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Modelowanie wlasciwosci efektywnych i pekania w kompozytach
0 wzajemnie przenikajacych si¢ fazach metalu i ceramiki

Streszczenie

Kompozyty  metalowo-ceramiczne  typu  wzajemnie  przenikajgcych — sie  faz
(Interpenetrating Phase Composites, IPC), bedace podmiotem tej rozprawy, charakteryzuja
si¢ specjalng mikrostrukturg, w ktorej zar6wno osnowa jak 1 zbrojenie s3g ciggle we
wszystkich trzech kierunkach w przeciwienstwie do kompozytéw ze zbrojeniem niecigglym
w postaci, np. czastek badz wiokien. Metalowo-ceramiczne kompozyty IPC sg najczesciej
wytwarzane w procesie ci$nieniowej lub bezci$nieniowej infiltracji cieklego metalu w
porowatg preforme ceramiczng. Je$li jedna z faz zostalaby usunicta z IPC, druga faza
tworzytaby otwarto-komorkowa pianke o niezerowej sztywnosci.

Kombinacja specyficznej mikrostruktury i wlasciwosci materiatow fazowych IPC
powoduje, ze kompozyty te wyrdzniaja si¢ doskonatymi wiasciwosciami mechanicznymi,
cieplnymi i1 uzytkowymi. Cechy wyrdzniajace IPC to m. in. wigksza jednorodnos¢
mikrostruktury, stabilno$¢ mikrostruktury w podwyzszonej temperaturze, podwyzszone
wlasciwo$ci mechaniczne (wytrzymato$¢, odporno$¢ na pekanie), lepsze wilasciwosci
termiczne (zaroodporno$¢ i odporno$¢ na zmiany temperatury, wyzsza przewodno$¢ cieplna) i
uzytkowe (odpornos$¢ na $cieranie, odpornos¢ na korozje). Wymienione cechy powoduja, ze
kompozyty IPC s3a atrakcyjnymi materiatami konstrukcyjnymi 1 funkcjonalnymi dla
przemystu transportowego, energetycznego czy elektronicznego, co stanowi silng motywacje
dla rozwoju badan w zakresie technologii wytwarzania, badania mikrostruktury 1 wlasciwosci
oraz modelowania materiatéw IPC.

Tematem rozprawy doktorskiej jest modelowanie makroskopowych (efektywnych)
wlasciwosci sprezystych i1 termicznych oraz proceséw deformacji 1 pgkania kompozytéw IPC
pod dziataniem obcigzen quasi-statycznych. Praca rozpoczyna si¢ od wprowadzenia i
przegladu literatury na temat modelowania wlasciwosci efektywnych 1 pgkania materiatlow
IPC. Nastepnie przedstawiono uzasadnienie podjecia  przedstawionych  badan.
Zaproponowano modele analityczne i numeryczne do szacowania efektywnych stalych
sprezystosci kompozytow IPC. Mechanizmy deformacji i pekania badanych kompozytow
zostaly przedstawione w serii modeli numerycznych przy przyjeciu uproszczonej
reprezentacji mikrostruktury IPC oraz z uwzglednieniem rzeczywistej mikrostruktury
materialu, otrzymanej za pomoca mikrotomografii komputerowej (computed
microtomography, micro-CT). W dodatku do rozprawy zamieszczono wyniki wtasnych badan
doswiadczalnych zwigzanych z wytwarzaniem 1 charakteryzacja materiatow IPC, jako
informacji pomocniczych przy konstruowaniu modeli IPC.

Zaproponowano modele analityczne do wyznaczania efektywnych statych sprezystosci
(modutu Younga, liczby Poissona, modutu $cinania i modutu objetosciowego) IPC jako
rozszerzenia rozwigzan Tuchinskiiego (1983) i Fenga et al. (2003, 2004) bazujacych na
reprezentatywnej komorce jednostkowej IPC w formie krzyzaka. Modele Tuchinskiiego
(1983) i Fenga et al. (2003, 2004) zostaly wyprowadzone m. in. z modutu Younga i liczby
Poissona, wedlug serii podzialow komorki jednostkowej. W zaproponowanej modyfikacji



modeli Tuchinskiiego (1983) i Fenga et al. (2003, 2004) state efektywne wyprowadzono z
modulu objetosciowego i modulu $cinania, bedacych modutami wlasnymi izotropowego
tensora sztywno$ci. Modele te nazwano ,,modelami rozszerzonymi V-V-R” i [ R-V-V”.
Przeanalizowano réwniez trzeci mozliwy sposob podzialu komorki jednostkowej, nazwany
,rozszerzonym V-R-V”. Opracowane ,rozszerzone” modele analityczne zastosowano do
oszacowania efektywnych statych sprezystosci w funkcji udzialow objetosciowych fazy
metalu dla kompozytéw infiltrowanych Al,O3/Cu i Al,O3/Al. Wyniki poréwnano z granicami
Voigta i Reussa oraz z oryginalnymi modelami Tuchinskiiego (1983) i Fenga et al. (2003,
2004).

Modele analityczne do szacowania efektywnych wspotczynnikow rozszerzalnosci cieplnej
kompozytow IPC zostaty wyprowadzone z oszacowan Rosena i Hashina (1970). Oszacowania
Rosena 1 Hashina z uwzglgdnieniem granic Voigta i Reussa zostaly utworzone poprzez
podstawienie odpowiednich oszacowan na efektywny modut objetosciowy. Uprzednio
wyprowadzone oszacowania na efektywny modul objetosciowy wedtug modeli rozszerzonych
V-V-R, R-V-V i V-R-V zostaly podstawione do odpowiednich rownan w celu uzyskania
oszacowan Rosena 1 Hashina z uwzglednieniem ww. modeli rozszerzonych. Wyniki
oszacowan poréwnano dla kompozytéw Al,O3/Cu i Al,O4/Al.

Numeryczny dwuwymiarowy model Mishnaevsky’ego (2006, 2007b) zastosowano do
poroéwnania wptywu modelu mikrostruktury na makroskopowe state sprezystosci. Analize
przeprowadzono na przyktadzie modelu czastek i modelu krzyzaka dla kompozytu Al,O3/Cu.

Trojwymiarowy model krzyzaka bedacy uproszczong reprezentacja przenikajacych si¢ faz
mikrostruktury IPC zostal zastosowany w modelu numerycznym MES do szacowania
efektywnych statych sprezystosci, modulu Younga, liczby Poissona i modutu §cinania, w
przypadku jednoosiowego rozciggania i prostego S$cinania. Anizotropia mikrostruktury
krzyzaka zostata pominigta. Obliczenia przeprowadzono z uzyciem programu FEAP 7.5 dla
kompozytu Al,O3/Cu IPC.

Zaproponowano trojwymiarowy model MES uwzgledniajacy rzeczywista mikrostrukture
materiatu IPC otrzymang z mikrotomografii komputerowej (micro-CT). Opracowano dwie
niezalezne metody przeksztalcenia trojwymiarowych obrazéw mikrostruktury w siatke
sze$ciennych o$miowegztowych elementow skonczonych: metod¢ zawierajaca m. in. wilasne
kody napisane w jezyku FORTRAN oraz metod¢ wykorzystujaca komercyjne
oprogramowanie Simpleware ScanlP/FE. W obu metodach przetwarzane sg trojwymiarowe
dane mikrostruktury kompozytu z micro-CT, tworzone siatki elementow skonczonych
odtwarzajace mikrostrukture materiatlu, oraz wykonywane obliczenia MES za pomoca
programu FEAP lub ABAQUS. Wyniki modeli numerycznych dla kompozytu infiltrowanego
Al,O3/Cu zostaty porownane z istniejacymi w literaturze oszacowaniami analitycznymi oraz z
modelami ,,rozszerzonymi” opracowanymi w ramach tej rozprawy.

Druga cze$¢ rozprawy jest poswigcona modelowaniu pekania w materiatach typu IPC.
Zaproponowano dwa zestawy modeli numerycznych: (i) modele wstepne (przygotowawcze),
przeznaczone do analizy deformacji w sprezysto-plastycznym widknie wzmacniajacym
szczeling w sprezystej osnowie, (ii) modele préby Compact-Tension (C-T), do numerycznego



wyznaczania calki J w kompozytach IPC z uwzglgdnieniem propagujacej szczeliny w probie
C-T.

W grupie modeli wstgpnych opracowano dwuwymiarowy model MES uko$nego wldkna
wzmacniajgcego dwa rozlgczne bloki materialow (idealizacja szczeliny) dla ustalonych
wartosci dlugosci odspojenia widkna od osnowy. Obliczenia wykonano w programie FEAP
7.5 dla przypadku sprezysto-plastycznego widkna miedzi podlegajacego duzym deformacjom
umieszczonego w sprezystej osnowie korundowej Al,Osz oraz dla przypadku sprezystego
wlokna korundowego Al,O3 umieszczonego w sprezysto-plastycznej osnowie miedziowe;j.
Ponadto, w grupie modeli wstepnych przygotowano osiowosymetryczny model elementow
skonczonych pojedynczego widkna wzmacniajacego z ustalonymi dlugosciami odspojenia w
programie FEAP 7.5 dla sprezysto-plastycznego wilokna miedzi podlegajacego duzym
deformacjom w sprezystej osnowie z ceramiki Al,Os;. Obliczenia zostaly wykonane za
pomocg oprogramowania ABAQUS (2010). Zalezno$ci naprezenie-przemieszczenie we
wloknie wzmacniajagcym zostaty poréwnane z analitycznymi wynikami Matagi (1989).

Zaproponowano osiowosymetryczny model problemu wyciggania witdékna z osnowy
(pullout), bedacy rozszerzeniem modelu Bheemreddy’ego et al. (2013), z uwzglgdnieniem
duzych deformacji sprezysto-plastycznych wtokna miedzi, a takze kohezyjnej granicy miedzy
fazami Cu i Al,O3. Celem modelu byto zbadanie zachowania si¢ uktadu wtdokno/osnowa oraz
identyfikacja wtasciwosci mechanicznych tego uktadu podczas zjawiska wyciggania wtokna,
ktore moze zachodzi¢ podczas pekania w kompozytach IPC, gdy rozwijajaca si¢ szczelina w
osnowie napotyka na witokno. Model MES oraz obliczenia zostaty przeprowadzone w
programie ABAQUS (2010).

Osiowosymetryczny model pojedynczego witdkna wzmacniajacego z uwzglednieniem
rozwoju odspojenia zostal opracowany jako kolejny etap w identyfikacji proceséw
zachodzacych podczas zjawiska powstawania metalowych mostkéw taczacych powierzchnie
szczeliny (crack bridging) w kompozytach Al,03/Cu IPC. Powierzchnia mig¢dzyfazowa
pomigdzy miedzianym wtoknem a korundowg osnowg zostala zamodelowana jako kohezyjna.
Model elementow skonczonych oraz obliczenia zostalty wykonane przy pomocy programu
ABAQUS (2010). Wyniki porownano z wynikami dla modelu wyciggania (pullout) oraz z
analitycznymi wynikami Matagi (1989).

Kolejny zestaw modeli numerycznych zostat opracowany dla proby rozciggania Compact-
Tension kompozytéow IPC z zamiarem numerycznego wyznaczenia calki J, aby stworzyc
numeryczne podstawy okreslania odpornosci materiatow IPC na pekanie (K\;) bez potrzeby
wykonywania kosztownych eksperymentow. Wymiary probek C-T zostaly dobrane na
podstawie normy ASTM E399. Pierwszy z modeli to dwuwymiarowy model C-T z
pojedynczym skosnym wloknem wzmacniajgcym. W probece ze sprezystego korundu
znajdowala si¢ wstepnie zainicjowana szczelina oraz sprezysto-plastyczne wiokno miedzi,
prostopadte lub nachylone pod katem do ptaszczyzny szczeliny. Catka J zostata wyznaczona
przy uzyciu programu FEAP 7.5, w oparciu o przyrost energii potencjalnej AIl wzgledem
nieskonczenie matego przyrostu dlugosci szczeliny Aa. Dla porownania, obliczenia
wykonano takze dla probki z jednolitej ceramiki. Kolejny model to dwuwymiarowy model z
wieloma wloknami wzmacniajgcymi w sprezystej osnowie korundowej. Quasi-statyczna



propagacja szczeliny zostata zamodelowana w programie ABAQUS (2010). Wynikiem tego
modelu bylo wyznaczenie catki J w funkcji przyrostu dtugosci szczeliny.

W pierwszym z trojwymiarowych modeli C-T, cylindryczne widokna wzmacniajace zostaty
umieszczone w poblizu wierzchotka szczeliny. Potozenie 1 wymiary wtokien dobrano jak w
eksperymencie Hoffmana et al. (1997), tzn. byly to dwie rodziny rownolegtych sprezysto-
plastycznych widkien. Otaczajacy material osnowy zamodelowano jako osrodek sprezysty o
efektywnych statych sprezystosci wyznaczonych za pomoca opracowanego wczesniej modelu
rozszerzonego V-R-V. Catka J nie zostala wyznaczona dla tego modelu, jedynie pola
naprezenia.

Drugi z trjwymiarowych modeli C-T uwzglgdniat rzeczywista mikrostrukture kompozytu
infiltrowanego Al,O3/Cu otrzymang z mikrotomografii komputerowej (micro-CT). Z powodu
znacznych rozmiaré6w modelu numerycznego przyjeto zatozenia upraszczajace: (i) dla
analizowanego problemu Compact-Tension (C-T) zastosowano submodelling z rzeczywista
mikrostrukturg materiatowa w poblizu wierzchotka szczeliny (dane z micro-CT) oraz
ujednorodnionymi statymi materialowymi poza wierzchotkiem szczeliny, (ii) do wykonania
obliczen z modelu probki C-T z karbem i wstepng szczeling wycigto numerycznie ,,plaster”,
dla ktérego przeprowadzono obliczenia MES. Podobnie jak w poprzednich modelach,
przyjeto model sprezysto-plastyczny dla fazy miedzi w plastrze materiatu z mikrostrukturg
rzeczywistg. Opracowany model uwzglednia ewolucj¢ szczeliny wywotlang quasi-statycznym
obcigzeniem przemieszczeniowym. Do obliczen zastosowano Extended Finite Element
Method (XFEM). Wyznaczone wartosci catki J odniesione do przyrostu dtugosci szczeliny,
odpowiadaja poczatkowi procesu rozwoju szczeliny. Stwierdzono jakoSciowa zgodno$¢ z
wynikami innych autoréw dot. wyznaczania catki J dla kompozytow MMC wytwarzanych na
drodze infiltracji.

Na zakonczenie przedstawiono podsumowanie modeli zamieszczonych w pracy oraz
sformutowano najwazniejsze wnioski 1 kierunki dalszych badan.

W Zalaczniku opisano wilasne badania do$wiadczalne zwigzane z wytwarzaniem 1
charakteryzacjg kompozytow Al,O3/Cu IPC, ktore stuzyly jako dane pomocnicze dla modeli
przedstawionych w rozprawie. Opisano kolejne etapy procesu wytwarzania kompozytéw IPC
z mikrostruktura na bazie skrobi kukurydzianej i ryzowej jako czynnikdéw porotwdrczych
(pore forming agent, PFA) z r6znymi udzialami objg¢tosciowymi fazy miedzi, wytworzonych
w procesie infiltracji pod ci$nieniem. Dokonano pomiaréw porowatosci determinujace;
zawarto$¢ fazy metalu w IPC oraz modutow sprezystosci kompozytow Al,Os/Cu. Pomiary
modutu Younga przeprowadzono w temperaturze pokojowej 1 w cyklach termicznych do
800°C za pomocg techniki wzbudzania impulsowego.

Praca zawiera szereg elementéw nowatorskich w zakresie modelowania wiasciwosci
mechanicznych kompozytow o wzajemnie przenikajacych si¢ fazach metalu 1 ceramiki (IPC).
Szczegdtowo zostaly one omowione w Rozdziale 7. Jednym z gltéwnych osiagnig¢ pracy jest
zaproponowanie metodologii wykorzystania danych mikrostrukturalnych z mikrotomografii
komputerowej w problemach wyznaczania statych efektywnych i parametrow pekania
materiatéw IPC 1 jej praktyczna numeryczna implementacja w ramach MES.



Abstract

Metal-ceramic interpenetrating phase composites (IPCs), which are the subject of this
dissertation, are composites with special microstructure, in which phases are continuous in
three dimensions, in contrary to composites with discrete reinforcements. Metal-ceramic IPCs
are typically manufactured by pressure-assisted or pressureless infiltration of molten metals
into porous ceramic preforms. If one phase was removed from an IPC, the other phase would
form an open-celled foam with a non-zero rigidity.

The combination of specific microstructure of IPCs and properties of its constituents is
expected to result in an outstanding performance of this class of metal-ceramic composites.
The main features of IPCs include improved homogeneity, microstructure stability at elevated
temperature, enhanced mechanical properties (strength, fracture toughness), improved thermal
(heat resistance and thermal stability, increased thermal conductivity) and service properties
(wear resistance, corrosion resistance). These superior characteristics make the IPCs attractive
structural and functional materials for e.g. transport, power and electronic industry sectors.
The industry push for new materials and technologies provides a strong motivation for
research in the fields of processing, characterisation and modelling of IPCs.

This dissertation is focused on modelling of the effective elastic and thermal properties,
deformation and fracture of IPCs. It begins with the introduction and the state of the art in
modelling of the effective material properties and fracture of IPCs. Then, the motivation for
the thesis theme is given. Analytical and numerical models are proposed to predict the
effective elastic properties of the IPCs. The problems of deformation and fracture of IPCs are
addressed numerically in a set of models aiming at the determination of the fracture
parameters taking into account the crack bridging mechanism. A particular attention is given
to creation of numerical models for effective elastic constants and fracture parameters of IPCs
based on their real microstructure obtained from computed microtomography (micro-CT)
images. Additional information from own experimental research on manufacturing and
characterization of IPCs is reported in Appendix as a supporting material used in the
modelling.

The models of effective material properties developed in this thesis are presented starting
with analytical estimates based on a unit cell mimicking the IPC microstructure, then simple
numerical models follow, to end up with some FEM models based on micro-CT
representation of real IPC microstructures. Below the most essential results are summarized in
this order.

Analytical models for the effective elastic constants (Young’s modulus, Poisson’s ratio,
shear modulus and bulk modulus) are proposed as extensions of Tuchinskii (1983) and Feng
et al. (2003, 2004) approximations. The models of Tuchinskii (1983) and Feng et al. (2003,
2004) were derived from Young’s modulus and Poisson’s ratio, according to a series of
divisions of the unit cell. In this dissertation, the modifications of the models of Tuchinskii
(1983) and Feng et al. (2003, 2004) consist in the derivation of the effective constants from
the eigenmoduli of the isotropic stiffness tensor. These modified models are called “extended
V-V-R” and “R-V-V” models. Also, the third possible way of unit cell partitioning is proposed,



leading to the “extended V-R-V” model. The effective elastic constants are estimated with
respect to the volume fraction of the metal phase. The three extended models are implemented
for Al,O3/Cu and Al,O5/Al IPC compositions and compared with the VVoigt and Reuss bounds
on the effective moduli and with the models of Tuchinskii (1983) and Feng et al. (2003,
2004).

Analytical models for the effective coefficients of thermal expansion are derived based on
the Rosen and Hashin (1970) estimates. First, the Rosen and Hashin estimates with regard to
the Voigt and Reuss bounds are determined by substituting the estimates of the effective bulk
modulus for the respective bound. Then, the previously derived relationships for the bulk
modulus using the extended models are applied to obtain the Rosen and Hashin estimates for
CTEs of IPCs. The CTE models are shown at work on the examples of Al,O3/Cu and
A|203/A| IPCs.

The numerical two-dimensional model of Mishnaevsky (2006, 2007b) is adapted to
compare the influence of particle-like and cross-like microstructure on the effective properties
of Al,03/Cu composite.

A numerical Finite Element model with simplified three-dimensional cross-like
interpenetrating microstructure is proposed for estimation of the effective elastic constants:
Young’s modulus, Poisson’s ratio and shear modulus. The effective elastic constants are
derived for uniaxial tension and simple shear neglecting the anisotropy of the cross-like
microstructure. The calculations are performed with the FEAP 7.5 (Taylor, 2005) programme
for Al,O3/Cu IPC.

As the next logical step a numerical three-dimensional Finite Element model with
microstructure of a real IPC material obtained with micro-CT is constructed. Two
independent methods of transferring of the volumetric data into eight-node cubic finite
elements are proposed using (i) the self-written codes in FORTRAN, and (ii) the commercial
software Simpleware ScanlP/FE. Both methods involve acquisition of the three-dimensional
data of the composite microstructure from micro-CT scans, creation of the FE mesh of the
material microstructure, and finally performing FEM calculations within FEAP or ABAQUS
environment. The results of the numerical models implemented for Al,O3/Cu IPCs are
compared with analytical estimates from the literature and with the extended models
developed within this thesis.

The second part of the thesis is devoted to modelling of crack initiation and growth in IPC
materials. Two sets of numerical models are proposed: (i) “prerequisite models” to analyze
the deformation of an elastic-plastic fibre reinforcing the crack in an elastic matrix, and (ii)
models of the Compact-Tension (C-T) test to numerically determine the J-integral in an IPC
with a growing crack. Within the first set, a two-dimensional FE model of a skew reinforcing
fibre with fixed debonding lengths is created and implemented using FEAP 7.5 programme.
The model includes the case of an elastic-plastic copper fibre undergoing large deformations
embedded in an elastic alumina Al,O3; matrix and the opposite case of an elastic alumina fibre
embedded in an elastic-plastic copper matrix. Also, an axisymmetric FE model of a single
reinforcing fibre with fixed debonding lengths is prepared with FEAP 7.5 for an elastic-plastic
aluminum- or copper fibre in an elastic alumina Al,O3 matrix. The FE mesh is created with
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FEAP 7.5 but the calculations were effectively done with ABAQUS (2010) software. The
stress-displacement relationships in the bridging fibre are compared with the analytical results
of Mataga (1989).

An axisymmetric model of the pullout problem is proposed as an extension of the
Bheemreddy et al. (2013) model by including the large plastic deformations of the copper
fibre and by modelling the interface between the copper fibre and alumina Al,O3 matrix as
cohesive. The aim of the model is to investigate the behaviour of a fibre/matrix material
system and to identify the fibre/matrix interface mechanical properties during pullout. The
pull-out phenomenon often accompanies fracture in IPC materials when a crack growing
through the matrix meets the fibre. The FE model and calculations are done using ABAQUS
(2010).

An axisymmetric model of a single reinforcing fibre with debonding evolution is created
as a next step to identify the effects taking place during crack bridging in an Al,O3/Cu IPC.
The interface between copper fibre and alumina Al,O3 matrix is modelled as cohesive. The
FE model and calculations are made in ABAQUS (2010). The results are compared with the
pullout results and the analytical results of Mataga (1989).

Another set of numerical models is proposed to mimic the compact tension (C-T)
experimental test with the main goal to determine the J-integral, and eventually, to give
grounds for numerical prediction of the fracture toughness of IPCs in the future. The
dimensions of the C-T specimens are specified according to the ASTM E399 standard.

The first model of the C-T test is two-dimensional with a single elastic-plastic copper fibre
reinforcing a pre-crack in an alumina matrix. The reinforcing fibre is either perpendicular or
inclined to the crack plane. The J-integral is calculated using FEAP 7.5 based on the potential
energy increase Al related to infinitesimal crack length increase Aa. For comparison, the J-
integral is also computed for an unreinforced crack in the ceramic C-T specimen. The second
model of the C-T test is two-dimensional with multiple reinforcements (elastic-plastic copper
fibres in alumina matrix) along the crack trajectory. The quasi-static crack propagation is
modelled in ABAQUS (2010). The outcome of the model is the J-integral as a function of the
increasing crack length.

A three-dimensional model of the C-T experiment is proposed next in which cylindrical
reinforcing fibres are placed in the vicinity of the crack tip, reproducing the special fibre
arrangement used in the physical experiments of Hoffman et al. (1997). The matrix material
surrounding the crack is modelled as elastic with the effective moduli calculated according to
the extended V-R-V model developed earlier in this thesis. The fibres are modelled as elastic-
plastic. This model of the C-T specimen with a family of parallel fibres is considered as a
prerequisite for the 3D model of a real IPC microstructure described in the next chapter. The
J-integral was not calculated for this model, only the stress fields.

Finally, a three-dimensional numerical model is proposed in ABAQUS (2010) for the
compact tension (C-T) test that accounts for the real Al,03/Cu IPC microstructure obtained
from the computed microtomography X-ray (micro-CT) images. Due to the large size of the
numerical model the following simplifications are made at this stage of development: (i) a
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submodel with the real IPC microstructure from micro-CT scans is employed in the vicinity
of the crack tip, (ii) the rest of the C-T specimen is modelled as a homogenized material with
effective properties derived from the extended V-R-V model, (iii) the submodel is applied only
to a slice of the C-T specimen to enable effective computations on a high performance
computer. As in the previous models, the copper phase in the real IPC slice is modelled as
elastic-plastic. The crack propagation in the C-T probe under displacement-controlled quasi-
static loading is modelled with Extended Finite Element Method (XFEM). The resulting J-
integrals vs. crack length increase are obtained for the initial stage of the crack propagation
process.

In the Appendix some experimental data concerning the manufacturing and
characterization of Al,O3/Cu IPCs are included as a supporting material for the modelling
presented in the thesis. The process of manufacturing of the IPCs with microstructures based
on corn and rice starch pore forming agents (PFA) of different copper volume fractions, made
with gas pressure assisted infiltration technique is described. The Al,O3/Cu IPCs with
different microstructures and copper volume fractions are characterized. The porosity and
copper content measurements as well as Young’s modulus at room temperature and in thermal
cycles of up to 800°C with the impulse excitation technique are reported.

This thesis contains several novel elements in the modelling of mechanical properties of
IPCs, which are addressed in detail in Chapter 7. Succinctly stated, one of the main
contributions of this research to the field of IPCs modelling is the proposed methodology of
using micro-CT images of real interpenetrating microstructure in the Finite Element Method
approach when calculating the effective elastic constants and the J-integral for the
interpenetrating phase composites.
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1. Introduction

A composite material is usually defined as a man-made material composed of at least two
chemically different and clearly separated materials that both are distributed throughout the
whole volume of the composite, and for which the properties of the whole composite are
different than the properties of its components (Broutman and Krock, 1974).

Metal-ceramic composites are advanced engineering materials combining mechanical and
physical properties of both components aiming to ensure durable and reliable functioning
under demanding in-service conditions such as high temperature, high pressure, chemically
aggressive environment, complex mechanical loading, or combinations of these factors. They
exhibit superior mechanical and service properties compared to conventional structural
materials, e.g. high mechanical strength, good wear resistance, resistance to high temperature
and thermal shocks, corrosion resistance and low specific weight. They may also be designed
as multifunctional materials with specific properties like electric conductivity, heat
conductivity, or special magnetic properties. Owing to these unique combinations of
properties metal-ceramic composites are being used in automotive, aerospace and rail
transport substituting steels or metal alloys in certain structural elements subject to intensive
frictional wear, elevated temperature and corrosive environment. Examples of metal-ceramic
composites applications in transport sector include brake discs, clutches, valves, nozzles,
combustion chambers and exhaust systems. Other applications of metal-ceramic composites
can be found in energy, electronics and medical equipment sectors.

The main improvements in material properties of composites compared to the properties
of their components can be achieved with the proper choice of the matrix and reinforcement
materials, their form, volume fraction and distribution throughout the composite structure, as
well as by a proper method of manufacturing (Pietrzak, 1998). The still unresolved issues in
metal-ceramic composites are the relatively high manufacturing cost and the necessity of
using suitable joining techniques to integrate them with other materials in structural
components.

One of the main drivers of development of metal-ceramic composites is the inherent
brittleness and low fracture toughness of ceramics. The brittleness of ceramics is the origin of
their low resistance to crack growth, which limits their potential technological applications as
structural materials. Improving fracture toughness of ceramics has been a serious concern for
a long time. Additional toughness can be brought to ceramics through the mechanisms like
transformation toughening, reinforcing with whiskers, platelets or ceramic fibers, microcrack
shielding, ductile particle toughening, and toughening with metallic phase infiltrated into a
ceramic porous matrix. In the case of ceramics reinforced with metal particles typical
toughening mechanisms are crack trapping, crack bridging and crack deflection. For example,
a sixtyfold fracture toughness increase for a glass reinforced with dispersed partly oxidized
aluminum particles, four time increase of fracture toughness for Al,Oj3 infiltrated with NizAl
intermetallic as compared with monolithic Al,O3 (cf. Basista and Weglewski, 2006), or a
twofold fracture toughness increase for a WC/Co composite as compared with pure WC (cf.
Felten et al., 2008), were reported in the literature.



In general metal-ceramic composites are often divided into metal-matrix composites
(MMCs) where ceramic reinforcement is added to a metal matrix, and cermets in which bulk
ceramics (e.g. oxides, borides, or carbides) are strengthened with metal particles. Depending
on the physical structure of the composite cermets can also be considered as metal matrix
composites, but their metal content is usually less than 20% by volume. In MMCs the
reinforcement may be of different forms (e.g. particles, fibres, or porous skeletons) and sizes
(e.g. continuous or finite). For the sake of completeness it should be added that a subgroup of
composite materials called ceramic-matrix composites (CMCs) are not considered as metal-
ceramic composites as the reinforcement of ceramic matrices are typically ceramic fibres (e.g.
carbon, silicon carbide, aluminium oxide, etc.).

Interpenetrating phase composites (IPCs), which are the subject of this thesis, are a special
type of composites containing no discrete reinforcements but consisting of completely
interconnected networks of solid phases, which form almost porosity-free interpenetrating
structures. If one phase was removed from the IPC, the other phase would form an open-
celled foam with a non-zero rigidity. If the IPC is made of metal and ceramic it is typically the
metallic phase that fills out the porous ceramic preform.

In the literature, interpenetrating phase composites (IPCs) are often classified as metal-
matrix composites (MMCs) obtained with a specific production technology that is liquid
metal infiltration into a porous ceramic preform. In the MMC nomenclature the porous
ceramic preform is considered as the reinforcement, while metal filling the pores as the matrix
(e.g. Léger et al., 2012). Conversely, other authors (e.g. Skirl, 1998) describe IPCs as
ceramic-matrix composites (CMCs) reinforced with an interpenetrating ductile metal phase.

The interpenetrating composites form spatially complicated microstructures that are more
difficult to describe than those formed by fibres or inclusions in the matrix. Exemplary
microstructures of real two-phase interpenetrating Al,O3/Cu and Al,Os/Al composites are
shown in Fig. 1.1. Here, the material microstructure is composed of networks of metallic
struts with alumina between them. As both phases form irregular 3D patterns the IPC
microstructures can be described as three-dimensional objects only (they do not have their 2D
equivalents).

Based on the properties of the constituent phases and geometrical features of the
composite, the main characteristics of the IPCs can be determined. The simplest and often
used parameter is the volume fraction of phases enabling comparison of composites with
different types of microstructures or phase materials, comparison of different methods of
modelling, and also comparison of the analytical, numerical and experimental results all
together. However, for geometrically complicated microstructures of IPCs more detailed
characteristics are necessary. Such geometrical characteristics are phases’ shape basis and
characteristic dimension of the ligament — its length, diameter, or aspect ratio. If a pore
forming agent (PFA) is used to obtain a porous ceramic preform for metal infiltration, the
phases’ shape basis depends on the traces left in the ceramic’s structure by the PFA after
burnout. Otherwise, if a liquid phase (metal) is infiltrated into a porous solid phase (ceramic)
the phases’ shape basis depends on the shape of the solid phase that was formed previously.
For example, the solid phase (ceramic) may have the form of a fibrous skeleton made of
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interconnected ceramic fibres (e.g. Saffil fibres), or a porous foam, whose geometrical
characteristics are predetermined by the polyurethane foam used.
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Figure 1.1. Examples of metal-ceramic composite materials with interpenetrating microstructure
(IPCs): a) Al,04/Cu composite, red colour - alumina phase, blue - copper phase (courtesy of G. Geier,
Leoben), b) image of copper phase in Al,O3/Cu composite obtained with Simpleware ScanlP software,
¢) SEM image of fracture surface of Al,Oz preform of 34% open porosity pressure infiltrated with Al
alloy 44200 (courtesy of PZMK IPPT PAN).

Elastic properties are important characteristics of IPCs as they can easily be compared
with the relevant properties of other materials. The most commonly used are Young’s
modulus and Poisson’s ratio. Bulk and shear moduli are also used, however they are more
difficult to measure and, thus, less popular. Typical thermal properties are the coefficient of
thermal expansion (CTE), thermal conductivity, and specific heat. Fracture parameters (e.g.



fracture toughness, J-integral, crack opening displacement) are key mechanical characteristics
of interpenetrating phase composites because of brittleness of the ceramic phase.

In IPCs both phases have more or less equivalent interpenetrating geometry. Therefore,
the usual matrix-inclusion terminology is not used as it would be difficult to say which phase
is the “matrix” and which serves as the “inclusions”. A separate terminology has been created
instead for these composites. There are different names used in the literature. The term “co-
continuous composites” was used by Daehn et al. (1996), Agarwal et al. (2003), Park et al.
(2005), and Del Rio et al. (2007). “Composites with interpenetrating phases” was used by
Rodel and coworkers (e.g. Rodel et al. 1995, Prielipp et al. 1995; Skirl et al. 2001). The term
“interpenetrating multiphase composites” was used by Torquato et al. (1999), and Feng et al.
(2003, 2004). In the present thesis the term “interpenetrating phase composites”, abbreviated
as “IPCs”, will be used throughout.

There are also IPCs made of other materials than metals and ceramics, and also having
different properties and purposes than their components. To this end multi-walled carbon
nanotubes-polystyrene nanocomposite, alumina-epoxy coatings, or glass-ceramic, metal-metal
and ceramic-epoxy resin dental composites can be mentioned. These materials, however, are
beyond the scope of the present thesis and will not be described in detail.

A rationale behind designing an IPC is to achieve a highly durable material that would
combine the most desirable properties of the constituent phase materials: the high hardness
and wear resistance of the ceramic and improved fracture toughness, ductility, and thermal
conductivity of the metal. Unlike fibre reinforced composites, which are typically designed to
obtain enhanced properties in preferred directions, the interpenetrating spatial networks can
improve material properties in all directions, although for specific applications anisotropic
IPCs can be designed, too. Also, when compared with particle reinforced composites, IPCs
take advantage of the continuous material networks making up the interpenetrating
microstructure.

