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Adaptive feedback control system for reduction of
vibroacoustic emission

Łukasz Nowak
Institute of Fundamental Technological Research, Polish Academy of Sciences

Abstract

The aim of the present study is to introduce the possibilities of modifying vi-

brations of a thin plate structure with arbitrary boundary conditions using the devel-

oped, original active feedback control system in such manner that the amplitude of

the acoustic pressure field generated by the plate is minimized in a selected point of

the ambient space.

Theoretical investigations on the phenomena underlying the processes of detec-

tion and excitation of vibrations of thin plate structures using piezoelectric transducers

are presented. An original algorithm for computation of the free-field acoustic radi-

ation characteristics of vibrating plate structures with arbitrary boundary conditions

has been developed and implemented. The algorithm provides a significant reduction

of the required computational time and cost. Novel optimal control and adaptation

algorithms for determining optimal feedback gain values, for which the amplitude of

acoustic pressure is minimized in a given point of the ambient space surrounding the

controlled structure, have also been developed.

The active vibroacoustic control system used in experimental investigations has

been designed and constructed in accordance with an original concept, with sepa-

rated, independent analogue feedback paths. The results of experiments carried out

in an anechoic chamber showed that under the assumed conditions it is possible to ob-

tain significant levels of reduction of noise emitted by the controlled plate structure,

excited to vibrate by an external force.



Adaptacyjny system sterowania ze sprzężeniem
zwrotnym dla redukcji transmisji wibroakustycznej

Łukasz Nowak
Instytut Podstawowych Problemów Techniki, Polska Akademia Nauk

Abstrakt

Podstawowym celem niniejszej pracy jest przedstawienie możliwości detekcji i

kontroli drgań cienkich konstrukcji płytowych o dowolnych warunkach mocowa-

nia za pomocą zaprojektowanego, oryginalnego aktywnego układu sterowania bazu-

jącego na sensorach i aktuatorach piezoelektrycznych, w celu minimalizacji ampli-

tudy ciśnienia akustycznego w wybranym punkcie przestrzeni otaczającej strukturę.

Przedstawiony został opis teoretyczny rozpatrywanych zjawisk leżących u pod-

staw procesów detekcji i wzbudzania drgań struktur płytowych za pomocą prze-

tworników piezoelektrycznych. Opracowano i zaimplementowano oryginalny al-

gorytm wyznaczania rozkładu pola ciśnienia akustycznego w otoczeniu płyty drga-

jącej w wolnej przestrzeni, umożliwiający minimalizację czasu i kosztu niezbędnych

obliczeń numerycznych. Opracowane zostały także oryginalne algorytmy sterowania

optymalnego i adaptacji, umożliwiające szybkie i efektywne wyznaczanie optymal-

nych wartości wzmocnień pętli sprzężeń zwrotnych układu sterowania, dla których

następuje minimalizacja amplitudy ciśnienia akustycznego w wybranym punkcie prze-

strzeni otaczającej kontrolowaną strukturę płytową.

System sterowania aktywnego wykorzystany do badań doświadczałnych został

zaprojektowany i skonstruowany według oryginalnej koncepcji z wydzieleniem nieza-

leżnych, analogowych torów sprzężeń zwrotnych. Wyniki eksperymentów przepro-

wadzonych w komorze bezechowej wykazały, iż w badanym układzie możliwe jest

znaczne zredukowanie poziomu hałasu emitowanego przez kontrolowaną konstrukcję

płytową pobudzoną do drgań przez siłę zewnętrzną.



Symbols and abbreviations

The short list of most frequently used symbols and abbreviations is provided below:

a – length of a plate

ap – length of a piezoelectric transducer

a – vector of modal selectivity values of the actuator

Am – modal decomposition coefficients of the excitation intro-

duced by an actuator

b – width of a plate

bp – width of a piezoelectric transducer

cs – wave propagation velocity in a plate

ci jkl – fourth-order elasticity tensor

CCAB – capacity of the wires connecting sensor with the amplifier

Cp – capacity of a piezoelectric sensor

δ – Dirac delta function

δ ′ – derivative of the Dirac delta function

d3 – piezoelectric material constant

D – flexural rigidity

Dk – electric displacement vector

εki – second-order tensor of dielectric constants

eki j – third-order tensor of piezoelectric coefficients

E – Young modulus

Ek – electric field vector

f – temporal frequency

fV
L – lower cutoff frequency of voltage amplifier

fV
H – higher cutoff frequency of voltage amplifier

fC
L – lower cutoff frequency of charge amplifier

fC
H – higher cutoff frequency of charge amplifier
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fc – cost function

fre – cost function, real component

fim – cost function, imaginary component

f min
c – global minimum of the cost function

FBe – external load applied per length of a beam

Fext – external load applied per surface area of a plate

F̃ext – spatial distribution of amplitude of pressure applied on the

surface of a plate

Fn – amplitude of vibrational mode number n, excited by the ex-

ternal disturbance in the absence of the forces introduced by

the control system

F – vector of modal amplitudes Fn

F∗ – estimated vector of modal parameters of the external exci-

tation

γ – regularization parameter

G – Green’s function

Gm – gain of feedback loop number m

Gmax
m – maximum available gain value for feedback loop number m

G – vector of feedback gain values

hs – thickness of a plate

hp – thickness of a piezoelectric transducer

H – Heaviside step function

I – cross-sectional moment of inertia

I – identity matrix

ka – wave number of an acoustic wave

ks – structural wave number

kn – wave number of structural mode no. n

K f – material-geometric constant

L – length of a beam

µ – double layer potential

M – number of feedback loops in the control system

M – control system matrix

ν – Poisson’s ratio

n – unit vector normal to the plate’s surface

N – total number of considered modes of vibrations

Ni – global shape function no. i
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Ne
i – local shape function no. i of element e

ω – angular frequency

ωm – angular eigenfrequency of a structural mode no. m

Φn – shape function of mode no. n

p – acoustic pressure

Pre
n – modal radiation coefficient (real) of structural mode no. n

Pim
n – modal radiation coefficient (imaginary) of structural mode

no. n

P – vector of modal radiation coefficients

Q – electric charge

Q̃ – amplitude of the harmonically varied sensor charge

ρa – air density

ρ – density of the material of a plate

r – observation point

ra – source point

R – vector pointing from a source point to an observation point

R̃ – gain of the signal conditioning circuit attached to the piezo-

electric transducer

σ – single layer potential

σ – stress tensor

s – vector of modal sensitivity values of the piezoelectric sensor

S – constant cross-section area of a beam

Si j – second-order strain tensor

S̃m – sensitivity function of a piezoelectric sensor to structural

mode no. m

S̃mn – sensitivity function of sensor m to structural mode n

S – system sensitivity matrix

Ti j – second-order stress tensor

U – vector of voltage amplitudes of signals induced on the

piezoelectric sensors

Ũm – voltage amplitude of signal induced on a piezoelectric sen-

sor no. m

Vn – amplitude of the normal velocity of the surface of a plate

V – amplitude of a harmonic voltage driving actuator

w – displacement, z-direction

w̃ – frequency-dependent amplitude function of harmonic vibra-

tions
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Wn – amplitude of mode no. n

W – vector of modal amplitudes of vibrations

ADC – analog-to-digital converter

ANC – active noise control

ASAC – active structural acoustic control

AVC – active vibration control

BEM – boundary element method

DAC – digital-to-analog converter

FEM – finite element method

FET – field-effect transistor

IVBEM – indirect variational boundary element method

LQG – linear-quadratic-Gaussian control

LQR – linear-quadratic regulator

VCA – voltage controlled amplifier
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Chapter 1

Introduction

1.1 Problem statement

The aim of the present study is to develop and evaluate a novel active vibroacoustic

control system, methods, and algorithms enabling for reduction of sound pressure

level generated by a vibrating plate structure in a given point of the ambient space.

The investigations are limited to low frequency vibrations only (up to about 500 Hz),

as in the higher range the acoustic energy can be efficiently dissipated passively using,

for example, various porous materials. Thin, rectangle shaped plates with arbitrary

(but known in advance) boundary conditions and dimensions much smaller than the

radiated acoustic wavelenghts are considered. It is assumed, that the structures are

excited to vibrate by an external harmonic force with arbitrary spatial distribution,

which parameters are unknown and have to be determined. The control system uses a

number of small, rectangle shaped piezoelectric transducers attached to the surface of

the controlled structure, some of them serving as sensors and providing information

about the current state of the plate, while others are used as actuators to introduce the

control loads and modify the vibration pattern in such a manner that the noise level

in a given point of the ambient space is as low as possible. Steady state harmonic

vibrations are considered but it is also assumed that the parameters of the external

excitation may change over time and the control system must have the ability to adapt

to those changes – specifically, be able to detect transitions between different states

and to recalculate the optimal control parameters.

The thesis of the study can be formulated as follows: vibrations of a thin plate

structure with arbitrary boundary conditions excited by an external harmonic

force can be modified using an active feedback control system based on a finite

number of pairs of piezoelectric sensors and actuators in such a manner that the
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amplitude of acoustic pressure field generated by the plate will be minimized in

a selected point of the ambient space.

Theoretical investigations on mechanisms and phenomena underlying the sound

generation by the considered structures and the interaction between control system

and the plates are presented in the study. Due to the high level of generality most of

the considered issues cannot be described using analytical formulas. For that reason

the relevant numerical models have been developed and implemented in order to pre-

dict the behavior of the considered systems under the assumed conditions. The results

of the computations are compared to the results of experimental investigations. The

experiments have been carried out using various developed and constructed smart

composite structures, electronic measurement and control systems, and laboratory

stands. The comparison between the numerical predictions and results of measure-

ments allows to evaluate the correctness of the adopted assumptions. The study pro-

vides a detailed analysis of many aspects regarding active vibroacoustic control of

plate structures, from the theoretical description of the involved phenomena up to

physical implementation and practical validation of the chosen control methods.

The investigated issues have been divided into groups thematically related with

various involved mechanisms and phenomena and described in separate chapters.

Each of the chapters includes a theoretical description of the problem and the cur-

rent state of the art in the related field. Adopted assumptions, notations, and the

relevant physical and mathematical models are introduced, as well as the descriptions

and results of the corresponding numerical and experimental investigations.

The first chapter of the study provides the necessary information on aims and

scope of the work, underlying motivation, and general assumptions. The state of the

art in the field of active noise and vibration control systems is presented.

The second chapter is devoted to the problem of free and forced vibrations of

thin beam and plate structures. Analytical, numerical, and experimental methods of

determining modal parameters of the considered structures are introduced. Influence

of various factors and assumptions on the consistency between results of analytical

and numerical predictions and the results of measurements is investigated.

Vibrations of plates submerged in an acoustic medium are the source of sound

radiation to the ambient space. As the main goal of the presented investigations is

to minimize the sound pressure level in a given point of the space, the knowledge on

the radiation characteristics of the considered structure is required. However, due to

the fact that the assumed active control system does not obtain any information from

acoustic pressure sensors – such as microphones – the radiation parameters have to

be determined based on the modal amplitudes of vibrations. The solution of this
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problem is described in Chapter 3. The developed and implemented numerical model

using dedicated computational algorithm is presented. Results of the simulations

are compared to the results of experimental investigations carried out in an anechoic

chamber. The influence of the inertial loading introduced by various acoustic media

is investigated.

Chapter 4 describes various issues regarding application of piezoelectric trans-

ducers as sensors and actuators in active control of vibrations of thin beam and plate

structures. A new form of theoretical description is introduced in order to better de-

scribe the ability of sensing and exciting specific structural modes by the transducers.

Different theoretical and technical aspects of developing and constructing smart com-

posite structures and the necessary signal conditioning circuits are presented. The

results of numerical simulations and experimental investigations carried out using

various beam and plate structures made of aluminum and composite materials – in-

cluding actual materials used in aviation – are introduced.

The results and conclusions obtained during the investigations described in

Chapters 2 – 4 form the basis for the development and construction of an active vi-

broacoustic control system of plate structures, which is the topic of Chapter 5. De-

tailed assumptions concerning the aim and the methods of control are introduced. The

developed algorithms for determining optimal control parameters and modal charac-

teristics of the external excitation force based on the electric signals from sensors are

presented and the details concerning the implementation of the system are described.

The control performance has been evaluated in experimental investigations carried

out in an anechoic chamber.

The obtained conclusions regarding the possibilities and efficiency of active vi-

broacoustic control of plate structures with the developed system and methods are

summarized in Chapter 6. The main completed tasks of the study are listed. The

results of the conducted research form the basis for further investigations aimed at

improvement of the parameters and extending the scope of the potential applicabil-

ity of the proposed system or its components. The last section of the present study

provides recommendations for the future work in this field.

1.2 Motivation

The subject of the present study falls within the scope of a relatively young and dy-

namically evolving research field, which is active vibroacoustic control. Over the past

several decades a lot of scientific attention has been given to the problem of reduc-
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tion machinery noise in various industry branches, such as aviation, maritime, rail

transport, road transport, and mechanical engineering. Engines, propellers, fans, and

other machines are sources of noise and vibrations, which propagate through the con-

nected structural elements making them secondary sources of acoustic radiation. The

radiated and induced sound is a persistent problem, which is often very poorly alle-

viated by passive means, particularly at low frequencies. The exposure of people to

noise can cause – depending on the considered sound pressure levels – serious health

problems or, at best, significant discomfort. The influence of industrial noise on the

natural environment, namely on the behavior of various animal species is another

serious problem to which a lot of attention has been recently given. The excessive

structural acoustic radiation is also highly undesirable in all fields where the secrecy

of operation is crucial. This especially concerns military applications. In the light

of the described issues the problem undertaken in the present study appears as very

up-to-date and important.

Although the fact that the first attempts of applying active control methods for re-

duction of machinery noise were reported as far back as in 1930’s [1], it was not until

the end of the 20th century when the development of technology allowed for practical

implementations of such systems. This was especially boosted by the rapid increase

of available computational power, which allowed to perform the time-critical, com-

plex control algorithms. Nowadays, the necessary electronic hardware can be built

based on small, cheap, and widely available microprocessors, programmable logic

devices, or complete modules integrating all the required components. For that rea-

son the conducted investigations can be focused more on developing new, effective

methods and algorithms of active vibroacoustic control and less on overcoming tech-

nical limitations. Apart from the feasibility of the assumed tasks, an important issue

is also the fact that although many scientific investigations have been recently devoted

to the considered topic, a lot of new and unsolved problems still remain. This espe-

cially concerns real-life complex structures or structures with non-uniform boundary

conditions, as most of the research described in literature is focused on vibrations of

beams and plates with specific mounting conditions, for which analytical equations of

motion can be given. The current state of the art on the considered topic is presented

in Section 1.3, while the main original elements contributed by the present study are

listed in Section 6.2. The possibility of dealing with interesting and open interdisci-

plinary scientific problems is an important motivating factor that justifies taking the

challenge of developing the described active vibroacoustic control system.
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1.3 State of the art

The problem of minimizing the levels of vibration and acoustic radiation in various

mechanical systems has a long history and has been the topic of numerous scientific

investigations over the past several decades. As it has been described in Section 1.2,

the considered phenomena often have a significant negative impact on human health,

natural environment, and operational efficiency and service life of relevant devices

and systems. The presented solutions to the problem can be in general divided into

three main groups: passive, active, and semi-active methods. The division criterion

in this case is the use of energy from external sources.

The passive approach involves using various kinds of dampers which do not re-

quire any external power supply for proper operation. Passive methods are widely

used in many practical applications, as they are relatively cheap, simple, and main-

tenance-free. On the other hand, they are also often very inefficient, especially in

low frequencies. The porous materials are commonly used for suppressing sound and

vibrations due to very good absorption, especially in high frequency regions. The

general theory on properties and modeling of such materials can be found, for exam-

ple, in [2, 3]. Some practical considerations on using porous sound absorbers in audio

engineering are presented in [4]. Narrowband acoustic signals can also be effectively

suppressed by using reactive devices, such as Helmholtz resonators which are tuned

to a single, specified frequency. Vibration dampers can also be based on piezoelec-

tric transducers with passive resonant shunt circuits. The resonant frequency in such

a case is determined by the value of capacitance of the transducer and the value of

connected inductance. The energy of vibrations is converted to electric energy due

to the piezoelectric effect and then dissipated on resistors as heat. Design of such

systems and problem of selecting optimal inductance and resistance values is intro-

duced in [5]. However, the efficiency of sound and vibration damping using shunted

piezoelectric materials is very poor compared to the active control systems based on

piezotransducers.

In the semi-active approach the energy from an external power supply is used

only to modify the properties of the selected elements of the damping system and

is not applied directly to the controlled structure. Such a solution ensures lower en-

ergy requirements and better stability than the active systems while providing higher

damping levels than the passive methods. The semi-active systems can also have

the ability to adapt to changes in operating conditions. One of the examples of such

devices are dampers with magneto-rheological fluid. The viscosity of such fluid in-

creases in the magnetic field whose intensity can be modified with electric control
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signals. Consequently, the parameters of the damper can be dynamically altered.

Some theoretical background and descriptions of numerical and experimental inves-

tigations on such systems can be found in [6–8]. The magneto-rheological dampers

are used for example to suppress the vibrations in car industry, or in attenuation of

seismic vibrations [9].

The system developed and constructed within the framework of the present study

falls within the scope of the last of the described groups of methods, which are the

active control techniques. In the active approach the energy from an external power

source is converted into the energy of interaction between the actuators and the con-

trolled object. Depending on the aim of the control, three different kinds of active

control methods for reduction of noise and vibrations are distinguished: Active Vi-

bration Control (AVC), Active Noise Control (ANC), and Active Structural Acoustic

Control (ASAC). The active approach is particularly suitable in the low frequency

range, possibly as a complement to the passive means.

In AVC approach the control is focused at minimization of the selected quantities

describing vibrations of the structure, such as velocities or accelerations. The infor-

mation about the state of the structure is obtained from sensors such as accelerome-

ters, piezoelectric transducers, or strain gauges, while the control forces are typically

applied using electromagnetic exciters or piezoelectric actuators. Although it is a

fact, that in many cases the generated acoustic pressure field will also be suppressed,

it does not have to be that way in general. Moreover, as it has been shown by Knyazev

and Tartakovskii [10], in some cases reduction of the level of vibrations may actually

result in an increased acoustic radiation to the ambient space. This is due to the fact

that various forms of vibrations are characterized with different radiation efficiency

and that the amplitude of the acoustic pressure cannot be expressed as a simple lin-

ear combination of the modal amplitudes. The theoretical background of the AVC

methods can be found, for example, in [11–13].

The idea of using the phenomenon of destructive interference to intentionally

suppress the undesirable noise was documented and patented in 1930 by a French

engineer Henry Coanda and soon after that, in 1933, by a German inventor Paul

Lueg [1, 14]. Their concepts assumed the use of microphones, amplifiers, and loud-

speakers to generate an acoustic signal with the opposite phase to the primary acoustic

disturbance. However, neither of them had managed to construct a working prototype,

due to the technical limitations at the time. Two decades later other attempts of prac-

tical implementations of similar systems for an active reduction of sound were made

by Olson and May [15, 16] – once again, with no success. Their devices turned out

to work only in a narrow frequency band, with very poor efficiency. Moreover, the
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control parameters had to be set manually. It took about next forty years for the devel-

opment and dissemination of electronic systems – especially digital signal processors,

microcontrollers, programmable logic devices, and other, similar units – to allow such

ideas to come true. The described approach with loudspeakers as secondary acoustic

sources used to suppress the unwanted components of the primary acoustic field is

now known as the Active Noise Control (ANC). A number of review publications in

this field are available, presenting different control algorithms, methods and systems

– see, for example, [14, 17–19]. The ANC technologies are now mature enough for

widespread use in many practical applications including reduction of helicopter and

aircraft cabin noise, car interior silencing systems, headphones, mobile phones, and

many others.

The ASAC systems, similar to the case of the AVC methods, act directly on the

controlled structure. They also use analogous means for sensing and exciting vibra-

tions. The main difference between the two presented approaches is in the assumed

cost function. The ASAC methods are aimed at modification of the vibration pat-

tern of the structures which are the primary noise sources in such a way that the se-

lected parameters characterizing the acoustic pressure field distribution in the ambient

space will be minimized. The research on ASAC was initiated by Fuller and his co-

workers [20–22] and continued by Hansen and Snyder [23], Thi [24], Thomas [25],

Baumann [26], Zieliński [27], and other researchers. Most of the scientific investiga-

tions devoted to the ASAC systems are focused on structures with specific mechanical

and acoustic boundary conditions which can be described using analytical formulas.

A typical example of such structures is simply supported rectangular plates placed

in an infinite, rigid baffle, investigated by researchers such as Fuller [11], Pan [28],

Elliott [29], and Meirovitch [30]. Baffled plates with arbitrary but uniform bound-

ary conditions were investigated by Berry [31]. Theoretical and experimental studies

concerning applications of the ASAC methods on circular plates can be found, for

example, in [32–34].

Depending on a type of the coupling between the input and the output of the active

control system, there are three different control approaches which are used for active

reduction of noise and vibrations:

• feedforward control,

• feedback control,

• hybrid feedforward/feedback control.

