: F. K. Ko, G. R. Palmese, Y. Gogotsi, 

 A. S. D. Wang, DEStech Publications, Inc. 

Petryk H. (2006) Podstawy Mechaniki Materiałów, lecture notes, Instytut Podstawowych 

 Problemów Techniki PAN, Warszawa.  

Pietrzak K. (1998) Formowanie się warstw pośrednich w kompozytach metalowo-

 ceramicznych i ich złączach, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa. 

Plate C. (2015) Fracture Mechanical Analysis of Failure Processes in Antarctic Ice Shelves, 

 Ph. D. thesis, Lehrstuhl für Technische Mechanik, Technische Universität Kaiserslautern, 

 Kaiserslautern. 

Poniżnik Z., Nowak Z. and Basista M. (2015) Numerical modeling of deformation and 

 fracture of reinforcing fibers in ceramic-metal composites, International Journal of 

 Damage Mechanics, DOI: 10.1177/1056789515611945  (in print). 

Poniznik Z., Salit V., Basista M. and Gross D. (2008) Effective elastic properties of 

 interpenetrating phase composites, Computational Materials Science, 44, 813-820. 

Postek E. and Sadowski T. (2016) Cracks in interfaces and around their junctions in WC/Co 

 composite, Engineering Transactions, 64, 4, 589–596. 

Prielipp H., Knechtel M., Claussen N., Streiffer S. K., Müllejans H., Rühle M., Rödel J. 

 (1995)  Strength and fracture toughness of aluminum/alumina composites with 

 interpenetrating  networks, Materials Science and Engineering A, 197, 19–30. 

Raddatz O., Schneider A., Claussen N. (1998) Modelling of R-curve behaviour in 

 ceramic/metal composites, Acta Materialia, 46, 18, 6381–6395. 

Rice J. (1968) A path independent integral and the approximate analysis of strain 

 concentration by notches and cracks, Journal of Applied Mechanics, 35, 379‒386. 

Rödel J. (2001) Mechanics of bulk ceramics, in: Mechanics of Advanced Materials, AMAS 

 Course ‒ MAM’2001, ed.: Z. Mróz, Institute of Fundamental Technological Research, 

 Polish Academy of Sciences, Warsaw, October 8-12, 369-445.  

Rödel J., Prielipp H., Claussen N., Sternitzke M., Alexander K. B., Becher P. F., Schneibel J. 

 H. (1995) Ni3Al/Al2O3 composites with interpenetrating networks, Scripta Metallurgica et 

 Materialia, 33, 843-848.  



174 

 

Rosen B. W., Hashin Z. (1970) Effective thermal expansion coefficients and specific heats of 

 composite materials, International Journal of Engineering Science, 8, 157-173. 

Roux S., Hild F., Viot P., Bernard D. (2008) Three-dimensional image correlation from X-ray 

 computed tomography of solid foam, Composites Part A, 39, 1253‒1265. 

Roy S., Gibmeier J., Kostov V., Weidenmann K. A., Nagel A., Wanner A. (2012) Internal 

 load transfer and damage evolution in a 3D interpenetrating metal/ceramic composite, 

 Materials Science and Engineering A, 551, 272– 279. 

Ruud J. A., Josell D., Spaepen F. and Greer A. L. (1993) A new method for tensile testing of 

 thin films, Journal of Materials Research, 8, 1, 112-117. 

Sadowski T., Balawender T., Śliwa R., Golewski P., Kneć M. (2013a) Modern hybrid joints 

 in aerospace: modelling and testing, Archives of Metallurgy and Materials, 58, 1, 163‒169. 

Sadowski T., Golewski P. (2013a) Numerical study of the prestressed connectors and their 

 distribution on the strength of a single lap, a double lap and hybrid joints subjected to 

 uniaxial tensile test, Archives of Metallurgy and Materials, 58, 2, 579‒585. 

Scherm F., Völkl R., Neubrand A., Bosbach F., Glatzel U. (2010) Mechanical characterisation 

 of interpenetrating network metal–ceramic composites, Materials Science and Engineering 

 A, 527, 1260–1265. 

Schmauder S. and Mishnaevsky L. Jr (2009) Micromechanics and Nanosimulation of Metals 

 and Composites. Advanced Methods and Theoretical Concepts, Springer, Berlin, 

 Heidelberg. 

Schmauder S., Weber U., Hofinger I. and Neubrand A. (1999) Modelling the deformation 

 behaviour of W/Cu composites by a self-consistent matricity model, Technische 

 Mechanik, 19, 4, 313–320. 

Seweryn A. (2003) Metody numeryczne w mechanice pękania, in: Biblioteka Mechaniki 

 Stosowanej, Seria A. Monografie, eds.: Z. Mróz, M. Kleiber, H. Petryk, K. Sobczyk, 

 Instytut Podstawowych Problemów Techniki PAN, Warszawa. 

Shao Y., Zhao H.-P., Feng X.-Q., Gao H. (2012) Discontinuous crack-bridging model for 

 fracture  toughness analysis of nacre, Journal of Mechanics and Physics of Solids, 60, 8, 

 1400–1419. 