A review of modelling and processing methods of interpenetrating phase composites was
published 10 years ago by Basista and Weglewski (2006). At that time there were many
works on manufacturing and experimental testing of IPCs but only a few investigations
concerning modelling of fracture and crack growth. Mechanical and thermal properties of
IPCs, such as fracture strength, fracture toughness, elastic moduli and thermal expansion
coefficients were measured in Rodel et al. (1995), Skirl et al. (2001), Hoffman et al. (1999),
Prielipp et al. (1995), Raddatz et al. (1998). The obtained results were promising as compared
to the respective values for the phase materials. For example, the Al,O3/30%NisAl composite
manifested the fracture toughness K. = 9.2 MPa m*? which exceeded the fracture toughness
of monolithic Al,O3 by a factor of 4 (Skirl et al., 2001). Del Rio et al. (2007) manufactured
Al,O3/Al and Al,O3/NiAl interpenetrating composites and examined their behavior in thermal
cycles, which proved good applicability of these materials in high-temperature regimes.

Analytical and numerical modelling of interpenetrating phase composites have been given
much less attention in the past than the processing techniques and characterization of their
properties. A model of a simple interpenetrating network was proposed almost a century ago
in a seminal paper by Frey (1932) for estimation of the electrical conductivity of binary
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aggregates. This model was and is still being used by a number of authors dealing with
modelling of IPCs. The interpenetrating microstructure considered by Frey (1932) had the
form of a unit cell with a 3D-cross structure (cf. Fig. 2.1). Inspired by the idea of the 3D-cross
unit cell, Tuchinskii (1983) derived a model for bounds for effective elastic constants of an
interpenetrating phase composite.

The simple 3D-cross model of interpenetrating networks (Fig. 2.1) was used by Daehn et
al. (1996) in a numerical and experimental study of uniaxial deformation of Al,Os/Al IPC.
The same 3D-cross structure was employed in numerical modelling of thermal residual
stresses in Al,O3/Al and Al,O3/Cu IPCs by Agarwal et al. (2003). The models by Frey (1932)
and Tuchinskii (1983) were also pivotal for some of the effective properties estimates
developed in this PhD thesis and will be discussed in detail in the following chapters.

Image analysis and concept of connectivity could be useful in modelling the effective
properties of IPCs. Torquato et al. (1999) discussed the bounds on effective elastic moduli of
interpenetrating composites and evaluated bounds involving three-point structural correlation
functions, extracting information on microstructure from an image of a sample of B,C/Al
composite. Feng et al. (2003, 2004) developed a model for calculating the effective elastic
constants of anisotropic multiphase composites, containing both interpenetrating phases and
disconnected inclusions. Park et al. (2005) proposed an RVE of the IPC microstructure to
investigate stiffness and nonlinear behavior of ceramic metal composites and developed new
material processing method for improving contiguity at the same level of volume fraction.

It is commonly known that not only the volume fractions of constituent phases, but also
their spatial distributions influence the properties of IPCs such as the fracture toughness,
mechanical strength, elastic constants, thermal expansion coefficient, etc. Therefore it was
necessary to develop models for IPCs that would reflect real spatial distributions of the
interpenetrating phases. Since the interpenetrating phases cannot be extracted as disconnected
inclusions, methods used previously for matrix-inclusions composites based on the Eshelby
tensor of micromechanics (such as effective media and effective field models) were not
adequate for calculation of the effective properties of interpenetrating phase composites (Feng
et al, 2003). Similarly, the rule of mixtures was shown to yield incorrect predictions of the
effective coefficients of thermal expansion (Hoffman et al., 1999).

In the last decade the research efforts in the field of IPC modelling were put on case
studies and specific microstructures by means of the finite element method (FEM), the effect
of phase interpenetration being one of the major issues considered. For example, Sharma et al.
(2012) applied object-oriented finite-element method for microstructural modelling of
Ni/Al,O3 IPC. Agarwal et al. (2013) modelled elastic properties of IPCs with an effective
medium approximation approach using mesh-free element-free Galerkin method. Gao and
Rayess (2014) proposed an FE model of a tetrakaidecahedral unit cell and compared with
experimental results. Xie et al. (2015) used the phase-field method with Cahn-Hilliard
equation of pattern evolution to model an IPC. In the paper of Ai and Gao (2016), Galerkin
method was applied to three unit cell models of IPCs, namely simple cubic (SC), face-
centered cubic (FCC) and body-centred cubic (BCC). The results were compared with FEM
results and Voigt-Reuss, Hashin-Shtrikman and Tuchinskii bounds.



Effective material properties are an essential issue in almost any research investigation of
advanced composites with complex microstructures. Fracture processes (i.e. crack inception
and growth) are of vital importance in practical applications of metal-ceramic composites in
various industry sectors, transportation and energy being the most prominent examples. For a
relatively novel type of composites like the IPCs these two research topics posed a scientific
challenge with potentially wide industrial impact. It can be stated that the inspiration for this
thesis was cognitive in nature, but the results may contribute to solving engineering problems.
Anticipating further considerations the modelling of effective elastic properties and fracture,
besides their individual importance in the field of composites, are interrelated because the
material surrounding the growing macrocrack will be assumed to have effective elastic
properties.

The structure of the dissertation is as follows. The state of the art in modelling of the
effective material properties and fracture of interpenetrating phase composites is presented in
Chapter 2 and Chapter 3, respectively. The motivation, aim and theses of the dissertation are
formulated in Chapter 4. The original research results obtained by the author are presented in
Chapters 5 and 6: the proposed analytical and numerical models of the effective elastic and
thermal properties of IPCs in Chapter 5, whereas the numerical models of fracture of IPCs in
Chapter 6. Summary and final conclusions are given in Chapter 7. References cited in the text
are collected in Chapter 8.

Modelling of the elastic and fracture parameters of interpenetrating metal-ceramic
composites is the main theme of the thesis. Nevertheless to give a wider background of the
materials investigated essential information on processing methods and experimental
characterization of the IPCs have been added in Appendix A. It includes some original results
of experimental work done by the author during her research stays abroad.



2. State of the art in modelling of effective elastic and thermal properties
of IPCs

This Chapter is an overview of available modelling methods of the effective elastic and
thermal properties of interpenetrating phase composites. As it was stressed in Chapter 1,
composites with interpenetrating microstructure require special approaches when modelling
the effective properties. Only the methods that are microstructure independent, or are devised
specifically for composites with spatially continuous microstructures can be applicable for the
composites investigated in this thesis.

2.1. Analytical modelling of effective elastic and thermal properties of IPCs

The overall properties of composites are typically investigated due to their practical
importance. Numerous analytical models have been proposed in the open literature aiming at
an estimation of the effective mechanical properties of composites with different types of
reinforcement. Nemat-Nasser and Hori (1999) discussed the existing models of the overall
mechanical properties of inhomogeneous materials. A comprehensive overview of available
models including the dilute approximation, the composite spheres model, the self-consistent
and generalized self-consistent scheme, the differential scheme, the Mori-Tanaka theory, the
Eshelby equivalent inclusion method and the method of cells, is given in Aboudi (1991). A
detailed study on modelling of effective elastic properties of composites with different types
of microstructures can also be found in Mura (1987). Many models of the effective elastic
properties of composite materials with relatively simple geometry of phases, such as layered,
unidirectional fibrous, or particulate composites are already well established and used in
applications.

The interpenetrating phases in IPCs cannot be treated as separate inclusions or fibres,
hence modelling methods developed for composites of the matrix-inclusion typology are not
suitable for IPCs. Consequently, it was necessary to develop new procedures relevant for the
particular microstructure of IPCs. However, most researchers kept on using methods that were
either developed for microstructures different than interpenetrating, or were modifications of
those methods.

Currently, there are different methods available for estimating the effective properties of
interpenetrating phase composites. Before presenting the state-of-the art in this field it should
be recalled that (i) mechanical properties of the IPC depend on spatial (anisotropic)
distributions of the constituent phases, (ii) methods based on the Eshelby tensor shall not be
used for IPCs due to substantially different microstructure that cannot be approximated by the
matrix/inclusion model underlying the Eshelby elasticity solution (Feng et al. 2003, 2004),
(iii) there is a need for more suitable methods of estimating thermal expansion coefficients of
IPCs than the rule of mixtures (Hoffmann et al., 1999), (iv) effective properties estimation of



IPCs should be supported with the image analysis and concept of connectivity (cf. Feng et al.
2003).

Janus-Michalska and Pecherski (2003) provided a micromechanical model of
determination of the macroscopic properties of open-cell foams. The foam microstructure was
modelled with a tetragonal unit cell of cubic symmetry, including the set of four identical
half-struts forming a diamond-like structure. The effective constitutive matrix, representing
the elasticity tensor, was given for the unit cell. Uniaxial extension and pure shear cases of the
unit cell were considered. It was concluded that the considered unit cell was elastically
isotropic, and thus its elastic behaviour was described by two Kelvin moduli, describing also
the macroscopic properties of the foam. The macroscopic elastic properties were derived from
the Kelvin eigenmoduli.

Moon et al. (2005) modelled the effective elastic Young’s modulus of Al/Al,Os
composites with interpenetrating network structures, manufactured with pressure-assisted
liquid metal infiltration, using different analytical models. The Ravichandran, Tuchinskii,
Hashin-Shtrikman, and the effective medium approximation (EMA) analytical methods were
applied. The results of analytical methods were compared with the results of experimental
Young’s modulus measurements with resonance frequency technique.

Jhaver (2009) presented manufacturing methods, characterization and modelling of the
effective elastic properties of aluminium and syntactic polymer foam lightweight
interpenetrating polymer composites. The IPCs were produced with a pressureless infiltration
method. The FEM model of the IPC unit cell based on the Kelvin cell was developed to
calculate stress-strain response of the composite in the uniaxial compression. For estimation
of the effective elastic modulus of the IPC, models of Hashin-Shtrikman, Tuchinskii and
Ravichandran were used.

Agarwal et al. (2013) developed two models: the unit cell and the self-consistent model to
find the elastic properties of IPCs. Volume fraction and random microstructure were
accounted for. The mesh-free, element-free Galerkin method was used. The effective medium
approximation approach was adopted to calculate the effective properties of IPCs.

He (2013) presented a unit cell based finite element model developed to estimate the
effective Young’s modulus, Poisson’s ratio and the coefficient of thermal expansion of triply
periodic IPCs. Five IPCs of different volume fractions of constituents were investigated.
ANSYS software was used for FE simulations. The predicted results were compared with
existing theoretical and experimental results.

The elastic-plastic behavior of stainless-steel/bronze interpenetrating phase composites
with damage evolution was described in Cheng et al. (2014). Tippur (2012) studied epoxy
based Syntactic Foam (SF) and open-cell aluminum scaffolds IPC foams. The composite
specimens were subjected to quasi-static compression tests. A finite element model based on
the Kelvin cell was developed to perform an analysis of compression with regard to elastic-
plastic large deformations.



2.1.1. Bounds on the effective properties of composites with interpenetrating
microstructures

Voigt and Reuss bounds

The Voigt and Reuss models are the most popular methods of estimation of effective
mechanical properties of composites irrespective of their microstructure. They provide the
widest bounds on the effective elastic properties. Only the elastic properties and volume
fractions of the phase materials are taken into account. Thus, these models are universal for all
possible structures of composites and enable comparison of different methods.

The Voigt model, often called the rule of mixtures, is based on the iso-strain assumption.
For an n-phase composite with each phase elastic and isotropic, the formulae for the
components of the effective stiffness tensor: shear modulus uex and bulk modulus K, take
the form

(2.1a,b)

where x; is the shear modulus of the i-th phase, Ki — the bulk modulus of the i-th phase, ¢; -
volume fraction of the i-th phase.

From equations (2.1a,b), using the well-known relations between the elastic constants

E=2ul+v)
E=3K(1-2v), (2.2a,b,c)
9K
3K+

the formulae for the effective Young’s modulus and Poisson’s ratio for a two-phase
composite can be written as
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where E denotes Young’s modulus, v - Poisson’s ratio, subscripts: a g and g denote phase A,
phase B and the effective property, respectively, f — is the volume fraction of phase B.

The Reuss model is based on the iso-stress assumption. For an n-phase composite, each
phase being elastic and isotropic, the formulae for shear modulus ug¢ and bulk modulus Kgg,
have the form

(53]

i=0 H;

()

(2.4a,b)

Using relations (2.2), the formulae for the effective Young’s modulus and Poisson’s ratio
for a two-phase composite can be rewritten as

. 9/uEff KEff _ EAEB
Bt = =
3Key + e Egll—T)+E,f

(2.5a.b)
 BKes —2pq  fE, v +(1- f)EV,

2t +6K fE, +(1- f)E,

Vst

The Voigt and Reuss models are simple and easy to use. However, Aboudi (1991) stressed
that both the iso-strain and the iso-stress assumption might not be fully accurate. For the
Voigt approximation this is due to the lack of equilibrium of tractions at phase boundaries,
and for the Reuss approximation this is due to the fact that under implied strains both phases
may not remain bonded.

Rosen-Hashin bounds on effective thermal properties

The bounds of Rosen and Hashin (1970) for the effective coefficients of thermal
expansion are analogous to Hashin-Shtrikman bounds for the effective elastic constants.
Levin (1967) showed the relationship for a two-phase isotropic composite between
coefficients of thermal expansion of the components and the effective bulk moduli. Rosen and
Hashin (1970) proposed a generalized relation between the effective coefficients of thermal
expansion and the effective mechanical properties for a two-phase anisotropic composite.
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They derived formulae for bounds on the effective coefficient of thermal expansion from the
components of the compliance tensors of the effective composite material and its constituents.

For an isotropic composite with isotropic constituent materials, Rosen and Hashin (1970)
expressed components of the compliance tensor as functions of the bulk moduli. As a result,
the effective coefficient of thermal expansion ag s, of such a composite is a function of the
bulk moduli of its constituents Ky and Kg, and the effective bulk modulus Kgx, derived
according to a relevant model (e.g. according to Hashin-Shtrikman, 1963), namely

) 1 1\ 1 1 1 Voigt
agrp = a’%9" + (@ — ap) (K_A - E) [Km - ] (2.6)

where the indices denote: , g — composite phases, g — effective quantity, Y% denotes volume

average according to Voigt model, a'°9t = f,a, + fyap — Voigt estimate of averaged

.. i Voigt
coefficient of thermal expansion, {%} = £_A
A

bulk modulus, fa, fg — volume fractions of the respective phases.

+ 11;_3 — Voigt estimate of averaged inverse of
B

2.1.2. Models designed specifically for composites with interpenetrating microstructures

The effective elastic properties of composites depend on many parameters. The parameters
that are common for all models of the effective elastic properties are material constants and
volume fractions of the phases. However, such factors as geometrical shape of particles,
presence of discontinuities and damage, or effect of temperature also contribute to the overall
material constants. Thus, it was necessary to develop methods suitable for composites with
specific microstructures like the interpenetrating phase composites that would account for
these factors. For IPCs relevant methods were proposed by e.g. Tuchinskii (1983), Feng et al.
(2003, 2004) and Mishnaevsky (2005, 2007a). They are different combinations of the Voigt
or Reuss estimates. The works of Aboudi (1991), Mura (1987), Milton (2002), or Gross and
Seelig (2006) should also be mentioned in this context. Since the analytical estimates by
Tuchinskii and Feng are essential as the reference solutions in this thesis, they will be outlined
in more detail in the following sections.

Models of Frey and Tuchinskii

Due to complex spatial structure of the IPCs, a workable model of effective elastic
properties should be straightforward but at the same time capable of accounting for the salient
features of the IPC microstructure. The idea of a simple geometrical model for co-continuous
networks microstructure may be found in the early paper by Frey (1932) on modelling of
electrical conductivity of binary aggregates. Based on the model of Frey (1932), Tuchinskii
(1983) developed a model for calculation of bounds for effective elastic constants of a
bimetallic composite. Tuchinskii assumed macroscopically homogeneous and isotropic
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material. The unit cell was cubic with interpenetrating phases having quadratic cross sections
and symmetric within the unit cell. Two division directions of the unit cell using the iso-strain
and iso-stress assumptions were proposed. A detailed discussion of Tuchinskii’s derivation
methodology is given in Poniznik et al. (2008).

Figure 2.1. Unit cell representing two-phase interpenetrating microstructure, according to Frey (1932)
and Tuchinskii (1983).

The Tuchinskii’s lower bound for the effective Young’s modulus is as follows

=]
E'°W:a2EB+(l—a)2EA+2a(1—a{a+l_aj (2.7)

B EA

where A, B denote respective phases as in Fig. 2.1 (A for the outer white phase, B for the inner
dark phase), a denotes a normalized size parameter of the phase B.

The Tuchinskii’s upper bound for the effective Young’s modulus is

(2.8)

B _ 1-a . a N
-2’ +a’E, (1-a%)E,+(2-a)aE,

The expressions for the bulk and shear moduli follow from the relationships between the
elastic constants. The expressions for the effective Poisson’s ratio in Tuchinskii (1983) seem
to contain errors. The values for upper and lower bounds are calculated from the Poisson
ratios called “parallel” and “perpendicular” that correspond to different unit cell sectioning
directions. The “parallel” value is calculated according to the rule of mixtures as
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Vparallel = fAVA + fBVB (29)

The “perpendicular” value is calculated according to the following formula

Reuss
y _ ( favat fave ) E.Es _ Vparallel E

perpendicular ( fA EA + fBEB )( fAEB + fBEA) EVoigt

(2.10)

From the expression (2.10) one can see that it is a proportionality relation between the
Poisson ratios and the Young moduli. Such an assumption is not legitimate for an isotropic
material. Moreover, one bound for the Poisson ratio is derived from both bounds for the
Young modulus. This approach leads to erroneous formulae for the bounds for the Poisson
ratio. Consequently, also the bounds for G and K, derived with the use of bounds for the
Poisson ratio, are incorrect.

There are also some doubts with regard to Tuchinskii’s formulation of the bounds for
Poisson’s ratio calculated from (2.9) and (2.10) as remarked by Poniznik et al (2008). The
expression for the upper bound in Tuchinskii (1983)

7= [].—aZ(l—a?—VB/VA)Il—a(l—m)] .
- [i-a@-n)i-al-1n)] (2.11a)
with
mo el vale-afvev,) (-2 +(E; /B, N2 -2l (2.11b.0)

1-a’+a’(vy/v,) 1-a*(Ez/E,)a’

is not in accordance with the model due to misprints. It is believed that the correct upper
bound for v in Tuchinskii’s (1983) model should read

_ 1-a’(3-2afl-vy/v,)

V= (2.12a)
[1-a(t-n)f1-a@-1n)
with a misprint removed in the denominator of the expression for n, i.e.
G_(-a) +(E;/E,N2-a)a (2.12b)

1-a’ +(E;/E, )a’

The lower bound for v given in the original paper by Tuchinskii (1983)

2a(l-a)(1-a, +av, )EB
v=@1-afv,+a’v, + A (2.13)
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is correct. However, it can be shown that this bound falls outside the Voigt and Reuss bounds,
which give the widest range of admissible effective moduli. It may, thus, be concluded that
Tuchinskii’s assumptions taken to evaluate the effective Poisson ratio are not fully justified.
There are also formulae in Tuchinskii (1983) for the shear and bulk moduli. However, due to
the errors in the formula for Poisson’s ratio as discussed above, the estimates for G and K
should also be taken with caution.

The model of Feng

Feng et al. (2003, 2004) developed models for calculating the effective elastic constants of
anisotropic multiphase composites, containing both interpenetrating phases and disconnected
inclusions. His idea of a unit cell enabled investigation of various microstructures, more
complex than in the Tuchinskii unit cell. As shown in Fig. 2.2, the Feng unit cell enables
consideration of multiple 3-D cross phases that have different dimensions in each direction.

The microstructure of composite material in the Feng model is represented by the unit cell
model. The representation of the phases depends on their connectivity which describes spatial
arrangement of each phase and gives the number of dimensions in which each component is
self-connected. The general assumptions of the Feng model are such that macroscopically the
composite material is homogeneous and may consist of n phases. Elastic properties and
spatial arrangements of individual phases may be anisotropic. The generic model allows n;
phases that are continuously self-connected in three dimensions, and n, (n; + ny = n) phases
that are well-defined, disconnected inclusions. Phases that are continuously self-connected, in
the unit cell have the form of three orthogonal branches with rectangular cross sections. The
material existing both in the form of a continuous network and dispersed inclusions should be
considered as two different phases: the matrix (denoted with m) comprising all the continuous
phases which, in turn, contain all the inclusions.

In the Feng model the effective elastic constants for the composite containing inclusions
are obtained by means of the Mori—Tanaka method (cf. Mura, 1987). The interpenetrating
phase composite (with no inclusions) can be described using two or more continuous
materials, i.e. when the composite consists of n; = n continuous phases only. An example of
such model with two interpenetrating phases is depicted in Fig. 2.3a.

In this case a cubic unit cell is assumed, so the linear dimension of each side of the cell is
equal to unity

a+...+a =b+...+b =c+...+¢c, =1 (2.14)

Hence, the dimensions of interpenetrating phases can be represented by non-dimensional
size parameters a,, b,, C, that are related to the size of the cell. The volume fraction f, of the
a-th phase becomes (Feng et al., 2003)

f,=ab,+a,c,+b,c,—2a,b.c, (no sum) (2.15)
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The computation of the effective elastic constants is based on a combination of the iso-
stress and iso-strain assumptions. The unit cell (consisting of n; self-connected phases) is
divided into n; x n; sub-cells, each consisting of n; series blocks. The effective moduli of
each sub-cell are determined by adopting the iso-stress assumption. Finally, the elastic moduli
of the whole cell can be calculated from the ny x n; parallel sub-cells by using the iso-strain
assumption. The boundary conditions are assumed as periodic. The unit cell is first
decomposed along the boundaries between the phases, parallel to the coordinates (Fig. 2.3b).

The effective Young’s modulus is given as

_ n M aﬂy

E= Z z Z; E Z afy Z afy (2'16)
p

where a, f8, y are serial numbers of a sub-cell in the x,, X,, X, directions and V., is the volume
of the («, B, y) sub-cell.

The effective shear modulus has the same form as Young’s modulus, namely

-3 > [[ZG“”] > ]Z @17)

=1 “apy

For the isotropic composite it is assumed that all the directions of decomposition are equal
(although for different directions of decomposition of the unit cell different formulas are
obtained) and after averaging over the whole composite volume the differences between the
results of decomposition in different directions will vanish. However, for the anisotropic
composite it was not specified in Feng et al. (2003, 2004) original papers how the
decomposition directions should correspond to the anisotropy.

From the assumed uniform spatial distribution of both phases it follows that

a,=b=c=a a=Db=c=1-a (2.18)

The “reinforcing phase” and the “matrix” are further denoted as phase 1 and 2,
respectively. The volume fraction of the phase 1 is

f,=a’(3-2a) (2.19)

Using Equations (2.16), (2.18) and (2.19) the effective elastic moduli based on the Voigt
and Reuss models were derived in Feng (2003, 2004) as

E=a’E +(1-a)’ E,+2a(1- a)(é 1;‘} (2.20)
G=a%G,+(1-a)’ G, +2a(1- a)(é - aj (2.21)
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Even though the Feng model was designed for a two-phase interpenetrating composite, a
generic model can easily be adopted for a variety of multi-phase composite geometries. It may
be potentially very useful for different types of multi-phase composites as well as for two-
phase interpenetrating composites with voids (damage) as a third phase.

Figure 2.2 The Feng et al. (2003, 2004) unit cell of an interpenetrating four-phase
composite with phases that have different dimensions in each direction ¥, y, z; blue a,
yellow b and green c phases visible, fourth phase invisible (based on Feng et al. (2003,

2004), with the permission of publishers).
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Figure 2.3 (a) Feng et al. (2003, 2004) unit cell of an interpenetrating two-phase
composite model and (b) its vertical (V) and horizontal (H) decomposition (based on
Feng et al. (2003, 2004), with the permission of publishers).
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2.2. Numerical modelling of effective elastic properties of IPCs

In order to account for complicated, real microstructure of multi-phase materials, models
using randomly generated microstructures were developed. However, to generate a
microstructure that forms interpenetrating networks, it is necessary to apply some restrictions
on the data (Poniznik et al., 2008). It may be seen in Fig. A.6 (Appendix) that real
interpenetrating microstructures may have different, specific topologies depending on
manufacturing. Such differences cannot be properly addressed with a random generation of
the composite phases. Therefore, the attention will be focused on arranged microstructures
that ensure interpenetration of the phases either by generation of a simple interpenetrating
microstructure, or by considering real IPC microstructures obtained from micro-CT
experiments. It should also be noted, that in case of microstructures obtained from spherical
or ellipsoidal particles, fulfillment of the conditions for percolating microstructure (that is,
with volume fractions of phases within percolation limits), will not assure bearing tensile
loads and thus, the non-zero stiffness of the percolating phase network. Arbitrarily created
random microstructures can have quite high volume ratio of separate particles and do not need
to be interpenetrating at all. Therefore, some additional conditions need to be applied to
assure connectivity between neighbouring particles, and, in effect, interpenetrating
microstructure.

A case described by Poniznik et al. (2008) may serve as an example of such an approach.
To sum up, random modelling in application to interpenetrating microstructures is limited and
should not be taken without special caution. Deterministic approximations of interpenetrating
microstructures have also been developed for numerical modelling of the effective material
properties (Daehn et al., 1996; Lel3le, Dong and Schmauder, 1999; Jhaver, Jhaver and Tippur,
2009a,b; Tippur, 2012).

Random numerical models of IPC microstructure

Mishnaevsky (2005) developed a numerical programme for generation of multiparticle or
percolating bimaterial unit cells. The generated voxel-based FE models of composite
microstructures were used to calculate the effective properties. The RVE was represented as
an array of voxels carrying information about the local properties and, thus, representing the
spatial distribution of phases. Three-dimensional random chessboard or graded
microstructures were generated with the proposed programme, using a random number
generator. The random distributions of phases were generated in three directions in space to
create 3D random chessboard microstructure. To create graded microstructure, along one of
the directions graded distribution was applied, according to the formula allowing varying
gradient interface smoothness. The percolation analysis of the obtained microstructures was
performed. Percolating random microstructures were obtained for volume fractions of the
phases between 32% and 68%.

A model of creating random composite microstructures is described in Poniznik et al.
(2008). Two-phase, macroscopically homogeneous and isotropic materials were considered.
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A cubic piece of composite was created with a given voxel number and volume fraction of
phases by assigning material properties of one of the phases to randomly chosen elements,
and the properties of another phase to the remaining ones. Interpenetrating microstructure was
ensured with the procedure checking the interconnections between voxels belonging to the
same material. VVoxels of the same material with common faces were considered as connected.
Percolating microstructures were obtained for volume fractions of phases between 31.16%
and 68.84%.

A random interpenetrating unit cell was proposed by Agarwal et al. (2013a) to evaluate
the elastic properties of an IPC and to obtain the stress-strain curves for an elasto-plastic IPC
with element free Galerkin method (Agarwal et al., 2013b). However, it was not explained in
these works how the microstructure was created in 3D.

Randomly created composite microstructures were used also by Xie et al. (2015) to model
the effective mechanical properties of IPCs. These authors used the phase field method and
the Cahn-Hilliard equation to create a random IPC microstructure.

Different methods of reconstruction of complex microstructures of engineering materials
are given by Wejrzanowski et al. (2008). Quantitative image analysis techniques aimed at the
determination of global parameters characterizing geometrical features of the microstructure
(e.g. mean intercept length or mean grain volume) such as methods describing the geometry
of the grain boundaries, di-sector, point sampled intercepts or Saltykov reconstruction, were
described. The methods of reconstruction of the microstructure of the ceramic foams from the
micro-CT images based on statistical characteristics of the geometry of the pores, were
proposed by Nowak et al. (2013) and Nowak et al. (2015). The method of designing cellular
microstructures with prescribed distribution of size and orientation of grains or cells was
proposed by Wejrzanowski et al. (2013a). The Laguerre-Voronoi tesselations (LVT) were
applied to obtain the microstructure of the self-supporting foam composed of interconnected
cyllindrical struts by Wejrzanowski et al. (2013b). Also the limitations of the methods of
randomized tesselations were pointed out therein.

Deterministic and micro-CT based numerical models of IPC microstructure

Besides random numerical models different deterministic numerical models with
simplified IPC geometry were developed (cf. Daehn et al., 1996, Jhaver, Jhaver and Tippur,
2009a,b, Tippur, 2012). In these models the IPC microstructure is often approximated as
periodic, with unit cells consisting of different composite components of simple geometry.
For example in the models of Jhaver, Jhaver and Tippur (2009a,b) and Tippur (2012), the unit
cell model is based on Kelvin cell, approximating the microstructure of syntactic foam based,
lightweight polymer IPCs.

The most accurate representation of real IPC microstructures may be achieved with
techniques of 3D microstructure mapping, such as slicing a composite piece to obtain series of
2D images (cf. Michailidis et al., 2010). Nondestructive methods of reconstruction of
composite microstructure include DVI (Digital Volume Imaging) technique delivering a
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series of 2D files, or computed microtomography (micro-CT), providing 3D images. Both
DVI and micro-CT techniques were used by Jaganathan et al. (2008a,b) to represent the
microstructures with non-woven fibers with finite element meshes. For the creation of the
FEM mesh from 3D microstructure image, the Simpleware ScanlP/FE software was used.
Also particle reinforced metal-matrix composites were modeled using micro-CT spatial
images by Kenesei et al. (2006a,b). The model of mapping the small geometry features such
as small pores and fissures below the micro-CT resolution, was proposed by Doroszko and
Seweryn (2016). Roux et al. (2008) used X-ray computed tomography to estimate the three-
dimensional deformation fields in polypropylene solid foam undergoing compression test.
SIC/Al IPC was modeled by Li et al. (2014) using real microstructure micro-CT images,
transferred into ANSYS/LS DYNA FE meshes with Simpleware ScanlP/FE software. The
issue of representative volume element (RVE) size for microstructure images of IPCs
obtained from micro-CT was analyzed by Heggli et al. (2005), cf. also Nowak et al. (2013).
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3. Modelling of deformation and fracture of IPC

The mechanical and thermal properties of the phase materials in metal-ceramic composites
usually manifest significant differences, which affect the fracture mechanisms of the
composite. Additionally, in the case of IPCs the complex microstructure of mutually
interpenetrating phases makes modelling of the crack onset and growth quite difficult.
Experimental measurements of fracture properties of IPCs are cumbersome and expensive due
to the high cost of pressure-assisted infiltration of ceramic preforms and tough machining of
notched specimens for the fracture tests (e.g. SEVNB or Compact Tension). Therefore,
reliable predictions of the stress intensity factors or J-integral for IPCs along with their critical
values (fracture toughness) by modelling are of considerable scientific and practical
importance.

According to Seweryn (2003) three main stages of the fracture process computations may
be distinguished: (1) establishing the shape, initial and boundary conditions, load history for
the structural element, and computation of stress and displacement fields, (2) indication of
element “hot spots” most prone to failure and estimation of the failure load, (3) computation
of the fracture process until the element failure with the use of fracture mechanics criteria and
methods. Numerical approach is required for the analysis of stress fields with singularities in
elements of complicated shapes. This observation is quite relevant for irregular
microstructures of the interpenetrating phase composites investigated in this thesis.

For quasi-brittle materials two ways of modelling of fracture may be followed (de Borst et
al., 2004). The continuum mechanics approach, when damage and fracture are modelled
within the constitutive models at the continuum level, was developed e.g. in the works of de
Borst and Pamin (1996) or de Borst et al. (2004). Another approach to modelling of fracture
in quasi-brittle materials is the discontinuum approach, where the crack in the numerical
model is treated as a geometric discontinuity (cf. de Borst et al., 2004). The methodology of
modelling the crack problem in metal-ceramic IPCs undertaken within the present thesis, will
represent the discontinuum approach.

Different toughening mechanisms may impede the crack growth in metal-ceramic
composites. The most frequently observed ones are (Fig. 3.1): crack bridging (Emmel, 1995;
Rddel, 2001; Grassi and Zhang, 2003; Kruzic et al., 2003; Cartie et al., 2004; Funfschilling et
al., 2011; Shao et al., 2012), crack deflection (Cotterell and Rice, 1980; Gilbert, 2001), crack
shielding (Evans et al., 1989, Shum and Hutchinson, 1990), crack branching (Kobayashi and
Ramulu, 1985; Ha and Bobaru, 2010) and fibre pullout (Hutchinson and Jensen, 1990; Stang
et al., 1990; Nairn et al., 2001; Jia et al., 2011, 2012; Bheemreddy et al., 2013).

While numerous experimental reports on fracture of IPCs were recently published (Bansal,
2006; Sun et al., 2009; Chang et al., 2010; Scherm et al., 2010; Roy et al., 2012; Wang et al.,
2014), there are still not too many works on analytical and numerical modelling of the crack
growth in this specific type of composites. In the general context of metal-ceramic composites
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Figure 3.1. Schemes of crack toughening mechanisms in metal-ceramic composites (yellow arrows
mark respective physical mechanisms); (a) crack bridging (reproduced from Poniznik et al., 2015 with
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permission of Int. J. Damage Mechanics, (b) crack deflection, (c) crack branching, (d) crack shielding,
(e) fibre pullout with matrix decohesion (SEM image — courtesy of TU Darmstadt).

(including MMCs, cermets and IPCs) the literature relevant to this issue is substantial. A state
of the art in modelling of fracture of metal-ceramic composites with ductile reinforcements,
including the subclass of IPCs, was presented e.g. by Basista and Weglewski (2006) and
updated in Poniznik et al. (2015).

Budiansky et al. (1988) described bridging-spring model. The authors studied the small-
scale bridging case and the fracture toughness of ceramics reinforced with particles. Sigl et al.
(1988) considered ductile particles bridging the crack in ceramics and proposed a necking
particle model. Beldica and Botsis (1996) presented BEM numerical model of Compact
Tension specimen of a composite with long aligned fibres. In their model fibres were parallel
to the loading direction. No bridging model was given. The bridging mechanism was
extensively modelled by Mataga (1989) with the main objective to determine the nominal
stresses in the reinforcing ductile ligament. Once the nominal stresses are determined the
elastic energy release rate increase AG due to crack bridging can be computed. Emmel (1995)
studied the problem of a plastically deformable bridging fibre embedded in an elastic matrix
with numerical models based on the model of Mataga (1989) and experiments of Hoffman et
al. (1997). The o—u relationships resulting from the model of axisymmetric fibre
perpendicular to the crack plane were then used in a model of the Compact Tension test for a
metal fibre reinforced composite. The J-integral and K—factors were calculated numerically
using ABAQUS.