In the feedforward approach the parameters of the primary excitation signal must be
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either known in advance or measured. The information on the disturbance is fed to

the input of the control system which respond in a pre-defined manner. In this case

total local cancellation of noise or vibrations is theoretically possible. The descrip-

tion and examples of implementations of such systems can be found in [35–38]. In

the feedback approach the response of the controlled structure is measured and fed

back to the input. The control performance of such system depends on its open-loop

feedback gain, which is in practice limited by the stability issues. The detailed the-

oretical background and mathematical preliminaries regarding such systems can be

found, for example, in [39, 40]. The hybrid approach combines the described fea-

tures of the feedback and feedforward control. The description of the hybrid control

systems and examples of implementations are presented in [41–43].

The state variables describing the vibrations of the controlled structure are usu-

ally chosen in such a manner that their unforced behavior can be considered indepen-

dently. Such an approach is called modal control [44]. In active noise and vibration

systems the state variables are often related to the eigenforms of vibrations. However,

an important problem connected with this form of description of the system arises due

to the fact that the dynamic response of the structure is approximated by a finite num-

ber of modal components. If the assumed number of modes is not large enough, the

effect called spillover will occur, significantly affecting the control performance [45].

On the other hand, a too large number of the included harmonic components can

increase the computational time and cost above the limits imposed by the hardware

specifications and demands of the real-time operation. The objective function in the

active noise and vibration control systems is usually a quadratic function and the

control process is performed by linear-quadratic regulators (LQR, LQG) [32, 46].

Other approaches presented in the literature are based on various kinds of PID con-

trollers [32, 47–49]. Depending on the architecture, the control system may be either

centralized (with a single data processing unit) or decentralized (with a number of

independent control loops). As it is shown in [50, 51], both approaches can achieve a

similar efficiency in noise and vibration reduction.



Chapter 2

Vibrations of thin beam and plate

structures

2.1 Theoretical considerations

The purpose of the present chapter is to introduce the assumptions, theoretical prelim-

inaries, and the notation which are used in the following parts of this study to describe

vibrations of various considered structures. The information contained herein is of a

fundamental importance from the point of view of the analysis of acoustic radiation,

modal parameters of piezoelectric senors and actuators and the active control theory

presented further, as the quality of the results concerning the vibrational parameters

will significantly affect the results of subsequent computations. Theoretical founda-

tions underlying the mathematical and physical models describing vibrations of thin

beam and plate structures were developed as far back as in 18th and 19th century and

now fall within the basic problems of continuum mechanics. The relevant issues are

discussed in details, for example in [11, 13, 52, 53].

Although the investigations on active vibroacoustic control system presented in

this study concern rectangular plates, some parts of related theoretical, numerical and

experimental considerations are also devoted to vibrations of thin beams. Due to a

simpler formal description of those structures and availability of analytical solutions

of the relevant equations, the thin beams were chosen to verify some concepts re-

garding possibilities of sensing and exciting vibrations with piezoelectric transducers.

Those issues are discussed in detail in Chapter 4.

The geometry of the considered problem is presented in Figure 2.1. The length

a and width b of the plate are assumed to be much greater than its thickness hs.

Analogously, the length ap and width bp of the piezotransducer attached to the surface
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of the structure are assumed to be much greater than the thickness hp. The orientation

of the global Cartesian coordinate system is chosen in such a way that the edges of

the plate are parallel to the relevant axes.

Figure 2.1 Geometry of the considered problem

Vibrational motion of the structures is assumed to occur only in the z direction,

hence, only one, corresponding component of the displacement field is considered,

namely, the deflection w = w(x,y, t). In the case of the so-called beam structures it

is assumed that the length a of a structure is much greater than its width b and its

thickness hs. The flexural waves propagate along the x direction only and the deflec-

tion w is constant along the y direction, i.e.: ∂w
∂y

= 0. The vibrations are described

using the classical Euler-Bernoulli beam theory and the following equation (see, for

example, [52]):

EI
∂ 4w

∂x4
+ρS

∂ 2w

∂ t2
= FBe, (2.1)

where E is the Young modulus of the isotropic material of the beam, I is the cross-

sectional moment of inertia, ρ is the density of the material, S is the constant cross-

section area of the beam, and finally, FBe = FBe(x, t)
[

N
m

]

is the external load applied

per length of the beam. The solutions of Equation 2.1 can be obtained analytically for

arbitrarily chosen boundary conditions and presented as a sum of trygonometric and

hyperbolic functions. The relevant formulas are presented, for example, in [52].

The solutions to the beam equation (2.1) can be written in a following, general

form [52]:

w(x) =CB
1 sin

(

αBx
)

+CB
2 cos

(

αBx
)

+CB
3 sinh

(

αBx
)

+CB
4 cosh

(

αBx
)

, (2.2)
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where CB
1 , . . . ,C

B
4 , and αB are constants whose values are determined by solving

Equation (2.2) for a given set of boundary conditions. The modal shape functions

of a beam structure obtained in such a manner are orthogonal, i.e., functions Φm (x)

and Φn (x) describing shapes of vibrational modes m and n, respectively, obey the

following condition:

a
∫

0

Φn(x)Φm(x)dx =







0 for m 6= n
a
∫

0

Φ2
n(x)dx for m = n

(2.3)

Similarly, plate structures considered in this study are thin in the sense of the

classical Kirchhoff’s plate theory. They are assumed to be made of homogeneous,

isotropic material (thus, in the case of composites, such an approach can be applied

provided that the relevant effective material constants are known). Their vibrations

are then described by the following equation of motion (see, for example, [52]):

D

(

∂ 4w

∂x4
+2

∂ 4w

∂x2∂y2
+

∂ 4w

∂y4

)

+ρhs
∂ 2w

∂ t2
= Fext , (2.4)

where D =
Eh3

s

12(1−ν2)
is the flexural rigidity of the plate which depends on its thick-

ness hs, as well as on Young’s modulus E and Poisson’s ratio ν of the material, while

Fext = Fext(x,y, t)
[

N
m2

]

is the function of the external load applied per surface area of

the plate.

It is assumed that each of the considered structures is subjected to an external

harmonic excitation with an arbitrary spatial distribution. The system is linear and

the structural damping is neglected, therefore, the response of the structure is also

harmonic, with the same frequency and phase as the excitation. The present study

focuses only on the low-frequency range (up to about 500 Hz), since higher frequency

vibrations can be rather easily suppressed using the well-known passive techniques –

like thin soft liners, a porous core of panel (see for example [54]). Taking all these

assumptions into account, the response of a structure can be approximated by a finite

sum of N structural modes as follows:

w(x, t)∼=
N

∑
n=1

Φn(x)wn(t) = eiωt
N

∑
n=1

Φn(x)Wn
∼= eiωtw̃(x), (2.5)

where (x) ≡ (x) in the case of beam structures and (x) ≡ (x,y) in the case of plate

structures, while Φn is the normalized shape function of mode n and wn is the corre-

sponding time-varying coefficient. When a harmonic motion is considered – with ω =
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2π f as the angular frequency of the external excitation force ( f being the frequency)

– these coefficients are time-harmonic and can be expressed as wn(t) = eiωtWn, where

Wn are the (frequency-dependent) modal amplitudes; w̃(x) is the (frequency-dependent)

amplitude function of harmonic vibrations.

Modal shape functions Φn are found by solving the corresponding eigen-problems

to the equations of motion (2.1) or (2.4), i.e., by setting their right-hand-side terms

to zero and seeking non-trivial (i.e., non-zero) solutions in the form eiωtw̃(x). In

the case of beams, regardless of their boundary conditions (and, as a matter of fact,

because of their ‘unidimensional’ simplicity), it is always possible to find analytical

solution consisting of a sum of trygonometric and hyperbolic functions [52]. In the

case of plate structures, however, even when they are rectangular in shape, the ana-

lytical solutions can be found only for some specific (‘geometrically-homogeneous’)

boundary conditions and – in general – it is required to use numerical methods, such

as the Finite Element Method, in order to solve such problems.

The function describing an external harmonic excitation force acting on a plate

can be expressed as follows:

Fext = Fext(x,y, t) = F̃exte
iωt , (2.6)

where F̃ext = F̃ext(x,y) denotes the spatial distribution of the amplitudes of pressure

on the surface of the plate. This function can also be decomposed into an infinite

series of modal components Φn of vibrations of the structure and approximated by a

finite number N of them:

F̃ext =
N

∑
n=1

Φn(x,y)Fn. (2.7)

The modal shape functions Φn are assumed to be orthogonal, thus:

a
∫

0

b
∫

0

Φn(x,y)Φm(x,y)dxdy =











0 for m 6= n,
a
∫

0

b
∫

0

Φ2
n(x,y)dxdy for m = n.

(2.8)

Taking into account the orthogonality property (2.8) the modal amplitudes can be

expressed as follows:

Wn =

a
∫

0

b
∫

0

w̃(x,y)Φn(x,y)dxdy

a
∫

0

b
∫

0

Φ2
n(x,y)dxdy

, (2.9)
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Fn =

a
∫

0

b
∫

0

F̃ext(x,y)Φn(x,y)dxdy

a
∫

0

b
∫

0

Φ2
n(x,y)dxdy

. (2.10)

The relation describing the modal amplitudes of vibrations of a plate induced by

an external, harmonic excitation force with the given angular frequency ω and spatial

pressure distribution F̃ext is sought. First, the unforced vibrations are considered.

Equation (2.4) is rewritten in the following form, with right-hand side equal to 0:

∇4w̃(x,y)− k4
s w̃(x,y) = 0, (2.11)

where:
ρhsω

2

D
= k4

s . (2.12)

The coefficient ks =
ω
cs

is the structural wavenumber and cs denotes the wave propa-

gation velocity in the considered plate.

Equation (2.11) is satisfied for the eigenmodes of vibrations of the plate and the

corresponding structural wavenumber values. Substituting relation (2.5) into (2.11)

the following formula is obtained:

∇4WnΦn(x,y)− k4
nWnΦn(x,y) = 0, (2.13)

where kn is the wavenumber of mode n, equal:

kn =
ωn

cs
, (2.14)

ωn is the angular eigenfrequency of mode n.

Getting back to the forced vibrations of plate structures, equation (2.4) after in-

cluding relations (2.5)–(2.10) can be rewritten in the following form:

∇4w̃(x,y)eiωt −ρhsω
2w̃(x,y)eiωt =

1

D
F̃ext(x,y)e

iωt . (2.15)

After dividing both sides of Equation (2.15) by eiωt and substituting the amplitude

distribution functions with their modal decomposition coefficients, the following re-

lation is obtained:

N

∑
n=1

[

Wn∇4Φn(x,y)− k4
eWnΦn(x,y)

]

=
1

D

N

∑
n=1

[Φn(x,y)Fn] . (2.16)
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Both sides of Equation (2.16) are multiplied by a shape function Φm(x,y) of a struc-

tural mode number m and integrated over the surface of the plate:

a
∫

0

b
∫

0

(

N

∑
n=1

[

Wn∇4Φn(x,y)− k4
eWnΦn(x,y)

]

)

Φm(x,y)dxdy =

1

D

a
∫

0

b
∫

0

(

N

∑
n=1

Φn(x,y)Fn

)

Φm(x,y)dxdy.

(2.17)

Looking back at the plate equation (2.11) and substituting the modal decompo-

sition factors instead of the displacement amplitude distribution function w̃(x,y) one

can obtain:
N

∑
n=1

Wn∇4Φn(x,y) =
N

∑
n=1

k4
nWnΦn(x,y). (2.18)

Substituting Equation (2.18) into Equation (2.17) one can obtain:

N

∑
n=1



Wn

(

k4
n − k4

e

)

a
∫

0

b
∫

0

Φn(x,y)Φm(x,y)dxdy



=

1

D

N

∑
n=1

Fn

a
∫

0

b
∫

0

Φn(x,y)Φm(x,y)dxdy,

(2.19)

Taking into account the orthogonality property of the modal shape functions (2.8),

Equation (2.19) can be rewritten in the following form:

Wn =
Fn

D(k4
n − k4

e)
. (2.20)

Substituting the relations (2.10) and (2.12) into Equation (2.20), the following for-

mula is eventually obtained:

Wn =
1

ρhs

a
∫

0

b
∫

0

F̃ext(x,y)Φn(x,y)dxdy

(ω2
n −ω2)

a
∫

0

b
∫

0

Φ2
n(x,y)dxdy

. (2.21)

Equation (2.21) connects the amplitude of vibrations of a structural mode n with

the frequency and amplitude distribution of an external, harmonic excitation force.

Thus, if the parameters of the excitation are known, then the response of the plate

can be computed as a sum of amplitudes of modal components vibrating at the im-
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posed angular frequency ω . The only exception is the situation when the excitation

frequency is equal to any of the eigenfrequencies of vibrations of the plate. In such a

case the amplitude of the corresponding mode, computed using relation (2.21) would

theoretically reach the infinity. This conclusion obviously disagrees with observa-

tions, because the amplitudes of vibrations of real-life structures are always finite.

The reason for this discrepancy is the fact that – according to the assumptions de-

scribed previously – in the considered, simple model damping and nonlinear effects

are neglected. The problem of determining the amplitudes of resonant vibrations and

the results of relevant experimental investigations are presented in Section 4.7 of this

study.

2.2 Numerical simulations

Due to the undertaken assumptions, the methods, algorithms, and solutions concern-

ing active vibroacoustic control of plate structures developed and presented in this

study should be applicable to plates with arbitrary boundary conditions. Since there

are no known analytical solutions of Equation (2.4) in such a general case, the prob-

lem has to be solved numerically. Various kinds of thin, rectangle shaped plates are

considered in the present study. However, no specific computational schemes that

could be beneficial to use for special cases of boundary conditions were employed,

so the presented approaches can be easily generalized into any mounting conditions.

The parameters of structural modes of vibrations of the considered plate were

determined using the Finite Element Method and the Comsol Multiphysics software.

A mapped mesh of rectangular elements was used to discretize the surface of the

structure. The simulations were performed for various meshes consisting of from few

dozens up to several thousands of elements. Some aspects regarding the influence of

resolution of the discretization on the obtained results are introduced in Section 2.3.

The mode shapes and eigenfrequencies of vibrations of the 20 cm wide, 30 cm

high, and 1 mm thick rectangle shaped aluminum plate structure determined numeri-

cally are presented in Table 2.1. The results of simulations were verified experimen-

tally. The plate was clamped by a 6 cm long middle section of one of its shorter

edges, using a provided for this purpose protruding part. The plate was excited to

vibrate by a pair of piezoelectric actuators (the issues regarding the use of piezoelec-

tric transducers are described in detail in Chapter 4 of this study). Very sharp res-

onant characteristics, with high amplitudes of vibrations occurring only for specific

excitation frequencies (which were assumed to be the actual eigenfrequencies of the
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structure) were observed. The laser vibrometer was used to determine the vibrational

pattern in all cases (i.e., determine locations of points with minimum and maximum

amplitudes of vibrations on the surface of the plate). The overall agreement between

the measurements and results of simulations was fair. The shape functions of all of

the considered structural modes matched the corresponding patterns determined nu-

merically. However, some discrepancies between the measured and predicted values

of eigenfrequencies are also observed. The comparison of the results is presented

in Table 2.1. The accuracy of simulations varies for different structural modes, with

errors ranging from about 1 to 3 Hz (modes no. 1, 2, 3, 15) up to even over 20 Hz in

extreme cases (modes no. 9 and 12). The most important factor which is probably re-

sponsible for the differences between experiments and simulations are the mounting

imperfections. For the computational purposes, the plate was assumed to be perfectly

clamped by a part of the shorter edge, while the holders used in a laboratory stand

were never perfectly stiff and carried some of the energy of vibrations.

The precise reconstruction of the actual boundary conditions in the numerical

model is crucial from the point of view of the obtained results. Figure 2.2 presents

mode shapes and eigenfrequencies of six first forms of vibrations of 20 cm wide,

30 cm high, and 1 mm thick aluminum plate, for two various mounting types (differ-

ent than the one considered in Table 2.1). Mounting „A” denotes cantilevered plate,

while in the case of mounting „B” the plate is clamped only by a 5 x 1 cm rectangular

shaped middle section, at its shorter edge. As it can be seen, most of the mode shapes

are quite the same in both cases, however, the change in boundary conditions from

„A” to „B” results in occurrence of a new form of vibrations (mounting „B”, 5th mode,

eigenfrequency 260,35 Hz). The influence of such a change on the eigenfrequency

values is selective - 2nd and 4th modes (with frequencies 36,04 Hz and 213,42 Hz

in case „A” and 54,71 Hz and 177,98 Hz in case „B”, respectively) seem to be the

most sensitive to the considered modification, while some other forms of vibrations

are almost not affected at all.
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Mode no. 1 Mode no. 2 Mode no. 3

Eigenfrequency [Hz] Eigenfrequency [Hz] Eigenfrequency [Hz]

Computed: Measured: Computed: Measured: Computed: Measured:

8 7,1 24,6 27,1 50,3 51,7

Mode no. 4 Mode no. 5 Mode no. 6

Eigenfrequency [Hz] Eigenfrequency [Hz] Eigenfrequency [Hz]

Computed: Measured: Computed: Measured: Computed: Measured:

82,3 90,7 127,2 120 144,9 155

Mode no. 7 Mode no. 8 Mode no. 9

Eigenfrequency [Hz] Eigenfrequency [Hz] Eigenfrequency [Hz]

Computed: Measured: Computed: Measured: Computed: Measured:

160,2 172,4 199 183 247,6 269

Mode no. 10 Mode no. 11 Mode no. 12

Eigenfrequency [Hz] Eigenfrequency [Hz] Eigenfrequency [Hz]

Computed: Measured: Computed: Measured: Computed: Measured:

261,4 276,6 337,8 320 383,9 406

Mode no. 13 Mode no. 14 Mode no. 15

Eigenfrequency [Hz] Eigenfrequency [Hz] Eigenfrequency [Hz]

Computed: Measured: Computed: Measured: Computed: Measured:

386,5 380 404,6 411 467,9 471

Table 2.1 Mode shapes and eigenfrequencies of aluminum plate structure with di-

mensions 20 cm x 30 cm x 1 mm determined numerically using a 2-D plate model,

compared to the resonant frequencies determined experimentally.
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Figure 2.2 Mode shapes and eigenfrequencies of aluminum plate structure with di-

mensions 20 cm x 30 cm x 1 mm determined numerically using a 2-D plate model for

two different types of mountings. Mounting „A”: cantilevered plate; Mounting „B”:

plate clamped by a part of one of its shorter edges.
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2.3 Orthogonality of the eigenfunctions

In the case of plate structures with arbitrary boundary conditions the mode shape

functions cannot be obtained analytically and they have to be determined with nu-

merical methods, such as the Finite Element Method used in this study. However, the

results of numerical simulations only approximate the exact solution and the obtained

eigenshape functions do not have to be strictly orthogonal. The accuracy of com-

putations depends, among other factors, on the resolution of discretization. Due to

the fact that the orthogonality property (2.8) underlies the derived formulas describ-

ing the behavior of plate structures (2.21), the possible discrepancies at this point

strongly affect the results presented in the other parts of this study. For this rea-

son it has been decided to investigate the influence of the resolution of discretization

on the compatibility between the assumed and true properties of the obtained mode

shapes. The forms of vibrations of the considered plate (presented in Table 2.1) were

determined using several different mesh resolutions, predefined in the Comsol Multi-

physics software, ranging from „extremely coarse” (150 elements) up to „extremely

fine” (10000 elements). Then, using a Matlab script the values of products (2.8) of

each with each shape functions were determined and normalized with respect to the

value
a
∫

0

b
∫

0

Φ2
n(x,y)dxdy for every considered mode n. The results concerning the first

eight forms of vibrations of the plate are presented in Tables 2.2–2.5.