Sharma N.K., Pandit S. N., Vaish R. (2012) Microstructural modeling of Ni-Al2O3 

 composites using object-oriented finite-element method, International Scholarly 

 Research Network, ISRN Ceramics, 2012, Article ID 972054, 6 pages. 

Shum D. K. M. and Hutchinson J. W. (1990) On toughening by microcracks, Mechanics of 

 Materials, 9, 83-91. 



175 

 

Sigl L. S., Mataga P. A., Dagleish B. J., McMeeking R. M. and Evans A. G. (1988) On the 

 toughness of brittle materials reinforced with a ductile phase, Acta Metallurgica, 36, 4, 

 945-953. 

Simha M. K., Fisher F. D., Kolednik O. and Chen C. R. (2003) Inhomogeneity effects on the 

 crack driving force in elastic and elastic-plastic materials, Journal of Mechanics and 

 Physics of Solids, 51, 209-240. 

Simpleware ScanIP/FE v.4.3 (2011) Simpleware Ltd., Exeter, UK.  

Skarżyński Ł. and Tejchman J. (2016) Experimental investigations of fracture process in 

 concrete by means of X-ray micro-computed tomography, Strain, 52, 26‒45. 

Skirl S. (1998) Mechanische Eigenschaften und Thermisches Verhalten von Al2O3/Al und 

 Al2O3/Ni3Al Verbundwerkstoffen mit Durchdringungsgefüge, Dr.-Ing. Dissertation, 

 Fachbereich der Materialwissenschaft, Technische Universität Darmstadt, VDI Verlag 

 GmbH, Düsseldorf. 

Skirl S., Krause R., Wiederhorn S. M., Rödel J. (2001) Processing and Mechanical Properties 

 of Al2O3/Ni3Al Composites with Inerpenetrating Network Microstructure, Journal of the 

 American Ceramics Society, 84, 2034–2040. 

Stang H., Li Z., Shah S. P. (1990) Pullout problem: stress versus fracture mechanical 

 approach, Journal of Engineering Mechanics, 116, 2136-2150. 

Sun Y., Zhang H. F., Wang A. M., Fu H. M., Hu Z. Q., Wen C. E., and Hodgson P. D. 

 (2009) Mg-based metallic glass/titanium interpenetrating phase composite with high 

 mechanical performance, Applied Physics Letters, 95, 171910. 

Taylor R. L. (2005) FEAP - A Finite Element Analysis Program, Version 7.5 User/Theory 

 Manual, Department of Civil and Environmental Engineering, University of California, 

 Berkeley. 

Timoshenko S. (1953) Strength of Materials, Part 1: Elementary Theory and Problems, D. 

 Van Nostrand Company, Inc., Toronto, New York, London.  

Tippur H. (2012) Processing, Failure Characterization and Modeling of Lightweight 

 Interpenetrating Network Composites, Final Report, Auburn University, AL. 

Torquato S., Yeong C. L. Y., Rintoul M. D., Milius D. L., Aksay I. A. (1999) Elastic 

 properties and structure of interpenetrating boron carbide/aluminum multiphase 

 composites, Journal of the American Ceramics Society, 82, 1263–68. 

Torquato S. (2000) Modeling of physical properties of composite materials, International 

 Journal of Solids and Structures, 37, 411-422. 



176 

 

Tsai J. H., Patra A. and Wetherhold R. (2005) Finite element simulation of shaped ductile 

 fiber pullout using a mixed cohesive zone/friction interface model, Composites Part A, 36, 

 827-838. 

Tuchinskii L. I. (1983). Elastic constants of pseudoalloys with a skeletal structure, Powder 

 Metallurgy and Metal Ceramics, 22, 7, 588-595. 

Wang L., Fan Q., Li G., Zhang H., Wang F. (2014) Experimental observation and numerical 

 simulation of SiC3D/Al interpenetrating phase composite material subjected to a three-

 point bending load, Computational Materials Science, 95, 408–413. 

Wang S., Wang L., Li C., Chi Q., Fei Z. (2007) The dry sliding wear behavior of 

 interpenetrating titanium trialuminide/aluminium composites, Applied Composite 

 Materials, 14,  129–144. 

Wejrzanowski T., Skibinski J., Madej L., Kurzydlowski K. J. (2013a) Modeling structures of 

 cellular materials for application at various length – scales, Computer Methods in 

 Materials Science, 13, 4, 493–500. 

Wejrzanowski T., Skibinski J., Szumbarski J., Kurzydlowski K. J. (2013b) Structure of foams 

 modeled by Laguerre–Voronoi tessellations, Computational Materials Science, 67, 216–

 221. 

Wejrzanowski T. Spychalski W., Różniatowski K., Kurzydlowski K. J. (2008) Image based 

 analysis of complex microstructures of engineering materials, International Journal of 

 Applied Mathematics and Computer Science, 18, 1, 33–39. 