Grassi and Zhang (2003) developed a FEM model of interlaminar fracture of a carbon-
epoxy composite with z-fibre reinforcements with nonlinear interface elements and showed
that the bridging reinforcements increase the crack growth resistance and delay the
delamination growth. Lapczyk and Hurtado (2007) developed an anisotropic model of
damage to describe failure and post-failure behaviour of linear elastic materials with fibres in
plane strain, using various criteria for damage initiation and modes of failure. Bobinski and
Tejchman (2011) compared continuous and discrete constitutive models of fracture in
concrete. A micromechanical elastoplastic damage model to estimate the overall mechanical
behaviour and interfacial microcrack growth in fibre-reinforced composites was proposed by
Ju and Ko (2008).

The behaviour of composites with ductile reinforcements and crack bridging is related to
the effect of debonding at the fibre/matrix interface (Poniznik et al., 2015). The fracture
toughness and the failure mode of the composite are affected by the mechanical properties of
the fibre/matrix interface. The gradual decohesion and failure of the cohesive interface was
modelled in ABAQUS for the heat curing epoxy adhesive layer by Sadowski et al. (2013a),
hybrid, single lap, and double lap joints by Sadowski and Golewski (2013b), or the interface
in WC/Co composite by Postek and Sadowski (2016). An important factor influencing not
only the interface behaviour but also the overall behaviour of the composite, is porosity (cf.
Weglewski et al., 2013, 2014; Dandekar and Shin, 2011). The interfacial strength is often
evaluated experimentally using the fibre pullout test. The fibre pullout test was used by Stang
et al. (1990) to obtain material properties of a composite reinforced with fibres assuming
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different models for frictional stresses on the debonded interface. This test was also modelled
analytically and numerically e.g. by Zhong and Pan (2003), Tsai et al. (2005), Zhang et al.
(2012) and Bheemreddy et al. (2013).

The cohesive zone model (CZM) relates the interfacial force with the crack opening
displacement. The zone of fracture process is reduced to a zero-thickness zone made up of
two coinciding cohesive surfaces that separate under loading according to a certain traction—
separation law. Analytical and numerical modelling of the pullout problem and comparison
with experiments was given by Nairn et al. (2001). Cohesive elements were used by Bobinski
and Tejchman (2011) to model crack nucleation and propagation at the interfaces between
matrix and grains in concrete. The pullout test of a single fibre was analysed numerically with
the use of CZM by Jia et al. (2011). The pullout problem of a brittle composite with
embedded fibre, where the process of fibre debonding was modelled as a mode Il crack with
frictional sliding, was discussed by Hutchinson and Jensen (1990). Cohesive damage
modelling was used by Bheemreddy et al. (2013) to develop a FEM model for a single fibre
pullout with debonding, aiming at determination of the load-displacement relationship for the
fibre. An extension of the Bheemreddy et al. (2013) model is a part of this thesis and will be
described in Chapter 6.

Real material microstructure images obtained with micro-CT technique were used for
modleling of fracture in concrete bending beams by Skarzynski and Tejchman (2016). The
concrete was modelled as a four-phase material, with regard to interfacial transition zones
(ITZ) and macrovoids. The microstructure of concrete and the developing crack were
observed with micro-CT technique before and after four-point bending test. Microstructure
image obtained from micro-CT was applied in 2D numerical model of four-point bending test.
Kozicki and Tejchman (2008) modelled fracture using discrete lattice model for concrete
reinforced with randomly distributed short steel fibres during three-point bending test.

Emmel (2002) proposed a numerical model of a Compact-Tension specimen made of
layered Al,O3/Cu/Al,O3 composite, with elastic ceramic outer parts and an inner thin stripe of
elasto-plastic copper, in which a crack propagated along the metal-ceramic interface due to
the fact that the pre-crack was co-linear with the interface between alumina and copper. The
presence of spherical cavities and spherical inclusions of copper oxide in the copper layer was
included in the model. The spherical inclusions of copper oxide were modelled at the copper-
alumina interface. Cavity growth was analysed in the plastically deformable copper phase.
The other materials, i.e. alumina and copper oxide, were taken as linear elastic. The problem
of the macrocrack growth in a compact-tension specimen made of such a composite was
investigated and modelled numerically.

3.1. Crack toughening by bridging - basic concepts and overview
of the main models

One of the primary objectives in fracture modelling of IPC materials is the determination
of fracture energy and fracture toughness increase due to plastically deforming ligaments
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connecting the crack surfaces. A key ingredient of all such models is the force-displacement
relationship in the reinforcing ligament. It is a challenging issue in analytical and numerical
models due to a complex state of deformation comprising i.a. large plastic strains and necking
of the ligament, ligament/matrix decohesion and crack opening and growth. Among the crack
toughening mechanisms encountered in metal-ceramic composites (cf. Fig. 3.1) crack
bridging is typically reported as the dominating mechanism in IPCs as shown in Fig. 3.2.

In order to make a review of the existing crack bridging models more comprehensive and,
at the same time, prepare the ground for the introduction of own numerical models for
fracture parameters of a bridged crack (cf. Chapter 6), the basic concept of J-integral and its
relation to the elastic energy release rate G and the stress intensity factor K, in mode | will
now be recalled (see also Seweryn, 2003; Gross and Seelig, 2006 for further discussion).

b)

Figure 3.2. Crack bridging by metal ligament undergoing plastic deformation and decohesion from
the surrounding ceramic matrix; (a) Al,Os/Al infiltrated composite (courtesy of PZMK IPPT PAN);
(b) Al,Os/Cu infiltrated composite (reproduced from Poniznik et al. 2015 with permission of Int. J.
Damage Mechanics); (c) Al,Os/Cu infiltrated composite.
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The J-integral introduced independently by Rice (1968) and Cherepanov (1967) is defined
as the integral of the strain energy density U and tractions T = ¢ - n, T; = o;;n;, acting inside
and along contour 7" in a homogeneous elastic material under a two-dimensional small
deformation field, with the assumptions of zero volume forces acting on the material.

For a straight traction-free crack and a contour /" connecting the opposite sides of a crack
and surrounding its tip, the J-integral takes the following form (e.g. Broek, 1974)

J =, (vdy -T-Zds) (3.1)

where u — displacement vector, ds — arc element of 7', n — unit outward vector normal to I".

The J-integral may also be formulated using the configurational forces approach,
originating from Eshelby (1951) solution. The concept and applications of the configurational
forces may be found in Maugin (1993, 2009), Miehe and Gurses (1999), Muller et al. (2004),
Gross et al. (2002, 2003) or Plate (2015). Using the configurational forces approach, the J-
integral may be expressed in vector form (cf. Gross and Seelig, 2006). If the crack develops
within a homogeneous elastic material with arbitrary nonlinearities and anisotropy, zero
volume forces and small deformations assumed, the J-integral vector is

3, = [byn,dA= [(Us, —oyu;, n;dA kj=123 (3.2)
oV ov

where: U(gj) - strain energy density, n; - unit vector, normal and directed outward to closed
surface 0V, by =Us;, —oyu;, - the Eshelby stress tensor. The components Ji of the J-integral

vector depend on loading modes. For pure mode | and pure mode Il the component J,
vanishes, while for mixed mode loading J; is nonzero and depends on the path.

For a crack-free material Jx = 0. In the plane case the J-integral (3.2) becomes a contour
integral of the form

1=13,=[Us,, -0, n,de = [(Udy-tu,,dc) (3.3)
C C

where: C denotes an open contour from one crack face to another surrounding the crack tip;
S = 1, 2 are directions parallel and perpendicular to the crack propagation direction,
espectively.

It has been shown in fracture mechanics that for elastic material, the J-integral is equal to
the energy release rate G during the crack development

1=G (3.4)

As shown by Irwin (1957) the energy release rate G may be related to the stress intensity
factors. In mode | these relations take the following simple forms

=G (3.5)
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in plane stress or plane strain conditions, respectively.

Calculation of the J-integral for a composite material with ductile reinforcements, thus
inhomogeneous with discontinuities in material properties on the interfaces, has been
undertaken only recently in the literature. There were analytical and numerical analyses
performed for the materials with continuous spatial variation of mechanical or thermal
properties, e.g. by Eischen (1987), Honein and Herrmann (1997), Anlas et al. (2000), Kim
and Paulino (2003). Simha et al. (2003) investigated the crack-driving force in elastic and
elastic-plastic bimaterials.

The problem of the crack with ductile reinforcements and modelling of the increase of the
energy release rate due to bridging, can be analyzed with the use of the cohesive zone model,
as described by Gross and Seelig (2011). The cohesive zone models assume the presence of
the cohesive zone within the narrow band along the crack faces. In the cohesive zone,
opposite crack faces interact with each other by the cohesive stresses. The J-integral is
calculated along the contour C close to crack faces. The cohesive models can be applied to
elastic materials reinforced with particles or fibres as in Fig. 3.1a, materials with microcracks,
or to ductile materials with cavities. The continuous cohesive stress distribution t(d) can be
replaced with a discrete distribution of stresses o(u) in the reinforcing bridging ligaments
depending on the displacements u in these bridges.

The cohesive zone model can be adapted for determination of the energy release rate
increase 4G in IPCs due to presence of the crack reinforcing bridges. The energy release rate
increase may be calculated taking discrete stress distribution o(u) in the bridging fibres
instead of the continuous distribution of cohesive stresses t(0). Gross and Seelig (2011)
expressed the J-integral for the cohesive zone model using the relationship between stresses t
and displacements ¢ in the bridging fibre

J= —T t(x)%[,f —vJdx = -T t(x) %dx = Tt(é)dc? (3.6)

a

where: a is the crack length, d - cohesive zone length, d < a, ¢ - relative displacement of the
crack faces (separation), 6 =o" — v, &, = &" (cf. Fig. 3.1) - crack opening displacement at the
physical crack tip, i.e. at the point of rupture of the reinforcing ligament, t — intermolecular
cohesive stress.

Thus, the value of J-integral depends on the cohesive stress distribution t(o) related to
separation 6. Assuming that equality (3.4) holds for the bridged crack in elastic matrix, the
elastic energy release rate becomes (Gross and Seelig, 2011)

G=["t(s)ds (3.7)
Existing theoretical models assume some form of the stress-displacement relationship for

the ligament. Mataga (1989) assumed that the necking ligament has the geometrical shape of a
paraboloid of rotation. Gross and Seelig (2011) assumed this relation in an exponential form
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t=eo. ée‘*%, e ~ 2.72, which results in a characteristic shape of the ¢-J relationship with
0

softening.

To avoid prior assumptions as to the stress-displacement relationship for the ligament, it
was decided in the present study to solve this problem numerically (cf. Chapter 6). In
preparation for that some reference models from the literature will be reviewed in the
following sections.

3.2. The model of Mataga

Mataga (1989) proposed an analytical approach to the problem of a plastic ligament
surrounded by an elastic matrix to compute the increase of fracture toughness based on the
crack bridging model (Fig. 3.1a). His work was motivated by the experimental investigations
of Sigl et al. (1988), which showed that an addition of a ductile phase to brittle material could
cause a rise in the fracture toughness.

The main objective of the Mataga model was to determine the nominal stresses in the
reinforcing ligament. If the bridging stresses are determined the elastic energy release rate
increase AG due to bridging is also obtained according to the following formula (Mataga,
1989)

AG=G-G,=f[ odu-fG, (3.8)

where G is the elastic energy release rate of the composite, Gy, — elastic energy release rate of
the matrix, c — nominal stress carried by the reinforcing ligament at displacement u (—0 at
u=4', &' — crack opening displacement COD at failure), f — volume fraction of the ductile
phase (assumed to be equal to the area fraction intercepted by the crack).

In Eq. 3.8, the term -fG,, reflects the fact that the area of matrix fracture is reduced by the
area of reinforcement sections. A scaled form of relationship 3.8 is (Mataga, 1989)

G = fo,rtw+(1- )G, 3.9)

where r{ is the initial radius of the ligament, oo denotes the initial yield stress of the ductile
phase; w is a scalar carrying the information on the geometric constraints experienced during
the deformation of the ligament, strain-hardening and the ligament rupture, and can further be
expressed as

w= """ id[%} (3.10)
rf

0 GO

Hence, to determine G it is necessary to derive the relationship between dimensionless
stresses (o/ay) and displacements (u/r°) in the reinforcing ligament.
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After relating the critical energy release rate to the fracture toughness (plane strain case)
the formula for w takes the form

1 {(1—VZ)K2 (- f)(l—Vi)Ki} (3.11)

W_
E E.

- 0
foor,

where (Kn, Em vm) and (K, E, v) denote the bulk modulus, the Young modulus and the
Poisson ratio of the matrix material and the composite, respectively.
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Figure 3.3. Geometry of the necking ligament in the model of Mataga (1989).

Assuming the shape of the reinforcing ligament at necking as a paraboloid of rotation of
constant volume, applying the result of Bridgman (1964) and the power law form of the true
stress-strain relationship of Ashby et al. (1989), one can obtain the relationship for the
nominal stress in the reinforcing ligament. Such a relationship was obtained by Mataga (1989)
and reformulated by Poniznik et al. (2015), with corrected misprint, as follows

1
2 _ 0y N
O |1 Al )il | Aol p)(rf)z (m{ 1 2}1}
a, ap-p)r®) ah,(h, +u)+u 1-pY |& (3.12)
r u 2h, 4p-=2p°
—1-, S0 sFTsF
S

where: 2hy — initial length of the bridging part of the fibre, 2h = 2hg + u — current length of the
reinforcing fibre part (see Fig. 3).

In the solution obtained by Mataga (1989) a softening part of the o(u) relationship is
included which is due to necking of the ligament. This softening behaviour indicates that the
bridging ligaments undergo large stretches across the growing crack faces and reduce the
crack opening. The normalized stresses in Mataga’s model evaluated with Eq. 3.12 were used
as a reference analytical solution for comparison of the numerical results obtained by FEM in
Poniznik et al. (2015). This numerical approach will further be used in this thesis.
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3.3. The model of Emmel

Emmel (1995) studied numerically the problem of a plastically deformable bridging fibre
embedded in an elastic matrix in order to apply the results in a 2D numerical model of
Compact-Tension test for a metal fibre reinforced composite. His model of the bridging fibre
was based on the model of Mataga (1989) and was intended as a numerical reproduction of
the experiments by Hoffman et al. (1997).

Firstly, the case of a single reinforcing ceramic fibre (Al,O3) in an elasto-plastic matrix
(Al-alloy) was investigated. The axisymmetric metal fibre was embedded in two separate
blocks of ceramics at both ends (mimicking an open crack) and subject to a tensile loading.
The calculations were made for a chosen set of nondimensional fibre/matrix debonding
parameters, which were assumed constant during the deformation process. In addition the
Gurson damage model (Gurson, 1977) was assumed for the fibre reinforcing the crack faces.
The calculations were made in ABAQUS. The obtained o(u) relationships were compared
with the results of theoretical model of Mataga (1989). They were further applied in a simple
2D ABAQUS model of a Compact-Tension test as the stress-displacement response of
reinforcing fibres considered as truss elements (only axial force, no bending moment). The
material with multiple reinforcing elasto-plastic metal fibres in a linear elastic ceramic matrix
was modelled taking the computed o(u) relationship and applying the obtained data via
UMAT procedure in ABAQUS. The truss element T2D2 was taken as the fibre model. The
crack opening simulation was made with the MPC procedure. The J-integral and K—factors
were calculated with the use of author’s procedure written in FORTRAN.

In the present thesis the model of Emmel (1995) was used when developing two- and
three-dimensional numerical models of reinforcing fibres and the Compact-Tension test
described in Chapter 6.

3.4. Other approaches in modelling of fracture of IPC

The issue of fracture toughness in advanced materials was discussed by Launey and
Ritchie (2009) for different types of materials, including composites. The fracture in
composite materials was discussed e.g. in the book by Argon (2013), for the domain restricted
to fibre reinforced shells having one of the dimensions significantly smaller than the
remaining two, and thus regarding mainly planar properties of sheets. Schmauder and
Mishnaevsky (2009) discussed micromechanical analyses and numerical simulations of
damage and fracture in different types of composites of complex microstructures, including
IPCs. Element removal method, embedded unit cells, or microvoid growth methods were
described. The matricity model was developed and applied for graded IPCs. Voxel based
method of 3D FE mesh generation was also described.

Weglewski et al. (2012, 2014) and Basista et al. (2016) developed a generic modelling
methodology for thermal residual stresses, damage and fracture in arbitrary composites,
making use of the computed microtomography images of the real composite microstructure to
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generate FE mesh. The FE mesh generation was performed with the use of Simpleware
ScanlP+ScanFE commercial software. Damage in IPC’s was also modelled by Mishnaevsky
(2007), together with deformation analysis, using numerical approach. 3D finite element mesh
generation models were compared for isotropic and gradiented IPCs.

3.5. Numerical modelling of crack propagation by XFEM

The crack propagation in real IPCs can be modelled numerically using Extended Finite
Element Method (XFEM) that is implemented in ABAQUS software. The idea of XFEM
method was introduced by Belytschko and Black (1999) and was described in detail e.g. by
Dumstorff and Meschke (2007). Bobinski and Tejchman (2011) applied XFEM approach to
modelling of fracture in concrete. Zangmeister (2015) analysed numerical aspects of
application of XFEM to modelling of heterogeneous materials undergoing elastic-plastic
deformation. The XFEM is suitable to model discontinuities in the material as an enriched
feature, where cracks are represented in the finite elements as the embedded discontinuities.
As a consequence the re-meshing with the evolution of the crack can be avoided. XFEM
enables the crack propagation of arbitrary, solution dependent direction and path. The crack
path is not restricted to edges of the elements but may continuously propagate through them
due to arbitrary enhancement functions that are incorporated in the finite element
approximation.

In ABAQUS (2010) used for calculations in Chapter 6 of this thesis, the solution of the
displacement field u obtained with XFEM is formulated as the following sum:

u =Yy N;(0) [u; + H)a; + =1 F (0)b{] (3.13)

where: N;(x) - nodal shape functions, u; — continuous part of the displacement field vector,
H(x) — discontinuous jump function across the crack surfaces, ai , bf— vectors of the nodal
enriched degrees of freedom, F,(x) - elastic asymptotic crack tip functions.

The displacement field u is, thus, composed of three terms, of which the first one applies
to all the nodes in the model, while the other two apply only to the nodes linked with the
crack: the second term applies to nodes with shape function support cut by the crack interior,
and the third one applies for nodes with shape function support cut by the crack tip.

The results of literature search on modelling of fracture in IPCs presented in this Chapter
show that this problem is still not well covered. More often the published research was
devoted to experimental characterization of fracture properties of IPCs than to modelling of
their mechanical properties. A substantial effect of interpenetrating microstructure on the
improvement of measured fracture properties has been reported. Following Launey and
Ritchie (2009), the strength and fracture toughness are almost mutually exclusive for most of
the materials, while limitations on engineering materials are in most cases connected with
fracture toughness. It is, thus, important to develop toughening mechanisms in the regarded
materials.
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At the same time, there is a lack of numerical attempts to the problem of fracture in IPCs.
The existing numerical works treat the problem using simple geometry and plane case
situations (e.g. Emmel, 1995 or Wang et al., 2014).

In line with the specific objectives stated in Chapter 4, the main goal of this thesis is to
provide numerical analysis of the deformation and crack development in interpenetrating
metal-ceramic composites taking into account the real material microstructure and the main
crack toughening mechanism occurring in the IPCs.
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4. Motivation, aim and theses of the dissertation

In the previous Chapter, a background for modelling of elastic properties and fracture in
metal-ceramic interpenetrating phase composites was outlined. The experimental
investigations of IPC materials show that detailed investigation of the deformation and
fracture processes is necessary for a proper identification and description of the IPC behavior
under in-service conditions. Due to the high costs of the IPCs processing and difficulties that
occur during their characterization, numerical modeling can be very helpful to reach this goal.

Motivation of this thesis comes from the necessity to investigate mechanical and physical
properties of newly designed IPC materials. While numerous IPC materials were already
manufactured and tested, there is still lack of reliable analytical models, appropriate for
special IPC microstructures. There is also a need for reliable numerical models that would be
both detailed enough to catch the most important features of the IPC microstructure, and, at
the same time, not too complicated to apply. The present work is intended to fulfill these
needs by proposing a number of analytical and numerical models to predict effective elastic
properties and fracture parameters of IPCs.

Succinctly stated, the main objectives of this work are as follows:

1. to develop analytical and numerical models predicting the effective elastic properties
of metal-ceramic composites with interpenetrating microstructure, and to verify the
obtained models by comparison with other methods and experimental data;

2. to develop analytical and numerical models of deformation of IPCs with account of
large plastic deformations of metal ligaments, matrix-reinforcement delamination and
toughening mechanism by crack bridging;

3. to develop numerical models for the macroscopic fracture in IPC materials with
account of real material microstructure from micro-CT images.

Since the present study is concerned with the effective elastic properties and deformation
and fracture parameters of IPCs, it is divided into two main parts: the first one concerning
modeling of the effective material properties of IPCs, and the second one focused on
modeling of deformation and fracture in IPCs. As novel materials are being modelled here
some relevant experimental background of material manufacturing and characterization are
included in Appendix.

The main theses of this dissertation may be formulated as follows:

1. The microstructure of IPC materials has a significant effect on their macroscopic
properties.

2. Numerical procedures for calculating the effective elastic and thermal properties,
when combined with computed micro-tomography images make it possible to analyze
different actual microstructures and their impact on the IPC properties on macroscale.
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3. Comparison of analytical predictions and experimental measurements of elastic
properties at room temperature enables fast identification of a composite
microstructure with optimum properties.

4. Numerical models are capable to account for phenomena that may occur in real IPC
materials, such as interconnected fibers, delamination, skew fibers, contact between
delaminated fiber and matrix, interaction between bridging fibers.

5. Crack growth in metal-ceramic interpenetrating composites is best captured by
numerical models due to complexity of IPC microstructure.

In the following chapters an attempt will be made to give evidence in support of these
theses using analytical and numerical methods of contemporary mechanics as applied to
composite materials with interpenetrating metal-ceramic networks.
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5. Effective elastic and thermal properties of IPCs - analytical
and numerical modelling

In this Chapter analytical and numerical models for the effective elastic and thermal
properties of interpenetrating phase composites will be proposed. The main objective, besides
prediction of effective material properties, is to investigate the influence of different
composite microstructures and volume fractions of phases on macroscopic mechanical and
thermal characteristics of IPCs.

A part of research reported in this Chapter was conducted by the author in the framework
of the KMM-NoOE Project of the 6™ EU Framework Programme (http:/aisbl.kmm-
vin.eu/node/180), including research stays at the Institute of Mechanics of Darmstadt
University of Technology (TUD) in Germany.

The models of effective properties to be presented were developed for material
microstructures that were either idealized and simplified, or obtained from the real composites
via computed microtomography (micro-CT). The obtained models were numerically
implemented for specific composite materials Al,O3/Al and Al,O3/Cu. Manufacturing and
characterization of the Al,O3/Cu IPC was performed in part within this thesis, and will be
described in the Appendix.

For the purposes of this thesis, it is assumed that metal (copper or aluminum) and ceramic
Al,O3 phases of the composite are isotropic (for details on the crystallographic microstructure
see cf. Dobrzanski (2013), for detailed analysis of symmetry properties and anisotropy
analysis of single crystals check Ostrowska-Maciejewska and Kowalczyk-Gajewska (2013).
A simplified unit cell (cross) with idealized internal structure representing interpenetration of
phases shown in Fig. 5.1a will be used in analytical and numerical estimations of the effective
elastic constants. The IPC microstructure, depicted in Fig. 5.1a, has cubic symmetry and is
generally anisotropic. However, real IPCs have irregular microstructure (cf. Fig. A6 in
Appendix), in which such a unit cell can be regarded for different material points, as
positioned at different angles to the macroscopic loading direction. The effects occuring due
to different positions mutually annihilate, and, thus, the macroscopic composite body may be
considered as isotropic. Moreover, Young’s moduli of IPCs measured within this thesis in
two orthogonal directions generally did not differ more than 1% (cf. Table A2 in Appendix).
Hence, it was assumed that the investigated composites are macroscopically isotropic (Feng et
al., 2003, 2004; Poniznik et al., 2008).

The following effective elastic constants, selected for their practical importance, will be
modelled analytically: Young’s modulus, shear modulus, bulk modulus and Poisson’s ratio in
Section 5.1.1, and the effective coefficient of thermal expansion in Section 5.1.2. Besides
analytical estimates, numerical models of the effective Young’s modulus, shear modulus and
Poisson’s ratio will be presented in Section 5.2.

The state of the art in modelling of the overall mechanical constants of IPC’s has been
presented in Chapter 2. The results presented below were partially published in Poniznik et al.
(2008) and Basista and Poniznik (2010).
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5.1. Analytical approximations

The main issue in deriving analytical extensions of the existing models and bounds on the
overall material constants, was determination of the effective elastic constants for IPCs
directly from the stiffness tensor. In what follows analytical extensions of the Tuchinskii
(1983) and Feng et al. (2003, 2004) models and bounds on the effective Young’s modulus,
shear modulus and Poisson’s ratio will be obtained directly from the stiffness tensor. The
effective coefficient of thermal expansion as derived from the Rosen and Hashin (1970)
relationship will also be provided.

5.1. Modified Feng-Tuchinskii model for effective elastic properties

The models of Tuchinskii (1983) and Feng et al. (2003, 2004) of the effective elastic
moduli of composites with interpenetrating microstructure described in Section 2.1.2, were
derived from i.e. Young’s moduli and Poisson’s ratio. Below, the modification to the
approximations of Tuchinskii (1983) and Feng et al. (2003, 2004) will be shown. The results
presented in this Subsection, i.e. analytical formulae and their graphical representations, were
first published in the paper of Poniznik et al. (2008). However, neither detailed derivation nor
the final full-length formulae for the effective Young’s moduli and Poisson’s ratios, were not
included therein due to their enormous size and will be shown in this Subsection.

The idea of Tuchinskii (1983) and Feng et al. (2003, 2004) for derivation of the
effective elastic moduli of IPCs was based on a series of divisions of the unit cell till it was
decomposed into pieces made up of only one material phase, and thus having the effective
material properties equal to the properties of this phase. According to the iso-strain and iso-
stress assumptions, the effective properties of groups of neighbouring pieces can be
calculated. Then, these groups can be put together to form layers and their effective properties
can also be derived. Finally, the effective properties of the whole unit cell, composed of these
layers, can be obtained. Tuchinskii (1983) divided the unit cell according to the iso-strain and
iso-stress assumptions relative to the applied uniaxial stress direction. However, the unit cell
can be divided into layers in two different ways. Then, for one of these ways, layers can be
divided into sublayers also in two different ways. In total, there are three ways of unit cell
division possible (cf. Table 5.1) and all of them lead to different results, what will be shown
below. The iso-stress and iso-strain assumptions lead to bounds on effective constants. Such
bounds were considered by Tuchinskii (1983). The third division direction procedure (Fig.
5.1b) could be considered as a model for a particular effective response of the material.
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a) 2
1
3
1
Y vertical sectioning — iso-strain assumption
@ — Voigt model

b) 3

layers 1, 2, 3

composed of

""""" sublayers

horizontal sectioning
— iso-stress assumption
— Reuss model

sublayers
composed of
elementary cells

vertical sectioning — iso-strain
assumption — Voigt model

elementary cells
containing only
one material phase
(AorB)

Figure 5.1. (a) Unit cell of a simplified interpenetrating microstructure (“cross microstructure”) based
on the models of Frey (1932), Tuchinskii (1983) and Feng et al. (2003, 2004), used in modelling of
effective mechanical properties of IPCs, (b) decomposition sequence of the unit cell according to the
“extended” V-R-V model in vertical (V) and horizontal (H) directions (reprinted with permission of
Computational Materials Science).
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Table 5.1. Different ways of division of the unit cell depicted in Fig. 5.1a.

Procedure
stages i ii iii
Naming elementary
. layers sublayers
convention cells
vertical — iso- horizontal — vertical — iso-
strain — Voigt iSO-stress — strain — Voigt
V-R-V model Reuss model model
vertical — iso- vertical — iso- horizontal —
strain — Voigt strain — Voigt iso-stress —
V-V-R model model Reuss model
horizontal — vertical — iso- vertical — iso-
iso-stress — strain — Voigt strain — Voigt
R-V-V Reuss model model model

Both Tuchinskii (1983) and Feng et al. (2003, 2004) derived the effective Young’s
modulus as if it would be one of eigenmoduli of the isotropic stiffness tensor, which is not the
case. If formulae for Young’s modulus and effective Poisson’s ratio were derived from the
effective bulk and shear moduli, they would have different forms as will be shown below. In
this thesis, extended models will be proposed for the effective bulk and shear moduli, which
are the eigenmoduli of the isotropic stiffness tensor.

According to the definition of effective elastic moduli (cf. Aboudi, 1991; Nemat-Nasser
and Hori, 1999 or Gross and Seelig, 2006), the average stress o tensor in a representative
volume element (RVE) of a composite subjected to homogeneous displacement boundary

conditions is related to the average strain g tensor by the effective elastic stiffness tensor o

6=C’¢, or: o;=Cyé, (5.1)

Alternatively, when homogeneous traction boundary conditions are imposed on the RVE the
average strain tensor is related to the average stress tensor by the effective compliance tensor
S*

¢=Ss, or: &

= SijaTi (5:2)
The components of the stiffness tensor Cjjq for an isotropic material can be expressed as

(cf. Ostrowska-Maciejewska, 1994; Ostrowska-Maciejewska and Kowalczyk-Gajewska,
2013)
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C=3K§hr+&dD=3K§1®1+2u05—§1®1)
(5.3 a,b)

Cijkl :Mij5kl +/u(5ik5jl +5iI5jk)

where 1 is a 2" rank unity tensor, 1 = gy, I° is the symmetric part of a 4" rank unity tensor I,
Iijk| = Jik 5j|, Ilsjkl = %(61-,(5]-1 + 6il6jk)’ with Ip = IS — § 1®1 — deviatoric part and Ip = IS —

Ip = §1®1 — spherical part, /1 and x are Lamé constants, d;; is the Kronecker delta.

Thus, according to the relationships between Lamé constants and the elastic constants
(Young’s modulus E, Poisson’s ratio v, bulk modulus K, and shear modulus x), only the bulk
modulus K and shear modulus x are the eigenvalues of the stiffness tensor:

Cl111= Cpp =Cogas=2u+ 1=K+ 5, (5.4)
C1122 = C1133 = C2233 =1=K- %/u

while the other elastic constants are interrelated, for instance Young’s modulus E and
Poisson’s ratio v, namely

EQl-v)
QU+ A=,
S:vwrQV) (5.5)
T @+v)i-2v)

Consequently, the formulae for the effective elastic constants in Tuchinskii (1983) and
Feng et al. (2003, 2004) should have been derived from direct components of the stiffness
tensor, e.g. bulk modulus K and shear modulus ux, but neither Young’s modulus E nor
Poisson’s ratio v. Moreover, the Tuchinskii model (1983) contains some errors and misprints
as shown in Poniznik et al. (2008).

According to the idea of unit cell sectioning (cf. Fig. 5.1b and Table 5.1), the effective
elastic properties for IPC modelled by the cross microstructure (Fig. 5.1a), can be derived as
described below (note that for isotropic materials, the engineering constant G known as shear
modulus, is equal to the Lamé constant x, thus for convenience u will be replaced by G in the
sequel).

A 3D-cross cubic unit cell shown in Fig. 5.1a is composed of two mutually
interpenetrating phases A and B, where phase B has ligaments with geometry of a square
section characterized by the dimension a (0 < a < 1). The total volume fraction f of the phase
B in the cubic unit cell from Fig. 5.1a may be expressed as the sum of the volumes of one
cube with the phase B in the middle and six “branching” cuboids with the phase B of identical
dimensions, as related to the total volume of the unit cube
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_a*+6a®(1—a)/2

_ 3 201 — ) — 3 2 _ 2.3
T 11 =a’+3a*(1—a)=a’>+3a*—-3a

=3a?—2a® =a?(3—2a) (dimensionless) (5.6)

When tensile loading acts along the axis ‘“2”, the unit cell can be divided by planar
surfaces perpendicular to the axes of the coordinate system into layers and then sublayers
until elementary cells, where each cell is composed of only one phase material. Let us first
consider the division direction presented in Fig. 5.1b according to the following “extended”
V-R-V model.

The “extended” V-R-V model

First, the unit cell is divided into layers perpendicularly to the axis “1”, according to the
Voigt iso-strain assumption. The effective shear and bulk modulus of the unit cell may be
formulated in terms of the respective properties of each layer

3
G =) ¢G =¢G, +¢,G, +¢,G, =2¢G, +C,G,

i=1

(5.7 a,b)
3
K™ =>¢K =cK, +¢,K, +¢,K; =2¢,K, +¢,K,
i=1

where: i - identifier of the layer, c; - volume fraction of the i-th layer, c; = c3, ¢, =1 - 2¢, Gj -
shear modulus of the i-th layer, K; - bulk modulus of the i-th layer, G; = Gs, K; = Kj, G

effective shear modulus of the whole unit cell, K™ - effective bulk modulus of the whole unit
cell.

The volume fraction of the i-th layer is related to the characteristic dimension a of the
phase B as

_111—a_1—a di onl
T 1.1 =5 (dimensionless),

(5.8 a,b)

c;=1—2¢; = =1-1a=a (dimensionless)

1-1-1

Then, each layer is divided into sublayers according to the Reuss iso-stress assumption
perpendicularly to the axis “2”
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-1 -1 -1
11
G* _ z Cj _ C, + Cy + Cyy _ ch + Cy _
Wl 46 |G G G |G G -
j=1 sublayer, j sublayer,| sublayer,ll sublayer, Il sublayer,| sublayer,ll

1 -1
_ ( ZCI + 1_ 2Cl ] — (ZCIGsublayer,ll + (1_ 2CI )Gsublayer,l ]
G

B G G G

sublayer,! sublayer,ll sublayer,I ~sublayerl

(5.9 a,b)

-1 -1 -1
11
K: = Z Ci _ C, + Cy + Ci _ 2CI + Cy _
el 4K K K K K K -
j=1 sublayer, j sublayer,| sublayer, 1l sublayer, 111 sublayer,! sublayer, I

1 -1
:[ 2C| 4 1- 2C| ] _ (ZCI Ksublayer,ll + (1_ 2CI )Ksublayer,l ]
K

K K K

sublayer,! sublayer, Il sublayer,1 ' “sublayer,ll

where: j —identifier of the sublayer, c; - volume fraction of the j-th sublayer, ¢, = ¢y, ¢y =1 -
21, Gsublayerj - Shear modulus of the j-th sublayer, Ksupiayerj - bulk modulus of the j-th sublayer,

Gi = G, Ki = Kii, Gy
- effective bulk modulus of the layer composed of sublayers.