Mode no. 1 2 3 4 5 6 7 8

1 1 0.015 0.238 0 0.259 0.066 0.017 0.252

2 0.015 1 0.003 0.229 0.026 0.025 0.163 0.042

3 0.238 0.003 1 0.003 0.038 0.002 0.007 0.291

4 0 0.229 0.003 1 0.024 0.014 0.011 0.019

5 0.259 0.026 0.038 0.024 1 0.069 0.007 0.032

6 0.066 0.025 0.002 0.014 0.069 1 0.034 0.269

7 0.017 0.163 0.007 0.011 0.007 0.034 1 0.017

8 0.252 0.042 0.291 0.019 0.032 0.269 0.017 1

Table 2.2 Normalized values of products of shape functions determined using the

extremely coarse mesh resolution (150 elements)

In the ideal case, if all of the approximated shape functions would satisfy the

condition (2.8), then the values in all of Tables 2.2–2.5 should be equal to 1 on the

diagonal and 0 everywhere else. In fact, many among the off-diagonal elements in all

of the presented tables are greater than zero. The higher the value, the worse the or-

thogonality criterion between the two corresponding shape functions is fulfilled. The
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Mode no. 1 2 3 4 5 6 7 8

1 1 0 0.04 0.001 0.041 0.046 0.001 0.065

2 0 1 0.001 0.042 0.001 0 0.056 0.002

3 0.04 0.001 1 0.001 0.002 0.003 0.001 0.056

4 0.001 0.042 0.001 1 0 0.001 0.005 0

5 0.041 0.001 0.002 0 1 0.011 0 0.056

6 0.046 0 0.003 0.001 0.011 1 0 0.047

7 0.001 0.056 0.001 0.005 0 0 1 0.003

8 0.065 0.002 0.056 0 0.056 0.047 0.003 1

Table 2.3 Normalized values of products of shape functions determined using the

coarse mesh resolution (1500 elements)

Mode no. 1 2 3 4 5 6 7 8

1 1 0 0.021 0 0.024 0.034 0.001 0.047

2 0 1 0 0.033 0 0 0.043 0.001

3 0.021 0 1 0.001 0.007 0.014 0 0.041

4 0 0.033 0 1 0 0 0.003 0.001

5 0.024 0 0.007 0 1 0.019 0.001 0.041

6 0.034 0 0.014 0 0.019 1 0 0.037

7 0.001 0.043 0 0.003 0 0 1 0.003

8 0.047 0.001 0.041 0.001 0.041 0.037 0.003 1

Table 2.4 Normalized values of products of shape functions determined using the

normal mesh resolution (2300 elements)

Mode no. 1 2 3 4 5 6 7 8

1 1 0.005 0.003 0 0.003 0.005 0.001 0.012

2 0.005 1 0.003 0.013 0.001 0.001 0.016 0

3 0.003 0.003 1 0.004 0.015 0.02 0.003 0.014

4 0 0.013 0.004 1 0.001 0.003 0.003 0.001

5 0.003 0.001 0.015 0.001 1 0.018 0.003 0.008

6 0.005 0.001 0.02 0.003 0.018 1 0.001 0.018

7 0.001 0.016 0.003 0.003 0.003 0.001 1 0

8 0.012 0 0.014 0.001 0.008 0.018 0.001 1

Table 2.5 Normalized values of products of shape functions determined using the

extremely fine mesh resolution (10000 elements)

worst situation is observed for the lowest („extremely coarse”) mesh resolution - the

products of some pairs of the eigenfunctions are equal almost 0.3. In such case the

corresponding modal components could not be separated in the process of decom-

position (2.9). Fortunately, the quality of the obtained results improves significantly

with the increasing of the mesh resolution. For the „normal” mesh, consisting of 2300
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elements, all of the off-diagonal values are less than 0.05 and more than half of them

is not greater than 0.01. In this case, the results of numerical simulations can be re-

garded as acceptable for further calculations. The approximation of the orthogonality

property of the modal shape functions is even better for the „extremely fine” mesh,

consisting of 10000 elements. In such case the higher off-diagonal value is equal to

0.018, while more than two-thirds of the rest of them is less than 0.01. However, the

number of elements with the lowest values, below 0.001, is lower than in the case of

the less dense, „normal” mesh. This is probably due to the numerical errors whose

importance increases with the resolution.

The presented results clearly indicate that the denser the mesh used to discretize

the surface of the plate (at least, in the considered range of resolutions) is, the better

the orthogonality criterion between the determined modal shape functions is fulfilled.

On the other hand, increasing the number of elements in simulations also increases

the computational time and cost. However, due to the simplicity of the considered

problem and the fact that only limited number of low-frequency forms of vibrations

are of interest, even simulations carried out using the „extremely fine” mesh take

less than one minute on a standard personal computer. The results of such simula-

tions, with a relatively dense mesh, are used for further computations described in the

present study.



Chapter 3

Acoustic radiation of vibrating plate

structures

3.1 Introduction

Acoustic radiation of different vibrating structures is a topic of great interest and has

been the subject of numerous theoretical and experimental scientific investigations.

The importance of this phenomenon is implied by the fact, that actually most of the

sounds observed in the nature or generated – intentionally or not – by people or ma-

chines result as a coupling between vibrating surfaces and the acoustic medium. Thus,

it is highly desirable to be able to accurately model the distribution of the acoustic

pressure generated in this manner in the space surrounding the considered structures.

Such predictions allow to control the ambient sound field by controlling the vibrations

of the sources and can be used in countless practical applications. In this context, one

of the most commonly considered types of vibrating elements are the plate structures,

due to their usefulness in modeling many real-world mechanical systems on the one

hand and the ease of description on the other.

The very first attempts of creating formal description of dependencies between

some mechanical properties of different structures and parameters of sounds emit-

ted by those structures during vibrations actually took place as far back as in an-

cient times. In the 6th century BC Pythagoras was investigating sounds emitted by

strings of different lengths and created the mathematical foundations of determining

pitch [55]. However, it was not until the 19th century when Lord Rayleigh developed

and described the mathematical models concerning acoustical properties of vibrat-

ing pistons placed in an infinite, rigid baffle [56]. His works initiated research on

the acoustic radiation characteristics of various vibrating plate structures (see, for ex-
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ample, [11, 53, 57]). The methods of determining the distribution of the acoustic

pressure generated in this manner are still being intensively developed.

Theoretical considerations and results of numerical simulations concerning the

far-field acoustic radiation characteristics of baffled plates will be presented in Sec-

tion 3.3 of this chapter. The differences between radiation patterns of various vi-

brational modes in the low-frequency range will be introduced and discussed. As it

will be shown, in the case of structures relatively small, as compared to the acoustic

wavelength, the forms of vibrations may be divided into two categories, basing on

the computed distributions of generated sound pressure levels: the „monopole” and

the „dipole” modes. According to the properties of elementary acoustic sources, the

latter are weak radiators.

The presence of the acoustic medium which is necessary for acoustic waves to

propagate, influences the vibrational characteristics of the considered structure which

is the source of the radiation. The problem of determining the eigenfrequencies and

corresponding modal shape functions of vibrating plate structures submerged in dif-

ferent media has been the topic of numerous scientific investigations (see, for exam-

ple, [58–62]), which resulted in the development of various computational methods

and algorithms suitable for different systems and boundary conditions. Despite the

fact that in many cases the influence of the acoustic medium cannot be neglected (this

is particularly true for heavy fluids, such as water), if the vibrating thin plate struc-

tures are relatively small as compared to the acoustic wavelength and the surrounding

medium can be treated as a light fluid - such as, for example, air - then it can be

shown [63] that in such case the eigenfrequencies and vibrational mode shapes of the

plate are not significantly affected by the presence of the medium. This means that

the mechanical analysis of the vibrational characteristics can be decoupled from the

acoustic analysis and performed independently for the in vacuo case. The obtained

results may be then used for the computation of the distribution of generated acoustic

pressure by introducing them as the boundary conditions on the surface of the con-

sidered structure. The issues concerning the influence of different acoustic media on

vibrational characteristics of plates will be discussed more in detail in Section 3.2.

Sections 3.4 and 3.5 concern free-field vibroacoustic emission of thin, rectangle-

shaped plate structures. Analytical solutions describing either selected vibrational

characteristics or parameters of the generated acoustic pressure field are known only

for a limited number of some special cases of prescribed boundary conditions for

such structures, as, for example, simply-supported, baffled plates [11, 53]. In the

general case such exact solutions cannot be given and the considered problem has to

be solved numerically. Taking into account that the considered ambient medium is air,



3.1 Introduction 29

the eigenfrequencies and the corresponding vibrational mode shapes are determined

independently from the acoustic analysis using the Finite Element Method. The

acoustic pressure field distribution could also be computed using the same method

but it would require to expand the mesh of elements into a large area of space sur-

rounding the vibrating plate and would significantly increase the computational cost.

Moreover, due to the fact that the discretized area has a finite volume and the consid-

ered domain is unbounded, some special techniques for solving the exterior acoustic

problems, such as Perfectly Matched Layers or Infinite Elements, should be imple-

mented additionally. For that reason the Boundary Element Method was chosen as a

more appropriate tool for the acoustic analysis in the specified case.

The Boundary Element Method has been extensively developed since the sixties

of the last century for the purposes of various research and engineering fields. Some

preliminaries of this method with examples of applications in mechanics, acoustics,

and electromagnetics can be found in [64–67]. In the considered case of the free-

field acoustic radiation of the thin, rectangular plate two of the specific features of

the Boundary Element Method make it particularly convenient to use. First, the di-

mension of the distretized domain is reduced by one, compared to the Finite Element

Method model, and includes only the flat surface of the plate. Second, the fundamen-

tal solution of the problem which is used for the formulation of the solved equations

obeys the Sommerfeld radiation condition at infinity. This means that there is no need

in implementing any additional computational techniques to take into account the un-

bounded character of the acoustic domain. On the other hand, some complexities in

the computational process arise due to the fact that the considered problem is an ex-

terior acoustic problem with an open boundary surface for which the only applicable

version of the chosen numerical method is the Indirect Variational Boundary Element

Method [68] which will be referred to further on as the IVBEM. The variational com-

putational scheme introduces double surface integrals and highly singular terms to the

solved equations. In the relevant literature similar issues concerning plate structures

have already been described (see, for example, [69]). However none of the sources in-

clude the detailed information about the implementation of the procedures for solving

the derived equations. The importance of such information is associated with some

significant simplifications that can be introduced at this stage by taking into account

the simple geometry and some special features of the considered problem. For that

reason these important issues are included in the present study. In order to efficiently

deal with the mentioned difficulties a dedicated algorithm has been developed and

implemented using the Matlab environment. The results of the numerical simula-

tions are compared with the results of the experimental investigations performed in
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an anechoic chamber to validate the accuracy of the predictions.

3.2 Structural-acoustic coupling

3.2.1 Outline

Most of the scientific investigations devoted to the problem of acoustic radiation of

vibrating structures focus on vibroacoustic emission in air, considering simple but

representative structural elements, such as membranes, beams, and plates with differ-

ent boundary conditions. Due to the relatively low density of air, the vibration char-

acteristics of structures are not significantly altered by the inertial loading introduced

by a medium and the problem of determining eigenfrequencies and corresponding

mode shapes can be simplified to the in-vacuo case. A similar procedure applied to a

structural element submerged in a heavy fluid, such as water, would result in a total

discrepancy between predictions and measurements, as the influence of the medium

is in this case crucial.

The influence of fluid loading on the acoustic radiation characteristics of the

structural elements has been investigated by many scientists. Some analytical so-

lutions for specific cases were developed by Maidanik and Kerwin [58] and Stuart

[59, 60]. Many authors considered the impact of the submersion in water on the

plate’s eiegenfrequencies and eigenmode shapes. Different methods have been de-

veloped to solve this problem. Some of them assume that the structural mode shapes

remain unchanged and focus only on the alteration of the natural frequencies of the

plates [70, 71]. Additional factors are often introduced to model the inertial load-

ing by mass incrementation of the vibrating structure [70–73]. Other, more general

approaches, use Rayleigh-Ritz method to compute both mode shapes and eigenfre-

quencies [72, 74]. The influence of fluid loading is different for plates having contact

with water on one or both sides.

One of the main areas in which hydroacoustic emission is crucial is military tech-

nology. In past decades a lot of effort has been put into reducing noise generated by

marine and navy vessels. This is especially true of the submarines, for which stealth

operation is the most desirable. Knowledge of the vibrational characteristics of the

hulls of vessels is also an important issue for the safety reasons [75]. The operating

parameters of the powertrains of the vessels must meet the criteria resulting from the

eigenfrequency analysis of the hulls having contact with water.
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3.2.2 Numerical model

The solution of the eigenvalue problem of vibrations of a fluid-loaded structure will

be analyzed on the example of a rectangle-shaped, 20 cm wide, 30 cm high, and 1 mm

thick aluminum plate placed in an infinite, rigid baffle, having contact with various

kinds of acoustic media on the one side. Notwithstanding the fact, that only air is

in the scope of interest of the present study, heavy-fluid case (represented by water)

is also considered in this section in order to better evaluate the influence of medium

parameters on the vibrational characteristics of a submerged structure. Free boundary

conditions are assigned to all the four edges of the plate. Damping is neglected and

only transverse motion of the structure is taken into account. The solid domain -

represented by the plate - is described with the following constitutive equation:

ρω2w+n∇σ =−Fext , (3.1)

where ρ is the density of the plate, ω is angular frequency of vibrations, w is the

displacement in direction perpendicular to the plate’s surface, σ is the stress tensor, n

is the unit vector normal to the plate’s surface and pointing towards the fluid, and Fext

denotes external pressure applied to the structure.

The liquid domain is described with the following pressure acoustics equation:

∇
1

ρw
(∇p)− ω2 p

c2
wρw

= 0, (3.2)

where ρw and cw denote the density and acoustic wave velocity of the considered

medium.

Equations (3.1) and (3.2) are coupled via following boundary conditions assigned

on the solid-fluid interface:

−n∇
1

ρw
(∇p) =−n

∂ 2u

∂ t2
(3.3)

σ n = pn (3.4)

Equation (3.3) implies the equality of normal accelerations between the adjoining

areas of plate and the medium, while Equation (3.4) imposes the equality of action

and reaction force values between the domains.

Equations (3.1) and (3.2) with boundary conditions (3.3) and (3.4) were solved to

find the natural frequencies of the submerged plate and corresponding structural mode
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shapes. Numerical simulations have been performed for three different situations:

plate with surrounding water, plate with surrounding air, and for plate without any

external load assumed. The low-frequency range only was considered, taking into

account the first eight eigenmodes (without rigid body motion solution at frequency

f = 0).

The problem has been solved using the Finite Element Method and the COM-

SOL Multiphysics software. The acoustic domain was represented by a hemisphere

with a radius large enough to approximate the free-field environment and plane wave

radiation boundary condition set on the surface. The base plane of the hemisphere

represented an infinite baffle with a rigid wall boundary condition. The plate was

positioned in the center of the base plane with all of the edges free and was in contact

with the acoustic medium on the one side. The geometry and discretization of the

problem are presented in Figure 3.1. The assumption of far-field approximation by

the hemisphere was validated by comparing the results of simulations obtained for

different radii values.

Figure 3.1 Baffled plate in contact with water on its one side: geometry and discretiza-

tion.

3.2.3 Results and discussion

Numerical simulations have been performed for three different situations: plate with

surrounding water, plate with surrounding air, and plate without any external load as-



3.2 Structural-acoustic coupling 33

sumed. The latter involved a simple, two-dimensional model of the structure without

a medium and baffle. It has been found that the shapes of the corresponding structural

modes in all three considered cases - for air, water and the in vacuo case - showed no

significant differences. The obtained results are presented in figure 3.2. The corre-

sponding eigenfrequencies, determined for each case, are presented in Table 3.1.

Figure 3.2 Mode shapes of the first eight forms of vibrations of the plate with all

edges free (without rigid body motion solution at frequency f = 0).

Eigenfrequencies computed for the air and for the in vacuo case are almost the

same, the differences are small enough to be considered as numerical errors - espe-

cially taking into account the fact that higher values were obtained for the case without

inertial loading. This conclusion confirms that omitting the influence of the acoustic

medium does not significantly affect the results of the vibrational analysis performed

for relatively small plate structures submerged in a light fluid in the low-frequency

range.

Submerging the plate in water causes a reduction of the values of natural frequen-

cies by the factor of approximately 3, as compared to the results obtained for two

other considered cases. This observation implies the fact that if the acoustic medium
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Mode number Eigenfrequency [Hz]

No load Air Water

1 54,77 54,55 15,57

2 58,44 58,26 15,97

3 126,46 126,74 40,01

4 136,47 136,4 42,63

5 157,95 161,33 51,73

6 183,43 184,38 60,61

7 234,9 239,5 82,54

8 269,98 274,75 97,07

Table 3.1 Eigenfrequencies determined numerically for three different cases.

is a heavy fluid, then the influence of a inertial loading cannot be omitted and the nu-

merical model has to include the coupling between the structure and the environment.

Solving such a problem is numerically expensive and requires discretization of large

volume of the ambient space.

The described numerical model can also be used to determine the acoustic radi-

ation characteristics of the vibrating plate. Basing on the solution of Equation (3.2)

in the fluid domain, the distribution of the acoustic pressure in ambient space can be

computed. The results concerning the plate having contact with water on one side for

four selected eigenmodes are presented in figure 3.3.

Figure 3.3 Distribution of the amplitude of acoustic pressure in the near-field zone of

the vibrating plate structure submerged in water.
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As it can be seen, close to the surface of the structure the sound field distribution

is complex and radiation characteristics vary significantly for different forms of vi-

brations. Numerous local maxima and minima of the amplitude of acoustic pressure

are observed. The further from the surface, the acoustic radiation pattern becomes

more regular. The sound propagation velocity in water is over four times greater than

in air and thus the dimensions of the submerged plate compared to the wavelength

in the considered low-frequency range are low. For that reason the plate - regarded

as an acoustic antenna - reveals no significant directivity gain. The far-field radiation

characteristics of baffled plate structures are described more in detail in the following

section.

3.3 Far-field acoustic radiation of a baffled plate

Far-field acoustic radiation of a rectangle-shaped plate structure placed in an infinite,

rigid baffle is considered. Such structures and boundary conditions provide a starting

point for numerous scientific investigations devoted to active vibroacoustic control

systems and methods (see, for example, [11, 26, 29]). This is due to the fact that the

sound field distribution in this case can be described with relatively simple analytical

formulas. The foundations of the relevant mathematical model have been developed

as far back as in the eighteenth century by Lord Rayleigh [56]. However, the exper-

imental validation of the results may in general turn out to be troublesome. This is

especially true in the considered case of arbitrary boundary conditions, as, for exam-

ple, the assumption of mechanically free edges of the structure is hardly compatible

with the requirement of no acoustic gap between the plate and the baffle. For that

reason, the described approach is only briefly introduced in the present study and ex-

emplified with the results of relevant numerical simulations, in order to exhibit some

specific features of the generated sound field distribution in the low-frequency range

and to demonstrate the contrast in the computational complexity as compared to a

more general case of unbaffled plate that will be described in the following sections.

Additionally, the presented formulas may also be used in deriving the modal radia-

tion coefficients, introduced in Section 5.1, for computation of the cost function in

the control equations.

It is assumed that the plate is excited to vibrate by a harmonic force. Due to the

structural-acoustic coupling the induced flexural waves in the structure cause the radi-

ation of the acoustic waves in air (which is assumed to be the acoustic medium of the

ambient space). The geometry of the considered problem is illustrated in Figure 3.4.
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Figure 3.4 Acoustic radiation of a baffled plate – geometry of the problem.

The acoustic pressure p in any point r of the far-field ambient half-space with given

radial coordinates (r,φ ,Θ) is described using the Rayleigh’s integral with following

equation [11, 53, 76]:

p(r) =
iωρaeika|r|

2π |r|
N

∑
n=1



Wn

a
∫

0

b
∫

0

Φn (x,y)eika∆rdxdy



 , (3.5)

where ka is the wavenumber of the acoustic wave, ρa is the density of air, Wn is the

amplitude of the vibrational mode n with the shape function Φn and ∆r is approxi-

mated by the following relation:

∆r ≈−xsinΘcosφ − ysinΘsinφ (3.6)

Considering the vibrating plate as an acoustic antenna, the far-field radiation beam

pattern describing its directional characteristics may be introduced. The relevant

function is defined as a ratio of the amplitude of the generated acoustic pressure in

a given direction (φ ,Θ)) to the value of the amplitude of the acoustic pressure in

antenna boresight direction (φB,ΘB):

Ξ(φ ,Θ) =

[

p(r,φ ,Θ)

p(r,φB,ΘB)

]

r=const

. (3.7)

The radiation beam pattern is frequency-dependent, hence, in order to compute the

far-field acoustic directional characteristics of the baffled, vibrating plate, both the
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amplitudes of the involved modal components and the excitation frequency have to

be known.

The acoustic beam patterns of the considered structures have been determined nu-

merically on an example of a thin, plate structure made of aluminum placed in an

infinite, rigid baffle. The plate is 40 cm long, 25 cm wide, and 1 mm thick. It is

assumed that the structure is clamped at some part of one of its shorter edges and all

the other boundaries are free. The computations were carried out in two stages. First,

the eigenfrequencies and the shapes of the corresponding structural vibration modes

had been determined using the finite element analysis. To this end, COMSOL MULTI-

PHYSICS software had been used and the solutions obtained for the two-dimensional

plate model had been saved in a file. Based on the computed vibrational character-

istics, the far-field acoustic pressure distribution was determined using the relations

(3.5) and (3.6). The results from the file were imported by a MATLAB script and

numerical integration over the relevant regions as carried out for different structural

modes and vibration frequencies.

Some exemplary results of the numerical simulations are presented in Figure 3.5.

Three-dimensional acoustic beam patterns for two exemplary structural modes of the

thin plate structure vibrating at frequency 400 Hz are shown. As it can be seen, the

results may differ significantly for various forms of vibrations.

Figure 3.5 Three-dimensional acoustic radiation beam patterns of two exemplary

structural modes of the thin plate structure vibrating at frequency 400 Hz.

The examples presented in Figure 3.5 are the representative class of solutions of
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the described problem. Due to the relatively small dimensions of the considered plate

structure as compared to the acoustic wavelength in the low-frequency range, all the

modes reveal either acoustic monopole- or dipole-like radiation beam patterns. The

“dipole” modes are found to be weak acoustic radiators and are in general connected

with the antisymmetric shape functions of the corresponding forms of vibrations. In

contrast, the efficiency of far-field sound radiation of the ”monopole” modes may be

very high. Such observations are essential in terms of view of the active vibroacoustic

control of the considered structures.