Werkstoffdatenblatt des Deutsches Kupferinstitut Cu-ETP (2005), www.kupferinstitut.de  

Węglewski W., Basista M. (2012) Modelling of thermal stresses and damage in Cu/Al2O3  

 interpenetrating phase composites, European Congress on Computational Methods in 

 Applied Sciences and Engineering (ECCOMAS 2012), eds.: J. Eberhardsteiner et.al., 

 Vienna, Austria. 

Węglewski W., Basista M., Manescu A., Chmielewski M., Pietrzak K., Schubert Th. (2014) 

 Effect of grain size on thermal residual stresses and damage in sintered chromium–alumina 

 composites: Measurement and modeling, Composites Part B, 67, 119–124. 

Węglewski W., Bochenek K., Basista M., Schubert Th., Jehring U., Litniewski J., 

 Mackiewicz S. (2013) Comparative assessment of Young’s modulus measurements of 

 metal–ceramic composites using mechanical and non-destructive tests and micro-CT based 

 computational modeling, Computational Materials Science, 77, 19–30. 



177 

 

Winzer J. S. (2011) Production and Characterisation of Alumina-Copper Interpenetrating 

 Composites, Ph. D. thesis, Material- und Geowissenschaften, Nichtmetallisch-

 Anorganische Werkstoffe, Technische Universität Darmstadt, Darmstadt. 

Winzer J. S., Weiler L., Poniznik Z., Salit V., Gross D., Basista M., Dusza J., Rödel J. (2009) 

 Mechanical properties of copper-alumina interpenetrating network composites, 33rd 

 International Conference and Exposition on Advanced Ceramics and Composites, January 

 18-23, Daytona Beach, Florida, USA, www.ceramics.org/daytona2009, ICACC-S1-050-

 2009. 

Xie F., Lu Z., Yuan Z. (2015) Numerical analysis of elastic and elastoplastic behavior of 

 interpenetrating phase composites, Computational Materials Science, 97, 94–101.  

Zangmeister T. (2015) On the XFEM for the Elasto-Plastic Deformation of Heterogeneous 

 Materials, Ph. D. thesis, Lehrstuhl für Technische Mechanik, Technische Universität 

 Kaiserslautern, Kaiserslautern. 

Zhang G. Q., Suwatnodom P. and Ju J. W. (2012) Micromechanics of crack bridging stress-

 displacement and fracture energy in steel hooked-end fiber-reinforced cementitious 

 composites, International Journal of Damage Mechanics, 22, 6, 829-859. 

Zhong W. and Pan N. (2003) A computer simulation of single fiber pull out process in a 

 composite, Journal of Composite Materials, 37, 1951-1969. 

Zimmermann A., Hoffmann M., Emmel T., Gross D., Rödel J. (2001) Failure of metal-

 ceramic  composites with spherical inclusions, Acta Materialia, 49, 3177-87. 

Życzkowski M. (1981) Combined Loadings in the Theory of Plasticity, PWN - Polish 

 Scientific Publishers, Warsaw. 

 

 



 

  


	Str_tyt__1.pdf
	Rozprawa_Z_Poniznik_2017.pdf
	Str_tyt__.pdf
	1-Spistr_konw__ackn2.pdf
	1_I_Introduction_updated_clean_MB_17032017_final_rev_.pdf
	2-II_SOA eff el therm props_MB_29_Dec_2016_clean_ZP__x_X_revrefs__.pdf
	3-III_State of the art in modelling of fracture of IPC_19_Sep_2016_MB_clean_29_12_2016_ZP_05102017_MB_ZP_07022017_16052017__.pdf
	4_Motivation, aim and theses_updated_Aug_2016_clean_.pdf
	5_I_1_-4_d_5-V_1_1_Analytical models eff elastic_1_MB_21032017_ZP_28032017_.pdf
	5_I_2_Eext.pdf
	5_I_3_wykresy_.pdf
	5_II_V_12_Analytical models effective thermal_MB_ZP27032017_.pdf
	5_III_1_Numerical models effective elastic_MB_clean_ZP_19042017_.pdf
	5_IV_-7-V_2_Numerical models effective elastic_MB_clean_ZP_19052017_21052017__.pdf
	6-I-VIII_1_Deformation and fracture in metal_clean_MB_27012017_ZP_08022017_16022017_25062017__.pdf
	6-II-14-VIII_2_2_Numerical_Pullout_Evol_of_debonding_clean_MB_2_02_2017_ZP_17022017_.pdf
	6-III-15-VIII_2_3_Numerical_CT_2Dmodel_clean_MB_5_02_2017_ZP_23_02_2017_25062017_.pdf
	6-IV-II-VIII_2_4b_Numerical_3Dmodel_Real_1_MB_8_03_2017_clean_ZP_10_03_2017_26062017_.pdf
	7-18-IX_Conclusions and outlook_MB_clean_ZP_09052017_rev_MB_clean-1_ZP_uklstr_.pdf
	Appendix_1_14_03_2017_.pdf
	References_8-19-X__.pdf
	ostatnia_str.pdf