*

- effective shear modulus of the layer composed of sublayers, K.,

Depending on the layer, the volume fractions of sublayers related to the volumes of layers
(for we calculate now the effective properties of layers), may be expressed as

for layers 1 and 3

1_1—a_1—a
o= :V1—111: 2 2 :1—‘1
(5.10 a,b)
1—
1 1-a Za
CII:l_ZCI:V = 1_a =a
1-3
2
for layer 2
1. 1-a
_ A
A T
2
(5.11 a,b)
Cllzl_zclz‘;_lzl:i:il__‘zza

Each sublayer can be divided into elementary cells composed of only one phase A or B,
perpendicularly to the axis “3”, according to the Voigt iso-strain assumption in each of the
sublayer’s elementary cell. However, sublayers should be characterized in three groups.

41



For sublayers (1, I1), (2, 1), (2, 1), (3, 1)

G:ublayer = kgBCka = 2CAGA + CBGB = CBGB + (1_CB )GA = aGB + (1_ a)GA

(5.12 a,b)

K:ublayer = chKk =2c,K,+Cc;Kg =Ky +(1—cB)KA =aK, +(l_a)KA

k=A,B

where k —identifier of the phase A or B, Gy - shear modulus of the k-th phase, Ky - bulk
modulus of the i-th phase, ¢, - volume fraction of the k-th phase in each sublayer, cg =1 -ca =

*

a, cg - volume fraction of the phase B in each sublayer, G, - effective shear modulus of

*

the sublayer composed of elementary cells, K., - effective bulk modulus of the sublayer
composed of elementary cells.

For sublayers (1, ), (1, 1), (3, ), (3, 1)

G:ublayer = GA ! K:ublayer = KA (513 a!b)
while for sublayer (2, I1):
G:ublayer = GB ’ K:ublayer = KB (514 avb)

Now, the effective properties of layers may be calculated. For layers 1 and 3, according to
Eqg. (5.9) combined with (5.10) and (5.13) gives

-1

_ 1—a
) 2¢; Ci b2 ( 2 ) a
Glayer1,3 = G + =

+ =
sublayer,I Gsublayer,ll Gsublayer,] Gsublayer,ll
3 (1—a+ a )_1 (A —a)(aGp + (1 —a)G,) + aGy -
\ G, aGg+(1-a)G,/ G (aGg + (1 —a)G,)
(5.15a,b)
_ 1—a -1
x 2¢y 90 ! 2 ( 2 ) a
Klayerl 3= + = + =
' Ksublayer,] Ksublayer,ll Ksublayer,] Ksublayer,II
3 (1 —a N a )_1 (A —a)(aKp + (1 — a)K,) + akK, -
"\ K, aKz+(1—-a)K,)] K,(aKg + (1 — a)K,)
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The effective elastic properties of layer 2, according to Eq. (5.9) with the use of Egs (5.11)
and (5.14) can be expressed as

_ 1—a
G =< 2¢; + Crp >1= 2( 2 ) +i _
layer.2 Gsublayer,l Gsublayer,II aGB + (1 - a) GA GB
B ( 1—a N a)_l (1= a)Gg + alaGp + (1 —a)G,) -
\aGg+ (1 -a)G, Gg) Gg(aGg + (1 —a)G,)
(5.16 a,b)
_ 1—a -1
K* =< 2¢; + Ci >1= 2( 2 ) +i
layer.2 Ksublayer,l Ksublayer,ll aKB + (1 - a)KA KB
B ( 1-a N a)_l _ (1= a)Kp + alaKp + (1 — a)Ky) -
“\aKz+ (1 —-a)K, Kg/ Kgz(aKz + (1 — a)K,)

Upon substitution of Egs (5.8), (5.15) and (5.16), to (5.7) the effective elastic shear and
bulk moduli of the unit cell may be written as

Gvry = 2¢1Giayer1,3 + C2Giayer2 =
_, <1 - a) ((1 —a)(aGy + (1 — a)G,) + aGA>_1
2 G.(aGy + (1 — a)G,)
(1-a)Gg + a(aGy + (1 —a)Gy)\
* a( Gs(aGs + (1 — a)Gy) ) -
C-a ((1 —a)(aGy + (1 — A)G,) + aGA>‘1
Ga(aGp + (1 —a)Gy)
(1—a)Gg +alaGs + (1 —a)G,)\ "
+ a( Gp(aGp + (1 — )Gy )

(5.17 a,b)

Kyry = 2¢1Kiayer1,3 + C2Kiayer2 =
(1 - a) (1-a)(aKz + (1 — K, + ak,\ "
2 K,(aKgz + (1 — a)K,)

(1 - a)Ks +alaks + (1 — K\
* a( Kz(aKp + (1 — 0)K,) ) =

43



_ (1-a)(aKs + (1 — @)K,) + aky\
={1-a) < Ka(aKs + (1 — )Ky) )

(1 - a)Ky + a(aKy + (1 — )K)\
* a( Ky(aKp + (1 — 0)K,) )

The formula (5.17a) was first published in Poniznik et al. (2008). It was noted that the
formula for the effective bulk modulus (5.17b) would have the same form with substitution of
G by K.

The formulae for the “extended” V-R-V model of the effective Young’s modulus and
Poisson’s ratio may be obtained from the well-known relationships between elastic constants,
such as (5.4) and (5.5) as follows

E* — 9GI>;RVKI;RV
RV 3KI;RV + G;RV
(5.18 a,b)
v — 3KI;RV - ZGI;RV
RV 2GI;RV + 6KI;RV

The full-length Eq. (5.18) for the effective elastic Young’s modulus and Poisson’s ratio
according to the “extended” V-R-V model, due to their enormous size, will be additionally
presented on separate pages in the final part of this Subsection.

The relationships (5.17) and (5.18), related to the volume fraction of metal phase with the
formula (5.6) are graphically represented as the “extended V-R-V model” in Figs 5.2 — 5.5 at
the end of this Chapter.

The “extended” V-V-R model

To derive the formulae for the “extended” V-V-R models to the effective elastic constants,
the unit cell is divided into layers as in the previous case, perpendicularly to the axis “1” (cf.
Fig. 5.1 and Table 5.1), according to the Voigt iso-strain assumption.

The effective shear and bulk moduli of the unit cell will, thus, have identical form as the
formulae (5.7)

3
G =) ¢G =¢G, +C,G, +¢,G, =2¢G, +C,G,
i=1

(5.19a,b)

3
K™ =>¢K =cK, +¢,K, +¢,K, =2¢,K, +¢,K,
i=1
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where: i - identifier of the layer, c; - volume fraction of the i-th layer, ¢; = c3, c; = 1 - 2¢4, Gj -
shear modulus of the i-th layer, K; - bulk modulus of the i-th layer, G; = G3, K; = K3, G -

effective shear modulus of the whole unit cell, K™ - effective bulk modulus of the whole unit

cell.

Volume fractions of the layers related to the characteristic dimension a of the phase B,
regardless of the unit cell division direction, remain the same according to formulae (5.8),
(5.10) and (5.11).

The second division direction of layers into sublayers follows the Voigt iso-strain
assumption again and is made perpendicularly to the axis “3”

111
* — — —
Glayer = z CiGsubiayer,j = CiGsubiayers T CtiGsubiayerii + CriiGsubiayer, i =
j=I

= 2CIGsublayer,I + CIIGsublayer,II

(5.20 a,b)

111
* — — —
Klayer = z CiKsubiayer,j = CiKsubtayers + Ctilsubtayer,ii + Critlsubiayer, i =
j=I
= 2CIKsublayer,I + CIIKsublayer,II

where: j —identifier of the sublayer, c; - volume fraction of the j-th sublayer, ¢, = ¢y, ¢y =1 -
21, Gsublayerj - Shear modulus of the j-th sublayer, Ksupiayerj - bulk modulus of the j-th sublayer,

G =G, Ki =Ky, G,*ayer - effective shear modulus of the layer composed of sublayers, K

layer

- effective bulk modulus of the layer composed of sublayers.

Finally, each sublayer is divided into elementary cells, composed of only one phase A or
B, perpendicularly to the axis “2”, according to the Reuss iso-stress assumption of equal stress
in each of the sublayer’s elementary cell. As for the previous case, sublayers are characterized
in three groups. For the sublayers respective to (1, I1), (2, ), (2, 1), (3, I) from Fig. 5.1b

-1

-1

. Ck 2c,  cg\ * 1—cg cp 1—a a

sublayer — - =\t = + = = + =
K=A.B Gsublayer,k GA GB GA GB GA GB

(5.21 a,b)

-1

-1

-1
c 2c c 1 1-c c 1—-a a
E—k :(_A+_B) :< B+_B> :( +_)
K=AB Ksublayer,k KA KB KA KB KA KB

-1

* —
Ksublayer - (

where k —identifier of the phase A or B, Gk - shear modulus of the k-th phase, K - bulk
modulus of the i-th phase, ci - volume fraction of the k-th phase in each sublayer, cg =1 - ca =
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*

a, Ccg - volume fraction of the phase B in each sublayer, G - effective shear modulus of

sublayer

*

the sublayer composed of elementary cells, K., - effective bulk modulus of the sublayer

composed of elementary cells.

For sublayers respective to (1, 1), (1, 1), (3, 1), (3, Il) and (2, Il) from Fig. 5.1b, the
relations 5.13 and 5.14 remain as

* *

G GA’ Ksublayer = KA (522 a!b)

sublayer =

while for a sublayer with regard to (2, 11) from Fig. 5.1b we get

* *

G G, ., K ~K, (5.23a,b)

sublayer = sublayer

The effective properties of layers may now be calculated. For layers 1 and 3, according to
Eq. (5.20) with the use of (5.10), (5.21) and (5.22) it follows that

-1

i 1—a l1—a a
Glayerl,S = 2CIGsublayer,I + CIIGsublayer,II =2 2 Gy + a( G, + G_B) =
(1-a)G, + (1_a+a)_1
=(1-a a —
4 Gy Gp
(5.24 a,b)
i 1—a 1—-a a\!
Klayerl,S = 2CIKsublayer,I + CIIKsublayer,II =2 Ky + a( K, + K_B> =

-1

= - Ky +a (" +)
= a)ny a KA KB

The effective elastic properties of layer 2, according to formulae (5.20) combined with
(5.11), (5.21) and (5.23) can be expressed as

-1

X l—a/l—a a
Glayer,z = 2CIGsublayer,I + CIIGsublayer,II =2 ( + _> +aGp =
2 Gy Gg
-1 )(1_a+ a)_1+ G
= a GA GB abpg
(5.25 a.b)
. l-a/l—a a\"
Klayer,z = 2CIKsublayer,I + Clleublayer,II = 2_( + _) +aKp =
2 K, Ky
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1-a, a)_1+ K
K, 'K) "B

=-a

Using the formulae (5.8), (5.24) and (5.25) the expressions (5.19) for the V-V-R models of
the effective shear and bulk moduli of the unit cell may be written as

* — —
GVVR - 2ClGlayer1,3 + CZGlayer,Z -

-1 -1

=222 1 -aye,+ (24 8) e - (2 2) +ac
4T Dot A\ TG, ¢ Y\, TG a5

-1

a 1-—a
=a’Gg + (1 —a)?G4 + 2a(1 —a) <—+ )
Gg Gy
(5.26 ab)
Kyyr = 2ClKlayer1,3 + CZKlayer,Z =
=222 a-ayk, + (1_a+ a)_l +af (1 )(1_a+ a)_1+ K,
4T DRaT T Tk, ¢ AN %8

-1

a 1-a
=a’Kg+ (1 —a)?’K, + 2a(1 —a) (— + >
Kg K4

with the same relations (upon substitution of K by G) for V-V-R model for shear modulus G*.

The formula for the V-V-R model for shear modulus (5.26a) is identical with formula
(2.21) of the Feng model. The formula (5.26b) was first published in Poniznik et al. (2008),
with a misprint (wrong bracket placement) in the equation (6) therein. It was noted, that the
formula for the effective shear modulus (5.26a) would have the same form with K substituted
by G.

Using the well-known relationships between elastic constants (5.4) and (5.5), the V-V-R
models for the effective Young’s modulus and Poisson’s ratio may be obtained

E* — 9GI>;VRKI;VR
VR 3I{IjVR + G;VR
(5.27 a,b)
V* — 3KI;VR - ZG{;VR
VR 2G‘;VR + 6KI;VR

The relationships (5.26) and (5.27), related to the volume fraction of metal phase with the
formula (5.6), are depicted in Figs 5.2 — 5.5 as the “extended” V-V-R models.
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The “extended” R-V-V model

For derivation of the “extended” R-V-V model the unit cell is first divided into layers
perpendicularly to the axis “2”, according to the Reuss iso-stress assumption (cf. Fig. 5.1 and
Table 5.1). The effective shear and bulk moduli of the unit cell formulated in terms of the
respective properties of each layer read

L\ L2 26 1—2¢y\"
C; C C C3\ C C C — 4C
Gt = 2_ =(_1+_2+_3) =(_1+_2> =(_1+ 1)
G; G, G, G G, G, G, G,

i=1
(5.28 a,b)
3 -1
c; ci ¢ c\' 2¢; ¢\ Y /2¢; 1—2¢c\7*
K* = 2_ =(_1+_2+_3) =(_1+_2) =(_1+ 1)
K Ky K, Ks Ky K, Ky K,
=

where: i - identifier of the layer, c; - volume fraction of the i-th layer, ¢; = c3, ¢, =1 - 2¢, Gj -
shear modulus of the i-th layer, K; - bulk modulus of the i-th layer, G; = G3, Ky = K, ' -

effective shear modulus of the whole unit cell, K" - effective bulk modulus of the whole unit
cell.

Volume fractions of the layers related to the characteristic dimension a of the phase B,

regardless of the unit cell division direction, remain the same and are given by formulae (5.8),
(5.10) and (5.11).

The second division direction of layers into sublayers follows the Voigt iso-strain
assumption again and is made perpendicularly to the axis “3”:

I

* — — —
Glayer - Z Cj Gsublayer,j = Gsublayer,l + CIIGsublayer,II + Cin Gsublayer,lll -
j=1

= 2CIGsublayer,I + CIIGsublayer,II

(5.29 a,b)

111

* — — —
Klayer - Z Cstublayer,j - CIKsublayer,I + CIIKsublayer,II + CIIIKsublayer,III -
j=1
= 2Cleublayer,I + CIIKsublayer,II

where: j —identifier of the sublayer, c; - volume fraction of the j-th sublayer, ¢, = cyy, cy =1 -
21, Gsublayer,j - shear modulus of the j-th sublayer, Ksupiayer j - bulk modulus of the j-th sublayer,

Gi =G, Ki =Ky, G;yer - effective shear modulus of the layer composed of sublayers, K;
- effective bulk modulus of the layer composed of sublayers.

layer

The division of the sublayers into elementary cells, composed of only one phase A or B, is
made perpendicularly to the axis “1”, according to the Voigt iso-strain assumption of equal
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strain in each of the sublayer’s elementary cell. Sublayers are characterized in three groups, as
in previous cases. For the sublayers respective to (1, Il), (2, 1), (2, 1), (3, I) from Fig. 5.1b we
obtain

G, > ¢,Gy =2¢,G, +C3Gg =CyG +(1-C5 )G, =aG, +(1-a)G,

k=A,B

sublayer

(5.30 a,b)

= > ¢ K, =2¢c,K, +¢K; =c;K; +(1-¢5)K, =aK, +(1-a)K,

k=A,B

sublayer

where: k —identifier of the phase A or B, Gk - shear modulus of the k-th phase, Ky - bulk
modulus of the i-th phase, ¢, - volume fraction of the k-th phase in each sublayer,cg =1-cp =

a, Cg - volume fraction of the phase B in each sublayer, G, - effective shear modulus of

sublayer

the sublayer composed of elementary cells, K_ - effective bulk modulus of the sublayer

sublayer

composed of elementary cells.

For the sublayers respective to (1, I), (1, 1), (3, ), (3, ) and (2, 1) from Fig. 5.1b, the
relations (5.13)/(5.22) and (5.14)/(5.23) hold as before:

G, paer =Ca » K. =K, (5.31 a,b)

sublayer sublayer
and for the sublayer respective to (2, 1) from Fig. 5.1b

G, e =Gs » K. =K, (5.32 a,b)

sublayer sublayer

The effective properties of layers 1 and 3, according to formulae (5.29) with regard to
(5.10), (5.30) and (5.31), take the form

—a
GA + a(aGB + (1 - a)GA) =

Gl*ayerl,3 = 2CIGsubchyer,I + CIIGsublayer,II =2
=1 —-a)Gs+a’Gg+a(l—a)Gy=(1+a)(l—a)G, +a’Gg
= (1 - az)GA + aZGB
(5.33 a,b)

a
Klayer1,3 = 2C1Ksublayer,1 + CIIKsublayer,II =2 TKA + a(aKB + (1 - a)KA) =

=(1-a)K,+a’Kg+a(l-—a)K,= (1 +a)(1—a)K, + a’Kyp
= (1 - aZ)KA + aZKB
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The effective elastic properties of layer 2, according to formulae (5.20) combined with
(5.11), (5.21) and (5.23) become

a
2 (aGB + (1 - a)GA) + aGB =

* — J—
Glayer,z - 2CIGsublayer,I + Clleublayer,II =2

=a(l-a)Gg+ (1 —a)’G,+aGg = (1 —a)?G, +a(2—a)Gy

(5.34ah)
—a
2 (aKB + (1 - a)KA) + aKB =
=a(l—-a)Kg+ (1 —a)?K, +aKz = (1 —a)’K, + a(2 — a)Ky

* — J—
Klayer,z - 2CIKsublayer,I + Clleublayer,II =2

Substituting (5.8), (5.33) and (5.34) to Egs (5.28) for the R-V-V model of the effective
shear and bulk moduli of the unit cell, may be written as

-1
. 2¢q cy
Gryy = G + G
layer1,3 layer,2

1—a
2 > a

A=a))G, + 26, T 1=, + a2 —a)G,

-1

1—a a
= +
((1 —a?)G,+a’Gg (1—a)?G,+a(2 - a)GB)

(5.35 a,b)

-1
. 2cq Cy
Kryy = K + K
layerl,3 layer,2

1—a
2 > a

+
(1—a?®)K,+a’Ky (1 —a)?K,+a(2—a)Kg

-1

1—a a
= ((1 — K, + @K, | (1= a)2K, + a2 — a)KB)

with the same relations (with substitution of K by G) for R-V-V model for shear modulus G*.
The formula (5.35b) was first published in Poniznik et al. (2008), with a misprint (missing
power) in the equation (7) therein. It was noted, that the formula for the effective shear
modulus (5.35a) would have the same form with substitution of K by G.

Using the relationships (5.4) and (5.5) between elastic constants the formulae for the
effective Young’s modulus and Poisson’s ratio, respectively, according to the “extended” R-
V-V model can be expressed in usual way
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EX — 9GEVVK;VV
v 3I(I}kVV + G;VV
(5.36 a,b)
o _ 3y = 26y
v 2GEVV + 6KEVV

with Ggy and Kz, given by Egs (5.35 a,b).

The relationships (5.35) and (5.36) with the volume fraction of metal phase defined by the
formula (5.6), are depicted in Figs 5.2 — 5.5 as the “extended” R-V-V models.

Comparison of analytical models for the effective elastic constants

The relationships of the “extended” models of the effective elastic moduli of IPCs,
expressed with formulae (5.17), (5.18), (5.26), (5.27), (5.35) and (5.36), with the volume
fraction of metal phase given by the formula (5.6), are depicted in Figs 5.2, 5.3, 5.4 and 5.5.
These relationships are collected and compared with existing bounds and models for the
effective elastic constants described in Chapter 2.

The material constants of the investigated IPCs’ components: alumina Al,O3, aluminum
Al and copper Cu, that were used for calculations, are collected in Table 5.2.

The full-length formulae (5.18) for the effective elastic Young’s modulus and Poisson’s
ratio according to the “extended” V-R-V model, are presented separately on the next page due
to their enormous size. Similarly obtained full-length formulae (5.27) and (5.36), will not be
presented.

Table 5.2. Material constants used in calculations. The data were obtained from: Moon et al. (2005)
for alumina and aluminum, material data tables of Deutsches Kupferinstitut Cu-ETP (2005) and Lipka
(1990) for Cu; the values of bulk and shear moduli were calculated from Young’s moduli and
Poisson’s ratios for the respective materials using relations (5.4) and (5.5) between the elastic
constants.

Al,O4 Cu Al
Ea, Es[GPa] 390.0 110.0 69.0
Ga, Gg [GPa] 162.5 40.7 25.9
Ka, Kg [GPa] 216.7 122.2 76.0
Va, VB 0.2 0.35 0.33

o1



CS

E — 9G;RVK;RV —
RV 3I(;RV + G;RV

(1 —a)(a6g + (1 — a)Gy) + aG,\ (1-a)Gg + alaGy + (1 — )G\ * (1-a)(aKs + (1 — a)K,) + ak,\ " (1 - a)Kg + alaKs + (1 — @)K\
_9<(1_“)( o e ey oy IR G v e iy oy >((1_“)< kT oty ) R om )

(1-a)(aKz + (1 — A)K,) + ak,\ " (1 - @)Ky + a(aKz + (1 — a)K)\ " (1-a)(aGy + (1 — a)Gy) + aG,\ " (1-a)Gg + alaGs + (1 — a)G)\ "
3(““”( ity ity ) e (Ttnr am ok ) )”1“”( iy e B e v e T

9< (1—-a)Gy(aGg + (1 —a)Gy) aGg(aGg + (1 —a)Gy) >< (1—a)K,(aKg + (1 — a)Ky,) aKg(aKg + (1 — a)Ky) )
A—-—a)(aGg+ (1 —a)Gy) +aG, (1 —a)Gg+alaGg+ (1 —a)Gy))\(1—a)(aKg+ (1 —a)K,)+aK, (1—a)Kg+a(aKgz+ (1—a)Ky,)

- 3 ( (1—-a)K,(aKg + (1 — a)Ky) aKg(aKg + (1 — a)Ky) ) (1—-a)Gu(aGg + (1 —a)Gy)

_.|_

aGg(aGg + (1 —a)Gy) ’

1—-a)(aKg+(1—a)Ky) +aK, (1 —a)Kg+alaKg+ (1 —a)K,) (1—a)(aGg + (1 —a)Gy) + aGy + (1—a)Gg +alaGg + (1 —a)G,)
(5.18a,b)
V 3KVRV ZG{;RV —
VRV = 2GVRV + 6KI;RV
(1-a)(aKz + (1 — a)K,) + ak, -t (1—-a)Kg + a(ak +(1—a)K) —a)(aGg + (1 —a)Gy) + aGy\ (1—-a)Gg + alaGg + (1 —a)Gy,) -t
_ ’ <(1 e KA(GI?B +(1 - a)I?A) A) * a( KB(BaKB + (13— a)Ky) ’ > 2@~ GA(agB +1- a)éA) A> * a( GBgaGB + (13_ a)Gy) ’ ) >
- (1—a)(aGs + (1 — a)G,) + aGy\ " (1-a)Gg + a(aG +(1—a)G) —a)(aKz + (1 — A)K,) + ak,\ " (1 - @)Ky + alaKz + (1 — a)K )\ "
? <(1 - GA(aGBB +(1- a)gA) A) * a( GBEBGGB + (IB— a)Gy) : > To{- KA(aI?B +(1- a);éA) A> * a( Kp gaKB + (13_ a)Ky) ’ ) >

aGg(aGg + (1 —a)G,)

3 + +

(1—a)Gg +alaGg + (1 —a)G,)

)

2

( (1—-a)K,(aKg + (1 — a)Ky) aKg(aKg + (1 — a)Ky) ) ( (1—-—a)Gy(aGg + (1 —a)G,)
(1-a)(aKg+ (1 —a)Ky) +aK, (1 —a)Kg+ alaKz+ (1—a)K,) (1—-a)(aGg + (1 —a)G,) + aG,
( (1—a)G,s(aGg + (1 —a)G,) + aGg(aGg + (1 —a)G,) > + 6( (1—a)K,(aKg + (1 — a)K,) aKg(aKg + (1 — a)K,)
1—a)(aGg+ (1 —a)Gy) +aG, (1—a)Gg+alaGg+ (1 —a)Gy)

1—-a)(aKg+ (1 —a)K,)+aK, (1—a)Kg+a(aKgz+ (1—a)Ky,)

;



400

"extended"” V-R-\
= 350 A Al;03/Cu
o
i‘l’-—- Tuchinskii (1983) upper
w
@ 300
3 "gxtended” V-V-R
=
T
=]
E 250 ~
E’ Reuss G i
> 200 P TRy
g Feng et al. (2003), (2004)
'.E also Tuchinskii (1983) lower )
@
E L LT e s T ™ .
"extended” R-V-V/
100 ;
0 0.1 0.2 0.3 04 05 06 0.7 08 09 1
Volume fraction of copper Cu phase, f
400 j j
Al,O5/Al
350 NGO "extended” V-R-V.
[y
o
S
EI.I 300 + Tuchinskii{1983)upper
7)
2
'§ 250 xtended" V-V-R
E .
Voigt
N
'E) 200 Reuss /
3
b
[
z 190 T Fengetal (2003), (2004), |/ | /| e
8 also Tuchinskii (1983) lower
&
100 "extended"” R-V-\ /
50 '
0 0.1 0.2 0.3 04 05 06 0.7 0.8 09 1

Volume fraction of aluminum Al phase, f

Figure 5.2. Effective Young’s moduli vs. volume fractions of metal phase (graph for Al,O,/Cu based
on Poniznik et al. (2008), Basista et al. (2010) and Basista et al. (2016), reprinted with permission of
the publishers).
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In Figs 5.2 — 5.5, the effective elastic constants developed according to the “extended”
models, are compared with the Voigt and Reuss bounds and the models of Tuchinskii (1983)
and Feng et al. (2003, 2004).

The widest bounds for the effective material properties, according to the principles of
minimum potential and complementary energy, are given by the Voigt and Reuss
approximations (cf. Gross and Seelig 2006). The estimated values for composite effective
properties should fit between these bounds. As it can be seen from Figs 5.2 — 5.5, all the
presented models for Young’s modulus, shear modulus and Poisson’s ratio, fulfill this
requirement and fit between the Voigt and Reuss bounds.

The “extended” V-V-R model estimates of the effective Young’s modulus and shear
modulus (Egs 5.26a and 5.27a), are in accordance with estimates of Tuchinskii (1983) and
Feng et al. (2003, 2004). The “extended” V-V-R estimate of the effective Young’s modulus
(Eqs 5.27a) is close to Tuchinskii (1983) and Feng et al. (2003, 2004) models. The
“extended” V-V-R estimate of the effective shear modulus (Eg. 5.26a) is identical with Feng et
al. (2003, 2004) model.

As it can be seen in Fig. 5.4, the “bounds” for the Poisson’s ratio are reversed: the Reuss
model serves as the upper bound on the effective Poisson’s ratios, while the Voigt model
serves as the lower bound. Also the “extended” V-V-R and R-V-V models behave this way*
and that is the reason for the lower bound at higher Poisson’s ratio values than for the upper
bound.

The results yielded by the “extended” V-R-V model (cf. Figs 5.2 — 5.5) for both material
compositions and for all the presented effective elastic constants i.e. Young’s modulus, shear
modulus, bulk modulus and Poisson’s ratio, are close to the “extended” V-V-R model, and for
the metal volume fractions higher than 0.6, both models almost coincide. The reason for that
can be the same initial sectioning of the whole unit cell according to the Voigt model for both
the V-V-R and V- R-V “extended” models.

For the Al,Os/Al material composition the differences between respective models are
greater than for Al,O3/Cu composites due to greater differences between the elastic constants
of the alumina ceramic and the respective metal components: Al and Cu.

! In Fig. 9 in Poniznik et al. (2008) both “extended” bounds were named according to their actual roles — the
“lower” was changed to “upper” and “upper” to “lower”.

57



5.1.2. Estimates for the effective coefficient of thermal expansion

The effective coefficient of thermal expansion for a composite with interpenetrating
microstructure was modelled in this thesis according to the estimate of Rosen and Hashin
(1970). The Voigt and Reuss approximations, as well as the modified Feng-Tuchinskii models
described in the preceding Subsection, were included in the model. The effective coefficients
of thermal expansion were estimated relative to the volume fraction of the metal phase.
Calculations were made for Al,Os/Al and Al,O3/Cu IPCs. It was assumed that both metal and
ceramic phases were elastically and thermally isotropic, so was the whole composite on the
macroscale.

The Duhamel-Neumann law in the representative volume element (RVE) of a composite
subjected to homogeneous displacement boundary conditions and uniform temperature
increase from Ty to T, relates the average stress tensor & with the average strain tensor € as

o=C'(z-¢), where &F =a*(T,—-T)1 (5.37)

where C denotes the effective stiffness tensor and o denotes the effective coefficient of
thermal expansion, 1 is the unit 2" rank tensor; the average strain tensor &€ may be
decomposed into the elastic part €& and thermal part €' (cf. Ostrowska-Maciejewska, 1994;
Gross and Seelig, 2006).

The estimates of the effective coefficients of thermal expansion «” were derived from the
equation (2.6) of Rosen and Hashin (1970):

at = a,Voigt + (aA _ Q'B) (KLA _ L)_l 1 {l}Voigt] (5_38)

Kg K* K

where the indices denote: », s — composite phases, ~ — effective quantity, %' -volume average

according to Voigt model, a"°9t = f,a, + fzap — Voigt estimate of averaged coefficient of

. nveut r. g . . : .
thermal expansion, {E} =t s the Voigt estimate of averaged inverse of bulk
A B

modulus, fa, fg are volume fractions of the respective phases.

Depending on the approximation method to obtain the effective bulk modulus K, different
formulae for the effective coefficient of thermal expansion o can be obtained. In what
follows the Rosen and Hashin (1970) estimates of the effective coefficients of thermal
expansion will be formulated with substitution in the formula (5.38) of the upper and lower
bounds on the effective bulk modulus according to VVoigt and Reuss, by the expressions (2.1b)
and (2.4b). The relationship for the Rosen and Hashin (1970) estimates of the effective
coefficients of thermal expansion putting the Voigt upper bound on the bulk modulus K*Voigt
(2.1b) in place of K" takes the form
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. 1 1N\ 1 1yVeugt
s =+ 0 e (- ) (] -

KA KB K;oigt K
. -1 Voigt
— o Voigt _ i — i —1 — l
—a + (aA aB) (KA KB) [(1—a)KA+aKB {K} ] (539)

When the Reuss lower bound on the bulk modulus K greuss (2.4b) is substituted for K” in
Eq. (5.38), the Rosen and Hashin (1970) relationship (5.38) for the effective coefficients of
thermal expansion becomes

. voigt ( )( 1 1 >‘1 l 1 {1}Voigtl
Apy— =Qa a, —a —_—— = I =
RH—Reuss A B KA KB K K

Reuss

. 1 1y\7!
= a9 + (ay — ap) (— - —)

1 1 Voigt
(1= a)/Ky+a/Ks) @ ] B

Kia Kp
. -1r4_ Voigt
= gVoigt — 1ty |ie, e (1
* + (@ — ) (KA KB) K2 K {K} ] (5.40)

In the equations (5.39) and (5.40) i — denotes identifier of the phase A or B, a - denotes
volume fraction of the phase B, «; - denotes coefficient of thermal expansion of the i-th phase,
" - denotes the effective quantity.

Substituting the relations (5.17b), (5.26b) and (5.35b) for the “extended” effective bulk
moduli from the preceding Subsection into the expression (5.38), the Rosen and Hashin
(1970) estimates of the effective coefficients of thermal expansion with the “extended” V-R-V,
V-V-R and R-V-V models for bulk modulus, were obtained as shown below.

Using the “extended” V-R-V model for the effective bulk modulus (5.17b), the Rosen and
Hashin (1970) estimate of the effective coefficient of thermal expansion (5.38) takes the form

App —yry = a9 + (ay — 053)( ) - {—} =

K, Kpg K~ K
voigt . ( )( 1 1 )_1 l 1 {1}V0igt]
=a Qg — A\~ o | =
KA KB KVRV K

-1 -1
— ,Voigt _ 1 1 . _ (1-a)(aKp+(1-a)K4)+aKa
a + (as — ap) (KA KB) [((1 a) ( Ka(aKp+(1-a)K 4) ) +

a ((1—a)KB+a(aKB+(1—a)KA))—1)_1 B {1}Voigt]

Kp(aKp+(1-a)K4) %

= (5.41)
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The Rosen and Hashin (1970) bound on the effective coefficient of thermal expansion
(5.38) with applied “extended” V-V-R model on the effective bulk modulus (5.26b) can be
expressed as follows

Voigt 1\~ 1 1 1) Voigt
G v = @09 + (2 — @) (2 1) [ - ()] =
RH -VVR ( A B) Ka Kg Kivr K

1

-1
= a0 + (a, — ap) (— - —) - (azKB + (1 —a)*Ky + 2a(1 -
Ka Kp

oG+ ) @] (5:42)

The Rosen and Hashin (1970) bound on the effective coefficient of thermal expansion
(5.38) with applied “extended” R-V-V model of the effective bulk modulus (5.35b), reads

Voigt 1\ 1 1 1 Voigt
ar = + (g —« (— - —) - {—}
RH—-RVV — ( A B) Ka Kp KI*?VV K

-1 [ -1y 1 Voigt
_ . Voigt _ _ 1 . ( 1-a a ) ) _ {l}
—a +(as — ap) ( Ka KB) ( (1-a?)K 4+a2Kp + (1-a)2K g+a(2-a)Kg K

1 Votgt

= qVoigt 4 (a a )( >_1 [ 1-a n a
A B/\k, kg [(1-a2)Kka+a?Kg = (1-a)2Ka+a(2—a)Kp

] (5.43)

The Rosen and Hashin (1970) estimates (5.41), (5.42) and (5.43), with the Voigt and
Reuss bounds, (5.39) and (5.40), and with the V-R-V, V-V-R and R-V-V models are depicted in
Figs 5.6 and 5.7 for two material compositions: Al,03/Cu and Al,O3/Al. Material parameters
of alumina Al,O3, aluminum and copper, that were used for calculations, are shown in Table
5.3.

Table 5.3. Material properties used in calculations. The data were obtained from: Moon et al. (2005)
and Zimmermann et al. (2001) for alumina and aluminum, material data tables of Deutsches
Kupferinstitut Cu-ETP (2005), and Lipka (1990) for Cu; the values of bulk and shear moduli were
calculated from Young’s moduli and Poisson’s ratios for the respective materials using relations (5.4)
and (5.5) between the elastic constants.

Al,O; Cu Al
Ea Es[GPa] 390.0 110.0 69.0
Gn, Gg [GPa] 162.5 40.7 25.9
Ka, Kg [GPa] 216.7 122.2 76.0
Var Ve 0.2 0.35 0.33
apn, ag [ppmK™] 6.55 16.8 25.0
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As it can be seen in Figs 5.6 and 5.7, for both IPC material compositions, Al,O3/Cu and
Al,O5/Al, the outermost estimates on the effective coefficients of thermal expansion are
provided by the Rosen and Hashin (1970) estimates with the VVoigt and Reuss approximations
used. According to Christensen (1979), these estimates with applied bounds on the effective
elastic moduli, may be regarded as bounds on the effective coefficients of thermal expansion.
All three remaining Rosen and Hashin estimates incorporating the “extended” V-R-V, V-V-R
and R-V-V models, fit between these bounds.