3.4 Free-field acoustic radiation – BEM model

3.4.1 Theoretical background

The geometry of the considered problem is presented in Figure 3.6. It is assumed that

the considered rectangular plate is positioned in the plane z = 0 of the global XYZ

coordinate system and that one of its edges has the coordinates (x,y) equal (0,0).

The plate is thin and its thickness is neglected in further considerations. Due to the

harmonic character of the considered excitation force and taking into account the fact

that the system is linear and undamped, the acoustic pressure p at any point r of the

surrounding space satisfies the Helmholtz equation:

∆p+ k2 p = 0, (3.8)

where k is the wavenumber of the radiated acoustic wave.

Figure 3.6 The geometry of the considered problem: plate domain.

We solve the equation (3.8) for Neumann boundary conditions imposed on the
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whole surface Ω of the considered plate:

∂ p

∂n

∣

∣

∣

∣

(x,y)

=−iωρaVn (x,y) for (x,y) ∈ Ω. (3.9)

Here Vn (x,y) is the amplitude of the normal velocity of the surface of the plate at a

point with coordinates (x,y) and ω is the angular frequency of the radiated acoustic

wave. For the sake of brevity the coordinates will be omitted in the formulas presented

further, unless they are important for clarity of the description. The distribution of the

amplitude value of the normal velocity on the surface Ω is computed directly from

the Finite Element Method model of the plate vibrations and scaled to the results of

measurements carried out using a laser vibrometer.

The considered problem of the plate radiation in the free space is an exterior

acoustic problem with an open boundary surface. It may be regarded as a special case

of an exterior problem with a closed boundary by considering both sides of the plate

as separate surfaces denoted Ω+ and Ω−, where Ω = Ω+ ∪Ω−. We now introduce

the following quantities:

• the single layer potential:

σ (ra) =
∂ p(r+a )

∂n
− ∂ p(r−a )

∂n
, (3.10)

• the double layer potential:

µ (ra) = p
(

r+a
)

− p
(

r−a
)

, (3.11)

where r+a and r−a denote the position of the acoustic point sources at surfaces Ω+ and

Ω−, respectively. We can now rewrite the boundary conditions (3.9) as follows:

∂ p(r−a )
∂n

=−iωρaVn

(

r−a
)

on Ω−, (3.12)

∂ p(r+a )

∂n
=−iωρaVn

(

r+a
)

on Ω+. (3.13)

By assuming for thin plate Ω+ ≈ Ω− ≈ Ω and substituting Equations (3.12) and

(3.13) into Equation (3.10) we obtain:

σ = 0 and
∂ p

∂n
=−iωρaVn on Ω. (3.14)
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The acoustic pressure at any point of the ambient space indicated by a vector r is

described with the following boundary integral formulation [68]:

p(r) =
∫

Ω

µ (ra)
∂G(r,ra)

∂n
dΩ(ra) (3.15)

where G is the Green’s function, which satisfies the following equation:

∆G(r,ra)+ k2G(r,ra) = δ (r− ra) , (3.16)

where δ (·) denotes the Dirac delta function. The considered fundamental solution

should also satisfy Sommerfeld radiation condition:

lim
|r−ra|→∞

|r− ra|
(

∂G(r,ra)

∂ |r− ra|
+ ikG(r,ra)

)

= 0. (3.17)

Fulfillment of the condition (3.17) ensures that the obtained solution is valid for

the free-field acoustic environment. The considered Green’s function in the three-

dimensional space has the form:

G(r,ra) =
e−ik|r−ra|

4π |r− ra|
. (3.18)

By taking into account the boundary conditions (3.14) the integral equation (3.15)

can be rewriten as:

−iωρaVn =
∫

Ω

µ (ra)
∂ 2G(r,ra)

∂n(r)∂n(ra)
dΩ(ra) . (3.19)

Equation (3.19) has to be solved for the unknown double layer potential µ on Ω.

To this end, the equivalent variational statement is used, namely, the solution µ will

minimize the following functional [68]:

J= 2

∫

Ω

iωρaµ (r)Vn (r)dΩ(r)+
∫

Ω

∫

Ω

µ (r)µ (ra)
∂ 2G(r,ra)

∂n(r)∂n(ra)
dΩ(r)dΩ(ra) ,

(3.20)

The properties of the Green’s function and the continuity of µ allow to rewrite the

second, highly singular integral in an equivalent, less singular form, better suited for
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numerical calculations [68, 69]:

∫

Ω

∫

Ω

µ (r)µ (ra)
∂ 2G(r,ra)

∂n(r)∂n(ra)
dΩ(r)dΩ(ra) =

∫

Ω

∫

Ω

G(r,ra)
[

k2µ (r)µ (ra)(n(r) ·n(ra))−

−((∇×µ (r)) · (∇×µ (ra)))]dΩ(r)dΩ(ra) ,

(3.21)

where:

∇×µ = n×∇ µ (3.22)

and n is the unit vector normal to the surface of the boundary plate.

The considered area Ω is discretized into a number ne of small boundary ele-

ments with corresponding areas Ωe , e ∈ {1,2, . . . ,ne} and nn nodes defined at some

particular locations of the elements. nen is the number of nodes belonging to a sin-

gle element. Note that the elements may (and usually do) share common nodes, so,

in general, nn 6= nenen. It is assumed that the sought double layer potential at every

single element can be approximated by a product of the unknown nodal values µi and

the element shape functions Ne
i (which take the value of 1 in the corresponding node

i and are 0 in all other nodes), namely:

µ (r)≈ µ̂ (r) =
nen

∑
i=1

Ne
i (r)µi (r ∈ Ωe) . (3.23)

The discretized form of the functional (3.20) can be now written as:

J=
nn

∑
i=1

nn

∑
j=1

µiBi jµ j −2
nn

∑
i=1

µiCi, (3.24)

where:

Bi j =
∫

Ωi

∫

Ω j

G(r,ra)
[

k2Ni (r)N j (ra)−

−(∇Ni (r)×n) ·
(

∇N j (ra)×n
)]

dΩi (r)dΩ j (ra)

(3.25)

and

Ci =−iωρaV i
n

∫

Ωi

Ni (r)dΩi (r) , (3.26)

where V i
n denotes the normal velocity at point i. The global shape functions Ni (r)

are defined in the whole boundary surface Ω. Inside every element to which node i

belongs functions Ni are identical to the corresponding local shape functions Ne
i and
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are zero in all other domains. Thus, the integration surfaces Ωi and Ω j include all of

the elements that contain interpolation nodes i and j respectively.

To find the double layer potential values in the specified nodes using the varia-

tional scheme the following equation is solved:

∂J

∂ µ
= 0, (3.27)

which yields:

B µ = C, (3.28)

where B is the (nn ×nn) size matrix composed of elements Bi j described by relation

(3.25), C is the (nn ×1) vector composed of elements Ci described by relation (3.26)

and µ is the (nn ×1) vector of unknown nodal values of the double layer potential.

Now, the acoustic pressure in any point of the ambient space is given with the

following relation:

p(r) = DT µ, (3.29)

where the elements of vector D are given with the following formula [68]:

Di =
∫

Ω

Ni (ra)
∂G(r,ra)

∂n(ra)
dΩ(ra) . (3.30)

Assuming that the observation point indicated by the vector r has coordinates (x,y,z)

and the source point on the plate indicated by the vector ra has coordinates (xa,ya,0)

the normal derivative of Green’s function is equal:

∂G(r,ra)

∂n(ra)
=

ze−ik
√

(x−xa)
2+(y−ya)

2+z2

(

−1− ik

√

(x− xa)
2 +(y− ya)

2 + z2

)

(

√

(x− xa)
2 +(y− ya)

2 + z2

)3
.

(3.31)

After solving Equation (3.28) with the coefficients (3.25) and (3.26) for the un-

known nodal values µi of the double layer potential in the whole considered plate

domain Ω, Equation (3.29) is solved only for those points of the ambient space in

which the values of the acoustic pressure are sought.

3.4.2 Implementation – the algorithm

An original, dedicated algorithm for computation of the free-field acoustic radiation

characteristics of vibrating rectangular thin plate structures has been developed and
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tailored to exploit the simple geometry of the considered problem (see Fig. 3.6). The

algorithm is based on the IVBEM method and allows to significantly reduce computa-

tional time and cost, as compared to a straightforward implementation of the relevant

formulas. The details of the proposed approach are described further.

The domain Ω is divided into ne identical, first-order rectangular boundary ele-

ments. The elements are arranged in nrow rows and ncol columns. The resolution of

the division can be adapted to the considered form of vibrations with an adequate

reserve as the computation time and cost will be significantly reduced by taking the

advantage of the occurring symmetries. Inside every single element a local coordinate

system (ξ ,η) , ξ ∈ 〈−1;1〉 , η ∈ 〈−1;1〉 is defined, with axes parallel to the X and Y

axes of the global coordinate system respectively.

The application of the linear shape functions definitely ensures the convergence

of solution, as they satisfy the completeness and compatibility conditions for the con-

sidered problem [68]. The chosen functions defined for any boundary element e are

as follows:

Ne
1 (ξ ,η) =

1

4
(1−ξ )(1−η) ,

Ne
2 (ξ ,η) =

1

4
(1+ξ )(1−η) ,

Ne
3 (ξ ,η) =

1

4
(1+ξ )(1+η) ,

Ne
4 (ξ ,η) =

1

4
(1−ξ )(1+η) .

(3.32)

Basing on the chosen element shape functions and taking into account the fact that

due to the considered geometry and mesh properties a single interpolation node can

belong to one, two or four neighbouring boundary elements, the coefficients Bi j, Ci,

and Di are computed using equations (3.25), (3.26) and (3.31). The surface integrals

are determined numerically using the four-point Gauss integration scheme, except for

the cases in which the integration surfaces overlap over the same boundary element.

In such a situation the results obtained with the standard numerical method would

be burdened with a significant error due to singularities in the integrand. To avoid

this obstacle the special algorithm for dealing with such double surface integrals with
1
R

singularity proposed by Wang and Atalla [69, 77] has been implemented. The

algorithm is briefly described below.

Taking into account the form of the Green’s function for the considered problem,

given with Equation (3.18) and transforming Equation (3.25) into the local coordinate

system, the double surface integral over the same boundary element may be expressed
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as follows:

∫

Ωe
i

∫

Ωe
j

G(r,ra)
[

k2Ne
i (r)Ne

j (ra)−

−(∇Ne
i (r)×n) ·

(

∇Ne
j (ra)×n

)]

dΩe
i (r)dΩe

j (ra) =

=

1
∫

−1

1
∫

−1

1
∫

−1

1
∫

−1

e−ikr−ra

4π |r− ra|
[

k2Ne
i (r)Ne

j (ra)−

−(∇Ne
i (r)×n) ·

(

∇Ne
j (ra)×n

)]

JiJ jdξidηidξ jdη j,

(3.33)

where Ji and J j are the Jacobians of the transformation of the local coordinate system

to the global coordinate system which satisfy the following relation:

dΩe
i = Jidξidηi, dΩe

j = J jdξ jdη j. (3.34)

Taking into account the considered geometry:

Ji = J j =
ae be

4
, (3.35)

where ae and be are the length of the edges of the rectangular boundary element e

parallel to the X and Y axis of the global coordinate system respectively. Equation

(3.33) can be now rewritten in the following form:

1
∫

−1

1
∫

−1

1
∫

−1

1
∫

−1

e−ik(r−ra)

4π |r− ra|
[

k2Ne
i (r)Ne

j (ra)−

−(∇Ne
i (r)×n) ·

(

∇Ne
j (ra)×n

)]

JiJ jdξidηidξ jdη j =

=

1
∫

−1

1
∫

−1

1
∫

−1

1
∫

−1

f
(

ξi,ηi,ξ j,η j

)

re
dξidηidξ jdη j,

(3.36)

where

f
(

ξi,ηi,ξ j,η j

)

=
e−ikR

4π

[

k2Ne
i (r)Ne

j (ra)−

−(∇Ne
i (r)×n) ·

(

∇Ne
j (ra)×n

)]

JiJ j
re

R
,

(3.37)

R = |R|= |r− ra|=
√

(

xi − x j

)2
+
(

yi − y j

)2
, (3.38)

and

re =

√

(

ξi −ξ j

)2
+
(

ηi −η j

)2
. (3.39)
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The integration variables are converted as follows:

xi = xp +
ae (1+ξi)

2
, (3.40)

x j = xp +
ae

(

1+ξ j

)

2
, (3.41)

yi = yp +
be (1+ηi)

2
, (3.42)

y j = yp +
be

(

1+η j

)

2
, (3.43)

where (xp,yp) are coordinates of the center point of element e. Thus:

R
(

ξi,ηi,ξ j,η j

)

=

√

[

ae

2

(

ξi −ξ j

)

]2

+

[

be

2

(

ηi −η j

)

]2

. (3.44)

The integral (3.36) is computed using four-point numerical scheme described in [77]:

1
∫

−1

1
∫

−1

1
∫

−1

1
∫

−1

f
(

ξi,ηi,ξ j,η j

)

re
dξidηidξ jdη j =

Mm

∑
m=1

Mn

∑
n=1

Mo

∑
o=1

Mp

∑
p=1

f (ξm,ηn,ξo,ηp)Wmnop,

(3.45)

where:

Mm = Mn = Mo = Mp = 4 (3.46)

denote the Wang’s integration order. The values of weight coefficients Wmnop and the

coordinates of the integration points ξm,ηn,ξo,ηp are given in [77].

The proposed algorithm for determination of the free-field acoustic radiation char-

acteristics of the vibrating plate structure includes the following steps:

1. Generation of a mesh consisting of identical, rectangular elements covering the

whole surface of the considered plate with a given resolution,

2. Interpolation of the values of the normal velocities in the nodes basing on the

scaled results of the FEM analysis of the eigenvalue problem for the considered

plate.

3. Computation of the elements of matrix B and vectors C and D using formulas

(3.25), (3.26), (3.30), and (3.31).
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4. Solution of Equation (3.28) for the unknown double layer potential values in

the interpolation nodes.

5. Solution of Equation (3.29) for the unknown values of the acoustic pressure in

selected points of the ambient space.

6. Postprocessing and visualization of the results.

Notice that step 3 is crucial from the point of view of the computational time

and cost. It involves each with each element double surface integrals for every cor-

responding interpolation node to compute the coefficients Bi j, and for that reason it

is the bottleneck of the whole process, as the number of the required operations in-

creases dramatically with increasing resolution of discretization. Moreover, due to the

fact that the coefficients Bi j are frequency-dependent, this step of the algorithm has to

be repeated for every single considered frequency of vibrations. Thus, it is highly de-

sirable to reduce the duration of this step as much as possible. The following features

concerning this problem should be taken into account:

• The Green’s function for the considered problem (3.18) is symmetrical with

respect to its arguments r and ra.

• The unit vector n is constant on the whole surface of the boundary plate.

• The Jacobians (3.35) are equal for all elements.

• The values of the double surface integral over a single boundary element (3.36)

concerning the same pairs of the shape functions are equal for all elements of

the mesh.

Basing on the observations mentioned above two important conclusions regarding the

solved equations may be derived. The first, quite obvious, an attribute of the matrix

B that should be noticed is that it is symmetrical. This property actually results from

the variational formulation used for the problem and is common for all IVBEM based

models. The symmetry of the matrix allows to reduce the number of the computed

elements, however, the overall computational cost is still high as the number of re-

quired operations increases rapidly with increasing resolution (ne) of discretization.

A more significant reduction of the computational time and cost may be obtained by

taking advantage of the simple geometry of the plate domain and the properties of the

regular mesh of elements. The second important conclusion is that the value of the

double surface integral over two surfaces of the boundary elements in Equation (3.25)

in the considered case depends only on the absolute distance between the elements.
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Basing on the above observations and conclusions the following algorithm for

computation of the elements of matrix B given with equation (3.25) is proposed:

1. A single mesh element s, 1 ≤ s ≤ ne, in the corner of the rectangular domain

is chosen. The values of the following expression are computed for all mesh

elements e, e ∈ {1,2, . . . ,ne} and for all possible pairs of the element shape

functions
(

Ns
i ,N

e
j

)

, i ∈ {1, . . . ,4} , j ∈ {1, . . . ,4}:

∫

Ωs

∫

Ωe

G(r,ra)
[

k2Ns
i (r)Ne

j (ra)−

−(∇Ns
i (r)×n) ·

(

∇Ne
j (ra)×n

)]

dΩs (r)dΩe (ra) .

(3.47)

The results are stored in memory. In the case when s = e the described above

four-point special integration scheme (3.33) is used to deal with singularities.

2. For every pair of the mesh interpolation nodes with indices (i, j) , i∈{1, . . . ,nn} ,
j ∈ {1, . . . , i} the numbers of the boundary elements to which the nodes belong,

distance between the elements, and the corresponding numbers of the element

shape functions are determined. The adequate values of the expression (3.47)

computed in the previous step of the algorithm are loaded from the memory

and added to the values of the corresponding elements Bi j.

3. Using the symmetry property of the matrix B the values from the upper diagonal

part are copied to the corresponding elements in the lower diagonal part.

The first step of the algorithm requires n2
ennn times computation of the double

surface integral given by the expression (3.47). The two following steps are compu-

tationally cheap and do not affect significantly the total duration of the process. If

only the symmetry property of the matrix B was used the complexity of the algo-

rithm would be O
(

n2
enn2

n

)

. Taking into account the fact that in practical applications

nen ≪ nn and the total number of interpolation nodes is usually of the order 102 or

greater the savings of computational time and cost associated with the use of the pre-

sented algorithm are significant.

The developed algorithm has been implemented using the Matlab environment

and tested on a standard PC with a 4-core processor. The total computational time of

determining the value of acoustic pressure in a single point of space was less than one

minute for a mesh consisting of one thousand elements.
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3.5 Experimental investigations, results, and discus-

sion

The experimental investigations regarding the free-field acoustic radiation character-

istics have been carried out in an anechoic chamber using a 20 cm wide, 30 cm high,

and 1 mm thick rectangular plate made of aluminum. The plate was clamped in the

central part of one of its shorter edges while all other edges were free, as presented in

Figure 3.7.

Figure 3.7 Aluminium plate structure used in the experimental investigations in an

anechoic chamber.

The plate was excited to vibrate by a pair of piezoelectric transducers, mounted

symmetrically on both sides of the structure and driven with reversely polarized har-

monic voltage signal from an amplifier connected to a generator. Low-order vibra-

tional modes with corresponding eigenfrequencies up to 400 Hz were examined. The

plate revealed sharp resonant characteristics and acoustic radiation for off-resonant

frequencies turned out to be very low.

The amplitude of the acoustic pressure in selected points of the ambient space was

measured using a half-inch condenser microphone by Brüel&Kjær (type 4193 with

preamplifiers type 2664) connected to the Nexus 2690 conditioning amplifier, from

the same manufacturer. The output of the amplifier was connected to an oscilloscope

(Tektronix TDS 2004C).

The amplitude of the acoustic pressure was measured along the axis perpendic-
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ular to the surface of the plate and passing through its center and in several planes

parallel to the plate’s surface for different excitation frequencies equal to several se-

lected eigenfrequencies of vibrations. The results of the measurements are presented

in Figures 3.8–3.14. Figures 3.8–3.11 present the computed and measured sound

pressure level values in the z-axis as functions of the distance from the center point

of the plate. The measurements were taken at distances varying from 1 cm to 1 m.

However, in the case of the fifth structural mode (Figure 3.8) the maximum range

was shortened to 20 cm due to the low level of the observed amplitude of acoustic

pressure. Figures 3.12–3.14 present the computed and measured sound pressure level

values in the plane z=2 cm. The color graphs illustrate the results of the numeri-

cal simulations, while the blue circles show values measured experimentally in the

corresponding points of space.
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Figure 3.8 Sound pressure level as a function of the distance in the z-axis

from the center of the investigated plate structure vibrating in the 5th mode:

(a) numerical simulation, (b) measurements.

One should notice that to compute the correct, absolute values of the acoustic pres-

sure the normal velocity values introduced as the boundary conditions in the IVBEM

model (see Equation (3.9)) should correspond to the true normal velocity amplitudes

of the vibrations excited during the experiments. However, by solving the eigenprob-

lem for an undamped system the velocity field is determined with an accuracy of

a scalar scaling factor. For that reason the results from the Finite Element Method

model of plate vibrations have been scaled to the maximum amplitudes of veloci-
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Figure 3.9 Sound pressure level as a function of the distance in the z-axis

from the center of the investigated plate structure vibrating in the 6th mode:

(a) numerical simulation, (b) measurements.
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Figure 3.10 Sound pressure level as a function of the distance in the z-axis

from the center of the investigated plate structure vibrating in the 9th mode:

(a) numerical simulation, (b) measurements.

ties measured using the laser vibrometer for each vibrational mode, with specified

excitation conditions.
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Figure 3.11 Sound pressure level as a function of the distance in the z-axis

from the center of the investigated plate structure vibrating in the 13th mode:

(a) numerical simulation, (b) measurements.

0

0.1

0.2 0
0.1

0.2

0

50

100

Y [m]X [m]

S
P

L
 [

d
B

]

Figure 3.12 The distribution of sound pressure levels [dB] in the plane z = 2 cm for

vibrational mode no. 5 with frequency f = 120 Hz. The color graph illustrates the

results of the numerical simulations, while the blue circles show the values measured

experimentally in corresponding points of space.
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Figure 3.13 The distribution of sound pressure levels [dB] in the plane z = 2 cm for

vibrational mode no. 9 with frequency f = 269 Hz. The color graph illustrates the

results of the numerical simulations, while the blue circles show the values measured

experimentally in corresponding points of space.

The comparison of the measured and computed results reveals a fair agreement

between the experiments and numerical predictions. The computed distribution of

the sound pressure level in the ambient space and the values of the amplitude of

the acoustic pressure have been largely proved correct. However, some significant

discrepancies between the simulations and measurements may be also observed (es-

pecially see Figures 3.9 and 3.10). The errors result from imperfections in the both

laboratory stand (worse low-frequency performance of the anechoic chamber, prop-

agation of vibrations through fastening elements, sound reflections from the mea-

surement equipment) and the developed mechanical and acoustic numerical models

(assumption of ideal boundary conditions and material properties, disregarding the

influence of the piezoelectric transducers and electrical connections attached to the

surface of the plate). The accuracy of the simulations can be probably further in-

creased by improving the described issues.

The agreement between the values obtained numerically and experimentally in

general improves with the distance from the plate. This effect is caused by the fact

that the complex character of the sound field distribution in the near-field zone pro-

motes the intensification of errors caused by the mentioned imperfections. The results

of the measurements carried out in a XY-plane, 2 cm from the surface of the plate
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Figure 3.14 The distribution of sound pressure levels [dB] in the plane z = 2 cm for

vibrational mode no. 11 with frequency f = 320 Hz. The color graph illustrates the

results of the numerical simulations, while the blue circles show the values measured

experimentally in corresponding points of space.

(Figures 3.12–3.14) generally agree well with the computations. Significant discrep-

ancies reaching up to few dB are observed in several isolated points (especially close

to the edges), but the character of the distribution of the sound pressure level in the

immediate vicinity of the structure is in all cases reflected correctly. The numerical

predictions become most reliable at distances greater than about 10–20 cm from the

surface of the considered structure. Beyond this range about 6 dB drop in the sound

pressure level with doubling the distance is observed (see Figures 3.9–3.14). This

corresponds to the free-field spherical wave propagation.

3.6 Conclusions

Various issues regarding the structure-borne sound generation have been discussed in

the present chapter. The mechanism underlying the acoustic radiation from vibrating

plates is the coupling between the structure and the surrounding acoustic medium.

Detailed formal description and modeling of the occurring phenomena is complex,

due to the bidirectional interaction between solid and acoustic domains. However, as

it has been shown in Section 3.2 in the case of relatively small structures (as compared
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to the radiated acoustic wavelength) submerged in light fluids (such as, for example,

air) the influence of the inertial loading introduced by the medium is small and can

be neglected. This conclusion allows for a significant simplification of the consid-

ered problem, by carrying out an independent analysis for the vibration and acoustic

radiation characteristics.

Two important cases of structure-born sound generation have been discussed and

analyzed, namely, free-field acoustic radiation of baffled and unbaffled vibrating plate

structures. As it has been shown in Section 3.3, in the first case the distribution of

acoustic pressure in the far-field can be modeled using relatively simple analytical

formulas, given with Equations (3.5) – (3.6). In contrast, in the latter case no analyt-

ical solutions are known and the problem has to be solved numerically. The relevant

procedure has been described in Section 3.4.1. Among a variety of numerical meth-

ods capable of handling the considered problem the Indirect Variational Boundary

Element Method has been chosen as the most appropriate one. A novel, dedicated

algorithm of implementation of this method has been proposed in section 3.4.2. The

algorithm allows for a significant reduction of computational time and cost, as com-

pared to straightforward implementation of the relevant formulas by taking the ad-

vantage of a simple geometry of the considered problem and the symmetries between

the elements of matrices.

The results of the numerical simulations on the free-field acoustic radiation char-

acteristics of a thin, rectangle-shaped vibrating plate have been validated experimen-

tally. The empirical investigations were carried out in an anechoic chamber and re-

garded different forms of vibrations excited at the corresponding eigenfrequencies

of the examined structure. The amplitude of the acoustic pressure was measured at

different points of the ambient space using microphone and the proper conditioning

and amplifying electronics. The results of the measurements in general agreed with

the numerical predictions, however, some significant discrepancies have also been

observed at points close to the surface of the plate. The reason for that is the fact that

the complex character of the acoustic pressure distribution in the near-field region

promotes the influence of the imperfections in both the laboratory stand and numeri-

cal models. Nevertheless, taking into account the overall fair agreement between the

results and a high performance of the developed algorithm, it may be regarded as a

useful and effective tool in analysis of the free-field acoustic radiation characteristics

of vibrating plate structures with arbitrary boundary conditions.

The results and conclusions presented in this chapter are crucial from the point

of view of the whole study, as they allow to associate the vibrational characteristics

of the structure with the parameters of the generated acoustic pressure field in the
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ambient space.



Chapter 4

Piezoelectric sensors and actuators

4.1 State of the art, assumptions, and general descrip-

tion

Sensors and actuators are the necessary elements of all closed-loop control systems.

In the applications considered in the present study, concerning active vibroacoustic

control systems, sensors allow to determine a current state of vibrating structures (or

some parameters of the generated acoustic field), whereas actuators are used to ap-

ply the control loads. Among a variety of available techniques of implementation,

one of the most commonly used are piezoelectric transducers attached to the surface

of structures under control. Such a solution preserves compactness of the controlled

system while providing good electro-mechanical properties. The electric signals from

sensors are processed by a control unit and, based on the results, the optimal param-

eters of the excitation signals driving actuators are determined. However, assuming

that the parameters of the external excitation – which is the primary source of the vi-

brations – are unknown, the information obtained from the sensors is never complete,

that is: as the number of sensors and their areas are limited to some reasonable (finite)

values, the gathered data would not allow to possess a complete knowledge about the

parameters of the vibrations of the considered structure in any possible case. On the

other hand, for the very similar reasons, the control system is not able to excite any

arbitrarily chosen form of vibrations using the finite number of actuators.

The present chapter focuses on issues regarding the utilization of small rectangle-

shaped piezoelectric transducers as both sensors and actuators in active vibration and

vibroacoustic control systems of beam, plate and panelled structures. A new form

of a theoretical description, suitable for further derivation of the control equations,

is proposed. The modal sensitivity functions of sensors and the modal selectivity
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functions of actuators are introduced to describe their ability for sensing and exciting

specific structural modes of the structures. The presented approach – in contrast to

most studies described in literature – is elaborated and tested for plates with arbitrary

(non-homogeneous) boundary conditions; moreover, due to a high level of generality

of the proposed form of description it should work for structures of more complex ge-

ometries than rectangular plates. The introduced functions are used to model and an-

alyze performance and stability of the active vibroacoustic control system presented

in Chapter 5. A relevant theoretical background for sensors and actuators is presented

in Sections 4.2 and 4.3, respectively.

Many of the studies devoted to the field of active vibration and vibroacoustic

control focus on specific types of structures, which may be accurately described using

analytic formulas – like, for example, beams or simply supported plates. Solutions

obtained for such cases allowed to design piezoelectric sensors and actuators sensitive

only to specific sets of structural modes [11] or even to a single structural mode [78,

79] by changing the shapes, sizes and/or locations of the transducers. However, the

results of these investigations cannot be easily generalized into a more general case

of plates with arbitrary boundary conditions of support.

Taking into account the parameters of a closed-loop feedback control system it is

desirable to use collocated piezoelectric sensor-actuator pairs. Two different solutions

which ensure this feature can be found in literature. The first one – which is simpler

and more practical, yet not always feasible due to the possible lack of access to both

sides of a structure – is to attach the transducers symmetrically to the both surfaces

of a thin beam or plate [11, 80]. The second solution involves the use of a single

piezoelectric element as sensor and actuator simultaneously [46, 81–84]. The advan-

tages of such a solution with respect to the functionality of the control system are

significant, but the necessary complications of the corresponding electronic circuits

together with a requirement to meet very stringent parameters make it impractical.

The shapes of the piezoelectric transducers and their locations on the surface of

the structure determine the sets of the vibrational mode components available by

changing the gains of the feedback loops in a specified, limited range of values. Op-

timization algorithms for the placement of sensors and actuators may be based on

various cost functions depending on the type of structure, its purpose, and also some

restrictions related with the usage of various types of transducers. The state of the

art in this field is well documented in corresponding review papers (see, for exam-

ple, [85–87]). Again, the majority of relevant scientific investigations is focused on

thin beams [88, 89] and plates with specific boundary conditions (simply supported

[90, 91], clamped [92, 93], cantilevered [92, 94]). Other approaches also usually im-



4.2 Piezoelectric sensors 58

pose some restrictions on the structure mounting parameters, like, for example, plates

with arbitrary but homogeneous boundary conditions along the edges [95]. The op-

timization problem is usually solved numerically with different iterative algorithms.

Due to the fact that the piezo-transducers are permanently bound to the surfaces of the

controlled structures and their locations have to be chosen at the stage of the control

system design, it is necessary to analyze in advance their parameters and probable

control strategies.

Results of analytical solutions and numerical simulations concerning modal pa-

rameters of piezoelectric sensors and actuators are compared to the results of exper-

imental investigations and presented in Section 4.6. It is assumed that the structures

and the piezoelectric transducers attached to their surfaces are rectangle in shape and

that their edges are parallel to the axes of the global coordinate system. The typical ge-

ometry of the problem is depicted in Figure 2.1. Vibrational motion of the structures

is assumed to occur only in the z direction, thus, only one, corresponding component

of the displacement field is considered, namely, the deflection w = w(x,y, t). In the

case of the so-called beam structures it is assumed that the length a of a structure

is much greater than its width b and its thickness hs. The flexural waves propagate

along the x direction only and the deflection w is constant along the y direction, that is:
∂w
∂y

= 0. The vibrations of the beams are modeled using the classical Euler-Bernoulli

beam theory. Similarly, the considered plate and panelled structures are thin in the

sense of the classical Kirchhoff’s plate theory. They are considered to be made of

homogeneous, isotropic material (thus, in the case of composites, such an approach

can be applied provided that the relevant effective material constants are known). The

equations of motions for the considered structure models are presented in Chapter 2.

The results of theoretical predictions are compared with the results of experiments

carried out on various beam, plate and panelled structures made up of aluminium or

composite materials including the actual materials used in aviation. The drawn con-

clusions are of great importance in developing active vibroacoustic control systems.

4.2 Piezoelectric sensors

The behavior of piezoelectric transducers is governed by the constitutive equations

which include coupling between mechanical and electrical phenomena. Assuming

that the summation convention is used (i.e., the summation is carried out over the

repeating indices i, j,k, l = 1,2,3) these equations can be presented as follows, for
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example, in the so-called stress-charge form:

Ti j = ci jklSkl − eki jEk, (4.1)

Dk = eki jSi j + εkiEi, (4.2)

where Ti j

[

N
m2

]

is the second-order stress tensor, Si j

[

m
m

]

is the second-order strain

tensor, ci jkl

[

N
m2

]

is the fourth-order elasticity tensor, eki j

[

C
m2

]

is the third-order

tensor of piezoelectric coefficients (for the so-called stress-charge form), Dk

[

C
m2

]

is

the electric displacement vector, Ek

[

V
m

]

is the electric field vector, and εki

[

F
m

]

is the

second-order tensor of dielectric constants.

It is assumed that a sensor electrode covers the whole relevant surface S of the

transducer and that the polarization of the material is constant. The electric charge

which appears on the electrodes of a piezoelectric sensor fixed to the surface of a

vibrating thin plate or beam structure is computed as follows:

Q =−
∫∫

S
D3dS. (4.3)

The piezoelectric transducers are made up of transversely-isotropic piezo-ceramics,

which involves that: e311 = e322 which now will be denoted by e3, whereas e312 =

e321 = 0. In the absence of external electric field, and having also noticed that S33 ≈ 0,

the relevant component of the dielectric displacement vector (4.2) can be expressed

as follows:

D3 = e3i jSi j = e311S11 + e322S22 + e333S33 ≃ e3(S11 +S22). (4.4)

It is assumed that (because of a very good bonding) the in-plane deformation of piezo-

electric element is consistent with the deformation of the underlying structure, thus,

the relevant components depend on the corresponding curvatures and the distance

between the mid-planes of the piezo-element and the structure, namely:

S11 =
hp +hs

2

∂ 2w

∂x2
, S22 =

hp +hs

2

∂ 2w

∂y2
. (4.5)

Here, hp and hs are the thickness of the piezo-element and the structure, respectively.

Obviously, in the case of beam structures S22 = 0.

Substituting (4.5) into (4.4) and (4.3), the electric charge induced on the shunted

piezoelectric sensor attached to the surface of the plate structure can be expressed as
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follows:

Q =
−(hp +hs)

2
e3

x2
∫

x1

y2
∫

y1

(

∂ 2w

∂x2
+

∂ 2w

∂y2

)

dxdy, (4.6)

where x1,y1,x2,y2 are given in Figure 2.1.

We would like to obtain the sensitivity function of piezoelectric sensor to spe-

cific structural modes. To this end, we first compute the amplitude of the electric

charge induced on a transducer by substituting the time-harmonic form (2.5) into

Equation (4.6) to obtain:

Q = eiωtQ̃ =−eiωt (hp +hs)

2
e3

N

∑
n=1

W n





x2
∫

x1

y2
∫

y1

(

∂ 2Φn

∂x2
+

∂ 2Φn

∂y2

)

dxdy



 . (4.7)

Here, Q̃ denotes the amplitude of the harmonically varied sensor charge.

It is assumed that the piezoelectric sensors are connected to the charge-to-voltage

transducers circuits. Hence, the resulting voltage signal which is fed to the active

control system is proportional to the charge given by equation (4.7), and so the desired

sensitivity function S̃m

[

V
m

]

of a sensor to the structural mode m can be defined as

follows:

S̃m = R̃
Q̃m

W m
=−R̃

(hp +hs)

2
e3





x2
∫

x1

y2
∫

y1

(

∂ 2Φm

∂x2
+

∂ 2Φm

∂y2

)

dxdy



 , (4.8)

where Q̃m is the electric charge amplitude induced by the mode m, and R̃
[

V
C

]

is the

gain of the signal conditioning circuit attached to the piezoelectric transducer.

4.3 Piezoelectric actuators

The external loading introduced by the rectangle-shaped piezoelectric actuator sit-

uated in such a way that its edges are parallel with the relevant axes of the global

coordinate system (see Figure 2.1) can be approximated by linear (i.e., per length)

moments acting along these edges. The excitation function Fa (x,y) describing the

spatial distribution of the introduced pressure acting on the structure can be then ex-

pressed as follows [11]:

Fa (x,y) = EIK f sa

[

δ ′(x− x1)−δ ′(x− x2)
]

[H(y− y1)−H(y− y2)]

+EIK f sa

[

δ ′(y− y1)−δ ′(y− y2)
]

[H(x− x1)−H(x− x2)] ,
(4.9)
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where δ ′(·) is the derivative of the Dirac delta function, H(·) is the Heaviside step

function, E is the Young’s modulus of the structure, K f is the material-geometric

constant dependent on material properties of the piezo-ceramics and type of actuator

(symmetric or antisymmetric) [11], and sa is the strain of the actuator (the same in

the x- and y-direction, because of the transversal-isotropy in the xy-plane) caused by

the applied driving voltage V which generates within the piezo-element a uniform

electric field in the z-direction, E3 =V/hp, therefore:

sa =
d3V

hp
, (4.10)

where d3 is the relevant piezoelectric material constant (d3 ≡ d311 = d322 from the

strain-charge form of piezoelectric constitutive relation). The effects of added mass

and stiffness introduced by the actuator as well as a longitudinal strain of the structure

(resulting from the transverse asymmetry of the actuator) are neglected in the present

considerations.

While considering the response of a structure to an external harmonic excitation,

it is very convenient to perform the decomposition of the loading force into the eigen-

modes of the structure. Due to the orthogonality property of the mode shape functions

Φn, the amplitude of the mode number m excited by the external loading Fa can be

expressed as (see Equation (2.21)):

W m =

∫∫

S Fa (x,y)ΦmdS

ρhs (ω2
m −ω2)

∫∫

S Φ2
mdS

, (4.11)

where ρ is the density of the structure and ωm is the angular eigenfrequency of the

considered mode m. To compute the modal decomposition coefficients Am of the ex-

citation introduced by the actuator driven with the harmonic voltage V , relations (4.9)

and (4.10) are used in Equation (4.11), which yields the following result:

Am (V,ω) =
EIK f d3V

hpρshs (ω2
m −ω2)

∫∫

S Φ2
mdS





x2
∫

x1

y2
∫

y1

(

∂ 2Φm

∂x2
+

∂ 2Φm

∂y2

)

dxdy



 . (4.12)

We now introduce the actuator selectivity function to the structural mode m, defined

as:

Ãm = Ãm (ω) =
Am (V,ω)

V
. (4.13)

The selectivity of a piezo-actuator to the structural mode m describes the amplitude

of mode m excited by the actuator driven with a harmonic signal of unit voltage am-
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plitude with the angular frequency ω (in absence of other excitation forces). It should

be pointed out that – in contrast to the modal sensitivity function of a piezo-sensor,

defined previously – the modal selectivity is a function of the frequency of driving

signal and strongly depends on the difference between this frequency and the eigen-

frequency of mode m. The singularity in Equation (4.12) occurring in the case when

ωm = ω results obviously from the assumptions of negligible damping and linearity

of the system, which are not valid for large amplitude vibrations. When the Equa-

tions (4.12) and (4.13) are compared with the relation defining the sensor sensitivity

function (4.8) an important remark should be made, namely: the surface integrals

are the same and depend only on the transducer’s coordinates (x1,y1) and (x2,y2).

This means that the efficiency of a piezoelectric transducer with respect to a partic-

ular structural vibration mode is similar both for the mode sensing and actuating.

These considerations of course lead in the formal way to the result consistent with the

reciprocal principle regarding the direct and inverse piezoelectric effects.

4.4 Signal conditioning

Piezoelectric sensors used for vibration monitoring convert the displacement of their

surfaces into electric charge, accordingly to the formulas (4.2)–(4.7) describing rel-

evant underlying phenomena. Therefore, they may be classified as self-generating

sensors and, as so, theoretically, applied in passive detection systems (i.e., not re-

quiring an external power supply to operate). However, due to a very low current

efficiency of sensor-based sources, such solutions are impractical and not suitable for

the considered applications. In order to achieve a strong and reliable output signal the

transducers should be connected to dedicated conditioning circuits with a very high

input impedance.

In the present study concerning low-frequency vibrations and relatively small am-

plitudes of displacement, the piezoelectric sensor is modeled as charge or voltage

source with parallel or series capacitor Cp representing the electric capacitance of

the transducer resulting from its dielectric properties - see Figure 4.1. Similar sim-

ple models are commonly used to describe the behavior of piezoelectric sensors in

practical applications – see, for example, [82, 96–99]. The parallel resistance repre-

senting the current leakage has been omitted, as it is assumed that the sensor is always

connected to a balanced input amplifier and no DC signals are considered.

Among a variety of types of electronic circuits capable of effective processing of

signals from piezoelectric sensors one of the most popular are simple devices based on



4.4 Signal conditioning 63

� �
��

�
�� ��

�� �� ��

Figure 4.1 Piezoelectric sensor: a) schematic symbol, b) charge model, c) voltage

model.

operational amplifiers, namely charge and voltage mode amplifiers whose exemplary

wiring diagrams are presented in Figure 4.2. The theory of operation of such devices

has been well described in literature – see, for example [96, 100]. The frequently

encountered name „charge amplifier” can be slightly misleading, because the circuit it

concerns is rather a charge-to-voltage converter and it does not amplify electric charge

in the literal sense. However, due to the fact that such nomenclature is commonly used

in scientific and technical literature, it is also adopted in the present study.
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Figure 4.2 Typical signal conditioning circuits for piezoelectric sensors: charge mode

amplifier (left) and voltage mode amplifier (right).

The operational amplifiers used in construction of the signal conditioning circuits

for piezoelectric sensors should have as high input impedance as possible in order

to minimize the current leakage. For that reason, the good choice is to use compo-

nents with FET transistor inputs whose parameters usually meet this criterion well.