In can be noted from Figs 5.6.and 5.7 that the Rosen and Hashin (1970) approximations
with the Voigt and Reuss bounds and with the V-V-R and R-V-V models manifest reversed
behavior as compared to the Voigt and Reuss bounds and the V-V-R and R-V-V models
themselves for the effective elastic moduli: Young’s modulus, shear modulus and bulk
modulus. The Rosen and Hashin estimate with the Reuss approximation takes high values and
may be regarded as the upper bound on the effective coefficients of thermal expansion. The
Rosen and Hashin estimate with the Voigt model, takes low values and may serve as the
lower bound. Similarly, the Rosen and Hashin estimate with the V-V-R model takes high
values, in opposite to low values for the V-V-R model for the elastic moduli. The Rosen and
Hashin estimate with the R-V-V model takes low values in opposite to high values for the R-
V-V model for the elastic moduli.

For both material compositions and for metal volume fractions less than appox. 0.5, the
Rosen and Hashin estimations with the V-R-V and R-V-V models, almost coincide.

For the Al,O3/Al composite the differences between respective models are greater than for
the Al,O3/Cu , which may be due to the larger contrast in phase properties between the elastic
constants: shear modulus and bulk modulus, for alumina (Al,O3) and aluminum than for
alumina and copper.
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5.2. Numerical models

In this Section numerical models for estimation of the effective elastic constants of IPCs
will be proposed. The influence of the microstructure on the effective composite properties
will be shown on a simple example using Mishnaevsky (2005, 2006, 2007b) codes. Then,
Finite Element Method (FEM) models for two kinds of IPC microstructures: simplified 3D
“cross” microstructure and real IPC microstructure obtained with computed microtomography
(micro-CT), will be presented. For the real IPC microstructure, the mesh of the voxel type and
the mesh with smoothed boundaries between composite’s phases containing tetragonal and
hexagonal elements, will be used. The results of the effective elastic constants obtained with
different numerical models will be presented and compared with the analytical models
developed in Subsection 5.1.1 and with the experimental results described in Appendix.

The models and results presented in this Subsection were published in part in Poniznik et
al. (2008), Basista et al. (2010) and Basista et al. (2016).

5.2.1. Mishnaevsky model

It is commonly known that the microstructure of a composite influences its overall
properties (see for example Schmauder, 1999 or Torquato, 2000). Analytical models for the
effective elastic properties work fairly well for idealized and simplified microstructures but
usually fail for more complex material microstructures. In such cases numerical approaches
are usually applied as they enable estimation of the effective material moduli for irregular and
complicated microstructures like those manifested by the interpenetrating phase composites.
The models of Mishnaevsky (2005, 2006, 2007b), may serve as an example of using
numerical approach to calculate the effective elastic constants of two-phase composites with
various types of microstructures.

The programme of Mishanevsky (2006, 2007b) was used in a simple example that will be
shown below to examine the influence of the composite’s microstructure on the effective
elastic properties (Poniznik et al.,, 2008). The two- or three-dimensional composite
microstructure was represented with square or cubic cells, respectively. The programme can
generate a random microstructure, or an input from prescribed microstructure data can be
used.

In the 2D case a cell may be composed of one or both materials. The microstructure of the
material is mapped and the effective mechanical properties for all particular cells, rows of
cells, and finally of the whole composite, are derived. A procedure with the Voigt iso-strain
assumption is used for the rows of cells (Mishanevsky, 2007b), namely

Elaver = (1 — claver)p, 4 claverp, (5.44)
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layer

where ¢ is the area fraction of the phase A, Ea, Eg are Young’s moduli of the A nad B
phase, respectively.

The effective Young moduli of the composite E~ are obtained using the Reuss iso-stress
assumption:

-1
. 1
B = (S 5w (5.45)

In Fig. 5.8 the effective Young’s moduli estimated with the Mishnaevsky code (2006) are
compared for two different microstructures of Al,O3/Cu composite. The material data of
alumina and copper used in the numerical calculations of this Subsection are shown in Table
5.4. It is seen in Fig. 5.8 that for the same volume fractions of the “black” Cu phase (white
colour denotes Al,O3) the effective moduli are substantially different for different
microstructures. Hence, it can be deduced that the composite microstructure affects its overall
elastic properties.

Table 5.4. Material properties used in numerical models of this Subsection; for alumina ceramic the
data were adopted from Moon et al. (2005) and Zimmermann et al. (2001), whereas for copper the
material data tables of the Deutsches Kupferinstitut Cu-ETP (2005) and Lipka (1990) were used; the
values of bulk and shear moduli were taken from Poniznik et al. (2008) as calculated from Young’s
moduli and Poisson’s ratios for the respective materials using the relations (5.4) and (5.5) between the
elastic constants.

AlLO; Cu
Ea, Eg [GPa] 390.0 110.0
Ga, Gg [GPa] 162.5 40.7
Ka, Kg [GPa] 216.7 122.2
VA, VB 0.2 0.35
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Figure 5.8. Influence of the model microstructure on the effective Young’s modulus of Al,O3Cu
composite: the results of Mishnaevsky (2006, 2007b) procedure implemented for two different
microstructures — “cross” microstructure and matrix — inclusion “square” microstructure (reproduced
from Poniznik et al. (2008) with permission of the publisher)

5.2.2. Three-dimensional cross model

A numerical model for a two-phase IPC microstructure from Fig. 5.1a was created using a
three-dimensional cross unit cell with a varying branch section, as presented in Fig. 5.9 (cf.
Poniznik et al., 2008). The numerical models for the effective Young’s modulus, Poisson’s
ratio and shear modulus were developed and implemented using FEAP 7.5 (Taylor, 2005)
programme. At this stage of model development the effect of anisotropy of the cross
microstructure (Fig. 5.9) was neglected.
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Young’s modulus and Poisson’s ratio the unit cell shown in Fig. 5.9a,b was used. Due to the
problem symmetry, only 1/8" of the unit cell (Fig. 5.9a,b) was considered. The unit cell was
cut along three symmetry planes perpendicular to the coordinate system axes and relevant
symmetry conditions were applied

uy = 0.0 onsymmetry plane perpendicular to x;: x; = 0.0,
u, = 0.0 onsymmetry plane perpendicular to x,: x, = 0.0, (5.46a,b,c)
uz; = 0.0 onsymmetry plane perpendicular to x3: x3 = 0.0,

where u; — component of the displacement in i™ direction, x; — i" axis of the Cartesian
coordinate system, i = 1..3.

The applied boundary conditions were of mixed type (cf. Huet, 1999), as described in
Poniznik et al. (2008). The Young’s modulus and Poisson’s ratio were determined simulating
the material behaviour during tensile test (cf. ASTM E 111 - 97 and ASTM E 132 — 97
standards, respectively; see also: Ruud et al. (1993), who measured Young’s modulus and
Poisson’s ratio for thin Cu, Ag and Ni films in tensile tests, or Benito et al., 2005, where
tensile tests were used to measure Young’s modulus of polycrystalline pure iron), with the
following gradient of deformation E applied (cf. Ogden, 1997; Petryk, 2006):

A0 0 1.0004 0 0
E=[0 2V2 ¢ |= 0 0.9998 0 (5.47)
0 0 Az 0 0 0.9998

where 1 = li is the principal stretch along the axis 1.
0

For the effective shear modulus, the unit cell as in Fig. 5.9¢,f, being 1/8™ of the unit cell
for the effective Young’s modulus and Poisson’s ratio, was applied. Displacement loading
was applied to simulate simple shear. Simple shear state was addressed e.g. by Ogden (1997)
or Petryk (2006) and used to determine shear modulus by Naruse (2003), who modelled
simple shear with a FE model supporting experimental measurements of shear modulus of
wood. Hussnétter and Merklein (2008) used simple shear for experimental determination of
the shear modulus of lightweight alloys of aluminum AA6016 (wrought alloy) and
magnesium AZ31. Nunes (2011) and Nunes and Moreira (2013) analysed simple shear under
large deformations of polydimethylsiloxane (PDMS), modelled as a nonlinear elastic solid. It
has been noted in the literature (Timoshenko, 1953; Destrade et al., 2012 or Moreira and
Nunes, 2013) that for small deformations the effects of simple shear and pure shear are the
same. Therefore, in this thesis simple shear was applied, with the deformation gradient E in
the form (cf. Ogden, 1997; Petryk, 2006):

1 y O 1 0.0048 0
E=|0 1 0[=]0 1 0 (5.48)
0 0 1 0 0 1

where y denotes the amount of shear.
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The model was meshed with eight-node brick elements amounting to 17551 nodes and
13824 elements (Fig. 5.9¢e). Finer mesh with 237367 nodes and 216000 elements shown in
Fig. 5.9f was used, too. The materials of the phases: alumina Al,O3 and copper Cu, were
assumed to be linear elastic. The material data of Al,O3; and Cu from Table 5.4 were used for
calculations. The iterative solution method was employed. The chosen displacement and
stress distributions are depicted in Fig. 5.10. The effective elastic properties resulting from
calculations are collected and compared with other results in Figs 5.14 — 5.16 at the end of
this Subsection.

a)
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Figure 5.10. Sample results of the calculations for the 3D cross FEM model in FEAP 7.5, (a—)
uniaxial tension, 0.93 of metal volume fraction, (f-h) simple shear, 0.16 of metal volume fraction: a)
distribution of displacements in loading direction u;, showed in deformed state enlarged 100 x, (b, )
distributions of normal stresses in loading direction o713, (d, €) distributions of shear stresses in loading
direction 1,3, f) distribution of displacements in loading direction u;, showed in deformed state
enlarged 100 x, (g, h) distributions of shear stresses in direction perpendicular to loading zy,.
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5.2.3. Real microstructure model

In this Subsection the FE models representing the real material microstructure of an IPC
obtained with computed microtomography (micro-CT) technique will be described. The
original research results presented herein were published in part in Poniznik et al. (2008),
Basista et al. (2010) and Basista et al. (2016).

As already stated in this thesis the basic motivation for using micro-CT images in
mechanical models was to represent the details of the real IPC material microstructure with no
necessity to make any assumptions as to the geometry of the composite’s phases. The
microstructure of the real composites is usually complicated and irregular, thus difficult to
model. Any geometrical simplification may suppress important details of the microstructure
and affect the modelling output. This is especially true in fracture problems as these are
sensitive to local effects. In the case of effective elastic properties the exact representation of
internal composite structure is deemed to be less important as these properties are governed
by the volume fractions of phases and not by the exact morphology of the ceramic matrix and
the interpenetrating metal reinforcement. The micro-CT based modelling of the effective
elastic properties will shed some light on this statement.

The Al,O3/Cu IPCs manufactured at the Institute of Materials Science of Darmstadt
University of Technology in Germany by pressure-assisted infiltration of molten copper into
porous alumina preforms were used for the modelling purposes of this Subsection. The
manufacturing procedure was described in a concise form in Basista et al. (2016), whereas the
investigated IPC materials and their characterization in the Appendix to this thesis. The
microstructures of the IPCs were pre-determined by the structure of compressed polymer
foam and natural wool felt as the sacrificial pore forming agents (PFA) into which alumina
slurry made of 0.1 um grain diameter alumina powder (TAIMICRON TM DAR) was cast to
form porous preforms after sintering (Nabertherm HT 16/17 furnace). The infiltration of high
purity copper (99.95%, Bikar Metalle) into porous alumina preforms was performed in the
Fine Ceramics Technology FPW furnace at 1200°C and 100 bar.

The micro-CT input data used in the present numerical models were provided by G. Geier
from the Osterreichisches GieRerei-Institut (Austrian Casting Institute) in Leoben. The
Al,O3/Cu IPC specimens were cylinders of approx. 5 mm in diameter and 5 mm in height.
The procedure of obtaining the microstructure data and transferring it into a FE mesh was
described in detail by Basista et al. (2016). In micro-CT technique the density of the material
is detected and represented as a grayscale value. The whole volume of the examined specimen
is divided into a regular grid of cubic or cuboid voxels — “volumetric picture elements”, being
the smallest distinguishable parts of the volume. The size of voxels is generally determined by
the resolution of the micro-CT device. Each voxel carries the number representing its density.
The volumetric density array is then composed of densities measured at the middle of each
voxel. Such volume of voxels is written as a binary file, either single volumetric data file, or a
set of planar images.

The volumetric data obtained for the investigated IPCs in the form of single 3D
microstructure data files, were transferred into eight-node cubic finite elements in two ways.
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The first way, named “voxel 1”, operated on the integer microstructure data, that was earlier
obtained from the binary volumetric microstructure data file and provided by the Institute of
Mechanics of Darmstadt University of Technology (TUD) in Germany. The transfer of the
integer microstructure data into FEAP and ABAQUS FE meshes was made with a set of self-
written codes in FORTRAN. The material data can be assigned to finite elements according to
the data set of the scan, setting the threshold value between material phases based on density
gradients. The volumetric density array was, for a two phase composite, binarized, by
extracting from it voxels containing one of the phases and assigning a common digit to them
(i.e. 1) instead of the density value, and then assigning other digit (i.e. 2) to voxels belonging
to the other phase. It was remembered which digit had been assigned to which density range,
corresponding to one of the materials. The coordinates of nodes and then the eight-node brick
elements were created by replicating the grid of voxels. Both materials were assigned to
respective elements. The FE meshes created this way were adapted for FEAP 7.5 and
ABAQUS 6.10 programmes and named as a “voxel 1 type.

The second way of transferring a single 3D microstructure data file into eight-node cubic
finite elements in this thesis made use of the commercial software Simpleware
ScanlP/ScanFE. The ScanlP programme enables an import of the graphic files. The graphical
editing with relevant tools and filters is followed by separating of the image masks
representing two or more phases of the material. The programme divides the surfaces that are
bounding the phases into finite elements, and initially prepares finite element meshes for the
chosen masks. The files with the FE meshes containing hexagonal, tetragonal or mixed
elements that are input files for commercial FEM software (e.g. ABAQUS) are created with
the ScanFE programme. The microstructure can be divided into voxels (“voxel 2” mesh type);
smoothing of the boundaries between different materials and mesh optimization are also
possible.

The scheme of the generic numerical method for real microstructures can be described as
follows: 1) acquiring the 3D data of the composite microstructure via micro-CT scans

FE mesh of the real material
3D real microstructure IETSTInE e
image —micro CT Simpleware ScanIP/FE software
FEM )
: calculations m
Bl —ABAQUS/ B properties
: FEAP of a cube —

(Image created with Simpleware
ScanlP/FE software of the
microstructure obtained with micro-CT)

(ABAQUS FEM mesh created with
Simpleware ScanlP/FE)

Effective properties of
x all the cubes (i.e. 512) _ the whole sample of
the material

Figure 5.11. Scheme of the numerical approach used for the real composite microstructures.
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or similar technique, 2) creating FEM mesh of the material microstructure using commercial
software Simpleware ScanlP/FE, 3) performing FEM calculations using the obtained FEM
mesh for the material microstructure (cf. Fig. 5.11).

For the segmented pieces of the real Al,O3/Cu IPC microstructures the effective elastic
constants, Young’s modulus, Poisson’s ratio and shear modulus, were numerically estimated
using ABAQUS 6.10 or FEAP 7.5 programmes, as voxel 1 (based on self-written FORTRAN
codes) and voxel 2 (based on Simpleware ScanlP/FE software) modelling approaches were
used alternatively (in fact, meshes resulting from the same input data, voxel size and threshold
value, should be the same in both approaches). For the calculations, inner cubes of a polymer
foam PFA-based sample (“microstructure 1””) of 400 x 400 x 400 voxels and of a wool PFA-
based sample (“microstructure 2”) of 105 x 105 x 105 voxels were cut out. Since these
models were too big for the available hardware and software, the cubes were divided into 512
(microstructure 1) and 27 (microstructure 2) smaller cubic subvolumes, each of 50 x 50 x 50
voxels and 35 x 35 x 35 voxels, respectively. For microstructure 2 also other mesh sizes were
tested. The calculations for each subvolume were conducted separately. Two types of FE
meshes were used: voxel and smoothed, the latter had smoothed interfaces between phases
with tetragonal elements.

The images of the microstructures and the FEM meshes used for calculations, created with
Simpleware ScanlP/FE software, are presented in Fig. 5.12. The comparison between voxel
and smoothed meshes is depicted in Fig. 5.13.
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Figure 5.12 Microstructure images obtained with Simpleware ScanlP programme: (a-f), FE meshes
used for calculations (g-j), (e-h) - voxel meshes, (i, j) - smoothed meshes: g) microstructure “1”, image
created with FEAP 7.5, (h, i) microstructure ‘“2” image created with ABAQUS 6.10, j) mesh created
with Simpleware ScanIP/FE. Figures a), b) and i) reprinted with permission of Advanced Engineering
Materials.

The procedure of calculations was similar to the procedure presented in the previous
Subchapter for the 3D-cross-microstructures, with the exception of boundary conditions
suited for irregular, non-symmetric microstructure of a real IPC. Unit tensile loading was used
to simulate uniaxial tension and to calculate the effective Young’s modulus and Poisson’s
ratio, unit shear loading was used to simulate simple shear and to calculate the effective shear
modulus. The results of numerical calculations are presented in Figs 5.14 — 5.16, together
with analytical estimations.
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Figure 5.13 Effect of mesh smoothing microstructure images obtained with ABAQUS 6.10.
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In Figs 5.14 — 5.16 the proposed analytical and numerical models for estimation of the
effective elastic properties of IPCs are compared. It can be seen that all the analytical and
numerical results fit between the Voigt and Reuss bounds. It is also noted that the numerical
results fit between the curves obtained with the extended V-V-R and R-V-V models. The
numerical results for Young’s modulus and shear modulus are closer to the extended V-V-R
models, while for Poisson’s ratio results for numerical models are closer to the extended R-V-
V model.

When two modelling approaches — voxel and smoothed are compared, it can be seen in
Fig. 5.14 that they give similar results for the effective Young’s modulus, however the results
for the voxel model are lower than for the model with smoothed interfaces. The opposite
occurs for the effective shear modulus (Fig. 5.15), where the results for the voxel model are
higher than the results for model with smoothed interfaces. These results also differ more
significantly between each other. A reason for that may be the local microstructure
irregularities of the relatively small, thus insufficient, sample dimensions that also caused
quite a low volume ratio of the copper phase (approx. 0.15) compared to the expected nominal
value measured (cf. Appendix) for the macroscopic specimens (approx. 0.25).
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6. Deformation and fracture of metal-ceramic interpenetrating phase
composites

In this Chapter a numerical modeling approach will be proposed to determine fracture
parameters of IPCs in order to support complex and costly experimental measurements like
those in Compact Tension (C-T) tests. Experience from C-T tests shows that measuring of
fracture toughness of IPCs can be technically cumbersome and expensive (cf. Section 6.1).
One of the main problems is the small size of composite specimens due to manufacturing
techniques, which is often insufficient for a standard C-T test. Another issue is the machining
of test specimens made of ceramic-metal composites.

The objective pursued in this part of the thesis is to determine the J-integral for a crack
with ductile bridging ligaments that grows in a composite with interpenetrating
microstructure. As it was shown by Eg. 3.6 in Chapter 3, the J-integral for the cohesive zone
model depends on the relationship between stresses t and displacements ¢ (or u) in the
bridging fibre. This relationship will be sought numerically assuming that the bridged
macroscopic crack grows in an elastic material with effective elastic constants calculated
according to a model relevant for the IPC microstructure.

Al;03/Cu Al2Os/Al

100 ym

Figure 6.1. Fracture of IPC composites: a) interconnected fibres forming interpenetrating
microstructure (connections between fibres marked with circles), different angles between fibres and
crack surface (marked with red arrows), and debonding between fibre and matrix (marked with green
arrows), b) and c) — different shapes and sizes of debonding on examples of alumina-copper and
alumina-aluminum composites (SEM images from reports of KMM-NoE FP6 EU project by L.
Weiler, TU Darmstadt and J. Dusza, IMR SAS).
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In real interpenetrating phase composites (cf. Fig. 6.1) the fibres reinforcing the crack
surfaces are positioned at different angles. Nevertheless, for the purpose of modelling and by
observing the symmetry effects in fibre positions a simplifying assumption can be made that
they are perpendicular to the crack plane. In the following numerical models the initially
skewed fibre will be then replaced with the fibre perpendicular to the crack plane.

The specific effects occurring during fracture of real IPCs should be taken into account
during modelling. The main effects are: interconnection of both phases, deformation-induced
debonding between the IPC phases, and different slope angles between the reinforcing fibres
and the crack surface. These effects are visible in Fig. 6.1.

In what follows two sets of numerical models for determining the fracture toughness
increase due to crack bridging will be presented: (i) models of elastic-plastic fibre reinforcing
the crack in an elastic matrix (the reverse case with an elastic fibre reinforcing elastic-plastic
matrix is also conceivable) and (ii) models of Compact-Tension test to calculate the fracture
toughness increase of IPCs via the J-integral.

The first set of models presented in Section 6.2.1. is aimed at numerical determination of
the fundamental relationship o(u) in the elastic-plastic bridging fibre undergoing large plastic
deformations, necking and debonding from the surrounding ceramic preform. The evolution
of debonding will be modelled to identify the fibre-matrix interface properties that are
prerequisite for the model of the Compact-Tension presented in Section 6.2.2.

The second set of models presented in Section 6.2.2 is aimed at modelling crack
propagation in real IPC during Compact-Tension test and estimation of the elastic energy
release rate increase due to the bridging effect. Two- and three-dimensional models of the C-T
test are proposed. Real microstructure of an IPC obtained by means of computed
microtomography (micro-CT) method are included in the model. The elastic-plastic metal
fibre behaviour and large deformations are taken into account in FEM calculations made with
the ABAQUS programme.

6.1. Experimental observations and measurements

In this Section experimental characterization of fracture properties of IPCs will be
presented on an example of Al,O3/Cu composite to collect information for modelling
purposes and for comparison with results of analytical and numerical modelling. The
experiments were performed at the Institute of Materials Science of Darmstadt University of
Technology (TUD) in Germany during the research stay of the author within the fellowship
made possible by the KMM-NoE project of the 6™ Framework Programme (http:/aisbl.kmm-
vin.eu/node/180).
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6.1.1. Crack propagation

Microscopic observations of crack propagation were made on an Al,O3/Cu infiltrated
composite with microstructure based on a polymer foam as the pore forming agent (PFA).
Specimens placed in a testing machine during the four-point bending tests were at the same
time observed with the optical microscope Leica 301-371.011, Wetzlar. The four-point
bending tests were performed under the load control. The test description is given in Section
6.1.2.

The aim of the observations of specimens’ surfaces was to detect the developing crack, to
localize the crack tip, and to identify the phenomena that occur during crack propagation in
the IPC composite.

It was difficult to catch the position of the crack tip with the microscope. For the most part
of the experiment the crack was invisible and only multiple microcracks and interfaces near
the notch tip were getting broader. That could be due to local strengthening of the observed
surface caused by polishing one (observed) side of the specimen. The crack in an
inhomogeneous material probably developed first in the more prone to cracking part under the
observed surface, staying invisible for most part of the experiment. Thus the evident crack
shape appeared only nearly the end of the test. This is the reason of very few points caught
during experiments. It could be thus postulated to polish both opposite specimen’s surfaces
before microscope observations and R-curve measurements in IPCs.

The cracks developed mostly along the interfaces between copper and ceramics, that
showed weak bonding between these phases. In some places the cracks developed from the
already existing microcracks in the ceramics. It was not possible to break completely any of
the specimens during the tests. After the crack fully developed there was still a strong copper
bridging that kept the specimen together.

The microscopic pictures shown in Fig. 6.2a-d confirm the existence of large plastic
strains, debonding and microcracks that accompany the growing crack. The effect of IPC
microstructure on the crack growth trajectory is shown in Fig. 6.3.
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Figure 6.2. Crack development in Al,O3/Cu IPC specimen: a) initial load (~40 N), notch end area with
widening debonding (arrow indicates a copper bridge that hinders crack growth, b) crack developing
along interfaces in the middle of the specimen (load ~100 N), c) notch end area with copper ligament
that just has broken (indicated by arrow) with visible large plastic deformation, d) middle of the
specimen with strong crack bridging

approx. 1 mm

Figure 6.3. Panoramic view of the crack path in Al,Os/Cu IPC specimen.

6.1.2. Measurement of fracture toughness

The fracture toughness of the Al,O3/Cu IPC was measured in the four-point bending test
(Fig. 6.4), with simultaneous observation of the crack growth using Leica 301-371.011
Wetzlar microscope equipped with Leica QWin and Leica Remote software. The advantage,
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and justification of four-point bending test here, is constant bending moment between loading
supports. Assuring constant bending moment between loading supports is important when
inhomogeneous materials (such as IPCs) are tested, since the crack may propagate outside of
the specimen symmetry plane (cf. Fig. 6.3).

/=30 mm

k,=10 mm

i P/2
g i
H | n=amm

b=3 mm
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i
i
i
i
i

k,=20m

Figure 6.4. Scheme of the four-point bending test

The microstructure of the measured Al,O3/Cu IPC was based on polymer foam PFA. Four
specimens with dimensions | x n x b as in Fig. 6.4 were chosen for this experiment (2, 7, 9
and 11). One side (along the length | and width n) of the specimens was polished. The
specimens 2 and 7 were notched with a razor blade and had V-shaped notches, the specimens
9 and 11 were notched with a diamond wire saw and had U-shaped notches. All the notch tips
were additionally sharpened with a razor blade according to ISO 23146 standard. The
dimensions of the notches (depths and tip radii) are presented in Table 6.1.

Table 6.1. Depths and tip radii of the notches

Specimen No. Notch depth [mm] Notch tip radius [pm]

2 0.90 30
7 0.95 15
9 1.13 15
11 1.10 15

The fracture toughness K¢ was calculated according to 1SO 23146 standard:
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p kn_km n
Kie = oo =3 sy | (£) (6.2)

where P is the maximum recorded load, b, n denote specimen thickness and width,
respectively, kn, k, are distances between loading and supporting pins, respectively, c is the

crack length (cf. Fig. 6.4), f(%) - dimensionless function of crack length to specimen width
ratio given by
(p40-000(2)r15(2)) 1-(2)) (2
c 2
(1+(z))

The results of fracture toughness measurements are presented in Fig. 6.5.

c

f (%) = 19887 — 1.326 (%) -

(6.3)
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Figure 6.5. Experimental measurements of fracture toughness of Al,Oz/Cu IPC in four-point bending
as a function of crack length (R-curves).

As can be seen from the obtained R-curves (Fig. 6.5) the initial fracture toughness was
above 5 MPa-m*? but the resistance to crack growth increased significantly with the crack
length. This growth in fracture toughness was apparently due to the increase of area fraction
of copper reinforcing the crack faces as the growing crack encountered more and more of
copper ligaments along its path. High values of the resistance to crack growth at the end of
measurements correspond to fracture toughness values for pure copper and copper alloys
reported e.g. by Ashby (2009).

Moreover, Winzer (2011) who investigated Al,O3/Cu IPCs with varying ligament
diameters of up to 30 um, observed an increase in R-curves values with coarsening of the
microstructures, and at the same time tendency of R-curves to grow with the crack length
rather than reaching a plateau. It was pointed out that the propagated crack length was not
long enough to allow series of measurements at constant number of ligaments bridging the
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propagating crack. Thus the results presented in Fig. 6.5 for microstructures with ligament
diameter of approx. 100 um, are in accordance with the results obtained by Winzer (2011).

The cracks developed mostly along the interfaces between copper and ceramic because of
the inferior bonding between these phases. The weak bonding between alumina and copper
may be compared in Fig. 6.1.b with the strong bonding between alumina and aluminum (Fig.
6.1.c). In some places the cracks developed from the existing microcracks in the ceramic. It
can be interpreted that the existing microcracks weakened the composite significantly.

6.1.3. Fracture surfaces

The SEM micrographs of fracture surfaces of specimens 2 and 7 are shown in Figs 6.6-
6.8. It can be seen that crack bridging in this alumina-copper composite is mostly due to
plastic deformation of copper ligaments. Sliding of copper fibers is less important because of
a weak bonding between copper and alumina.
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Figure 6.6. The fracture surfaces of specimens 2 (left pair) and 7 (right pair). Fracture surfaces are

uneven with visible very weak bonding between copper and ceramic — copper was just pulled out of
alumina.
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Figure 6.7. On the left - slices of the ceramics torn away from the grain with visible triangle form of
torn copper; on the right - microcrack in the alumina
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Figure 6.8. Fracture surface of copper with visible smoother zone of necking.

The results of observations of crack propagation and the measurements of fracture
toughness of IPCs presented in this Section will further be used in numerical calculations of
J-integral in Section 6.2.

6.2. Numerical determination of J-integral in IPCs

In this Section numerical FEM models for determination of the J-integral in
interpenetrating phase composites with account of the crack bridging effect will be presented.
As a prerequisite for that some auxiliary models (called “prerequisite models” in the sequel)
will be developed to predict the bridging fibre behaviour and to identify material and failure
parameters of the fibre/matrix interface.

The prerequisite numerical models of a single reinforcing fibre presented in this thesis in
Subsection 6.2.1 were inspired by the experiments of Ashby et al. (1989), analytical model of
Mataga (1989) and numerical model of Emmel (1995), investigating the stress—displacement
relationships in the metallic ligament reinforcing the crack faces. As a first step, a 2D model
of a skew reinforcing fibre will be shown. Then, a model with axisymmetric reinforcing fibre
with fixed debonding lengths based on the model described by Emmel (1995) will follow. In
the prerequisite models of the pullout problem with and without debonding evolution a
cohesive interface between fibre and matrix is introduced. These two models were recently
published in Poniznik et al. (2015).

In Subsection 6.2.2 the FEM models of the Compact-Tension test for the determination of
the energy release rate increase that is due to the presence of the ligaments reinforcing the
crack faces, will be presented. First, 2D models with either single or multiple reinforcements
will be described. Then, a 3D model with multiple cylindrical reinforcing fibres will be
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shown. Finally, a 3D model of the specimen with real IPC microstructure obtained with
micro-computed tomography (micro-CT), will be presented. The initial results obtained for
this model were described in Basista et al. (2016).

The prerequisite model of the skew reinforcing fibre and the model of the C-T test with
single reinforcing fibre, were partially developed during the research stays at the Institute of
Applied Mechanics at University of Kaiserslautern, Germany.

6.2.1. Prerequisite numerical (FEM) models of single reinforcing fibre

In this Subsection the mechanism of crack bridging with a single reinforcing fibre will be
investigated with series of models. The purpose of these models is to help identify the
material properties of the interface between fibre and matrix. Four numerical models of an
elastic-plastic reinforcing copper (Cu) fibre embedded in an elastic alumina (Al,O3) matrix
will be presented. Aluminum (Al) fibre was also considered, and some results for the case of
Al fibre will also be presented. The reinforcing fibre is subjected to large deformations and
debonding from the matrix. The debonding is modelled in a twofold manner: (i) using finite
values of the debonding length, and (ii) as progressing debonding using cohesive model for
the matrix-fibre interface.

As was shown in the preceding subsections bridging metalic ligaments undergo debonding
from the ceramic matrix (cf. Fig. 6.1.). Prior to modelling real IPC with multiple reinforcing
fibres it is first necessary to know the behaviour of a single bridging fibre. According to the
literature studies there are no credible experimental data on the mechanical properties of the
Al,O3/Cu interfaces existing up to date. Thus, the following prerequisite models will be used
to provide the missing input data on the alumina-copper interface behaviour necessary in
modelling of fracture parameters of the IPC.

Two-dimensional model: skew reinforcing fibre

The first prerequisite model to be considered is a simple 2D model of a skew metallic fibre
reinforcing ceramic matrix which inclined to the loading direction at an angle different than
90°. The influence of the varying slope angles between fibres and loading direction on the
stress-displacement behaviour of an extending ductile fibre was described by Hoffman et al.
(1997). From the observations of IPC fracture surface presented in the previous Chapter (cf.
Fig. 6.1), it can be noticed that the fibres reinforcing the crack are inclined at different angles
to the crack face. However, for the reasons explained at the beginning of Chapter 6 in the
latter parts of this thesis the assumption will be taken of the bridging fibres’ influence on the
IPC fracture toughness coming only from ligaments either perpendicular to the crack faces, or
from the respective projections of the other ligaments on the direction normal to the crack
faces.

Consider an elastic-plastic fibre (e.g. copper) reinforcing the crack in an elastic matrix
(e.g. alumina ceramic). The reverse case with an elastic fibre reinforcing elastic-plastic matrix
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was also analyzed and will be presented at the end of this Subsection. This is a plane strain
model with the fibre and matrix materials assumed to be isotropic. The interface between fibre
and matrix is assumed as fully bonded. As the deformation process proceeds the fibre may
undergo necking and debonding from the matrix. The evolution of debonding is not yet
modelled but its effect is analyzed for a few fixed values of the debonding length.

The nondimensional debonding parameter y is defined as the ratio of the debonding length
l4 to the initial fibre radius r":

ly

e (6.4)

The results of the performed calculations will be presented for three values of the
debonding parameter = 0.5, 1.0 and 1.5.

In order to avoid contact in the debonding regions between the fibre undergoing
debonding and the surrounding matrix, the parts of the matrix FE mesh that have penetrated
the necking fibre, were removed.

To model the plastic response of the fibre material (Cu) the plasticity model implemented
in FEAP (Taylor, 2005), described by Marciniak et al. (1965), also by Zyczkowski (1981) or
Lubliner (1990), was applied. The material of the fibre is described by the J, flow plasticity.
A quasi-static tension simulation of the skew reinforcing fibre was performed in FEAP using
the elastic-plastic model with Huber-Mises-Hencky yield condition and isotropic hardening
law. The geometrical and material properties: r{° — radius of the fibre, o — inclination angle for
which the results will be presented, En, Ef, v, vt, - Young’s moduli and Poisson’s ratios of
alumina (Al,O3) matrix and copper (Cu) fibre, respectively, Y, - yield stress of Cu, Hig -
isotropic hardening modulus of Cu, used in calculations are collectively displayed in Table
6.2. The displacement control and tensile loading were applied. The FEM mesh and applied
boundary conditions are depicted in Figure 6.10.a. The materials are marked in Figure 6.10.b.
FEM calculations were made with FEAP 7.5 programme. As a result, the stresses in the
bridging fibre are obtained and depicted in Fig. 6.10.c-e. The comparison of the influence of
the debonding size on stress distributions is depicted in Fig. 6.11.a-c for normal stresses
parallel to the loading direction. The influence of debonding on composite’s load-
displacement behaviour is presented in Fig. 6.11.d.
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AlLO;

Cu

E [GPa]
v
Y, [MPa]
Hiso
r [mm]

al®]

390.0
0.2

110.0
0.35
130.00
8000
0.9474
62.5

b

Table 6.2. Material and geometrical parameters used in the skew reinforcing fibre model
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Figure 6.11. Influence of nondimensional debonding parameter y on normal-vertical stress
distribution (parallel to the loading direction ): a) w = 05, b) v = 10, ¢) v = 15;
d) effect of nondimensional debonding parameter y on composite’s load-displacement behaviour
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From the stress distributions shown in Fig. 6.10.b-d, the regions of stress concentrations
near the interfaces between fibre and matrix, may be identified. From the stress distributions
shown in Fig. 6.11.a-c it can be seen that the stresses near the matrix-fibre interface decrease
with the increasing debonding size. Thus, the debonding increase has an amplifying effect on
stresses between the fibre and the matrix. However, from Fig. 6.11.d it can be noted that
increase in debonding causes a reduction in the composite’s stiffness and a significant effect
on the composite’s characteristics.

Also the case of elastic fibre in elastic-plastic matrix was considered. Exemplary results of
the numerical calculations are shown in Fig. 6.12.
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Figure 6.12. Stress distributions for elastic fibre in elastic-plastic matrix: a) normal stress in vertical
direction b) shear

From the comparison of the normal vertical stress distributions in Figs 6.10.c,d and
6.12.a,b, respectively it may be seen that the peak stress values are larger for the case of
elastic-plastic reinforcing fibre in an elastic matrix than for the opposite case. This can be due
to the plastically deformable matrix in which the stresses are relaxed.

Axisymmetric single reinforcing fibre model with fixed debonding lengths

In this Subsection a numerical model for an axisymmetric problem of the uniaxial tension
of two disconnected blocks of ceramic matrix reinforced with a metal fibre will be presented
assuming elastic-plastic model for the Cu or Al fibre and linear elastic model for the Al,Os
matrix.
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The geometrical assumptions of the model represent in a simplified way a macrocrack
which is reinforced with a single metal ligament (cf. Poniznik et al. 2015). The tip of a crack
and the corresponding stress concentrations are not modelled. Axial symmetry assumption
made the calculations considerably simpler while furnishing information on the most
important deformation and failure mechanisms.

The fibre undergoes large plastic deformations leading to necking and debonding from the
matrix (Fig. 6.13). As in the previous case, the evolution of debonding is not yet modelled but
its effect is analyzed using few fixed values of the debonding length. The nondimensional
debonding parameter  defined by Eq. 6.4 is the ratio of the debonding length I to the initial
fibre radius re.

The calculations were performed for three values of the debonding parameter w = 0.4, 0.6
and 2.0.
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Figure 6.13. Scheme of axisymmetric model of uniaxial tension of two elastic blocks with reinforcing
elastic-plastic fibre at fixed debonding lengths (reproduced with permission of International Journal
of Damage Mechanics).

The interface between fibre and matrix is modelled as fully bonded. The materials of fibre
and matrix are assumed to be isotropic. The alumina matrix material is assumed to be elastic,
the copper or aluminum fibre materials are assumed to be elastic-plastic. The geometrical and
mechanical properties of fibre and matrix materials are shown in Table 6.3.
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The elastic-plastic model described in detail in Poniznik et al. (2015), based on elastic and
isotropic hardening plasticity model implemented in ABAQUS is applied here for a copper
fibre. The material of the fibre is described by the J, flow plasticity. Large strains that can
locally occur in the necking zone, are determined with an incremental algorithm. Spectral
decomposition allows the use of the return mapping procedure for models with an isotropic
yield function. The stress update algorithm is used for the integration of the J, plasticity
constitutive equations.

Table 6.3. Material and geometrical parameters used in axisymmetric reinforcing fibre model with
fixed debonding lengths, E; , En, v and v, denote Young’s moduli and Poisson’s ratios of fibre and
matrix, respectively

Aleg Cu Al
Em, Ef [GPa] 390.0 110.0 69.0

Vi, Vi 02 0.35 033
oo [MPa] - 50.0 270.0
n - 58 15.0
re [um] - 175.0 175.0

Figure 6.14. FEM model (FEM mesh created with FEAP); displacement loading and boundary
conditions for three values of nondimensional debonding parameter y: a)y=0.4, b) ¥=0.6 and c) y=2.0
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The FEM meshes for this case were prepared with the FEAP 7.5 package. The axial and
horizontal displacements at the bottom surface of the fibre and the matrix are blocked. The
displacement loading is applied to the top surface of both fibre and matrix. This is done to
mimic the behaviour of the ligament as an element of an interconnected network of metallic
reinforcements in a real composite with interpenetrating microstructure. The calculations were
performed with ABAQUS (2010), with the use of four node bilinear axisymmetric CAX4
elements. The full finite elements model consisted of 2,691 nodes and 2,544 elements for the
case of y=0.4, 2,809 nodes and 2,656 elements for y=0.6, and 2,623 nodes and 2,440
elements for y=2.0. Two material systems were used: alumina-copper (Al,O3/Cu) and
alumina-aluminum (Al,Os/Al). However, the results will be presented mainly for the alumina-
copper case. The FEM meshes for three nondimensional debonding parameters y are
presented in Fig. 6.14. The obtained distributions of axial stresses and equivalent plastic
strains are shown in Figs 6.15 and 6.16.
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Figure 6.15. Axisymmetric model of uniaxial tension of cracked elastic matrix with reinforcing
elastic-plastic fibre at fixed debonding lengths. ABAQUS results: (a-c) for Al,O5/Al, (d-f) for
Al,O,/Cu, at loadings uy: (d) 0.16 mm, (e) 0.175 mm, (f) 0.2 mm. Distributions of axial stresses o,:
(a, d) w=0.4, (b, e) y=0.6, (c, f) y=2.0 (images not in the same scale)
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Figure 6.16. Axisymmetric model of uniaxial tension of cracked elastic matrix with reinforcing
elastic-plastic fibre at fixed debonding lengths. Distributions of equivalent plastic strains &, (for
different loadings u,), for Al,O3/Cu: (a) y=0.4, u,=0.16 mm, (b) »=0.6, u,=0.175 mm, (c), y=2.0,
u,=0.2 mm (images not in the same scale).
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In Fig. 6.17 the stress-displacement relationships o(u) in the reinforcing fibre are
compared with the analytical solutions of Mataga (1989) for both considered material systems
and for three values of the debonding parameter = 0.4, 0.6 and 2.0.

A softening part of the o(u) relationship due to necking of the ligament can be observed
for all three values of the debonding parameter and for both material systems. The normalized
stresses obtained with the present numerical model are for both material systems slightly
higher than the normalized stresses furnished by the analytical model of Mataga for w = 0.4
and 0.6, with greater difference for the y = 0.4 case. For v = 2.0, however, normalized
stresses from the analytical Mataga model are visibly higher than the stresses obtained from
the present FEM model. For such a high value of y this could be due to a significant
difference between the assumed shape of the necking ligament in the model of Mataga (1989),
which is a paraboloid of rotation, and the shape of the necking ligament resulting from the
present numerical model. Mataga (1989) did not consider y’s greater than 1.0, hence it is
difficult to say if his model is applicable for such high values of .

The peak of the o(u) relationship shifts to lower o/oy values as w increases. This
observation holds for both material systems, for the analytical model of Mataga (1989), and
for the present numerical model alike.

It can also be observed for both Al,O3/Al and Al,03/Cu composites, that the softening
behaviour becomes less steep with the increasing . This could be interpreted that for lower
values of w more intensive necking is needed to make the ligament elongate at the applied
displacement.
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b) 39 = \iataga (1989), \=0.4

fixed debonding model, =0.4
=== Mataga (1989), =0.6
« = « fixed debonding model, {)=0.6
== Mataga (1989), =2.0
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Figure 6.17. Normalized stress-displacement relationships in the reinforcing fibre from the numerical
model with fixed debonding lengths, compared with the analytical solutions of Mataga (1989) for

different values of debonding parameter y: a) Al,O3/Al, b) Al,O3/Cu.
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Pullout problem model with debonding evolution

In this Subsection a FEM model for the fibre pullout with account of fibre-matrix
debonding evolution will be presented and applied to predict stress-displacement relationships
for Cu and Al fibres embedded in Al,O; matrix. The main parts of this model and its
implementation for Al,Os/Al composites were published in Poniznik et al. (2015). The results
concerning Al,O3/Cu composites shown herein have not been published yet.

The model of pullout problem is one of the prerequisites for modelling of crack bridging
in real IPC materials as the pullout mechanism occurs in IPCs and it is, thus, necessary to
know how the reinforcing fibre behaves. The pullout model presented below is an extension
of the model of Bheemreddy et al. (2013) by using elastic-plastic material model for the fibre.
Bheemreddy et al. (2013) investigated an axisymmetric elastic silicon-carbide (SiCy) fibre
which was embedded in an axisymmetric elastic silicon-carbide (SiC) matrix. The free end of
the fibre was loaded with homogeneous displacements field to find the load-displacement
characteristics. It was assumed that the load-displacement behaviour was not influenced by
the matrix.

Consider the axisymmetric problem of an isotropic elastic-plastic metal fibre that
undergoes debonding from the surrounding ceramic matrix modelled as isotropic elastic (Fig.
6.18). In the numerical model of this problem developed in Poniznik et al. (2015) with
ABAQUS (2010) software the cohesive surface formulation was used to model contact at the
interface between the fibre and matrix. Local large strains were admitted in the debonded and
free parts of the fibre.

Figure 6.18. Pullout model: a) geometry, b) FEM mesh and boundary conditions (reproduced with
permission of International Journal of Damage Mechanics)

The geometry of the problem, FEM mesh and boundary conditions are depicted in Fig.
6.18 where ry, denotes the outer radius of the matrix, r - initial radius of the fibre, r - actual
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fibre radius, I, - length of the embedded part of the fibre, |, + lp - total fibre length. The
pullout displacement was applied uniformly as a quasi-static loading in the axial direction on
the top surface of the fibre. The contact friction at the interface is activated after the
fibre/matrix interface has debonded on a distance lg. Friction was assumed to be spatially
uniform and independent of time and rate. To eliminate the influence of the surrounding body
on the results, a high value for the ratio of matrix to fibre radii was assumed ry/ r° = 71.43
(cf. Table 6.5). The displacements were blocked in both radial and axial directions at the
bottom of the matrix, while the side belonging to the symmetry axis was constrained only in
the radial direction.

The mesh with element size of approx. 0.02 mm x 0.02 mm was used in the vicinity of the
interface between the fibre and matrix. The model consisted of 2205 nodes and 2360 elements
in total. Four-node bilinear axisymmetric elements CAX4 modelled the fibre and matrix parts.
The cohesive zone surface at the interface between fibre and matrix was applied to model the
contact behaviour. The zero thickness cohesive zone was defined with four-node, two
integration points, axisymmetric cohesive elements COHAX4. The geometrical and
mechanical properties of the fibre and matrix materials are collected in Table 6.5.

It was assumed that the J, flow plasticity describes the behaviour of the fibre material.
Large strains that can locally occur in free segments of the fibre and may reach 50-100% were
determined with an incremental algorithm. The unloading can also take place locally. It was

further assumed that the strain rate tensor ¢ can be decomposed into elastic ¢° and plastic £°
parts

§=¢&"+¢&" (6.5)

The elastic part obeys isotropic Hooke’s law

6=C:(g-4")
(6.6)
C=2Gl +K1®1

where G is the shear modulus, K is the bulk modulus. The plastic part £” obeys associated

flow rule: &P =IZ—£, where 1 is a non-negative plastic scalar. Loading and unloading

conditions can be expressed in the Kuhn-Tucker form: 1 >0, f <0, Af =0.

The general yield criterion F(o,€) = 0 is satisfied by the stress tensor ¢, where € is the
equivalent plastic strain depending on the plastic loading history.

The quasi-static pullout process with an elastic-plastic fibre was modelled with
ABAQUS/Standard for Huber-Mises-Hencky yield condition and isotropic hardening law. A
power law was adopted for the uniaxial stress-strain response of the metal material, which is
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often used in the literature for aluminum and copper (Zyczkowski, 1981; Ashby et al., 1989;
Emmel, 1995)

Z=(2) 6.7)

£

where: & = +/&P: €P is the equivalent plastic strain, o, - initial yield stress equal 50 MPa,
& = % = 0.00045, is the corresponding strain, n = 5.8 for copper.

The traction-separation model implemented in ABAQUS first shows linear elastic
behaviour followed by initiation and evolution of fibre debonding. For the elastic behaviour,
elastic stiffness tensor relates nominal stresses to nominal strains across the fibre/matrix
interface. The cohesive law can be expressed in the following general vector form

T = f(6),where T=r1,e, + 1,6, and 6 = 6,e, + 6;€; (6.8)

with: T - the cohesive stress vector, ¢ - vector of the opening displacement, f(d) - local
constitutive traction-separation relationship in the cohesive zone, e - unit vector, n, t -
components normal and tangential to the separation plane, respectively.

The general loading case can be simplified to the mode Il cracking due to the assumption
of axial symmetry. The debonding propagation direction along the fibre-matrix interface is
parallel to the fibre axis. Following the model implemented in ABAQUS (2010), damage
initiation in the cohesive zone is defined by the following criterion for the maximum nominal
stress ratio

{ (tn) 2 7 }=1 (6.9)

Tmax,0 Tmax,0 Tmax,0
( )n ’ ( )s ’ ( )L‘

where (Tmax,o)i denote peak nominal stress in the respective direction and the Macaulay

brackets applied on the nominal stresses (tr,,) means that pure compressive stress or
deformation state would not initiate damage. Similar approach in modelling of damage
initiation can be found in Sadowski et al. (2013a).

Damage evolution in the cohesive zone is based on the fracture energy of the interface
defined by the area under traction-separation curve. The normal and shear deformations in the
cohesive zone are interrelated through the mode-mix based on energies. The work
respectively in the normal and shear directions is described by

Gn = faA Tn’ Snds, Gs = faA Ts* Ssds, Ge = faA Tt StdS,
Gr =G, + Gs + Gy (6.10)

where t,,, T, T, are tractions in the respective normal and both shear directions and &,,, &,
&, are their respective conjugate relative displacements.

The mode mix formulations are denoted as
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The condition for failure is formulated in a power law form (cf. Sadowski et al., 2013a)

Gn\% Gs\* G \%
@)+ () () = 62
where GS, GE, GE denote critical fracture energies in respective directions, with applied a = 1.

Due to the limited available literature data for Cu/Al,O3 interfaces, material parameters of
the interface for the present modelling purposes have been estimated based on observations
from experiments (cf. Section 6.1) and from few reference sources. Jarzabek et al. (2016)
reported tensile strength of Cu/Al,O3 bond of 68 and 74 MPa, depending on the alumina grain
size. Juvé et al. (2013) reported shear strength of copper-alumina bonds in the range of 10+50
MPa, depending on manufacturing process parameters such as temperature, pressure, or solid
state bonding time. An interesting effect was observed in Juvé et al. (2013) for changing
alumina roughness: up to R;= 0.2 um the shear strength of copper-alumina bonds made by
solid state was almost constant (around 40 MPa), then increased above 50 MPa at ca. 0.4 um
to experience a drastic drop at around 0.5 pum down to 20 MPa followed by a decrease to less
than 10 MPa at 2.0 um.

In the present work relatively low interface strength values are assumed. This is due to the
fact that in the above mentioned papers specifically prepared small-scale Cu/Al,O3; bonds
were measured, while in the macroscopic Cu/Al,03; composites samples investigated in this
thesis imperfect bonds are likely to occur causing inferior interface strength. The material
parameters of the Cu/Al,O; interface used for the present modelling purposes are shown in
Table 6.4.

Table 6.4. Material parameters for Cu/Al,O; surface-based cohesive bond used for calculations in FE
simulations

Bond Component  Description Constant Value
Tangential Coefficient of friction M 0.1
behaviour

Normal behaviour “Hard” contact
Stiffness in normal
Cohesive behaviour  Stiffness in shear 1 Kit [N/m®] 1.2x10"

Stiffness in shear 2

Damage initiation Failure stress Tmax,0 [MPa] 10.0
Damage evolution Damage parameter D 0.9
Fracture energy Gy [3IM?] 10
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A detailed description of the cohesive zone (CZ) modelling with a literature review,
explanation of the ABAQUS procedures and identification of the material parameters of the
Al/Al,O5 interface are given in Poniznik et al (2015).

Selected results of the numerical calculations in ABAQUS for the Cu/Al,O3; case are
depicted in Figures 6.19 - 6.20. In Figure 6.19 the distributions of von Mises stresses, radial
displacements, axial and shear stresses for the chosen set of parameters are shown for
different pullout stages. It may be observed that due to applied displacement loading large
plastic deformations occur in the fibre, preventing it from being pulled out from the matrix.
Initially the fibre undergoes plastic deformations and thinning on the entire pulled out length.
Then, the localization of the plastic strains occurs and formation of the necking zone takes
place.
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Figure 6.19. (a) — (f): Distributions of von Mises stresses at pullout stages for Cu/Al,O3: a) elastic
deformation of the fibre, b) after initiation of yielding, c) thinning of the fibre visible on the entire
pulled out length, d) maximum stresses start to localize, e-f) neck formation; g) Radial displacements
u, distributed in the pulled out fibre; h) Axial stresses a,, in the necking zone; (i) —(j): Distributions of
shear stresses 71,: (i) before initiation of the interfacial crack, (j) after initiation of the interfacial crack.

The debonding shear stress in the interface zyaxo=10.0 MPa.

The stress-displacement relationships, which are the main result of this model of the fibre
pullout, are presented in Fig. 6.20 for two sets of interfacial parameters. It may be seen that at
the initial stage of the loading process curves are nearly linear, which corresponds to a steady
response of the interface to the static load. Progressive interface failure that occurs with the
increasing load results in a gradual reduction in stiffness. Plastic deformation elongates the
fibre while keeping the stresses in the fibre nearly constant. The final fall in the load value
occurs due to catastrophic failure.
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Figure 6.20. Normalised stress-displacement relationships obtained from present numerical model of
the pullout problem; a) at debonding shear stress in the interface zyn.xo= 3.0 MPa with the main stages
of the pullout process marked with letters O + D, b) at parameters from Table 6.4.

It is to be noted that Bheemreddy et al. (2013) model was implemented for a ceramic-
matrix composite made of SiC fibre embedded in SiC matrix (CMC). Hence, a direct
comparison with the present results for Cu/Al,O3 system is not feasible. Nevertheless, the
phases of the pullout process identified in Bheemreddy et al. (2013), described also in
Poniznik et al. (2015) with regard to elastic-plastic behaviour of the fibre, are clearly
recognizable in Fig. 6.20a: elastic elongation of the protruding fibre part before the onset of
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debonding (O-A), elastic and possibly plastic elongation and thinning of the debonded and
protruding parts of the fibre (A-B) till debonding completion at maximum overall stress (B),
load drop with rapid growth of deboding with interface undergoing shear, elastic and possibly
plastic elongation accompanied by thinning of the debonded and protruding parts of the fibre
(B-C), and unrestricted frictional pull out of the fibre completely separated from the matrix,
with elastic strains recovery stalled by frictional matrix/fibre contact (C-D). Due to friction,
the fall in the load value takes place at limited displacement, in contrary to the immediate
drop in frictionless model of Bheemreddy et al. (2013).

The pullout problem is regarded as one of the most important tests to find the expected
behaviour of a fibre-matrix material system. If the interface in such a system is sufficiently
weak, the fibre debonding from the matrix will occur when a crack growing through the
matrix meets the fibre. The identification of the fibre/matrix interface mechanical properties is
very important for the proper estimation of the mechanical behaviour of the whole composite.
The bond between fibre and matrix has an important role in the ability of the fibres to stabilize
the microcracks created during loading. The pullout of the reinforcing fibres also influences
the total energy needed for the cracking process. It is then important to have a reliable pullout
model capable to correctly identify the material parameters and cover the complete pullout
process.

Axisymmetric single reinforcing fibre model with debonding evolution

A FEM model for the axisymmetric case of a single fibre reinforcing crack faces with
account of the effect of debonding evolution will be analyzed in this Subsection as another
prerequisite model to better understand the crack bridging mechanism in real IPC materials.
The model itself and the results of numerical simulations for Al fibre reinforcing Al,O3 matrix
were published in Poniznik et al. (2015). The results for an elastic-plastic Cu fibre reinforcing
two separate blocks of elastic Al,O3 alumina matrix have not been published yet. Evolution of
debonding between fibre and matrix is modelled using ABAQUS (2010). The interface
between fibre and matrix is modelled with cohesive elements. Three debonding regions in the
matrix-fibre interface can be distinguished: full bond, frictional slip and radial detachment as
shown in Fig. 6.21. As before, the debonding length may be characterized with the
nondimensional debonding parameter v, defined by Eq. (6.4) as the ratio of the debonding
length l4 to the initial fibre radius re.

The model was calibrated with parameters given in Table 6.5. Similarly as in the pullout
case the matrix/fibre radii ratio was taken as 7, /rf0 = 71.43 (cf. Table 6.5) to avoid the effect
of the surrounding medium on the numerical results.
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Figure 6.21. Single fibre reinforcing two blocks of elastic matrix separated by a crack with interface
and debonding regions under tensile loading: full bonding, sliding against friction and radial
detachment (reproduced with permission from International Journal of Damage Mechanics).

This case is similar to the second prerequisite model (cf. Fig. 6.13) considered in
Subsection 6.2.1. However, the main difference is that the effect of fibre/matrix debonding is
not simulated by a series of fixed values of debonding parameter w but the debonding
evolution is included in the overall model. The elastic-plastic model with J, flow plasticity
and isotropic hardening was implemented in ABAQUS to model the copper fibre bahaviour.
Large strains that could locally occur in the necking zone, were determined with an
incremental algorithm. Spectral decomposition allowed the use of the return mapping
procedure for models with an isotropic yield function. The stress update algorithm was used
for the integration of the J, plasticity constitutive equations. The traction-separation was
modelled with cohesive elements as described in detail by Poniznik et al. (2015).

The assumed boundary conditions (cf. Fig. 6.22) represent the situation in a real IPC
material where the reinforcing ligament is interconnected at its ends with the metal phase
network. Consequently, both axial and horizontal displacements are blocked at the bottom
surface of the fibre and matrix. At the top surface of the fibre and matrix the displacement
loading is applied.
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Figure 6.22. FEM mesh with boundary conditions for axisymmetric single fibre reinforcing two
disconnected matrix blocks with evolution of fibre/matrix debonding; fibre-matrix interface modelled
with cohesive elements (reproduced with permission from International Journal of Damage
Mechanics).

The FEM mesh and boundary conditions are depicted in Figure 6.22. The fibre and matrix
were modelled with four-node bilinear axisymmetric elements CAX4. The whole FEM model
consisted of 9652 nodes and 8921 elements. Geometrical and material parameters used for

INTERFACE

calculations are presented in Tables 6.4 and 6.5.

Table 6.5. Material and geometrical parameters used in the models of fibre pullout and axisymmetric
reinforcing fibre with debonding evolution. E; , Ey, v and v, denote Young’s moduli and Poisson’s

ratios of the fibre and matrix, respectively.
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Pullout model Bridging fibre
model
Al,O3 Cu Al,O3 Cu
Em Er, E[GPa] 390.0  110.0 390.0 110.0
Vi, Vi, V 0.2 0.35 0.2 0.35
oo [MPa] - 50.0 - 50.0
n - 5.8 - 5.8
re [um] - 175.0 - 175.0
rm [Mm] 125 - 12.5 -
lo [mm] - 3.0 - -
I [mm] 3.0 6.0 - -
Ig [mm] - 0.0+3.0 - -
t [mm] - - 6.0 6.0




The results of numerical simulations for selected displacement, stress and strain
components are shown in Fig. 6.23. The main outcome of the model, i.e. the stress-
displacement relationship in the reinforcing fibre under progressive fibre/matrix debonding is
graphically depicted in Fig. 6.24.
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Figure 6.23. Distributions of radial displacements (a), axial stresses (b), and equivalent plastic strains
& (c) at axial displacement u, = 0.25mm.
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Figure 6.24. Stress-displacement relationship in the reinforcing fibre obtained with the FEM model
accounting for the fibre/matrix debonding evolution.

It can be noticed in Figs 6.23 - 6.24 that a relatively small necking in the reinforcing fibre
results from extensive debonding. Only a smaller part of the stresses is supported by the
interface, the main part being carried with the actual fibre cross section. It is also reflected in
Fig. 6.24, where the stresses in the reinforcing fibre on the curve of the evolution of
debonding model are only slightly declining. In other words at large displacements the axial
stress in the fibre is still not far from the maximum value.

Comparison of the prerequisite models with the Mataga model

The stress-displacement characteristics obtained from the pullout problem model and, the
axisymmetric reinforcing fibre model with and without debonding evolution were compared
with the analytical results of Mataga (1989). The respective curves are shown if Fig. 6.25
divided into two diagrams (a,b) for visual clarity. The fracture parameters used in numerical
simulations regarding evolution of debonding were taken as G;c =10.0 Jm?, Tmaxo = 10.0
MPa.

It can be seen in Fig. 6.25a that according to the fixed debonding model the maximum
stresses sustained by the reinforcing ligament for v = 0.4, 0.6 or 2.0 occur at very small
displacements (corresponding to crack openings, COD), whereas for the model with
debonding evolution the maximum stresses are reached at much larger displacement (and,
thus, COD). The model with debonding evolution shows smooth stress-displacement
behaviour and only a slight drop in stresses supported by the bridging ligament, in contrast to
the fixed debonding model. The model with debonding evolution yields the results that are in
accordance with observations of Winzer (2011), who reported extensive delamination of
copper from the alumina on fracture surfaces of wool felt PFA based IPCs. It could be then
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supposed that the model with debonding evolution yields results that are more reliable and
closer to the behaviour of the real material. It can also be seen that for the fixed debonding
model, stresses supported by the bridging fibre rapidly fall to nearly zero with the increasing
displacement. For the model with debonding evolution, however, the stress decrease is much
slower and relatively high stresses supported by the bridging fibre remain even for large
displacements.

It can be seen from Fig. 6.25b that Mataga results differ from the results obtained with the
numerical model of the bridging fibre with debonding evolution. Similarly as for the model
with fixed debonding lengths, this is due to the dissimilarities between the paraboloid of
rotation shape of the necking ligament assumed in the model of Mataga, and necking ligament
shape resulting from the present numerical model. For the numerical model with debonding
evolution, relatively large displacements reflecting the crack opening COD are needed to
reach the maximum stresses. For the numerical model of the bridging fibre with debonding
evolution the stresses inside the fibre decline slowly and smoothly. Compared with
observations of Winzer (2011), it could be presumed that the results of this model may be the
closest to the behaviour of the real material.

a) 3.5

-
L4

™~
wn

S}

—— v Y T S an

o/ao,

= =fixed debonding model, $=0.4

“ \ « « « fixed debonding model, $=0.6
== fixed debonding model, {=2.0

05 =—pullout model

== =ey0|. debonding model

4] 1 2 3 4 5 6

u/r?

109



b) 3

~

«++Mataga (1989), ¥=0.4
= =Mataga (1989), {=0.6
= Mataga (1989), 1=2.0
—pullout model

——evol. debonding model

3 4 5 6

u/r?®

Figure 6.25. Comparison of the stress-displacement relationships in Cu fibre obtained according to the

“pullout” and “evolving debonding” models with (a) fixed debonding model, and (b) Mataga model
(for different values of ).
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6.2.2. FEM model of Compact Tension test

As it was mentioned in Section 6.1, the Compact Tension (C-T) test when used for
fracture toughness determination in novel composite materials like IPCs is experimentally
rather challenging because of the lack of well-established standards and technical protocols.
Thus, the main aim of modelling presented in this work is to support experimental
measurements of IPC’s fracture toughness by a numerical approach taking into account real
composite microstructure and the crack bridging mechanism.

Before the FEM calculations for a real IPC microstructure were finally possible, many
attempts were needed to arrive at a model with all the necessary features. Initially a set of
models with simplified fibrous microstructure, both in 2D and 3D, was investigated. Only
then the final model of the C-T test of the real IPC with microstructure obtained from
computed micro-tomography (micro-CT) scans could be developed.

In the numerical models of the C-T test described in the following Subsections the
dimensions of C-T specimens were adjusted to the ASTM E 399 standard.

Two-dimensional C-T model with single reinforcing skew fibre

The first of the 2D models was devised for a pre-cracked alumina specimen with crack
faces reinforced with a single copper fibre. This model can be seen as an illustrative example
of calculating the J-integral based on the potential energy approach described by Plate (2015).

The fibre was either perpendicular or inclined to the crack plane. The test specimen made
of monolithic ceramic was also considered for comparison. The Al,O3 ceramic phase was
modelled as isotropic elastic, the metallic Cu fibre as isotropic elastic-plastic, using the
plasticity model implemented in FEAP (Taylor, 2005) described in Section 6.2.1 for the 2D
model of skew reinforcing fibre. Material data of ceramics and fibre is given in Table 6.2. The
boundary conditions were applied at the geometrical centres of the pins. The point
displacement was applied as a load. FEAP logarithmic stretch model was used to model the
deformation. The model is schematically presented in Fig. 6.26a-b for unreinforced C-T
specimen with pre-crack and in Fig. 6.26¢c-d for a single skew fibre bridging the crack
developing from the notch.
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Figure 6.26. Scheme of C-T test to determine energy release rate and fracture toughness increase due
to bridging: (a), (b) specimens from monolithic ceramic material, (c), (d) ceramic specimens with
metallic reinforcements; (a), (c) — initial state, (b), (d) — state at infinitesimally increased crack length.

The J-integral was calculated based on the potential energy increase AIl for the
infinitesimal increase of crack length Aa (Gross and Seelig, 2006; Plate, 2015). The energy
release rate, or the crack extension force G can be defined in the following form

dI1

G=—"
dA

(6.13a)

where: dA is the infinitesimal crack surface increase, dIT — potential energy increase, IT=1IT"
+ IT*" denotes the potential of external and internal forces, II'™ - strain energy representing

internal energy: TT™ :J.WdV, W- strain energy, V - body volume, IT® - potential of the
\%

external loads F: IT* =—IF-udS, u - displacements, 6V - boundary surface of the body
oV

volume V, dS - area element.

In two-dimensional case, where dIT is linked with the unit thickness as

i

G=—1, 6.13b
T (6.13b)

the energy release rate G is associated with infinitesimally small crack length increase da. The
energy release rate is related to the stress intensity factors K as in Eq. (3.5), namely

dI1
G——E_ f(K) (6.14)
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The J-integral introduced in Chapter 3 for an elastic material is equivalent to the energy
release rate G (Eq. 3.4). Thus, for determination of the J-integral the increase of the potential
energy for infinitesimally small crack length increase Aa is to be found (cf. Plate, 2015)

3 lim (_ﬂj (6.15)

Aa—0 Aa

Calculating the difference —AIl = I1, — I1;, where II; denotes the potential energy in the
initial state at crack length a;, and I1, in the final state at infinitesimally elongated crack of
length a, = a; + Aa, Aa — 0 one obtains the energy release due to the crack length increase
Aa (cf. Plate, 2015). The energy release due to the crack length increase a, —a; was used in the
present model to estimate the J-integral

(6.16)

This model of calculating the energy release (—AIl) was applied to the case of
unreinforced pre-cracked ceramic C-T specimen (Fig. 6.26a,b) and the C-T specimen with
metal reinforcement spanning the crack faces (Fig. 6.26¢,d). Two inclination angles of the
reinforcing fibre to the crack plane were considered: 60° and 90°.

The energy release rate increase AG due to the presence of reinforcement was obtained
comparing the results for the ceramic matrix with fibre-reinforced crack with the results for
the homogeneous material with no crack-bridging fibre for the two inclination angles
considered.

The calculations were made with FEAP 7.5 programme. The FE mesh in the vicinity of
the crack is shown in Fig. 6.27 for the cases of monolithic Al,O3 ceramic (a, b) and Al,O3
ceramic reinforced with Cu fibre at two inclination angles to the crack plane: 90° (c, d) and
60° (e, f). Due to the mesh geometry the radii of the crack tip are equal to zero. The meshes in
the crack tip vicinity for crack lengths a; = a are presented in Figs. 6.27 (a), (c) and (e), the
meshes for crack lengths a, = a+4a are presented in Figs. 6.27 (b), (d) and (f).
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Figure 6.27. Pre-cracked C-T specimen model in FEAP — FE mesh in the vicinity of the crack tip (red
colour — ceramic, green colour — metal): (a), (b) monolithic ceramics; (c), (d) with reinforcement
inclined 90° to the crack plane; (e), (f) with reinforcement inclined 60° to the crack plane; (a), (c), (e)
— before, and (b), (d), (f) — after the crack length increase (images are not in the same scale).

The potential energies IT; in the above cases were calculated from the reaction forces and
displacements at the nodes along contours surrounding the crack tip. The 3™ contour from the
crack tip was taken for the calculations (cf. Fig. 6.28). The J-integral values were then
obtained according to Eq. 6.16.
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Figure 6.28. Nodes forming the 3" contour for the J-integral (yellow arrow indicates crack tip)

In Fig. 6.29 the stress distributions obtained for the initial and elongated crack lengths are
compared.

STRESS 1 _
_STRESS 1 3.85E+03
3.53E+03
4116403 2.20E+03
3.70E+03 2.87E+03
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Time = 1.10E+00 Time = 1.10E+00

Figure 6.29. Horizontal stress distributions for fibre inclined at 60°to the crack plane for: (a) initial
and (b) increased crack length .

The calculated J-integrals for the cases of (i) unreinforced ceramic C-T specimens and (ii)

C-T specimens with reinforcing fibres inclined at 60° and 90° to the crack plane, along with
the corresponding energy release rate increase AG, are collected in Table 6.6.
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Table 6.6. Numerical values of J-integral and AG for alumina C-T specimens with crack reinforcing
copper fibre obtained for contour no. 3.

Unreinforced Fibre reinforced  Fibre reinforced AG for fibre AG for fibre
Al,O3 sample sample, Al,O; — sample, Al,O3 — inclination of inclination of
Cu, fibre Cu, fibre 60° 90°

inclination 60° inclination 90°

Je [x10° N/m] Joo [X10] N/m]  Joo [x10°N/m]  AGgo=Jc—Jso  AGgo = Jc—Jgo

2.038 0.821 0.145 1.217 1.893

From Table 6.6. it can be seen that the presence of the fibre reinforcing crack faces causes
an increase in the energy release rate, thus, will enhance the material fracture energy. This
increase is higher for the fibre perpendicular to the crack plane than for the fibre inclined at
the angle of 60°. This is due to the active (projected on the crack surface) fibre cross section,
which is the largest for the fibre perpendicular to crack plane. Also, the influence of mode Il
loading, which was not considered in the theoretical model, reduces the fracture energy in the
inclined fibre case.