The values of the elements connected to the operational amplifiers (resistances, ca-

pacities) determine the gain and cutoff frequencies of the whole device. The desired

characteristics should be specified at the design stage.
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Assuming that the operational amplifiers used to construct the circuits presented

in Figure 4.2 may be modeled as the ideal ones (with infinitely high input impedances,

zero output impedances and infinitely high open-loop gains), the gain of the charge

amplifier (defined as the ratio of output voltage amplitude to the amplitude of electric

charge induced on a piezoelectric sensor modeled as in Figure 4.1, picture b) is given

with the following formula:

GC =
1

CC1

[

V

C

]

. (4.14)

The lower and upper cutoff frequencies of the amplifier are computed with the fol-

lowing equations, respectively:

fC
L =

1

2πRC1CC1
[Hz], (4.15)

fC
H =

1

2πRC2 (CC1 +Cp)
[Hz], (4.16)

where Cp is the capacity of the piezoelectric sensor – see Figure 4.1.

Analogously, the gain of the voltage mode amplifier (defined as the ratio of output

voltage amplitude to the amplitude of electric charge induced on a piezoelectric sensor

modeled as in Figure 4.1, picture b) is given with the following formula [96]:

GV =
1

(CC1 +CCAB)

(

1+
RV 1

RV 2

) [

C

V

]

, (4.17)

where CCAB is the capacity of the wires connecting sensor with the amplifier. The

lower and upper cutoff frequencies of the amplifier are computed with the following

equations, respectively:

fV
L =

CC1 +CCAB

2πRC1CC1CCAB

[Hz], (4.18)

fV
H =

1

2πRV 3 (CV 1)
[Hz]. (4.19)

The gain of the charge amplifier depends only on the capacity CC1, while the gain

of voltage mode amplifier is also a function of the capacity of the connecting wires

CCAB, which also influences the lower cutoff frequency of the latter device. This

means that the mentioned parameters of the voltage amplifiers might drift in time due

to changes in configuration or replacements of the interface cables. For that reason
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and according to the fact that the stable gain in the low-frequency range is crucial for

the considered applications, the charge mode amplifier has been chosen as the type of

a signal conditioning circuit for piezoelectric sensors used in the present study.
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Figure 4.3 Electric scheme of designed and constructed charge amplifier with ad-

justable gain and cutoff frequency, based on AD745 low noise, FET input operational

amplifier.

For the sake of the conducted experimental research a dedicated signal condi-

tioning circuit has been developed and constructed. The relevant wiring diagram is

presented in Figure 4.3. The circuit is based on AD745 FET input operational am-

plifier from Analog Devices, which provides a high input impedance and low biasing

current together with a low noise performance. Due to the fact that the considered

measurements of plate vibrations carried out using piezoelectric sensors require a
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wide gain control range as the amplitudes of vibrations vary significantly for resonant

and off-resonant frequencies, the values of the feedback loop capacitors and resistors

can be modified using two multikey switches. At the same time, in the same way, the

lower cutoff frequency is set. The series resistor RC2 from Figure 4.2, whose function

is to protect the operational amplifier against the electrostatic discharges, has been

omitted in the present design.
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Figure 4.4 Developed and constructed charge amplifier with adjustable gain and cut-

off frequency: printed circuit board assembly scheme (left) and a picture of an exem-

plary built device (right)

One of the constructed prototypes of the signal conditioning circuits is presented

in Figure 4.4. The printed circuit board was etched from one-sided copper laminate.

The maximum allowable supply voltage range, which also limits the maximum avail-

able output signal level, is ±18V. A large number of similar devices have been built

and tested with various piezoelectric transducers, proving good performance and low

level of introduced noise.

The behavior of piezoelectric transducers used as actuators for exciting vibra-

tions of thin plate structures has been described in Section 4.3. As it results from

Equation (4.12), they are voltage driven, i.e., the amplitudes of the induced struc-

tural modes are proportional to the amplitude of the applied harmonic voltage signal.

From the point of view of the output amplifier, the piezoelectric actuators are a high-

impedance capacitive load. For that reason they should not be driven with standard

audio amplifiers, which are intended for an entirely different type of low-impedance

inductive loads (namely, loudspeakers). Dedicated electronic circuits, suitable for the

considered applications, have been developed and constructed. The corresponding

specifications and wiring diagrams are presented in Chapter 5, Section 5.5 together
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with the description of the complete active control system.

4.5 Some technical aspects on the preparation of the

composite structures for active control systems

The piezoelectric transducers used in the active vibration or vibroacoustic control

systems usually take the form of very thin and small plates (patches) with electrodes

sputtered on their both faces. Due to the fact that one of those faces needs to be

attached to the surface of a controlled structure, the problem of ensuring electrical

connectivity arises. Most of the kinds of glues typically used in bonding the piezo-

elements are very good insulators, while the structures are typically made up of ex-

cellent conducting materials: metals (like aluminum) or carbon-fiber composites. A

few solutions to cope with this issue are described in literature. Some of them require

drilling a hole in the structure through which a wire is connected to the piezo-element.

However, such a violation of the controlled element is often not possible and creates

additional problems in the case of collocated sensor/actuator pairs. Another way to

ensure the access to the bottom electrode of a piezo-element is to use additional pads

between the transducer and the structure, but then the mass, thickness and mechanical

properties of the attached system change significantly. Yet another approach suggests

to use some kind of conductive glue providing both a very good bonding and elec-

trical contact; however, one must be very careful during manufacturing, since the

squeezed-out glue may cause a short-circuiting of the electrodes of transducer. To

avoid this situation, a combined method using two kinds of glue can be used, as it is

illustrated in Figure 4.5. This technique was successfully applied and tested during

the experiments carried out on various aluminum beams and plates.

4.6 Numerical and experimental investigations

Modal sensitivity/selectivity functions of small, rectangle-shaped piezoelectric trans-

ducers attached to the surfaces of beam, plate, and panelled structures are investi-

gated in this section. The solutions obtained using analytical formulas and numerical

simulations are compared to the results of experiments. The research described in

the present section of the study concerned several different aluminum and composite

structures, including structures made of actual materials used in aviation (carbon fiber

sandwich structures with nomex-honeycomb core). Such a variety of test objects al-

lows to draw some conclusions regarding the scope of applicability of the proposed
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Figure 4.5 Technique of attaching a piezoelectric element to a structure made of con-

ductive material, ensuring the electric contact between these elements and avoiding

short-circuiting the electrodes.

approach and to bring the obtained results closer to the actual, real-life practical uses.

The numerical finite-element analyses were used to solve eigen-problems of the

investigated plate and panelled structures, however, it must be emphasized here that

in the proposed line of investigation only eigenmode shapes were of interest since this

part of the study subject is the modal sensitivity and selectivity. Thus, the mass and

stiffness properties of structures were not important when caring out these analyses,

and in case of composite structures very approximative values could be taken. Such

approach, however, requires that the investigated plate and beam composite structures

can be considered as macroscopically homogeneous and macroscopically isotropic

(in their planes), so that the mode shapes should be the same whatever the stiffness

and mass density are, and they depend only on the structure geometry and conditions

of support. This entails also the fact that the effect of small piezoelectric patches fixed

to their faces can be neglected. However, this latter assumption – important also for

aluminium structures and usually valid at lower frequencies – is rather standard and

should be also valid in the case of stiffer composites.

The assumption of in-plane isotropy may at first appear as disputable in case of

composites, however, one should notice that although the carbon-fibers for the com-

posite plate faces were woven in an orthogonal pattern (see Figure 4.7), exactly the

same fibers were used in both mutually perpendicular directions, and that results in

the so-called structural isotropy (in plane) of both faces. In other words, the carbon

fabric is a plain weave and thus isotropic in the plane of the weave. The honeycomb

core is also isotropic in the plane of the cell pattern under three loading mechanisms

as explained in [101], since it is formed from cells of regular hexagons.

Nevertheless, the final confirmation of the validity of both assumptions of macro-

scopic homogeneity and isotropy is confirmed by the results of the proposed approach
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which compares and utilises in conjunction numerical and experimental investiga-

tions.

4.6.1 Beam structures

Due to the undertaken assumptions the classical Euler-Bernoulli thin beam theory is

used to describe the vibrational motion of the considered beam structures. Under

such conditions the vibration mode shapes can be computed analytically, as the sum

of harmonic and hyperbolic functions, with coefficients depending on the boundary

conditions [52]. Based on such a formula, the modal sensitivity function was com-

puted for a piezoelectric sensor (of known dimensions) attached to the clamped beam

structure. Some results of these computations, obtained for a 3 cm long piezo-element

on a 58 cm long beam (with one end clamped and the other free) are shown in Fig-

ure 4.6. According to the considerations discussed in Sections 4.2 and 4.3, piezoelec-

tric sensors and actuators are bounded with a reciprocal relation, which implies that

the sensitivity and ability of exciting specific structural modes depend only on the

location of the transducer on the surface of structure.
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Figure 4.6 Normalized sensitivity functions for the rectangle-shaped piezoelectric

sensor attached to a cantilevered beam of length 58 cm as a function of the struc-

tural mode number and the distance of the sensor from the clamped end of the beam.

The presented results were used for positioning piezoelectric transducers on thin

beams made of aluminium and glass-fiber which were examined during further exper-

imental research. For homogeneous beams the modal shape functions do not depend

on the material; they are the same for every thin beam of the same length and bound-

ary conditions and the material properties affect only the eigenfrequencies. In the
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presented case, the piezo-element location that allows to sense or excite every mode

is close to the clamped end of the beam. The transducers may be positioned so that

they will not respond or induce any specific structural modes but they still will be

sensitive to most of the modes in the considered low-frequency range.

The experimental investigations were performed using 1 mm thick, 28 cm long,

and 2 cm wide aluminium beams and a single glass-fiber composite beam 58 cm long,

3 cm wide, and 2.3 mm thick. The piezo-elements were made of Pz29 piezoceramics

and were 2 cm wide, 3 cm long, and 0.3 mm thick. The values of important rele-

vant parameters of the utilized piezoceramic material are as follows: e3 = 21,2 C
m2 ,

d3 = 5,74 ·10−10 C
N

. The beam structures that were used in experimental investiga-

tions are shown in Figure 4.7.

The experimental examination of the vibrations of beam structures revealed an

excellent agreement with the theoretical predictions. The vibrations were excited by

a single piezoelectric actuator positioned close to the clamped end of beam, while

the other piezo-elements, fixed at different distances along the beam, were used as

sensors. The electrodes of the sensors were connected to a charge-to-voltage con-

verters. It is worth to notice that for aluminium beams – for which the material

constants are known – the predicted and measured first three eigenfrequencies of

the bending modes (i.e., all eigenfrequencies of the bending modes in the considered

low-frequency range below 400 Hz) at 11, 65 and 185 Hz agreed with an accuracy

better than 1 Hz. That observation justifies the assumption to neglect the stiffness and

mass influence of the attached piezoelectric elements to the vibration characteristics

of beam structures.

In the case of the beam made of glass-fiber composite, no material constants were

known. Two rectangle-shaped piezoelements were attached to the surface of the struc-

ture: the first one – fixed 4 cm from the clamped end – served as actuator simulating

the external source of vibrations. The second transducer was located 29 cm from the

clamped end and it was used as a sensor. Due to the numerical simulations, the sensor

should be insensitive to the structural modes No. 3 and 5. The resonant frequencies

were found experimentally and the mode shapes were identified using a laser vibrom-

eter. The results are presented in Table 4.1; the modes No. 3 and 5 were not sensed

by the sensor which agrees with the theoretical predictions.

If a thin beam (of length L and the rectangular cross-section of height hs) is elastic,

isotropic, and homogeneous – or can be approximately treated as such – its eigenfre-
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Figure 4.7 Three thin aluminium beams fixed to an experimental stand (left); a glass-

fiber composite beam and a sandwich panel made up from the carbon-fiber composite

liners with the Nomex-honeycomb core (right) used in the experimental investiga-

tions.

Frequency [Hz]
Number of nodes in the

mode shape function
Identified mode number

95.8 3 4

235.5 5 6

318.6 6 7

448.5 7 8

562.1 8 9

Table 4.1 Measured resonant frequencies and the corresponding parameters of struc-

tural mode shapes for the glass-fiber composite beam.

quencies can be calculated using the following formula [52]:

fn =
β 2

n hs

2πL22
√

3
vb, (4.20)

where vb =
√

Eb/ρb is the velocity of the plane wave in the (supposedly elastic and

isotropic) material of the beam (Eb and ρb are the Young’s modulus of the material

and its density, respectively) and βn is the coefficient dependent on the boundary con-

ditions and the mode number [52]. Equation (4.20) and the results of measurements

given in Table 4.1 were used to estimate the (“effective”, average) speed of sound

for the composite material from which the examined beam was made. The mean

value found using the measured eigenfrequencies listed in Table 4.1 was 2553 m/s.
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Then, this value was used in Equation (4.20) with the coefficient β 2
2 = 22,034 [52]

appropriate for the 2nd mode (not used in the previous calculations) to estimate the

eigenfrequency of this mode. The computed result of 17.7 Hz agrees well with the

resonant frequency of 18.2 Hz measured for this mode.

The presented results clearly conclude that in the case of thin beams made from

different materials the ability of sensing or exciting specific forms of vibrations with

small, rectangle shaped piezoelectric transducers can be accurately determined with

simple analytical formulas. The optimal locations of sensors and actuators should

be chosen in order to maximize (or minimize) the modal sensitivity and selectivity

values for modes most significant in the considered cases. However, as it can be

seen from Figure 4.6, such transducers will always be sensitive to most of the forms

of vibrations. This conclusion is especially important when considering off-resonant

vibrations with many modal components involved.

4.6.2 Plate and panelled structures

The modal sensitivity and selectivity functions (4.8) and (4.13) of small rectangle-

shaped piezoelectric transducers attached to the surfaces of plate or sandwich-panel

structures are investigated in this section. In general, for arbitrary (non-homogeneous)

boundary conditions of support, the rectangle plate mode-shape functions Φn cannot

be found analytically. Therefore, the finite element analysis was applied to determine

the eigenfrequencies and the corresponding eigenvectors of the investigated struc-

tures. Experimental investigations were carried out on the sandwich composite panel

made up of two carbon-fiber faces and a Nomex-honeycomb core (see Figure 4.7)

and a thin aluminium plate (see Figure 4.9). The aluminium plate was 300 mm long,

200 mm wide, and 1 mm thick, while the sandwich plate was 402 mm long, 272 mm

wide, and 5 mm thick. The structures were clamped by a part of their shorter edges

and all the other edges were free.

Eight 0.3 mm-thick rectangle-shaped piezoelectric transducers with dimensions

20 mm × 30 mm were attached to one face of the sandwich panel. Three of them

were fixed close to the clamped boundary and served as actuators which simulated

the external excitation sources. The other five acted as sensors. In the case of the

aluminium plate, five pairs of such piezotransducers were used. In each pair, the

two piezotransducers were attached symmetrically to both sides of the plate, with

polarization and wires connected in such a way so that an asymmetric bimporh ac-

tuator/sensor was formed. From five pairs one served as the source of the excitation

force while the others were used as sensors.
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Figure 4.8 Results of the numerical simulations: the shape of an exemplary vibra-

tional mode of the considered plate structure made of aluminium (left) and the corre-

sponding distribution of the induced electric charge induced on the theoretical point-

sensors made of the considered piezoceramics (right).

Figure 4.9 Thin aluminium plate with attached piezoelectric transducers in the labo-

ratory stands used in the experimental investigations.

The COMSOL Multiphysics software was used for the numerical simulations.

Two different models of the considered structures were developed and compared: a

simple two-dimensional thin plate model and a three-dimensional model of plate with

five pairs of asymmetrically-attached piezoelectric sensors/actuators. In the second

case the transducers were assumed to be made of transversally isotropic piezoce-

ramics, for which the material parameters were taken from the manufacturer’s data

catalog. The main reason for using two different models was to investigate the influ-

ence of the added mass and stiffness introduced by the transducers on the vibrational
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characteristics of the considered structures. The comparision between the obtained

results indicates that – in the considered low-frequency range – including the com-

paratively small transducers in the simulations had no significant effect either on the

shape functions of the eigenmodes, or on the eigenfrequencies. The experimental in-

vestigations revealed that the mode shapes – determined using the laser vibrometer –

were exactly as predicted, but the measured eigenfrequencies were not that consistent

with the simulations. The results are presented in Table 4.2.

Eigenrequency [Hz] Mode shape

2D plate model 3D model Measured

8 8.1 7.1

24.6 25 27.1

50.3 50.5 51.7

82.8 83.1 90.1

127.2 129.2 123.5

144.9 143.4 155.1

160.2 163.5 172.4

199 199 183

Table 4.2 Resonant frequencies determined numerically (using a 2D plate model and

the 3D structure model with piezoelements) and experimentally, and the correspond-

ing mode shapes.

The modal sensitivity functions of the piezoelectric sensors attached to the con-

sidered structures were investigated numerically and experimentally. The normalized

absolute values of the obtained results for the first several vibration modes are given
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in Tables 4.3 and 4.4 for the sandwich plate, and in Tables 4.5 and 4.6 for the alu-

minium plate. The value 1 in a cell of the Table indicates that the specific transducer

is the most sensitive to the specific mode of all the piezo-elements (thus, the sensi-

tivities are relative with respect to the result of the “best” sensor), while the value 0

indicates that it is not sensitive to this mode at all.

Mode number Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5

1 1 0.678 0.468 0.28 0.055

2 0.008 0.329 0.01 1 0

3 0.317 0.846 1 0.969 0.28

4 0.001 1 0.09 0.29 0

5 0.6 0.105 1 0.72 0.68

Table 4.3 Values of the normalized sensitivity function of piezoelectric sensors at-

tached to the sandwich panel obtained from the numerical simulations.

Mode number Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5

1 1 0.5 0.634 0.2 0.062

2 0.089 0.523 0.178 1 0.103

3 0.662 0.625 1 0.6 0.185

4 0.465 0.922 1 0.52 0.367

5 0.052 0.091 0.973 1 0.445

Table 4.4 Values of the normalized sensitivity function of piezoelectric sensors at-

tached to the sandwich panel obtained from the experimental investigations.

Mode number Sensor 1 Sensor 2 Sensor 3 Sensor 4

1 1 0.34 0.9 0.03

2 0.29 0.6 0.07 1

3 0.24 1 0.68 0.22

4 1 0.3 0.02 0.88

5 0.25 1 0.22 0.37

6 0.56 0.65 1 0.34

7 0.52 1 0.02 0.09

8 0.56 0.34 1 0.16

Table 4.5 Values of the normalized sensitivity function of piezoelectric sensors at-

tached to the aluminium plate obtained from the numerical simulations.

The locations of the piezo-elements were chosen based on the results of the nu-

merical simulations described in the previous section. The exemplary results are pre-

sented in Figure 4.8. To determine the modal sensitivity or selectivity values the

computed charge should be integrated over the desired surface corresponding to a
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Mode number Sensor 1 Sensor 2 Sensor 3 Sensor 4

1 1 0.42 0.91 0.08

2 0.17 0.99 0.55 1

3 0.4 1 0.68 0.33

4 1 0.19 0.05 0.75

5 0.1 1 0.4 0.27

6 0.69 0.14 1 0.42

7 0.34 1 0.1 0.05

8 0.56 0.34 1 0.2

Table 4.6 Values of the normalized sensitivity function of piezoelectric sensors at-

tached to the aluminium plate obtained from the experimental investigations.

chosen transducer location. The purpose was to ensure a negligible or high sensi-

tivity to the selected structural modes. Once again, it can be seen that a relatively

small, rectangle-shaped piezo-element can be placed in locations that ensure a very

high or, in other case, negligible sensitivity to one or two selected structural modes,

but that the transducer will also respond to most of the other modes in the considered

low-frequency range.

The comparison of the results given in Tables 4.3-4.6 reveals that the experimental

and numerical results are in general similar, though some significant discrepancies

between the predicted and measured values are observed too. For example, in the case

of the sandwich structure sensors 3 and 5 were in fact sources of the electric signal

at the all considered resonant frequencies, although their locations were deliberately

chosen in such a way that the transducers should be – theoretically – insensitive or

almost insensitive to some selected modes. As a matter of fact, none of the sensitivity

values in Table 4.4 is close to zero.

The results are in general more consistent between the numerical predictions and

experiments for the aluminium plate. For some vibrational modes of this structure

– see, for example the mode No. 8 in Tables 4.5 and 4.6 – the results are in fact

almost exact. The main reason for this better agreement is obviously the exactness in

modelling the material for the isotropic aluminium plate, and also a seemingly lower

structural damping than in the case of the sandwich plate; a better adhesion of the

transducers to the surfaces of the aluminium plate might also have its effect. The

methods of mounting the piezoelements to the considered structures were different

due to a need to ensure the electrical contact to the both electrodes of a transducer

– including the ‘bottom’ electrode that is the one in contact with the plate. In the

case of electrically conductive aluminium the plate was used as a common ground

so that the whole bottom side of a transducer could be thoroughly and fully glued to



4.7 Excitation of resonant vibrations 77

the plate with a conductive glue; in the case when the piezoelements were attached to

the sandwich plate additional electric wires had to be glued to the ‘bottom’ electrodes

making the attachment not sufficiently complete.