Two-dimensional model with multiple reinforcements

The second 2D FEM model of the Compact Tension test is the model with multiple
reinforcing fibres. The linear elastic Al,O3 ceramic was taken as the matrix material. The
elastic-plastic constitutive model was assumed for the Cu fibre. The material and geometrical
details of the fibre are listed in Table 6.3. The plasticity in the fibre was modelled using the
o(u) relationship yielded by the model of the reinforcing fibre for the delamination parameter
w = 0.4 and applying these data via UMAT procedure in ABAQUS (2010). The FEM mesh
for the ceramic matrix prepared in ABAQUS with the boundary conditions and force loading
are presented in Fig. 6.30.

The J-integral was calculated according to the procedure in ABAQUS along the contour
C:

J= J'(Udy—tiuiyxdc)
(6.17)

where U is the strain energy density given by

i » 6, €—stress and strain tensors, (6.18)

U= jaijdg-
0

and t is the stress vector defined as
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L =o,n, (6.19)

n — unit vector normal to the contour, u — vector of displacements (u; x denotes derivative in x

direction: %).
OX

It was impossible to obtain some of the above stress components with FEAP, thus the
calculations were made with ABAQUS.

The bridging fibres were modelled in ABAQUS as plane strain elements connecting crack
faces. Material model of the fibre remained the same as in the previous case. Calculations
were made for quasi-static crack propagation. The FEM mesh with bridging fibres modelled
as plane strain elements, the boundary conditions and displacement loading are presented in
Fig. 6.30.

Figure 6.30. Compact-Tension (C-T) test model in ABAQUS (mesh created with FEAP) with
bridging fibres modelled as plane strain elements (light colour), boundary conditions and displacement
loading

The resulting distributions of horizontal stresses for increasing crack length are presented
in Fig. 6.31. For the plane strain quasi-static crack propagation model, J-integral was
determined numerically using ABAQUS procedures taking 42 contours for four different
crack lengths. The resulting relation of J-integral vs. crack length increase 4a for an
exemplary material is presented in Figure 6.32. It can be seen that the J-integral increases
with the increasing crack length of the growing crack.
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Figure 6.31. Distributions of horizontal stresses for increasing crack length in plane strain C-T model
with multiple fibres.
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Figure 6.32. lllustrative example of J-integral vs. crack length increase 4a curve for plane strain C-T
of alumina specimen toughened with copper fibres - results from ABAQUS.

It is to be emphasized that the proposed plane model of the C-T test for pre-cracked
ceramic material reinforced with multiple ductile fibres accounts for the delamination, large
deformations and necking of the reinforcing fibres. The o-u characteristics of the individual
elastic-plastic fibre were obtained with separately developed model accounting for the same
phenomena.

Three-dimensional model for simplified composite microstructure with fibres

In this model the Al,O3/Cu IPC material is modelled as the effective material in which a
cuboid containing bridging fibres perpendicular to the predicted crack plane is placed in the
vicinity of the crack tip. The fibres’ locations and dimensions were taken according to
Hoffmann et al. (1997) experiments. The surrounding material is modelled as elastic with the
effective elastic properties calculated using the extended V-R-V model developed in Chapter
5. The dimensions of the C-T specimen comply with the ASTM E399 standard. The material
and geometrical data of the fibre are given in Table 6.3. In Fig. 6.33 an overall scheme of this
Compact-Tension test model is presented.
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Figure 6.33. Scheme of three-dimensional Compact-Tension model for composite with multiple
crack reinforcing parallel fibres, with perspective view and orthogonal projections from ABAQUS

The overall view of the model in ABAQUS with one of FE meshes and boundary
conditions is shown in Fig. 6.34. The details of the crack tip vicinity with fibres are shown in
Fig. 6.35. Selected stress and strain distributions in the reinforcing fibres obtained with this model
are presented in Figs 6.36 and 6.37.

The crack propagation and the J-integral were not analysed with this simplified C-T
model. It served merely as a necessary step towards a more accurate C-T model where a
cuboid with prescribed topology of perpendicular cylindrical fibres would be replaced by
micro-CT images of the interpenetrating microstructure with ductile ligaments in front of the
growing crack. The rationale behind using such a material insert with a specific composite
microstructure near the crack tip was to prepare the numerical ground in ABAQUS for the
more complex FEM model when the growing crack encounters real microstructure of an IPC.

a) b)

Figure 6.34. Simplified 3D model of Compact-Tension test with parallel fibres near the crack tip:
a) sample FE mesh, b) boundary conditions
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crack tip

Figure 6.35. Detailed view of the crack tip neighbourhood with family of parallel reinforcing fibres.
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Figure 6.36. Numerical model and results from ABAQUS: a) FEM mesh, b) von Mises stress
distributions for a chosen increment of loading.
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Numerical model with real IPC microstructure

In this Subsection the energy release rate increase will be determined for an IPC material
in Compact-Tension (C-T) with account of a real interpenetrating microstructure obtained
with computed microtomography (micro-CT). A solution of such a complex problem requires
the use of special software and high performance computer (total number of elements =
946322, total number of degrees of freedom = 3583413). However, the analysis of this
problem is possible with the use of the ABAQUS software package carrying out the
computations in two steps: (i) solving of the Compact Tension problem with homogenized
material properties, followed by (ii) a “submodelling” approach for the chosen smaller
volume of the material in the region of interest.

The idea of the proposed model is depicted in Fig. 6.38.

a) b) 400
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Figure 6.38. Scheme of the Compact-Tension test model of the IPC with real material microstructure
obtained from micro-CT: (a) FE mesh in the vicinity of the crack based on the micro-CT data, (b)
analytical and numerical models for effective elastic properties used for the remaining part of the C-T
specimen (based on Poniznik et al., 2008, Basista et al., 2010 and Basista et al., 2016, with the
permission of publishers).

The composite material under consideration is an Al,O3/Cu IPC with 25% Cu content. It
was manufactured within the KMM-NoE* FP6 project by Jami Winzer at the Institute of
Materials Science of Darmstadt University of Technology in Germany. The gas pressure-
assisted infiltration of a molten copper into a ceramic preform was performed at the
temperature of 1200°C and pressure of 100 bar. The interconnected pore network in the
ceramic preform was obtained using a natural wool felt as the sacrificial pore forming agent,
PFA (Winzer et al., 2011, see also Appendix).

! Network of Excellence “Knowledge-based Multicomponent Materials for Durable and Safe
Performance” (contract no. 502243-2)
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A three-dimensional representation of the Al,03/Cu IPC microstructure was obtained with
micro-CT by Georg Geier at the Osterreichisches GieRerei-Institut (Austrian Casting Institute)
in Leoben. Volumetric micro-CT images of the IPC microstructure were obtained for a
cylindrical specimen cut in two smaller pieces. The obtained micro-CT images were
transformed into FE meshes with Simpleware ScanlP/FE commercial software according to
the procedure described in Basista et al. (2016): first, the image was imported into ScanlP
programme, then a representative volume of the 3D microstructure was chosen for further
processing. For the chosen volume the segmentation into separate phases was done to
distinguish the composite phases, i.e. alumina and copper. Then the FE mesh was obtained
with ScanFE programme. In view of the expected singularities such as the crack tip, and
intended J-integral calculations necessitating the use of quadrilateral and not tetrahedral
elements, smoothing of the FE mesh could not be applied and the mesh of voxels was created
instead. The finite element 3D model was created and analysed with ABAQUS (2010).

Due to the presence of dense metallic phase the dimensions of the Al,O3/Cu composite
samples that could successfully be replicated with X-Ray micro-CT were very small
compared to standard Compact Tension (C-T) test specimens. Therefore, it was decided to
model the whole C-T composite specimen using the effective material properties model V-R-
V developed in Chapter 5 (cf. Fig. 6.38b) and inserting a piece of the real composite
interpenetrating microstructure in the vicinity of the expected crack growth trajectory, as
illustrated in Figs. 6.38 and 6.39. The longer side of the real material piece was positioned
along the predicted crack tip front, i.e. along the width of the C-T specimen.

The dimensions of the C-T specimen were taken according to the ASTM E399 standard.
A cuboid image was cut out of the micro-CT image of cylindrical IPC specimen using the
Simpleware ScanlP software. The specimen dimensions were then adjusted to the dimensions
of the cuboid image.

The characteristic dimensions of the C-T test specimen resulted from the resolution of the
micro-CT device and the voxel size of 9.12 um, and were as follows: W = 14.7 mm, A = 7.12
mm, width of the C-T test specimen: B = 7.35 mm (see Fig. 6.38 a). The real composite
cuboid piece in the vicinity of the crack tip was composed of two cuboids cut out from the
same composite piece. The composite piece had to be divided into two parts because of the
size limitations of the micro-CT equipment. Consequently, two separate micro-CT images of
these two pieces were obtained. From each of these images a cuboid of the dimensions of
60x60%403 voxels (0.547 x 0.547 x 3.67 mm) was extracted. Both cuboid pieces originated
from the material parts separated with the distance of approx. 0.5 mm. Finally, from these two
cuboids one cuboid piece of IPC was composed by shifting them next to each other. The
dimensions of the resulting cuboid IPC piece were: 60x60x806 voxels (0.547 x 0.547 x 7.35
mm).

In numerical simulations due to a large number of elements in the C-T test model with
IPC microstructure, a submodelling had to be applied with a global model of the effective
material and the real composite microstructure in the crack tip vicinity. The idea of
submodelling is presented in Fig. 6.39. The displacement field was taken from the surface of
the boundary of real microstructure piece in the global model, and applied as the boundary
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conditions on the real material piece (cf. Fig. 6.43). Since the model is huge it was impossible
to be solved with the available hardware capabilities. As a way out a slice of 60 voxels wide
was cut out of the whole C-T test specimen and taken for calculations, as depicted in Fig.
6.39.

Figure 6.39. Schematic diagram of the real IPC microstructure model with submodelling applied to
reduce the problem size.

The slice cut out of the whole C-T test specimen had the outer dimension_s (W and A) of
the global C-T test model, with width of the diminished C-T test specimen: B = 0.547 mm.
The cube with real microstructure had the dimensions of 60x60x60 voxels (0.547 x 0.547 x
0.547 mm).

The FE mesh of the outer, global model part of the Compact Tension test specimen had to
be fine-tuned to the size of the elements of the submodel. This caused large difficulties in the
FE mesh design, compromising between the necessary very fine element size in the regions
near the real material piece and near the loading and the boundary conditions application
surfaces (pin holes), and the need to optimize the mesh size in the less important areas. The
FEM model for the global model part of the Compact-Tension “sliced” specimen had 778746
nodes, 730322 solid 8-node C3D8 elements, and 2282964 variables. The FEM model of the
real microstructure cube part of the Compact Tension test “sliced” specimen had 433483
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nodes, 216000 solid 8-node C3D8 elements, and 1300449 degrees of freedom. The details of
the real microstructure cube are shown in Fig. 6.40, in which the horizontal cuts through the
piece from bottom to top with bridging ligaments and interconnections between fibres, are
visible.

Microstructure details:

=

Research at TU Darmstadt:

25% open porosity

pore forming agent — wool felt
pressure assisted infiltration
infiltration temperature: 1200°C

Figure 6.40. Details of the microstructure of real IPC cube - horizontal cuts through the piece from
bottom to top, with visible bridging ligaments and interconnections between fibres.

The material models of the composite phases were described in Poniznik et al. (2015) and
also in the previous Subsections treating the single axisymmetric fibre pullout/reinforcing
fibre with debonding evolution. The ceramic Al,O3; phase was modelled as isotropic elastic,
the metallic Cu phase was modelled as isotropic elastic-plastic undergoing large plastic
deformations. In the elastic-plastic model applied for the copper phase the J, flow plasticity
and isotropic hardening model was used and implemented in ABAQUS. The J, plasticity
constitutive equations were integrated with the stress update algorithm. Large strains that
might locally take place, were determined with an incremental algorithm. For the models with
isotropic yield function, the spectral decomposition made possible the use of the return
mapping procedure. Material parameters used for calculations are shown in Table 6.7.

Table 6.7. Material parameters used in calculations

AlbO; Cu
Em, Ef [GPa] 390.0  110.0
Vi, Vf 0.2 0.35
oo [MPa] - 50.0
n - 5.8
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In order to model the material discontinuities represented in finite elements as the
embedded discontinuities, the Extended Finite Element Method (XFEM), introduced by
Belytschko and Black (1999) and developed further among others by Dumstorff and Meschke
(2007) was used (cf. Section 3.4). The XFEM was employed to model crack propagation in
the elastic ceramic phase. At this stage of the model development it was assumed that copper
ligaments may deform plastically but their damage and final rupture was not included in the
analysis.

Using ABAQUS (2010) it is possible to model damage initiation and damage evolution.
The damage initiation criterion can be expressed in terms of maximum nominal stress MAXS
or maximum principal stress, maximum nominal or principal strain, maximum separation
displacements, or with their quadratic interaction functions. In the present numerical model
the MAXS criterion is used for damage initiation in ceramic elements and at cohesive
interfaces. According to Prielipp et al. (1995), or the NIST Structural Ceramics Database
(Munro, 1997), the value of flexural strength of dense alumina at room temperature varies
between 330-430 MPa. For present modelling purposes the damage initiation stress in
alumina was assumed to be 300 MPa. The ENERGY criterion for the damage evolution in
ceramic elements is defined in terms of the fracture energy that is required for the element
total failure. The energy required for fracture in the mixed mode is expressed as a power law.

A displacement-controlled quasi-static loading was applied to make the crack growing.
During laboratory C-T tests the boundary conditions and the loading were applied at roller
pins. In the present model the boundary conditions and the loading were applied to the C-T
test specimen as a pressure on the pin holes surfaces. One of the pin holes was kept fixed to
simulate real C-T test conditions. The displacement u from 0.0 to 0.25 mm was applied at the
other pin hole. The boundary conditions and the loading are depicted in Fig. 6.41.

The model with FE mesh is depicted in Fig. 6.42. The pre-crack tip was assumed as sharp
(with zero radius). The crack tip angle was of the order of 0.03 rad (Fig. 6.43). The initial
opening angle of the simulated crack developing in the real material piece was 0.0 rad (there
was no pre-crack in the real material). The applied displacements were small, hence the
opening angle in the real material piece did not grow substantially.

The results obtained with the global model of the C-T test are presented in Fig. 6.44 for
selected displacement, stress and strain fields. The results for the submodel with the real IPC
microstructure in both ceramic and metal phases are shown in Fig. 6.45.

The calculations were made with ABAQUS software using multiprocessor computer
cluster GRAFEN at the Institute of Fundamental Technological Research of the Polish
Academy of Sciences. The calculations of both models: global model and submodel, due to
their large sizes, needed considerable computation time.

The J-integral was calculated along the crack front at 25 contours using ABAQUS
procedure. The J-integral values were taken for contours contained within the ceramic phase.
These values rose gradually to saturate at the 11%Mcontour, which was then chosen for
calculations. The calculated J-integrals vs. crack length increase Aa are presented in Fig. 6.46.
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Figure 6.42. The FEM model for C-T test with account of real IPC microstructure developed in
ABAQUS (a) outer, global model of C-T specimen with effective elastic properties, node set from
which displacements are taken for the submodel marked in red, (b) submodel of real Al,O5/Cu IPC
microstructure obtained with micro-CT imaging (displacement boundary conditions marked in
yellow).

v

Figure 6.43. The shape of pre-crack tip.
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Figure 6.44. (a) Boundary conditions and (b-f) selected results from the global model of the C-T test
at applied u; = 0.157 mm: (b) displacements in the loading (horizontal) direction u;, (c) von Mises
stresses in the crack tip vicinity, (d) stresses in the loading (horizontal) direction in the crack tip
vicinity, (e) vertical stresses in the crack tip vicinity, (f) logarithmic strains in the loading (horizontal)
direction in the crack tip vicinity.
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Figure 6.45. Selected model results obtained for the real IPC piece: (a) propagated crack marked with
red (white — copper phase), (b) displacements in the loading direction in the copper phase, (c-g) von
Mises stresses, (d-f) - in the copper phase, (e) — left half, (f) — right half, (g) —left half of the ceramic
phase, (h) stresses in the loading direction in the ceramic phase, (i) logarithmic strains in the loading

direction in the ceramic phase, (j) plastic equivalent strains in the copper phase (right half), (k)
propagated crack marked with red in the ceramic phase (left half).
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Figure 6.46. J-integral vs. crack length extension (reprinted with permission of Advanced Engineering
Materials)

From the numerical results depicted in Fig. 6.45 it can be seen that the applied
displacement loading caused stresses in the middle plane of the IPC piece initiating crack
propagation in the ceramic phase and plastic yielding in the copper phase. The calculations
were stopped when the time increment was lower than the minimum allowed. The propagated
crack length reached approximately 0.1 mm.

The results of J-integral calculations for the 3D case, recently published in Basista et al.
(2016), are presented in Fig. 6.46. They represent the very beginning of the crack propagation
process as the crack has grown up to 0.1 mm, only. The convex shape of J(4a) curve for the
3D case (Fig. 6.46) is different than the concave shape obtained for the 2D case (Fig. 6.32).
On the other hand since the 3D crack front has grown only by a small size increment, the
plateau reached in Fig. 6.46 may correspond to the initial part of the J(4a) curve in the 2D
case, which assumes a concave shape as the crack keeps growing. A more plausible
interpretation of different characters of J(4a) curves may be attributed to the effect of three-
dimensionality that favours less steep increase of the J-integral and its tendency to reaching a
plateau.
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The numerical predictions of the J-integral in the 3D case are in qualitative agreement
with the experimental results reported by Miserez et al. (2004) for gas pressure infiltrated o-
Al,O3 preforms with liquid high purity Al and Al/Cu2% alloy, measured in the Compact
Tension test. Even though the microstructure of their composites differs from the
interpenetrating microstructure considered in the present model the crack behaviour
represented by the J-integral vs. crack extension curves is very much the same in shape. An
explanation for this observation can be sought in similar crack toughening mechanisms.
However, this statement needs further studies to be claimed true.
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7. Summary, conclusions and future research

The objectives of the research presented in this dissertation were twofold: (i) to propose
analytical and numerical models for estimation of the macroscopic mechanical properties, and
(ii) to propose numerical models for deformation and fracture capable of determination of the
fracture parameters of novel metal-ceramic composites with interpenetrating microstructure
(interpenetrating phase composites, IPCs).

A number of different analytical and numerical models have been developed for the
effective material properties and the fracture related parameters of the IPCs. In what follows a
concise account of these models will be given with the original elements highlighted,
wherever relevant.

Mishnaevsky (2005, 2006, 2007b) codes were used to model in two dimensions the
effective elastic properties of a particle-like microstructure and of a cross-like microstructure.
The particle-like microstructure was compact in shape, while the cross-like microstructure
was branched. The results were compared to the Voigt and Reuss estimates in order to
examine the influence of the microstructure on the macroscopic properties of IPC materials.

The effective elastic constants: Young’s modulus, Poisson’s ratio, bulk and shear moduli,
related to the volume fraction of the phases, were estimated on the examples of Al,O3/Cu and
Al,O3/Al interpenetrating phase composites, using models based on the decomposition of the
cross unit cell mimicking an interpenetrating microstructure. The analytical models of Voigt,
Reuss, Tuchinskii (1983) and Feng et al. (2003, 2004) were applied. Extensions of the
Tuchinskii (1983) and Feng et al. (2003, 2004) models were proposed, as derived from the
eigenmoduli of the stiffness tensor (bulk and shear moduli), which is a novel approach. A
third way of unit cell division was implemented, which is also an original contribution to the
IPCs’ effective properties estimation. Young’s modulus, bulk modulus, shear modulus and
Poisson’s ratio were predicted with the novel extended models.

Three new analytical models, based on three directions of decomposition of the cross
unit cell, derived from the eigenmoduli of the stiffness tensor, were developed for estimation
of the overall coefficient of thermal expansion (CTE) of IPCs.

Two original numerical methods were developed for estimation of the effective elastic
constants of IPC materials: (i) method for the simplified microstructure of three-dimensional
cross, and (ii) generic method for real IPC microstructures based on three-dimensional
microstructure images obtained with computed microtomography (micro-CT). For two-phase
three-dimensional cross microstructure model, the whole range of phases’ volume fractions
were addressed. For the generic method for real microstructure, two different Al,O3/Cu IPCs
of different microstructures and copper volume fractions were modelled. Two kinds of finite
element meshes were created for this method: a voxel type mesh and a mesh with smoothed
boundaries between phases containing both hexagonal and tetragonal elements.

The analytical and numerical modeling of the effective elastic properties and fracture of
IPCs was enriched with experimental investigations of IPCs of different microstructures.
Preparation of IPC samples together with analysis of the influence of different processing
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parameters on the resulting materials’ microstructure and properties, measurements of the
elastic properties in RT and in thermal cycles, and observations and measurements of fracture
in IPCs, were performed. The results of experimental measurements were further compared
with the results of analytical and numerical models of the effective elastic properties and
fracture of IPCs. They also served as a basis of modelling assumptions and necessary
simplifications.

The modelling of fracture parameters and crack evolution in IPCs, which constitutes the
second main part of this thesis, was preceded by experimental observations of crack
propagation and fracture surfaces, and measurements of fracture toughness. A set of models
were explored in order to finally determine the increase of the fracture toughness that occurs
in IPC composites due to crack bridging. The prerequisite models of a single elastic-plastic
fibre reinforcing elastic matrix were developed in order to determine the stress-displacement
characteristics in the reinforcing ligament, necessary for the determination of the J integral in
the whole composite. Numerical models of the Compact-Tension tests were developed in two
and three dimensions. The Compact-Tension test was modelled in three dimensions for the
real IPC microstructure obtained from micro-CT images. The J integral was calculated for
two- and three dimensional cases.

The deformation mechanisms of IPCs including large plastic deformations and necking of
metal ligaments, delamination of reinforcements from the matrix, and crack bridging was
determined using the finite element models originally developed within this thesis. The 2D
model of a skew reinforcing fibre, inspired by the experimental investigations of Hoffman et
al. (1997), enabled analysis of the deformation of either elastic-plastic copper reinforcement
embedded in elastic alumina matrix, or conversely, of elastic reinforcement in elastic-plastic
matrix. The influence of the nondimensional debonding parameter on the force -
displacement characteristics was examined in detail.

The stress — displacement curves for elastic-plastic reinforcing fibres were obtained for
Al,O3/Al and Al,O3/Cu composite systems with the finite element model of an axisymmetric
elastic-plastic metallic fibre in an elastic alumina matrix, undergoing large plastic deformation
and necking. The influence of fibre-matrix debonding on the o-u characteristics was also
analysed with this model.

A finite element model of the fibre pullout, being an original extension of the model of
Bheemreddy et al. (2013) by introducing the elastic-plastic model for the fibre, was proposed.
The model accounted for the large plastic deformation and necking in the fibre and for the
evolution of fibre debonding from the matrix. The purpose of the fibre pullout model was the
identification of the interfacial material properties which could subsequently be used in the
numerical determination of J-integral for IPCs. This systematic approach to model parameters
identification in numerical modelling of J-integral in IPCs can be seen as another original
element of the thesis.

A novel finite element model was developed for an axisymmetric reinforcing fibre with
the evolution of fibre-matrix debonding. The model was intended to help understand the
mechanism of crack bridging in real IPC materials. The material parameters used for
Al,O3/Cu composite, including those of the cohesive interface, were assumed the same as for
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the pullout model. The stress — displacement characteristics obtained from this model were
compared with the results of pullout model and with analytical results of Mataga (1989),
reflecting well the behaviour of the reinforcing fibres in Al,O3/Cu IPC observed in
experiments by Winzer (2009).

Numerical models were proposed for the determination of the energy release rate
increase 4G due to crack bridging mechanism in IPCs. Two-dimensional numerical models
for the Compact-Tension (C-T) test were developed in several variants. Different techniques
of modelling of the reinforcing fibres and propagation of the crack were used to determine the
J integrals. The two-dimensional original models include the C-T test model with a skew
reinforcing elastic-plastic copper fibre embedded in an elastic alumina matrix and the C-T test
model with multiple elastic-plastic copper fibres embedded in an elastic alumina matrix. For
the case with multiple bridging fibres and quasi-static crack propagation, the J integral related
to the crack length increase 4a was numerically determined.

The original three-dimensional finite element models of the Compact-Tension (C-T)
test included the model for a simplified composite microstructure with cylindrical fibres and
the model of a real composite microstructure obtained from microtomography (micro-CT)
experiments. Submodelling was applied in the case of the real IPC microstructure due to the
large size of the problem. Additionally, it was necessary to cut out a slice from the model of
the C-T specimen. The submodel of a vicinity of the crack tip was made of the cube of voxels
with real Al,O3/Cu IPC microstructure obtained from micro-CT scans, according to the
original modelling scheme (cf. Chapter 5). The alumina ceramic phase was modelled as
elastic with possibility of initiation and evolution of damage using the Extended Finite
Element Method (XFEM). The copper metallic phase was modelled as elastic-plastic
undergoing large plastic deformations. The global model consisted of the linear elastic
material with effective properties of the investigated Al,O3/Cu IPC estimated with the newly
developed methods described in Chapter 5. The global model was subjected to quasi-static
loading and the resulting displacement field from the area bounding the submodel was applied
at the submodel as the boundary conditions. Under the applied quasi-static loading, the crack
propagation was modelled in the ceramic phase of the submodel. The J integral was
calculated in function of the crack length 4a.

The main objectives of this dissertation have been achieved with the mentioned above
analytical and numerical models of metal-ceramic IPCs, aiming at prediction of the overall
elastic properties, deformation mechanism with account of large plastic deformations of the
metal phase, debonding of the reinforcement from the matrix and crack bridging, as well as
the macroscopic fracture parameters and crack evolution in real IPCs with microstructure
modelled by means of micro-CT images. The results of the analytical and numerical models
were compared not only with the existing results from the literature, but also with the
experimental results obtained within this work during research stays abroad. The analytical
models estimating the overall elastic properties of IPCs, compared with the experimental
measurements, enabled fast finding of a microstructure with the optimum properties. The
main phenomena occurring in real IPC materials, such as interconnections between fibres,
debonding, skew fibres, contact between delaminated fibre and matrix, or interaction between
bridging fibres, were addressed.
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The main theses of this dissertation formulated in Chapter 4 have been verified and
confirmed. The influence of the composite microstructure on the effective elastic properties
was shown using Mishnaevsky (2005, 2006, 2007b) codes and significant differences
between the effective elastic properties for different microstructures in planar case were
disclosed. The results obtained for particle-like microstructure were closer to the upper Voigt
estimate, while the results for cross-like microstructure had lower values, closer to the Reuss
estimate, confirming the strong influence of the microstructure on the macroscopic properties
of IPC materials. The microstructure influence on the effective elastic properties was visible
also when the experimental results of Young’s modulus measurements were compared for
different IPC microstructures (cf. Appendix).

The analytical models of the effective elastic constants (i.e. the extensions of the
Tuchinskii (1983) and Feng et al. (2003, 2004) models and the model based on the third way
of unit cell division), for both Al,O3/Cu and Al,Os/Al IPC composites, together with the
numerical models based on the three-dimensional cross-like microstructure and of the real
Al,0O3/Cu microstructure obtained from micro-CT experiments fit between the Voigt and
Reuss bounds. Two Al,O3/Cu IPCs of different microstructures and copper volume fractions
were modelled using the newly developed generic numerical methods for estimation of the
effective elastic and thermal constants of real IPC composites, with the use of 3D
microstructure images obtained from the computed microtomography (micro-CT). These
numerical procedures enabled analyses of different actual microstructures and their influence
on the macroscopic IPC properties. The main difficulty when modelling the real IPC
microstructure obtained from micro-CT was the large size of finite element meshes requiring
long computational time and the necessity to divide the real material piece into a number of
smaller parts, and then performing calculations for each of them separately. However, the
latter task was partially automated with a FORTRAN code.

The overall coefficients of thermal expansion (CTE), calculated according to the proposed
models for Al,O3/Cu and Al,Os/Al IPC composites, were contained within the Rosen and
Hashin (1970) bounds.

By comparison of the results of analytical and numerical modelling of the overall elastic
constants and of experimental measurements at room temperature, fast identification of a
microstructure providing optimum properties is possible.

The proposed numerical models accounting for large plastic deformations and necking of
metal ligaments, delamination of reinforcements from the matrix, and crack bridging
toughening mechanism have proven their capability of reflecting the phenomena that may
occur in real IPC materials. The difficulties with these models included the lack of necessary
material properties of the interfaces, large size of the models causing long computational
times and numerical instabilities that might occur due to damage in the cohesive interface.

Numerical models using micro-CT scans of real IPC microstructures and a commercial
software to automatically generate FE mesh were proposed as a ready to use computational
tool for the investigation of crack propagation in IPCs. As compared with the results for the
two-dimensional case, the resulting J integrals were obtained for the initial stage of the crack
propagation process, thus different shapes of the characteristics were obtained in 2D and 3D
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cases. In particular, for the three-dimensional case a less steep increase of the J-integral was
noted. Excessive computational time was needed to perform calculations for the real
microstructure model. The use of high power computers was necessary and even then the
computations of the single calculation process (global model and submodel) for only a slice
cut out of the C-T specimen, required a very long time. Moreover, due to specifics of the
crack propagation and J integral calculations, it was impossible to perform calculations in
parallel on multiple processors to speed them up. Nevertheless, the obtained results were in
qualitative agreement with the results obtained by Miserez et al. (2004) for similar composite
materials.

The use of computed micro-tomography images in the proposed numerical models makes
them a versatile modelling tool for different microstructures with no need to make any
simplifying assumption as to the geometry of reinforcements that are usually made in
micromechanical models of composite materials. With the analytical and numerical models
developed in this thesis the overall elastic properties, deformation and fracture parameters of
IPCs may be predicted supporting complicated and costly experimental measurements, at the
same time reflecting the most important characteristics of the IPC microstructure and
providing reliable results.

Directions of future research shall include analytical and numerical estimation of the
effective elastic constants of IPCs taking into account a material anisotropy using definitions
of the directional stiffness constants given by Ostrowska-Maciejewska and Kowalczyk-
Gajewska (2013), expansion of the numerical models for other material phases like porosity,
impurities or interfaces, or incorporation of plasticity and large deformations in metallic phase
in modelling of the overall mechanical properties of IPCs. The IPCs with microstructures
based on corn or rice starch PFA, which had shown promising characteristics in laboratory
measurements in thermal cycles with almost no microcracking upon cooling and good shape
stability, should be further investigated experimentally in elevated temperatures. Unforeseen
behaviour of IPCs with microstructures based on natural wool PFA observed during high
temperature cycles, also renders these composites valuable for further examinations.

The pullout tests and Ashby et al. (1989) tests of a single reinforcing fibre, would be
highly recommended to experimentally determine the alumina-copper interface properties
during crack bridging and pullout, and to apply these results in the respective numerical
models.

As for the models of the determination of the energy release rate increase due to bridging
in the compact tension test, introduction and calculation of the configurational crack tip forces
according to the theoretical basis described by Plate (2015), would be important. Also further
effort should be invested in (i) performing calculations for the global model with crack
propagation that yield more realistic displacement fields for the submodel, (ii) performing
calculations for the whole C-T specimen and for the larger real material piece enabling longer
crack propagation, or (iii) introduction of the cohesive interface. Analyses of the
computations paralleling for the Compact Tension test model would also be necessary, as well
as the experimental characterization of the fracture parameters to validate the numerical
models.
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Appendix. Experimental background for the models developed in the thesis

This Appendix provides a concise overview of the manufacturing methods of interpenetrating
phase composites (IPCs). It also contains results of own experimental work on IPCs
manufacturing and characterization that are beyond the main theme of thesis, which is
modelling, but contribute to a better understanding of the material properties and fracture
mechanisms considered in the main text.

Al. Manufacturing of interpenetrating phase composites: an overview

The commonly used methods of IPC manufacturing are based on pressure-assisted or
pressure-less infiltration of molten metals into ceramic preforms (cf. Basista and Weglewski,
2006; Skirl et al., 2001, Winzer, 2011). Preform preparation techniques including sintering of
coarse powders, foam based methods, or methods using sacrificial pore forming agents are
described in Mattern et al. (2004) followed by a detailed parametrical analysis of the
infiltration process. The gas pressure infiltration of liquid metallic phase into a porous
ceramic perform is a commonly used fabrication technique of IPCs. The ceramic preform may
form a random porous network of a sintered aluminum oxide or contain hollow parallel
channels or regular grids if special processing techniques are applied (Raddatz et al., 1998). In
what follows a set of representative works with different processing techniques of IPCs will
be briefly discussed and examples of IPCs’ essential mechanical properties will be given.

Clarke (1992) investigated processing and properties of interpenetrating phase
composites defined as multiphase with each phase topologically interconnected throughout
the microstructure. Manufacturing and characterization of titanium trialuminide (AlsTi) /
aluminium (Al) metal-intermetallic interpenetrating composites was presented by Wang et al.
(2007). Processing techniques of glass-containing IPCs were reviewed in Bansal (2006).
Scherm et al. (2010) manufactured interpenetrating lightweight metal matrix composites,
based on porous Al,O3; ceramics infiltrated with aluminum alloy AISi9Cu3. The ceramic
preforms were produced by cold pressing of fine grained ceramic alumina powders with
pyrolysable pore formers, followed by burnout and partial sintering. Porous preforms were die
casted with Al alloy. Both metal and ceramic phases were distributed isotropically.
Mechanical characterization was performed in tensile and compression tests. Thermal
properties such as thermal diffusivity (conductivity), coefficient of thermal expansion and
specific heat capacity were also measured. The strengthening mechanisms such as stress
transfer from metal matrix to the ceramic reinforcements, dislocation strengthening, and
refinement of the metal grain size, were identified. The composites showed enhanced
mechanical properties compared to the matrix alloy: ultimate tensile strength and Young’s
modulus but were slightly less ductile. Strong bonding between ceramic and metal was
observed on fracture surfaces of tensile specimens.

Hemrick et al. (2010) investigated low and high temperature fabrication methods of
nano-scale IPCs. Infiltration of metal (Cu, Al or alloy) into a nanoporous ceramic matrix
(alumina, silica or titania) was one of the routes for low temperature processes. Low
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temperature co-sintering of mixed ceramic and metallic nanopowders, infiltration of metal
into nanoporous cellular ceramicss or ceramic nano-foams, and co-formation of bi-continuous
block copolymer microphases with ceramic and metal precursors were also evaluated as
methods to produce improved nano-scale IPCs. The influence of the composition on the
mechanical strength was examined.

Hein (2014) used the powder injection moulding method to fabricate metal ceramic
interpenetrating composites. Different material combinations were tested and the produced
materials were characterised in terms of density, mechanical properties and microstructures.
The advantage of the powder injection moulding method is the ability to produce near-net
shape parts in large quantities.

Sun et al. (2009) developed an Mg-based metallic-glass/titanium IPC exhibiting
enhanced mechanical performance: high fracture strength of 1783 MPa and large fracture
strain of 31%. The composite was manufactured with pressure assisted infiltration of a Mg-
based metallic glass alloy into a porous titanium with a pore size of 30-200 um and nominal
porosity of 30%. The composite samples were tested in quasistatic compression test. The IPC
fractured at 1783 MPa, compared to 800 MPa for porous titanium and 825 MPa for BMG
alloy. The microstructure of the manufactured IPC materials was examined using different
microscopy techniques. Shear bands in the specimens that underwent compression to the
preset strains were observed. It was concluded that the interpenetrating microstructure had a
highly positive influence on the mechanical properties of the composite. The interpenetrating
microstructure ensured throughout constraint of the shear bands propagation, promoted
homogeneously distributed local shear deformations and decentralized the deformation of the
composite, and also introduced a mutual reinforcement between metallic glass and titanium.

Roy et al. (2012) investigated internal load transfer and compressive damage evolution in
an interpenetrating Al,O3/AlSi;, composite. The composites fabricated by squeeze-casting of
eutectic aluminium-silicon alloy melt in a porous alumina preform, were investigated in
micromechanical load partitioning between the three phases of the composite. The failure of
the composite occurred by propagation of cracks in the regions rich with the ceramic phase.

In the work of Kailash (2013) interpenetrating polymer networks were investigated, with
particular emphasis on fracture behavior in tensile, quasi-static and dynamic tests. Both quasi-
static and dynamic tests showed decrease of fracture toughness with the decrease of the
volume fraction of the stiffer PMMA phase. In quasi-static tests the stability of the crack and
fracture toughness depended on the volume fractions of the components. The quasi-static
fracture toughness had an optimum for higher volume fractions of PMMA.

Moro and Solomon (2012) designed and manufactured IPCs for vibration damping. The
novel shape memory alloy-ceramic composites using reactive metal penetration technique,
were produced. Mu et al. (2014) developed a Ti/Ti-based-metallic-glass interpenetrating
phase composite (IPC) by infiltrating Tiss3Zr315NissCusBessz melt alloy into porous Ti
preform. A mutual reinforcement effect, for both amorphous and crystalline phases was
observed during characterization of the composite.
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Chang H. et al. (2010) investigated the effects of the dynamic impact load at high
velocities on Al-Mg/Al,O3 IPC coatings of Al backing. The coatings were manufactured
using pressureless infiltration of Al,O3; foams of densities in the range of 15-30% and of
approximately 25-75 um cell radii. Split Hopkinson’s Pressure Bar (SHPB) and Depth of
Penetration (DoP) methods were used to acquire ballistic properties of IPCs. The tests showed
that IPCs themselves cannot sustain the impact of high velocity armour piercing rounds. On
the other hand, when covered with the dense Al,O3; front layer of 4 mm thickness, no
penetration into Al backing was observed and the specimen remained unbroken. Moreover,
there was no delamination between ceramic front and IPC. The bridging of the crack with the
metal phase was observed, which must have contributed to the structural integrity and
composite performance. The authors concluded that IPCs, whilst inappropriate to use as a
front face to resist dynamic impact load, backed dense Al,O3; front very effectively and
provided well-performing and impact-protecting interlayer phase between Al,O3 front and Al
backing. That could be due to the reduction in the acoustic impedance mismatch between
Al,O3 and Al, provided by the IPC layer.

A2. Fabrication of IPCs by pressure assisted infiltration: results of own research
work

The aim of this Subsection is to show experimental investigations and comparison of the
influence of different parameters of manufacturing on the resulting microstructure,
mechanical and thermal characterisation of Al,O3/Cu composites.

A process of pressure assisted metal infiltration of ceramic preforms will be presented
which was carried out at the Institute of Materials Science, TU Darmstadt, Germany during
the research stay of the author at the TUD in the framework of KMM-NoE! project, as
supervised by Dr Jami Winzer, Dr Ludwig Weiler and Prof. Jirgen Rodel.

The gas pressure infiltration technique was used to obtain dense interpenetrating phase
composites Al,O3/Cu. The pore networks were obtained using different types of starch as the
pore forming agents. Microscopic analyses showed that a rice starch based composite
microstructure is finer and more uniform than the microstructure based on a corn starch.
Composite samples were made out of 30%, 50% and 60% porosity preforms. The complete
manufacturing process comprised (i) preparations of slurries from alumina powder and starch,
(i1) preparations of porous alumina bodies from cast slurries, (iii) sintering of alumina bodies
to obtain porous ceramic preforms, and finally, (iv) fabrication of the composite by gas
pressure infiltration of alumina preforms with molten copper (Winzer et al., 2009).

1 KMM-NOE was a Network of Excellence in the 6th EU Framework Programme entitled ,,Knowledge-based
Multicomponent Materials for Durable and Safe Performance” coordinated by IPPT PAN.

143



A2.1. Preparation of the slurry

The samples were made from water-based slurries of Almatis GmbH CT3000 powder
alumina of grain 0.7 um and starch as a pore forming agent (PFA). There were two kinds of
starch used: corn and rice. To improve the properties of the slurry Dolapix (dispersant) and
Contraspum (to remove air bubbles) were added. There slurries contained 35%, 40% and 45%
volume fraction of solid phase, as bases for composites of 60%, 50% and 30%
starch/porosity/copper contents, respectively.

The components were mixed and de-agglomerated with magnet stirrer and ultrasonic Dr
Hielscher GmbH stirrer. After mixing the slurries were evacuated to remove the air. Before
using slurries were homogenized on roller mixer for at least 24 hours and evacuated. The
scheme of the preparation of the slurry is depicted in Fig. Al.

slurry

Figure Al. The scheme of the preparation of the slurry

A2.2. Drying process

After preparing the slurries, the samples were slip cast into the forms with frames and
plaster base. Then the samples were dried in controlled ambient conditions to remove the
largest possible amount of humidity from the samples in order to avoid damage of the
samples due to excessive drying. The drying process was controlled by mass measurements.
During each step the ambient temperature and humidity were kept constant. Each step of the
drying process was regarded as finished when the mass of the sample stopped to decrease and
reached constant value for at least two subsequent measurements. As long as the sample was
in a liquid state, mass estimations were made with regard to the mass of empty form and the
total mass of the slurry together with the form. During drying the temperature and humidity
were controlled. After casting into the forms, one set of the samples was put into the Binder
humidity cupboard under controlled temperature and humidity. The initial parameters were
set to 20°C and 80% or 90% of relative humidity. The other samples were kept under the
cover in the room temperature and humidity. After the samples of both sets have dried in
these conditions they were moved to the Memmert furnace and gradually heated up to 95°C. It
was observed that too rapid changes in temperature and humidity conditions caused cracking
of the samples.
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The rate of mass decrease was usually highest in the initial step of drying, while the
samples were in the forms. After removal from the form, the drying rate gradually decreased.
When the mass of the sample remained constant for at least two subsequent measurements,
the drying conditions were changed to lower the humidity and rise the temperature. The
drying rate then increased and remained constant for some measurements. The drying step
was then repeated. The drying process is presented as drying curves in Fig. A2. It may be seen
that the mass loss related to the initial sample mass was proportional to the starch content.
Samples were taken out for sintering when their masses remained constant while being kept in
95°C. For some of the samples evacuation at 40 mbar was additionally carried out, giving yet
more mass losses. Five green alumina-PFA samples were manufactured, with: 30%, 50% and
60% corn starch PFA contents, and 30% and 50% rice starch PFA contents.
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Figure A2. Drying curves for green alumina-PFA samples. Except for C60% sample, all curves start
at the moment of casting the slurries into forms. The lines connect these points with points after
removing samples from frames, from where the direct mass of the sample was measured. Arrow
indicates point after removing the sample C60% from frames, as it was not possible for this sample to
indicate the value of the mass of just poured slurry.

A2.3. Sintering of the porous preforms

Before sintering the samples were ground to remove any flaws and notches that could
initiate cracks during sintering. The samples were then sintered in the Arnold Schroeder
Nabertherm oven. The sintering programme was as follows: first, slow heating at the rate of
0.5°C/min up to 650°C — the temperature higher of the temperature of burning out of starch,
the slow rate was used to enable air removal during starch burnout; then faster heating rate of
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2°C/min up to 900°C; heating rate increased to 10°C/min up to 1550°C - the sintering
temperature; 2h hold at the sintering temperature; cooling down to the room temperature. The
scheme of the sintering process is presented in the Fig. A3.

sintering '—\

1550°C€

h hold

starch
burnout

Figure A3. Scheme of preform burnout and sintering process

A2.4. Metal infiltration

After sintering, the samples were prepared for pressure assisted infiltration with pure
copper (99.999%). The dimensions of porous samples for infiltration were of 50x50x8 mm.
Before infiltration the alumina samples and pieces of copper were cleaned in acetone and
isopropanol.

Prepared and assembled samples were infiltrated in the Fine Ceramics Technologies
F8028 FPW furnace. The samples in a holder were put over the crucible with pieces of
copper. The infiltration programme started with applying vacuum. Then the temperature was
increasd to 1200°C to melt the copper. The crucible was moved up so porous alumina samples
were immersed in the molten copper. The argon pressure was applied to facilitate infiltration
and to ensure inert atmosphere. After infiltration the crucible was moved down to take
infiltrated samples out of the molten copper. The argon pressure was kept constant until the
solidification of copper to avoid copper leakage from the preforms. The temperature was then
lowered to the room temperature. The scheme of infiltration process is shown in Fig. A4.
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Figure A4. Scheme of infiltration process

The structural and process parameters such as the pore forming agents, porosity,
temperature, pressure and humidity have significant effect on the quality of the manufactured
composites (Winzer et al., 2009).

A3. Characterization of material properties of Al,Os/Cu IPC

The experiments described below were conducted in order to collect information for
modeling purposes, in particular for comparison with the results of analytical and numerical
modeling. The influence of copper fraction and composite microstructure on Young’s
modulus was investigated. The characterization of Al,O3/Cu composites was performed
during research stays within KMM-NOE Project at the Institute of Materials Science, TU
Darmstadt, Germany under scientific guidance and supervision of Dr Ludwig Weiler (TUD).

A3.1. Description of specimens and their microstructures

The measurements were made on prismatic specimens of infiltrated Al,O3/Cu composites
with different microstructures and different copper contents. The interpenetrating
microstructures were based on the following pore forming agents (PFA): polypropylene wool
felt (composite with 25vol.% Cu), natural wool felt (composites with 25 and 50 vol.% Cu),
and also corn and rice starch (composites with 40 vol.% Cu).

The specimens were labelled according to the PFA used and the porosity/metal content: P
- polypropylene wool felt, W - natural wool felt, R - rice starch, M - corn starch, Mp - porous
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preform based on corn starch PFA. The numbers denote percentage of volume
porosity/copper fraction in a preform/composite.

In Fig. A5 the microstructure of Al,O3/Cu composites is presented as micro-CT images. It
may be seen that the microstructure of the rice starch based IPC (Fig. A5b) is very fine and
falls below the resolution level. The IPCs based on natural wool felt (W) were analyzed under
optical microscope (Fig. A6). Those based on corn starch and rice starch are depicted in Figs
Aba-b and c-d, respectively.

It can be seen that the microstructure based on corn starch is more coarse. In this case the
copper struts have rounded shapes, replicating corn starch grains. Inside many of the grain-
shaped struts ceramic agglomerates can be observed, created due to starch swelling. This
phenomenon and its importance for the resulting composite is explained in Mattern et al.,
2004. Rice starch-based microstructure is finer and different in shape than the microstructure
based on corn starch. The copper struts are more elongated and the shape of the grains is more
diffused (elongated ligaments of the thickness near to the grains diameters often occur,
making the microstructure more similar to fibrous one). In Figs. A6e-f, IPCs with two felt-
based microstructures, polypropylene (e) and natural (f) wool felt, can be compared. In the
IPC based on the polypropylene wool felt the surfaces of copper struts are smooth, whereas in
the IPC with microstructure based on the natural wool felt the copper struts keep the details of
natural wool fibers microstructure, replicating tiny hooks that cover wool fibres.
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c)

Figure A5. Microstructure of the infiltrated
Al,O3/Cu IPC composites (micro-CT images,
courtesy of G. Geier, Leoben):

a) corn starch PFA, 30% Cu (M30),
b) rice starch PFA, 30% Cu (R30) (very fine
microstructure below resolution level), c¢)
natural wool felt PFA, 25% Cu (W25), d)
natural wool felt PFA, 50% Cu (W50), e)
polypropylene wool felt PFA, 25% Cu (P25).
Light gray — copper, dark gray - alumina
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Figure A6. Microstructures of infiltrated Al,O3/Cu composites (microscopic images, courtesy of J.
Winzer, L. Weiler, J. Rodel, TUD): a) corn starch PFA, 40% Cu (M40), magnification 1000x, b) corn
starch PFA, 40% Cu (M40), magnification 8000x, c) rice starch PFA, 40% Cu (R40), magnification
1000x, d) rice starch PFA, 40% Cu (R40), magnification 8000x, e) polypropylene wool felt PFA, 45%
Cu, magnification 1000x, f) natural wool felt PFA, 30% Cu, magnification 1000x. Light gray —
copper, dark gray - alumina

A3.2. Porosity measurements

To determine the actual amount of copper in the infiltrated Al,O3/Cu composite samples,
porosity measurements were made. First, the Archimedes method was used to find the density
of the composite
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p = ——dry"PHz0 (A3.1)

i)
Msatd —Msuspend

where: mgry — mass of the dry specimen, pr.0 — water density, msaq — mass of the specimen
infiltrated with water, msyspend — Mass of the specimen suspended in water.

The apparent specific gravity was calculated according to the formula

Pdr Mdr Vspecimen Mmdr Mdr
SGapparent = L= z £ = L= z ) (A3.2)
PH,0 Vspecimen MH,0 muy,o0 Mdry—Msuspend

where my, o - mass of the volume of water equal to the volume of the specimen. Then the

amount of copper in the composite was calculated using densities of pure copper and alumina
according to the formula

CCu _ SGapparent—PAl,05 -100% (A33)

Qcu—PAl,03

The density of copper was taken as 8.94 g/cm® the density of monolithic alumina as 3.96
glem®.

The density was measured for composite samples where corn starch and rice starch PFAs
were used to obtain open porosity. The density measurements were obtained with two
different methods: (i) calculating density from the dimensions and mass of the specimen, and
with (ii) the Archimedes method. It can be seen in Table A5.1 that the results obtained with
both methods do not differ more than 1%. From the results in Table 5.1 it can also be seen
that there is a residual porosity, which does not exceed 0.5%. The presence of residual
porosity means that the infiltration process was not fully completed as some pores might not
be accessible for infiltrating metal. For this and other microstructural reasons the actual
copper content was, thus, less by approximately 3% than the nominal value of 40% for the
measured samples.

Table A.1. Measurements of density and copper content of Al,O3/Cu composites

Specimen Density of composite Residual Cu Al,O3
from from Archimedes Porosity content content
dimensions method
[g/cm’] [g/cm’] [%] [%] [%] [%]
R40 5.775 5.774 99.52 0.48 37.00 63.00
M40 5.818 5.855 99.74 0.26 38.36 61.64
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A3.3. Measurements of Young’s modulus at room temperature

The mechanical and physical characteristics of the phase materials of metal-ceramic
composites may differ radically from each other according to the composite material design.
These differences in properties may, however, cause problems during manufacturing. Since
IPCs combine ceramics and metals, materials with dissimilar mechanical and thermal
properties, during manufacturing at high temperatures and cooling to room temperature
different thermal expansion coefficients of both phases may cause delamination and large
residual stresses. In brittle materials like ceramics, large residual stresses may lead to
microcracking. It is, thus, important to know the material data of phase materials of the
composite. One of the simplest methods of identification of the presence of microcracks and
other impurities that may weaken the material, is measurement of the Young modulus. The
impulse excitation of vibration method was used by Galal-Yousef (2004) and Galal-Y ousef et
al. (2005) to measure Young’s moduli as a function of temperature for alumina ceramics with
different average grain sizes. The description and comparison of available mechanical and
non-destructive methods of measurements of Young’s modulus used for metal-ceramic
composites that may also be applied to IPCs was given by Weglewski et al. (2013). Three-
point bending test, resonance frequency damping analysis, ultrasonic pulse-echo technique
and scanning acoustic microscopy tests are described in detail and compared therein.

The method of Young’s modulus measurement used for the purpose of this thesis was the
impulse excitation of vibration. The measurements at room temperature were made with
Grindosonic - the Impulse Excitation Technique J. W. Lemmens equipment, and, at the
beginning of a thermal cycle, with the Integrated Material Control Engineering (IMCE) N. V.
Resonant Frequency and Damping Analyser (RFDA) HT 1750, Diepenbeek, Belgium. Both
types of equipment use the method of detecting the fundamental mode I (flexural) resonant
frequency f; of a freely vibrating material, according to ASTM E1876-99 standard. The
specimen was put on the supports at a distance L, and at 0.224 L from each end to fit onto
flexural vibration node lines (see Fig. A7), where for mode | of vibrations zero displacements
occur. The microphone was put over the antinode, where the maximum amplitude of mode |
vibrations occurs, either in the middle or at specimen’s end. Then, the specimen was
singularly hit with the impulser rod at another antinode to induce the elastic vibrations. The
microphone collected the signal of vibrations. The fundamental frequency of this signal was
identified via by the signal analyser and recorded.
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Figure A7. Detection of fundamental flexural resonant frequency of a vibrating specimen

Resonant frequency of a freely vibrating material depends on its mass, dimensions and
elastic modulus. Thus, Young’s modulus can be calculated from the measured resonant
frequency. In ASTM E1876-99 standard, dynamic Young’s modulus E is related to the
fundamental resonant frequency f; according to the following formula

E(f;) = 0.9465 (mTffz) (5)r, (A3.4)

where: m — mass of the specimen, L — length of the specimen, B — width of the specimen, H —
thickness of the specimen, T, — correction factor defined as

T, =1+ 6.585(1 + 0.0752v + 0.8109v2)(H/L)? — 0.868(H /L)*
8.340(1 + 0.2023v + 2.173v?)(H/L)*
1.000 + 6.338(1 + 0.1408v + 1.536v2)(H/L)?

(A3.5)

where v is the Poisson’s ratio.

The results of Young’s modulus measurements made with both devices are given in Tab.
A2.
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Table A2. Measurements of Young’s modulus of IPC composites and porous performs made with
impulse excitation technique at room temperature using Grindosonic and IMCE RFDA test equipment.
E; and E;, denote Young’s moduli measured in out-of-plane flexure and in-plane flexure, respectively.

E,, Out-Of-Plane Flexure E,, In-Plane Flexure

[GPa] [GPa]

Specimen Measuring equipment

Grindosonic  IMCE RFDA Grindosonic
Composite
samples:
W25 244.26 - 246.63
W50 182.54 183.93 173.99
P25 274.10 274.34 272.77
M40 266.46 267.05 267.39
R40 254.45 254.71 253.85
Porous
preforms:
Mpl5 253.60 - 256.08
Mp30 155.53 - -

In Tab. A2 the Young’s moduli for IPC composites and porous preforms measured with
the impulse excitation technique at room temperature are shown. For the out-of-plane flexure
the measurements were made with both Grindosonic and IMCE RFDA impulse excitation
equipment. It can be seen that both devices gave similar results and the differences between
measured Young’s moduli did not exceed 1%. The in-plane flexure measurements were made
to check anisotropy of the investigated IPC microstructures. From the results in Tab. A2 it is
clear that the out-of-plane flexure and in-plane flexure measurements gave similar results, not
exceeding 1%, with the only exception being the specimen W50 for which the results did not
exceed 5%. It can be interpreted that anisotropy of the investigated IPCs is not significant, an
they can, thus, be regarded as isotropic. The differences between Young’s moduli in out-of-
plane flexure and in-plane flexure measurements occur due to locally non-uniform dispersions
of the composite’s phases. The difference between Young’s moduli in both directions was
smallest for both IPCs with microstructures based on starch PFAs (M and R), and larger for
fibruous PFAs (P and W) and porous alumina (Mp) specimens. This occurred probably due to
finer and more uniform microstructures of starch PFA-based composites. Fibrous PFA-based
composites were less uniform showing local anisotropy due to specific placement of the
fibres. This effect was most significant for the specimen W50.
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Figure A8. Effect of microstructure and copper content on Al,Os/Cu composites Young’s moduli.
Measurements done with Grindosonic impulse excitation of vibration equipment and compared with
Voigt and Reuss bounds, extended V-V-R, R-V-V and V-R-V models and numerical models of 3D cross
and of real microstructure for alumina-copper composites at room temperature.

In Fig. A8 the influence of the copper content and composite microstructure on Young’s
modulus is shown. It can be seen that the Young’s modulus values for all the IPCs fit between
the Reuss and Voigt bounds and are below the extended V-V-R model. With the exception of
corn starch PFA-based composite all measured Young’s modulus values for IPCs are also
below the results for 3D-cross numerical model. On the example of natural wool PFA based
composite, it may be observed that for IPC of the same kind of microstructure Young’s
modulus decreases with increasing volume fraction of copper in the material. Accordingly,
the same relationship may be observed for porous Al,O3; preforms when porosity was
increasing (see Tab. A.2).

For the composites with the same copper volume fraction, the microstructure influence on
the elastic modulus of IPC composites can be analyzed on two examples of 25% and 40% of
Cu content. For the IPC with 25vol.% Cu, the composite with microstructure based on
polypropylene felt PFA showed higher Young’s modulus. For IPCs with 40% Cu, the
specimen with microstructure based on the rice starch PFA had finer and more uniform
microstructure than the IPC with microstructure based on the corn starch PFA. However, corn
starch PFA-based IPC shows approximately 4.5% higher Young’s modulus than IPC with
microstructure based on rice starch PFA.

The Young’s moduli for natural wool PFAs based IPCs are lower than for other
microstructures, and closest to the Reuss bound for the effective Young’s modulus. The
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Young’s moduli for polypropylene and starch PFAS based IPCs are closer to the VVoigt bound,
what indicates IPCs with these microstructures are relatively stronger than IPCs with
microstructures based on natural wool. The closest to the Voigt bound, and thus the best
related to copper contents, appears to be the corn starch PFA-based composite. However, it
should be noted that microscopic observations (Winzer et al., 2009) showed that the rice
starch based IPCs have finer and more uniform microstructure than corn starch based IPCs.

A3.4. Measurements of Young’s modulus in thermal cycles

Measurements of Young’s modulus in thermal cycles were carried out to examine the
behaviour of IPC composites in elevated temperatures. Measurements were made for different
composite microstructures and copper volume fractions and temperatures up to 800°C. As
described by Galal-Yousef (2004) and Galal-Yousef et al. (2005), for poly-phase materials
Young’s modulus measurements in temperature cycles may indicate microcracking due to the
thermal expansion coefficients mismatch between phases. Thus the Young’s modulus
measurements in thermal cycles may provide evidence if the material is resistant to high
temperatures. The composites with microstructures based on polypropylene wool felt (25%
Cu), natural wool felt (25% and 50% Cu) and corn and rice starch (40% Cu) were investigated
in this series of experiments.

The measurements of Young’s modulus in temperature cycles were made with Integrated
Material Control Engineering (IMCE) N. V. Resonant Frequency and Damping Analyser
(RFDA) HT 1750, Diepenbeek, Belgium. The idea of measurements of Young’s modulus
with impulse excitation of vibration technique, is explained in the previous Section A3.3. The
detailed description of IMCE RFDA equipment may be found in Galal-Yousef (2004). The
idea of thermal measurements with this equipment is described in Galal-Yousef et al. (2005).

The Young’s modulus was determined according to ASTM E1876-99 formula (Equation
A3.4), from the measured fundamental flexural resonant frequencies of the vibrating material,
in a similar manner than for measurements at RT. Resonant frequencies were measured in
time intervals during temperature cycle. For each measurement the Young’s modulus was
calculated. The specimen was positioned on the Pt-Rh wire supports inside the heating
chamber. The position of the flexural nodes at which the measured specimens were to be
supported, was calculated by the measuring unit based on the specimen’s length L, and equal
to 0.224 L from each end of the specimen. For each measurement the specimen was excited
with an impulse from a rod hitting at an antinode (for the fundamental flexural resonance
placed at both ends and in the middle of the specimen), where the maximum amplitude of
fundamental flexural vibrations occurs. Then a microphone placed above the sample at
another antinode collects the sample vibration signal. The Fast Fourier Transform (FFT) of
the signal was calculated and analysed by the measuring unit to find the fundamental resonant
frequency. The Young’s modulus based on this resonant frequency was calculated within the
measuring unit. The frequencies of up to 20™ order were additionally recorded by the system.
For some measurements, FFTs were recorded to check if the resonant frequency of the
specimen was chosen correctly by the system for that measurement point.
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The temperature inside the chamber was measured with two independent thermocouples.
The temperature of the sample was assumed to be equal to the indicated with the
thermocouple. There were two thermal programmes applied: one up to 400°C, with heating
ratio of 2°C/min and dwell time of 15 min at the maximum temperature, and the second up to
800°C with heating ratio of 5°C/min and dwell time of 15 min at the maximum temperature.
The measurements were taken at each 30 seconds.

The low temperature cycle up to 400°C was carried out to check the behaviour of the P25,
W25 and R40 composites in elevated temperatures before exposition to higher temperatures.
The results of measurements in thermal cycles in both temperature ranges, from RT to 400°C
and from RT to 800°C, are presented collectively in Fig. A9 and, only for starch based IPCs,
in Fig. A10. The graphs were made from the results of the Young’s moduli calculated by the
IMCE RFDA. Additionally, in Fig. A10 the resonant frequencies were chosen from the
recorded FFTs and the Young’s moduli calculated for them were added to the graph. It was
done to check the resonant frequencies taken by the measurement unit and thus, the
correctness of measured Young’s moduli.

The relationship between the Young and temperature can be used as an indicator if the
material microstructure remained intact upon cooling. The Young modulus of an undamaged
material increases linearly during cooling (cf. Galal-Yousef, 2004), while the presence of
hysteresis indicates microcracking. For alumina-copper composites microcracking during
cooling can occur due to high contrast between thermal expansion coefficients of both
composite constituents. To compare the deviations from the linear Young’s modulus Vs.
temperature relationship regardless of composite microstructure or volume fraction of phases,
a graph was prepared in Fig. All, analogously to the graphs in Galal-Yousef (2004; 2005).
Young’s moduli for each measurement (i.e. temperature point) were related to the theoretical
value that would result for the same temperature in case of no microcracking. In this way, a
graph of drop downs of Young’s moduli -4E from linear Young’s modulus — temperature
relationship, related to temperature decrements - AT from the highest value reached during the
cycle, was prepared. The linear Young’s modulus vs. temperature relationship was obtained
taking Young’s moduli values measured in RT shown in Tab. A2 (IMCE readings; for sample
W25 Grindosonic measurement of out-of-plane flexure instead), and Young’s moduli values
measured at the highest temperature reached during thermal cycle. A scheme explaining
described above procedure was added to the Fig. A9 on the example of W50 specimen.

The copper oxidation in elevated temperatures can cause an increase in specimen’s mass
and volume, and may lead to microcracking. The dimensions and masses of the specimens
were measured after thermal cycles. Young’s moduli were recalculated with masses that were
measured after the cycles. Only the final values of Young’s moduli were recalculated, because
it could not be exactly stated from which temperature the change of the mass occurred (it is
impossible to measure the dimensions of the specimen inside the closed furnace chamber
during thermal cycles). The resulting points are added in Fig. A10. It can be seen that for both
IPCs with microstructures based on starch, the recalculated Young’s moduli are nearly equal
to the Young’s moduli that were based on initial masses, thus the increase of dimensions and
masses for these microstructures was insignificant.
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As it was observed for composites made with different PFA (Figs. A9 and All), the
microstructure influences the microcracking. For the IPC with microstructure based on
polypropylene wool felt (P25), after a thermal cycle of up to 400°C extensive microcracking
occurred. Almost no microcracking was observed for IPCs with microstructures based on
both kinds of starch. For IPCs based on natural wool as the PFA a very interesting behaviour
was observed in temperature cycle of up to 400°C, namely a quite strong microcracking
occurred lowering the Young modulus for about 30GPa for W25 IPC and almost 45GPa for
W50 IPC (13% and 24% of the initial value before thermal cycle for the samples W25 and
W50, respectively).

However, after thermal cycling of the same specimens for up to 800°C, Young’s modulus
decrease in W25 was very small (of the order of 10GPa) the same as for the starch based
IPCs, indicating almost no microcracking. Also for W50 IPC the decrease in Young’s
modulus was not large (less than 20 GPa). Additionally, in Fig. A9 it can be seen that the final
values of Young’s moduli for W25 and W50 IPCs were noticeably higher than in the previous
cycle. Compared with the initial values before thermal cycles, after the 800°C cycle Young’s
modulus decreased: 12.4 GPa (5%) for W25 IPC, and 19.05 GPa (10%) for W50 IPC. The
decrease in Young’s modulus for these IPCs after 800°C cycle is much less than the decrease
in the 400°C cycle, and indicates that both natural wool based composites improved their
properties in the high temperature cycle. This could be due to the microstructure of the natural
wool fibers, which are covered with tiny hooks as observed by J. Winzer and L. Weiler (see
Fig. A6f). Such microstructure enables penetration of copper and reduces thermal stresses in
the ceramics, preventing microcracking.

After two thermal cycles, RT - 400°C and RT - 800°C, the composites with microstructures
based on both kinds of starch showed no microcracking and only slight decrease of Young’s
modulus, compared to Young’s modulus before thermal cycles: 13.06 GPa (5%) for corn
starch based composite, and 10.1 GPa (4%) for rice starch based composite. It can be seen in
Figs. A9 and A10 that the cooling curves for these composites are almost linear for both
thermal cycles which indicates that no microcracking occurred due to elevated temperature
within the measured range. For 800 °C cycles for both composites, their cooling curves are
almost parallel, however, rice starch based IPC appears to be slightly less deviated from linear
shape. This can be interpreted as a higher resistance to high temperatures of the IPCs with
microstructure based on rice starch.
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Figure A9. Young’s moduli in temperature cycles RT-400°C and RT-800°C for Al,0O3/Cu composites
with different microstructures and copper contents. On the example of W50 IPC specimen, the idea of
Galal-Yousef (2004; 2005) is presented how to obtain curves showing differences between theoretical
and real Young’s moduli decrease upon cooling for two thermal cycles RT- 400°C and RT-800°C.
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Figure A10. Young’s modulus in temperature cycles for Al,O/Cu IPCs based on corn and rice starch
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Figure All. Reduction of Young’s modulus vs. temperature decrease in cooling, temperature cycles
up to 400°C and 800°C for Al,Os/Cu IPC composites with different microstructures and copper
contents (the idea of the graph is explained in Figure A9).

A4. Closing remarks on IPCs characterization.

The measurements of the Young modulus of Al,O3/Cu IPCs with microstructures based
on PFAs of polypropylene wool felt (25% Cu), natural wool felt (25% Cu and 50% Cu), and
also corn and rice starch (40% Cu) have shown the influence of copper fraction and composite
microstructure on Young’s modulus in RT and in thermal cycles of up to 800°C. The results
of Young’s modulus in RT were compared with the Voigt and Reuss bounds. Obviously, an
increase of softer copper fraction in a composite of the same microstructure decreases
Young’s modulus, as it can be seen on the example of W25 and W50 IPCs. However, the
results have also shown that the microstructure of the interpenetrating networks has
significant effect on its properties, especially during thermal cycles.

The Young’s modulus measurements in room temperature were made in two
perpendicular directions and showed no significant anisotropy of the investigated composites,
regardless of the microstructure. The composites could thus, be regarded as isotropic, which
facilitated the models created in this thesis.

From measurements in temperature cycles it was clear that for the microstructure based
on corn and rice starch PFAs, the Young’s modulus relationship with temperature is almost
linear and does not show microcracking, even in temperature range of up to 800 °C. The
Young’s moduli calculated for dimensions and weight measured after thermal cycles were
nearly equal to the Young’s moduli calculated for initial dimensions and weight before
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thermal cycles. This is a clear evidence that preforms manufactured with the starch-based
PFA preserve well the IPC samples shape under thermal loading.

Another observation from the reported experiments is that while the copper content
increase in IPC generally decreases Young’s modulus in RT, its influence on thermal
behaviour is not so obvious. During thermal cycles the microstructure appeared to be the most
influencing factor on the IPC’s behaviour. The smoother and less complicated geometry
microstructure of the phases, such as polypropylene wool felt based IPC (cf. Figs. A5e and
Ab6e), the stronger microcracking and deeper decrease in Young’s modulus after thermal
cycles. The microstructures that had rougher interfacial surfaces between phases (natural wool
felt based IPCs and starch based IPCs) showed much less or nearly no microcracking after
thermal cycles. The IPCs with finer and more complicated microstructures showed less
microcracking — beginning with relatively coarse microstructure of natural wool based IPCs
that showed quite strong microcracking in lower temperature cycles, but after higher
temperature cycles showed an improvement in properties and almost no microcracking (cf.
Fig. A9 and All).

Higher microcracking after lower and higher temperature cycles was observed (cf. Fig.
All) for the microstructure with higher copper content and, thus, more prone to contain
coarse agglomerates of copper (cf. Fig. A5c and d). For much finer microstructure based on
corn starch (cf. Figs. A5a and Figs. A6a,b), almost no microcracking occurred during cooling
either in lower or in higher temperature cycles (cf. Figs. A10 and A11). For an IPC with the
finest microstructure based on rice starch (cf. Fig. A6c,d), where both phases are dispersed to
the most extent, the relationship of Young’s modulus with temperature during cooling is
nearly linear (cf. Fig. A10). The explanation of such a behaviour may be that the finer and
more rough the microstructure, the better and more efficiently can softened copper fill pores
and microcracks in alumina at elevated temperatures.

The IPC microstructures based on either corn or rice starch PFA showed almost no
microcracking upon cooling from elevated temperatures down to RT and good shape stability.
This is an encouragement for further investigations of IPCs with these microstructures in view
of their potential applications as structural materials in high temperature regimes. Also,
further research of natural wool based composites and explanation of interesting behavior of
their Young moduli observed in high temperature cycles is worth pursuing.
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