4.7 Excitation of resonant vibrations

Vibrations of plates excited by a harmonic force at a frequency equal to one of the

eigenfrequencies of the structure are particularly important in the scope of the present

study. It has been observed that the investigated structures have very sharp resonant

characteristics, which is connected with a low structural damping, and due to that the

significant emission of sound occurs only for the mentioned types of harmonic exci-

tation. In the assumed model of vibrations, described in Chapter 2, the amplitudes of

specific modes are inversely proportional to the differences between squared excita-

tion frequency and squared corresponding eigenfrequency. If those two frequencies

are equal, the value of the expression cannot be determined – it theoretically reaches

infinity. Such a conclusion argues obviously with the observations, as the amplitudes

of vibrations of real structures are always limited. The limitations result from damp-

ing and nonlinear effects, which have not been taken into account in the used simple

form of the formal description of the considered problem. For that reason, the am-

plitudes of resonant vibrations of the investigated structures are in the present study

determined experimentally, using a laser vibrometer. It is assumed, that due to the ob-

served sharp resonant characteristics all of the structural modes with corresponding

eigenfrequencies not equal to the given excitation frequency can be neglected in such

case. This assumption has been actually validated by determining the shape functions

of the excited forms of resonant vibrations which agreed well with the shapes of the

corresponding eigenmodes determined numerically.

However, an important question arises: are the amplitudes of resonant vibrations

excited by a piezoelectric actuator in the considered cases limited primarily by the

internal damping or by occurring nonlinear effects? In other words, are those ampli-

tudes linearly proportional to the amplitude of the harmonic voltage signal applied

to the transducer? This issue is of a fundamental importance for the carried out ex-

perimental research, as it decides whether the results obtained for various levels of

the driving signals can be easily scaled and compared to each other. To answer this

question, the following investigation has been performed using thin aluminium plate

described in section 4.6. For each of the eigenmodes shape functions presented in

Table 4.2 the coordinates of points of maximum vibration amplitudes have been de-
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termined using a Matlab script. Then, the plate was excited to vibrate at correspond-

ing eigenfrequencies by one pair of piezoelectric transducers attached symmetrically

on both sides of the structure. The amplitudes of induced vibrations were measured

with a laser vibrometer at specified points for each structural mode as functions of the

amplitudes of voltage signals driving actuators. The exemplary results are presented

in Tables 4.7–4.10.

Excitation voltage

amplitude [V]

Measured velocity

amplitude [m/s]

Displacement

amplitude [m]
5 0,002 2,58×10−6

10 0,00405 5,22×10−6

15 0,006 7,73×10−6

20 0,008 1,03×10−5

Table 4.7 Maximum amplitudes of vibrations of thin aluminium plate structure ex-

cited to vibrate at its eigenfrequency corresponding to the structural mode no. 5.

Excitation voltage

amplitude [V]

Measured velocity

amplitude [m/s]

Displacement

amplitude [m]
5 0,0106 1,1×10−5

10 0,0215 2,23×10−5

15 0,0318 3,29×10−5

20 0,042 4,36×10−5

Table 4.8 Maximum amplitudes of vibrations of thin aluminium plate structure ex-

cited to vibrate at its eigenfrequency corresponding to the structural mode no. 6.

Excitation voltage

amplitude [V]

Measured velocity

amplitude [m/s]

Displacement

amplitude [m]
5 0,0101 9,4×10−6

10 0,0203 1,88×10−5

15 0,0303 2,82×10−5

20 0,04 3,72×10−5

Table 4.9 Maximum amplitudes of vibrations of thin aluminium plate structure ex-

cited to vibrate at its eigenfrequency corresponding to the structural mode no. 7.

The presented results concern four subsequent forms of vibrations with corre-

sponding eigenfrequencies ranging from 123 Hz to 183 Hz. For the excitation ampli-

tudes up to 20 V the maximum vibration amplitudes are of the order of 10−6 −10−5 m.

To investigate the linearity of relation between the applied voltage levels and induced

modal amplitudes the ratios of the considered parameters related to the lowest values

have been computed. The results are presented in Table 4.11.
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Excitation voltage

amplitude [V]

Measured velocity

amplitude [m/s]

Displacement

amplitude [m]
5 0,0068 5,89×10−6

10 0,0136 1,18×10−5

15 0,0208 1,8×10−5

20 0,0275 2,38×10−5

Table 4.10 Maximum amplitudes of vibrations of thin aluminium plate structure ex-

cited to vibrate at its eigenfrequency corresponding to the structural mode no. 8.

Excitation

voltages

ratio

Velocities

ratio – mode

no. 5

Velocities

ratio – mode

no. 6

Velocities

ratio – mode

no. 7

Velocities

ratio – mode

no. 8
1 1 1 1 1

2 2,025 2,028 2,005 2,004

3 3 2,995 2,995 3,051

4 4 3,962 3,96 4,044

Table 4.11 Ratios of the maximum vibration amplitudes for four different structural

modes excited at their corresponding eigenfrequencies as functions of ratios of am-

plitudes of the exciting voltages.

The presented results indicate that the investigated relation is almost ideally linear.

Therefore, the nonlinear effects are not the primarily factor limiting the amplitudes of

resonant vibrations. The maximum observed deviations are less than 2% in all cases,

which may be assumed as considerably low. This allows to conclude that scaling and

comparing the results of measurements carried out with different levels of excitation

voltages should not be misleading.

4.8 Conclusions

Various issues regarding the utilization of small, rectangle-shaped piezoelectric trans-

ducers as sensors and actuators for sensing and exciting vibrations of beam, plate and

panelled structures have been discussed in the present chapter. A new form of a theo-

retical description introducing modal sensitivity and selectivity functions, suitable for

structures with arbitrary boundary conditions has been proposed. The elaborated ap-

proach allows for a simple evaluation of usefulness of given sensors and actuators in

controlling specified forms of vibrations and simplifies the determination of optimal

placement of the transducers on the surfaces of the controlled structures.

The modal parameters of piezoelectric sensors and actuators were determined nu-

merically and experimentally using various beam, plate, and panelled structures, in-
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cluding sandwich composite made of carbon-fiber liners with nomex-honeycomb core

– an actual material used in aviation applications. The agreement of the comparison

between the results of simulations and the results of measurements was almost per-

fect in the case of beams, slightly worse for the thin aluminium plate, and the worst

(but still generally fair) for the sandwich structure. The differences in the accuracy

of predictions occur probably due to the varying degree of simplifications in relevant

models and imperfections in construction of the investigated structures.

An independent part of considerations has been devoted to the problem of res-

onant vibrations. The assumed models of thin beam and plate vibrations, used to

describe the behavior of the investigated structures, do not take into account damping

and so are unable to determine the modal amplitudes for cases in which the external

harmonic excitation force has frequency equal to one of the eigenfrequencies of the

structure. The carried out experiments clearly indicated that the amplitudes of the

resonant vibrations are linearly proportional to the amplitudes of the voltage signals

driving actuator. Thus, scaling and comparing results obtained for different levels of

excitation should not be misleading.

Various technical aspects regarding practical implementation of the piezoelectric

sensors and actuators have been described. A developed technique of attaching trans-

ducers to conductive surfaces that ensures electrical contact with both electrodes and

prevents short-circuiting between them has been presented. Such a method was suc-

cessfully applied to construct the composite structures used in the present study. For

the sake of practical implementations the electric signal from piezoelectric sensors

needs to be amplified with an adequate conditioning circuit. The parameters of the

most commonly used types of such circuits have been discussed. The charge ampli-

fier was pointed out as most suitable for the considered applications. The description

of an exemplary developed device of such type has been presented together with rele-

vant wiring diagrams. The constructed amplifiers proved very good effectiveness and

demonstrated a low noise performance in numerous experiments.

Piezoelectric sensors and actuators are basic and necessary components of the

developed active vibroacoustic control system which is the main topic of the present

study. The presented conclusions regarding various aspects of their utilization in

the considered applications form the basis for investigations described in the next

chapter.



Chapter 5

Active vibroacoustic control system

5.1 Aim and methods

General assumptions regarding the considered problem are presented in Section 1.1.

The aim of the present study is to develop, construct, and evaluate an active control

system capable of reducing the amplitude of the acoustic pressure |p|, generated by a

vibrating plate structure in any given point of the ambient space, indicated by a vector

R. It is assumed that the considered system uses piezoelectric transducers attached to

the surface of the plate as both sensors and actuators. The system has decentralized

feedback architecture, i.e., all of the sensor-actuator pairs are connected indepen-

dently with feedback amplifiers. The number of such pairs included in the system is

denoted as M. The gain Gm of the feedback loop number m, where 1 ≤ m ≤ M, can

be adjusted in the range from 0 to Gmax
m , where Gmax

m denotes the maximum available

gain value for feedback loop number m. For the sake of brevity it is convenient to

write the control parameters as a vector, in the following form:

G =













G1

G2

...

GM













, (5.1)

where each of the elements of the vector satisfies the following condition:

∀m={1,2,...,M} 0 ≤ Gm ≤ Gmax
m . (5.2)

By changing the feedback gains, the characteristics of the secondary excitation

sources, namely, the actuators, are altered and, consequently, so are the modal com-
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ponents of vibrations of the plate. Due to the assumption of the linearity of the con-

sidered phenomena, neglection of the structural damping and due to the fact that only

steady state, low frequency harmonic vibrations are considered, the acoustic pressure

in a given point of space R, for a given angular frequency of the excited vibrations ω

can be expressed as a function of the modal amplitudes:

p(R,ω) = p(W1, . . . ,WN)|(R,ω) , (5.3)

where N is the number of considered structural modes of vibrations. The form of

the function p(W1, . . . ,WN), linking the acoustic pressure with the amplitudes of the

modal components of vibrations of the plate, depends on the assumed boundary con-

ditions. In a general case such a problem has no analytical solution and the acoustic

pressure distribution has to be computed numerically. The relevant issues have been

described in detail in Chapter 3 of this study.

The acoustic pressure p is a complex value and for the considered, steady-state

problem it can be unambiguously defined by its real and imaginary components,

which are in this case also functions of the modal amplitudes of vibrations. Thus,

the amplitude of the acoustic pressure can be expressed as:

|p|=
√

p2
re (W1, . . . ,WN)+ p2

im (W1, . . . ,WN), (5.4)

where pre (W1, . . . ,WN) and pim (W1, . . . ,WN) denote the real and imaginary part, re-

spectively.

In order to determine the optimal control strategy, the aim of the control has to be

defined in terms of a relevant cost function whose value should be minimized. The

optimization process is restricted by limited values of gains of feedback amplifiers.

In practice such restrictions result from parameters of the electronic components in-

cluded in the control system and parameters of the power supplies. However, due

to the fact that the gain adjustments within the available ranges do not significantly

influence the system hardware characteristics and that the issues related to power con-

sumption have no practical meaning from the point of view of the addressed problem,

introduction of a control cost term penalizing amplifications was considered redun-

dant. Given the above conclusions and taking into account the fact that the value of

amplitude of the acoustic pressure (5.4) is always non-negative, for the computational

purposes the assumed form of the cost function is the squared acoustic pressure am-

plitude. Thus, according to (5.4), for a specified point of the surrounding space and a
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given excitation force, the cost function can be expressed as:

fc (W1, . . . ,WN) = p2
re (W1, . . . ,WN)+ p2

im (W1, . . . ,WN) . (5.5)

The real and imaginary components can be written in the following forms:

pre (W1, . . . ,WN) =
N

∑
n=1

Pre
n Wn (5.6)

and

pim (W1, . . . ,WN) =
N

∑
n=1

Pim
n Wn, (5.7)

where Pre
n and Pim

n are modal radiation coefficients, linking the values of the real and

imaginary components of the acoustic pressure in a given point of space with the

modal amplitudes of vibrations of the plate. The values of those coefficients have to

be in general determined numerically, using, for instance, the methods described in

Chapter 3 of the present study. The cost function can be thus written in the following

form:

fc (W1, . . . ,WN) =

[

N

∑
n=1

Pre
n Wn

]2

+

[

N

∑
n=1

Pim
n Wn

]2

, (5.8)

The goal of the optimization process is to find a gain vector G satisfying the

condition (5.2), for which the vibrational pattern of the plate will be altered in such

a way that for the given point of space, given excitation parameters and specified

boundary conditions, the value (5.8) will be as low as possible. The introduced cost

function is actually a sum of two quadratic functions, one related to real and the other

to imaginary part of the acoustic pressure. The following notations are introduced:

fre =

[

N

∑
n=1

Pre
n Wn

]2

, (5.9)

fim =

[

N

∑
n=1

Pim
n Wn

]2

. (5.10)

From the computational point of view, in the control optimization process it is

convenient to consider both of those components separately. As it will be shown in the

following sections of the present chapter, in such cases it is possible to introduce very

fast and efficient algorithms for determining optimal feedback control gains, which

will ensure achieving the lowest possible values of the components given with Equa-
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tions (5.9) and (5.10). However, what is obvious, such a procedure cannot ensure that

the global minimum of the cost function (5.8) will be achieved, as the optimal gain

values and the resulting optimal vibrational patterns determined for both squared real

and imaginary parts of the acoustic pressure independently do not have to coincide

for the same sets of control parameters.

Let the f min
c denote the sought, global minimum of the cost function (5.8), achiev-

able for a vector of permitted, optimal gain values G
opt
c (the issues regarding connec-

tion between the feedback gains vector and resulting modal amplitudes of vibrations

are temporarily omitted at this point - they will be described in details in the fol-

lowing sections of the present chapter). Similarly, the f min
re and f min

im will denote

the global minimums of the squared real and imaginary acoustic pressure compo-

nents (5.9) and (5.10), achievable for gain vectors G
opt
re and G

opt
im , respectively. In the

most favorable case, if G
opt
re = G

opt
im , then, obviously also G

opt
c = G

opt
re = G

opt
im and,

consequently: f min
c = f min

re + f min
im . However, in the general case, the G

opt
re does not

have to be equal to G
opt
im and, consequently, all the three introduced optimal feedback

gain vectors can be different. Thus, the sought global minimum f min
c cannot be de-

termined using the described procedure. Whatever is the case, following relation is

always satisfied:

f min
c ≤ f min

re + f min
im . (5.11)

Thus, for any chosen vector of feedback gains G it is always possible to estimate, how

close the achieved cost function value is to the theoretically best possible (although

not necessarily achievable) global minimum. Such quality factor can be formally

defined as the efficiency of the selected set of control parameters:

Ec
f (G) =

f min
re + f min

im

fre (G)+ fim (G)
, (5.12)

where fre (G) and fim (G) denote the values of functions (5.9) and (5.10), obtained for

a vector of feedback gains G. In the first step of the assumed optimization procedure,

the efficiency value (5.12) is computed for the determined gain vectors G
opt
re and G

opt
im .

If any of the results is sufficiently close to 1, then the achieved value of the cost func-

tion can be regarded as the acceptable approximation of the actual global minimum

within the permitted range of control parameters, and the optimization process fin-

ishes until the change of excitation parameters is detected. In the unfavorable case, if

the computed efficiency values are relatively low, the control optimization problem is

solved numerically. Whatever the case, the relevant procedures, in order to be time-

effective and computationally reasonable, require fast algorithms for determining the
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values of components (5.9) and (5.10), related to the real and imaginary parts of the

acoustic pressure. The relevant issues are the subject of the further sections of the

present chapter.

5.2 Single feedback loop

In order to develop an optimal control algorithm for the considered problem, the

components of the cost function, given with Equations (5.9) and (5.10) have to be

formulated as functions of control parameters, which are the feedback gains (5.1).

For the sake of brevity, in the first step a simplified control system, with only one

feedback loop (one sensor-actuator pair) will be considered. The results of the present

considerations will be further developed in the following section to address the case

of the control system with multiple feedback loops.

Two sources of vibrations are present in the considered system. The primary

source is the external, harmonic excitation force, with the angular frequency ω and

spatial distribution Fext . At this point it is assumed that those parameters are known in

advance - the methods of determining them will be described in Section 5.4, devoted

to the problem of adaptation of the control system. The modal amplitudes of vibra-

tions of the plate structure excited by the external force itself – i.e. in the absence of

the forces introduced by the control system – can be computed using Equation (2.21):

Fn =

∫∫

S FS (x,y)ΦndS

ρshs (ω2
n −ω2)

∫∫

S Φ2
ndS

, (5.13)

where Fn denotes the amplitude of the vibrational mode number n, excited by the

external disturbance in the absence of the forces introduced by the control system.

The second source of excitation is the piezoelectric actuator. The modal ampli-

tudes of vibrations of the plate, excited by the actuator driven with the harmonic volt-

age V are given with Equation (4.12). In the considered control system, the actuator

is fed with electric voltage signal induced on the sensor, via the signal conditioning

circuit and feedback amplifier with adjustable gain G.

The whole system is assumed to be linear, so all the considered phenomena oc-

cur with the imposed angular frequency ω and, accordingly to Equation (2.21), the

response of the structure to multiple excitation sources can be considered as a sum of

responses to each of the forces independently. Thus, the following relation concern-

ing any vibrational mode number a, where 1 ≤ a ≤ N, with a corresponding modal
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amplitude Wa can be stated:

Wa = Fa + |V | Ãa, (5.14)

where |V | is the amplitude of the driving, harmonic voltage V , which, in the consid-

ered, steady state operating conditions is equal:

V =−Geiωt
N

∑
n=1

S̃nWn, (5.15)

where S̃n is the modal sensitivity of the sensor to mode n. Thus, substituting (5.15)

into (5.14):

Wa = Fa −GÃa

N

∑
n=1

S̃nWn. (5.16)

The relation (5.16) can be converted into the following form:

Wa =
Fa

1+GS̃aÃa

− GÃa

1+GS̃aÃa

N

∑
n=1
n 6=a

S̃nWn. (5.17)

Equation (5.17) implies some important remarks that should be taken into account

while developing the active vibroacoustic control system. The term 1
1+GS̃aÃa

, included

in the first part of the right-hand side of the equation, represents the well-known re-

lation describing the resultant gain of the single input - single output, closed-loop

feedback controller. If we were able to create a single-mode in-phase sensor/actuator

pair, the system would remain unconditionally stable and the amplitude of the selected

mode reaches zero as the feedback gain reaches infinity. Method of creating modal

sensors/actuators has been described by Lee and Moon [78]. However, the practical

implementation of such transducers is limited to simple one-dimensional beam struc-

tures and only to few lowest-order structural modes. Another important disadvantage

of single-mode sensors/actuators is the fact that we would need one separate pair of

transducers for every mode we would like to control, which would lead to a very

complex, multi-layered structure.

Another remark that can be concluded from Equation (5.17), is that one of the con-

ditions of the stability of the considered active control system is meeting the following

condition: GS̃aÃa 6=−1 for every mode number a, in the whole considered frequency

range. The sensor should also be sensitive to the structural modes excited by the

corresponding actuator. To provide the described features collocated sensor/actuator

pairs can be used. The relevant issues concerning the practical implementation of
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such solution, are briefly described in Section 4.1 of the present study.

In order to determine the optimal control strategy, i.e., optimal gain value that

will ensure minimization of the cost function, using the procedure described in the

previous section, the relation between the feedback gain and the resulting modal am-

plitudes of vibrations has to be determined first. For this purpose, Equation (5.16) is

rewritten in the following form:

Wa

(

1+GS̃aÃa

)

+GÃa

N

∑
n=1
n 6=a

S̃nWn = Fa. (5.18)

Equation (5.18) can be written for every single considered structural mode a, where

1 ≤ a ≤ N. A set of such equations, providing a complete description of the consid-

ered system, can be written in the following matrix form:

(

I +M
)

W = F, (5.19)

where I is a N×N identity matrix, W is the vector of modal amplitudes of vibrations,

given in the following form:

W =













W1

W2

...

WN













, (5.20)

F is the vector of modal amplitudes Fn, induced by the external excitation force:

F =













F1

F2

...

FN













, (5.21)

and M is a N ×N control system matrix of feedback coefficients:

M =













GÃ1S̃1 GÃ1S̃2 · · · GÃ1S̃N

GÃ2S̃1 GÃ2S̃2 · · · GÃ2S̃N

...
...

. . .
...

GÃN S̃1 GÃN S̃2 · · · GÃN S̃N













. (5.22)

The response of the plate (namely, the modal amplitudes W) to all the excitation

sources (namely, external disturbance and the actuators) is sought. The relevant for-
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mula can be obtained by rewriting Equation (5.19) in the following, modified form:

W =
(

I +M
)−1

F. (5.23)

The computations of the inverse matrix
(

I +M
)−1

can be significantly improved by

noticing the fact that the matrix M can be expressed as a product of two vectors and a

scalar:

M = GasT , (5.24)

where a is the vector of modal selectivity values of the actuator expressed in the

following form:

a = a(ω) =













Ã1

Ã2

...

ÃN













=













Ã1 (ω)

Ã2 (ω)
...

ÃN (ω)













(5.25)

and s is the vector of modal sensitivity values of the piezoelectric sensor expressed as

follows:

s =













S̃1

S̃2

...

S̃N













. (5.26)

In the considered case, due to the form of matrix M (5.24), the inverse matrix
(

I +M
)−1

can be computed using Sherman-Morrison formula [102], namely:

(

I +M
)−1

= I−1 −
I−1GasT I−1

1+GaT I−1s
= I − GasT

1+GaT s
. (5.27)

Thus, substituting (5.27) into (5.23), the sought relation between the modal ampli-

tudes of vibrations and the feedback gain value is eventually obtained:

W =

(

I − GasT

1+GaT s

)

F. (5.28)

Using the obtained relation (5.28), the real and imaginary components of the acoustic

pressure, given with Equations (5.6) and (5.7), respectively, can be computed with the

following formula:

px (G) =
N

∑
n=1

PnWn = PT W = PT F− PT GasT F

1+GaT s
, (5.29)
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where px (G) is a function of feedback gain value which may refer to either the real

or imaginary part of the acoustic pressure (5.6) or (5.7), Pn denote the relevant (either

real or imaginary) modal radiation coefficients of the mode number n, and P is a

vector of those coefficients:

P =













P1

P2

...

PN













. (5.30)

Equation (5.29) is the basis for fast and computationally cheap algorithm of de-

termining the sought value of the acoustic pressure, as a function of the feedback

gain. Thus, it allows to perform an efficient optimization procedure. However, it is

still beneficial at this point to determine the gain values that would minimize the par-

tial cost functions fre and fim, given with Equations (5.9) and (5.10), as those values

can be used to estimate the potentially lowest achievable value of the assumed cost

function. The relevant procedure is described in detail in the previous section.

It is assumed that the maximum available gain value Gmax is chosen in such a way,

that the system is unconditionally stable, i.e., the following condition is satisfied:

∀G∈〈0;Gmax〉 GaT s 6=−1 (5.31)

for the relevant vectors a and s. Under the considered conditions, the function px (G),

given with Equation (5.29) is a monotonic function of the variable G. The optimal

gain value Gopt , for which the function p2
x (G), corresponding to either the real or

imaginary, partial cost function (5.9) or (5.10), achieves its minimum within the con-

sidered, available gain range is sought. Three cases are possible for the considered

problem:

1. If px (0) · px (G
max) ≤ 0, then exists such value Gopt , for which px (G

opt) = 0.

This optimal feedback gain can be computed using the following relation:

Gopt =
PT F

PT asT F−PT F
. (5.32)

2. If any of following occurs:

(a) px (0) · px (G
max)> 0 and px (0)> px (G

max)> 0, or

(b) px (0) · px (G
max)> 0 and px (0)< px (G

max)< 0,

then, Gopt = Gmax.
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3. The last possible case occurs when one of the following conditions is satisfied:

(a) px (0) · px (G
max)> 0 and px (0)< px (G

max) and px (G
max)> 0, or

(b) px (0) · px (G
max)> 0 and px (0)> px (G

max) and px (G
max)< 0.

In this case Gopt = 0.

5.3 Multiple independent feedback loops

The goal of the present section is to develop the investigations described in Section 5.2

into a more general case of an active control system with multiple independent feed-

back loops. It is assumed that in the considered case the system contain M sensor-

actuator pairs. The gains of the feedback amplifiers are described with the vector G

given with (5.1). Despite the number of control loops, all of the other assumptions

concerning the system, controlled structure and the external excitation, presented in

the previous sections of this chapter are valid. The steady-state vibrations of the plate

can be in this case described with a following, modified form of equation (5.23):

W =
(

I + M̃
)−1

F, (5.33)

where M̃ is a N ×N control system matrix of feedback coefficients, given with:

M̃ =
M

∑
k=1













GkÃk1S̃k1 GkÃk1S̃k2 · · · GkÃk1S̃kN

GkÃk2S̃k1 GkÃk2S̃k2 · · · GkÃk2S̃kN

...
...

. . .
...

GkÃkN S̃k1 GkÃkN S̃k2 · · · GkÃkN S̃kN













, (5.34)

where Ãka is the selectivity function of actuator k to structural mode a (see Equa-

tions (4.12) and (4.13)), while S̃ka denotes the sensitivity of sensor k to the same

mode a (see Equation (4.8)). For the sake of brevity and for the computational pur-

poses it is convenient to write matrix M̃ in the following form:

M̃ =
M

∑
k=1

M̃k, (5.35)
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where M̃k is a partial control matrix, connected with a feedback loop number k and

defined as:

M̃k =













GkÃk1S̃k1 GkÃk1S̃k2 · · · GkÃk1S̃kN

GkÃk2S̃k1 GkÃk2S̃k2 · · · GkÃk2S̃kN

...
...

. . .
...

GkÃkN S̃k1 GkÃkN S̃k2 · · · GkÃkN S̃kN













. (5.36)

Analogously as in the case of single feedback loop system (see Equation (5.24)), the

partial matrices M̃k are the first order matrices, which can be expressed as:

M̃k = Gk ak sk
T , (5.37)

where:

ak =













Ãk1

Ãk2

...

ÃkN













(5.38)

and

s =













S̃k1

S̃k2

...

S̃kN













. (5.39)

The following notation is also introduced:

M̃(k) = M̃− M̃k =
M

∑
l=1
l 6=k

M̃l. (5.40)

Equation (5.33) can be rewritten in the following form:

W =

(

I + M̃(k)+ M̃k

)−1

F. (5.41)

Taking into account relation (5.37) and – referring to the procedures described in the

previous section of the present chapter – the following relation can be written using
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Sherman-Morrison formula:

(

I + M̃(k)+ M̃k

)−1

=

(

I + M̃(k)

)−1

−

(

I + M̃(k)

)−1

Gk ak sk
T

(

I + M̃(k)

)−1

1+Gk ak
T

(

I + M̃(k)

)−1

sk

.

(5.42)

The relation (5.42) can be used to develop an effective, iterative algorithm for compu-

tation of the inverse matrix
(

I + M̃
)−1

for any applicable set of feedback gain values

G1,G2, . . . ,GM. Such an algorithm would be very beneficial from the point of view of

the control optimization procedure described in Section 5.1. It is assumed that in the

beginning all of the feedback gains are set to 0. Then, the gain of the first feedback

loop is set to the desired value G1 and the relevant inverse matrix
(

I + M̃1

)−1

is com-

puted, based on Equation (5.27). Afterwards, the gain of the second feedback loop is

set to the desired value G2 and the inverse matrix
(

I + M̃1 + M̃2

)−1

is computed using

Equation (5.42) and the result of the previous step. The procedure is repeated until

the complete system control matrix M̃ is determined. The algorithm can be described

with the following, subsequent equations:

(

I + M̃1

)−1

= I − G1 a1 s1
T

1+Ga1
T s1

, (5.43)

(

I + M̃1 + M̃2

)−1

=
(

I + M̃1

)−1

−

(

I + M̃1

)−1

G2 a2 s2
T
(

I + M̃1

)−1

1+G2 a2
T
(

I + M̃1

)−1

s2

, (5.44)

...

(

I + M̃
)−1

=

(

I + M̃(M)

)−1

−

(

I + M̃(M)

)−1

GM aM sM
T

(

I + M̃(M)

)−1

1+GM aM
T

(

I + M̃(M)

)−1

sM

. (5.45)

The algorithm described with Equations (5.43) to (5.45) also allows to automatically

omit those terms for which the desired feedback gain value is equal to 0, and thus

further improve computational time and cost. The calculation order may be obviously

chosen freely and it does not have to follow the assumed numeration of the feedback

loops, i.e., 1,2, . . . ,M, as in the presented example.
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Despite the described algorithm, in order to perform a fast and effective control

optimization procedure, the potentially optimal feedback vectors G
opt
re and G

opt
im (de-

fined in Section 5.1) are sought. The relevant partial cost functions that should be

minimized are described with following equation:

[px (G)]2 = (PW)2 , (5.46)

where px (G) is the function of feedback gain vector, which may refer to either the real

or imaginary part of the acoustic pressure (see Equations (5.6) and (5.7)). Substituting

Equation (5.42) into (5.41) and (5.46), the following relation is finally obtained:

px (G) = PT











(

I + M̃(k)

)−1

−

(

I + M̃(k)

)−1

Gk ak sk
T

(

I + M̃(k)

)−1

1+Gk ak
T

(

I + M̃(k)

)−1

sk











F, (5.47)

for every single k, where k ∈ {1,2, . . . ,M}. Thus, if all of the feedback gains, except

the one number k, are fixed and considered as constants, then, upholding the assump-

tions regarding the available gain ranges presented in the previous section, as it can

be shown based on the properties of Equation (5.47), under such conditions function

px (G) is a monotonic function of every single gain parameter Gk. This observation

implies a very important conclusion, namely: if any of the elements Gk of a vector

G is neither equal to 0 nor to its maximum available value Gmax
k , then the value of

function px (G) can be both increased and decreased by changing the value of the

parameter Gk.

For the sake of brevity, the following definitions are introduced:

The control polytope denotes the set of all vectors G whose elements Gk satisfy the

condition 0 ≤ Gk ≤ Gmax
k – i.e., the whole available control space.

The vertices of the control polytope denote the set of all of the vectors G belonging

to the control polytope whose elements Gk are either equal to 0 or to their

maximum permitted values Gmax
k . This definition can be also formulated using

the following notation:

∀k∈{1,2,...,M} Gk = 0 ∨ Gk = Gmax
k . (5.48)

The edges of the control polytope denote the set of all of the vectors G belonging

to the control polytope whose all elements Gk except exactly one are either
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equal to 0 or to their maximum permitted values Gmax
k . The one – and the only

one – element of the vector is nether equal to 0 nor to its maximum value. This

definition can be also formulated using the following notation:

∃!16l6M∀k∈{1,2,...,M}

{

0 < Gk < Gmax
k , k = l,

Gk = 0 ∨ Gk = Gmax
k k 6= l.

(5.49)

The neighboring vertices of the control polytope are defined as such pairs of vec-

tors Gv1 and Gv2 belonging to the set of vertices of the control polytope whose

all elements except one are equal. The differing element defines the common

edge between the neighboring vertices.

Using the introduced nomenclature and referring to the previously described ob-

servations regarding the properties of Equation (5.47), the following conclusions con-

cerning the process of determining optimal feedback gain values G
opt
re and G

opt
im can

be drawn:

1. If the value of the function px (G) is not equal to 0 for any vector G belonging to

the considered control polytope, then the sought optimal feedback gain vector

(either G
opt
re or G

opt
im ) can be found within the vertices of the control polytope

2. If a vector G, belonging to the control polytope, for which px (G) = 0 exists,

then the sought value of the global minimum of the considered component of

the cost function (either fre or fim) is also equal to 0. This also implies that

there exists such gain vector G0, belonging to either vertives or edges of the

control polytope, for which the condition px

(

G0
)

= 0 is also satisfied. If the

vector G0 belongs to the edges of the control polytope, then at least one pair of

neighboring vertices Gv1 and Gv2 for which the following condition is satisfied

exists: px

(

Gv1
)

· px

(

Gv2
)

< 0. The optimal gain vector G0 can be found within

the set of vectors creating the common edge between the vertices Gv1 and Gv2,

by considering all other gains as constants and solving the single feedback loop

problem.

The presented conclusions allow to select only a small subset of the control poly-

tope, with a finite number of elements, among which the optimal feedback gain val-

ues G
opt
re and G

opt
im should be sought. This namely refers to the edges of the control

polytope. Thus, if the number of feedback loops is equal M, then the maximum num-

ber of points for which computations should be performed is equal 2M, for each of

the components of the cost function. The defined procedures enable performing a
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fast and effective optimal control algorithm according to the guidelines described in

Section 5.1, in the considered, general case of the system with multiple independent

feedback loops.

5.4 Identification of the external disturbance

In the considerations described in the previous sections of the present chapter, vec-

tor F, characterizing the parameters of the external excitation force (in terms of the

response of the considered structure) was treated as known. However, due to the un-

dertaken assumptions, the control system does not possess such knowledge and it has

to have the ability to adapt to changing (steady-state) excitation conditions. No exter-

nal sensors, such as, for instance, microphones, are included in the system, so, all the

information regarding the current state of the structure has to be based on the electric

signal induced on the piezoelectric sensors. The adaptation process should in general

have the following form:

1. The parameters of the external disturbance are determined based on the signals

from piezoelectric sensors and on the knowledge on the modal characteristics

of the controlled structure.

2. Optimal feedback gain values are computed using the procedures described in

Sections 5.1–5.3 and set in the relevant amplifiers.

3. The system continues monitoring the electric signals from the sensors, checking

for deviations from the predicted values, corresponding to the assumed vibra-

tional pattern.

4. If the change in excitation conditions is detected, the algorithm is performed

again, starting from the first step.

According to the assumed form of description of the control system, the voltage

amplitudes of signals induced on the piezoelectric sensors due to vibrations of the

plate can be written in the following, vector form:

U =













Ũ1

Ũ2

...

ŨM













. (5.50)
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The voltage amplitude of the the electric signal induced on a sensor number m is

equal:

Ũm =
N

∑
n=1

S̃mnWn, (5.51)

where S̃mn is the sensitivity function of sensor m to structural mode n. The amplitude

Wn of the nth mode is equal:

Wn = Fn +
M

∑
m=1

ÃmnVm, (5.52)

where Vm denotes the amplitude of the voltage signal driving the mth actuator, given

with the following relation:

Vm =−GmŨm. (5.53)

Substituting Equations (5.51), (5.52) and (5.53) into (5.50), the following relation is

obtained:

U =























N

∑
n=1

S̃1nFn −
N

∑
n=1

(

S̃1n

M

∑
m=1

GmŨmÃmn

)

N

∑
n=1

S̃2nFn −
N

∑
n=1

(

S̃2n

M

∑
m=1

GmŨmÃmn

)

...
N

∑
n=1

S̃MnFn −
N

∑
n=1

(

S̃Mn

M

∑
m=1

GmŨmÃmn

)























. (5.54)

Thus:

U =























Ũ1 +
N

∑
n=1

(

S̃1n

M

∑
m=1

GmŨmÃmn

)

Ũ2 +
N

∑
n=1

(

S̃2n

M

∑
m=1

GmŨmÃmn

)

...

Ũ1 +
N

∑
n=1

(

S̃Mn

M

∑
m=1

GmŨmÃmn

)























=























N

∑
n=1

S̃1nFn

N

∑
n=1

S̃2nFn

...
N

∑
n=1

S̃MnFn























. (5.55)

All coefficients in Equation (5.55) are known, except for the sought parameters of the

external excitation Fn. In order to determine them, Equation (5.55) is first written in

the following form:

SF = ũ, (5.56)
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where S is the system sensitivity matrix, defined as:

S=













S̃11 S̃12 · · · S̃1N

S̃21 S̃22 · · · S̃2N

...
...

. . .
...

S̃M1 S̃M2 · · · S̃MN













(5.57)

and the vector ũ is given with the following relation:

ũ =























Ũ1 +
N

∑
n=1

(

S̃1n

M

∑
m=1

GmŨmÃmn

)

Ũ2 +
N

∑
n=1

(

S̃2n

M

∑
m=1

GmŨmÃmn

)

...

Ũ1 +
N

∑
n=1

(

S̃Mn

M

∑
m=1

GmŨmÃmn

)























. (5.58)

All of the elements of both matrix S and vector ũ can be computed based on

the known parameters of the system and the controlled structure, as well as on the

excitation frequency (this concerns the selectivity functions of the actuators which

are frequency-dependent). Due to the assumed, harmonic form of the considered

signals, the frequency of vibrations can be easily determined, based on the signal

from piezoelectric sensors. The method of solving Equation (5.56) for the unknown

parameters of the external excitation depends on the relation between the number of

considered structural modes of vibrations N and the number of control feedback loops

M. Three cases are possible:

1. If M <N then the equation system expressed in the matrix form (5.56) is under-

determined, with an infinite number of solutions for the sought vector F. The

selection of a specific, estimated solution F∗ is based on additional condition -

in the present considerations it is assumed, that the L2-norm is minimized and

the estimated solution is computed using the following equation:

F∗ =ST
(

SST
)−1

ũ. (5.59)

2. If M = N then the equation system expressed in the matrix form (5.56) has one

unique solution (assuming that the system sensitivity matrix has full rank - the

modal characteristics of the sensors are linearly independent), which can be
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computed as:

F∗ =
(

S
)−1

ũ. (5.60)

3. If M > N then the equation system expressed in the matrix form (5.56) is

overdetermined and the least-squares method is used in order to estimate the

sought vector of the parameters of external excitation:

F∗ =
(

ST S
)−1

ST ũ. (5.61)

The described algorithm can be used to perform the adaptation process, i.e., to

provide a necessary knowledge on the parameters of external excitation required for

the control optimization procedure. The algorithm takes into account all the assumed

available knowledge concerning both the controlled structure (eigenfrequencies and

the corresponding mode shape functions), as well as the elements of the control sys-

tem (modal sensitivity and selectivity functions of the piezoelectric sensors and actu-

ators). However, it is also possible that some additional information, regarding prob-

able, predicted characteristics of the external excitation source are also available. For

instance, if the propagation paths of the disturbances in the environment to which the

considered structure belongs are to some extent predictable, then some modal com-

ponents can be regarded as more and other as less probable to occur. The presented

approach does not allow to include such knowledge, although, in some cases it could

be very beneficial to do so.

In order to enable including the described, additional information, the presented

adaptation algorithm has to be modified and developed. It is assumed that the predic-

tions regarding the characteristics of external disturbance are introduced as ratios of

selected modal components, in the following form:

F∗
k

βk

=
F∗

l

βl

, (5.62)

where F∗
k and F∗

l are the elements of the estimated vector of the modal parameters of

the external excitation F∗, corresponding to structural modes of vibrations number k

and l, respectively. The βk and βl are the corresponding modal weight coefficients.

Equation (5.62) defines the desired ratio of two selected modal components of vec-

tor F∗.

It is assumed that one of the modal coefficients, namely, for instance, the one

denoted with index k is considered as the reference parameter. The desired, predicted

ratios of all other considered coefficients with indexes l, where 1 ≤ l ≤ N and l 6= k
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are written in the following form, equivalent with (5.62):

F∗
l − βl

βk

F∗
k = 0. (5.63)

All defined relations in the form (5.63) can be arranged as a set of equations and

written in the following matrix form:































1 0 0 · · · −β1

βk
· · · 0

0 1 0 · · · −β2

βk
· · · 0

... · · · . . . · · · ...

0 0 0 · · · − β1

βk−1
· · · 0

0 0 0 · · · − β2

βk+1
· · · 0

... · · · . . . · · · ...

0 · · · · · · −βN

βk
· · · 1































F∗ =













0

0
...

0













. (5.64)

The left hand side matrix has dimensions (N −1)×N. The equation (5.64) repre-

sents the predicted, desired form of the vector F. The second equation system, that

obviously has to be included in the adaptation algorithm, is given with (5.56) and

represents the modal parameters of the external excitation, determined from the mea-

surements. Both relations (5.56) and (5.64) should contribute to the final result, in

order to obtain a solution that is consistent with the measurements on the one hand

and as close as possible to the predictions, on the other hand. Tikhonov regulariza-

tion [103] is used to balance those contributions and to determine the optimal solution.

The combination of (5.56) and (5.64) leads to the following matrix equation:





























γ













1 0 0 · · · w1
wk

· · · 0

0 1 0 · · · w2
wk

· · · 0
... · · · . . . · · · ...

0 · · · · · · wN

wk
· · · 1













S





























F∗ =



















0
...

0

ũ



















, (5.65)

where γ is the regularization parameter. Equation (5.65) is solved for various values of

the regularization parameters, in order to find such a value γopt and the corresponding,
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estimated solution F∗
opt for which the following condition is satisfied:

∀γ∈〈0;∞〉
(

SF∗
opt

)2
+
(

γoptΓF∗
opt

)2 ≤
(

SF∗)2
+
(

γΓF∗)2
, (5.66)

where γ denotes any chosen value of the regularization parameter and F∗ is the cor-

responding solution to Equation (5.65). The Γ denotes the left hand side matrix from

Equation (5.64). In other words, the total error between the optimal solution F∗
opt and

both predictions and measurements is minimized. The presented, modified, and de-

veloped version of the adaptation algorithm should be especially useful in the case of

highly underdetermined systems (i.e., in the cases when the number of the considered

vibrational modes N is much greater than the number of the feedback control loops

introduced in the system M).

5.5 Implementation of the active control system

Practical implementation and experimental validation of the active vibroacoustic ap-

proach described in the present study require both dedicated hardware and software.

The relevant means have been developed, implemented, and tested. A large number

of prototypes of various electronic subsystems were constructed and evaluated within

the framework of the conducted research. The initial concepts were significantly im-

proved by taking into account the conclusions drawn at the successive design stages.

A general schematic diagram of the final version of the developed active control sys-

tem is presented in Figure 5.1. Only a single control channel (single feedback loop) is

presented in order to illustrate the assumed principles of operation - the target system

should consists of an appropriate, desired number of such units.

The most important, original feature of the developed system is separation of the

independent, fully analogue feedback loop connecting piezoelectric sensor and actu-

ator. Such a solution, besides circuit simplification, allows to avoid all the potential

complications related with signal conversion (time delays, jitter, noise) and to en-

sure a high reliability. The considered control system is very sensitive to even small,

unintended phase shifts between input and output, as they strongly affect the con-

trol performance and may lead to loss of stability. Data acquisition and analysis are

performed independently, by a separate digital subsystem. The presented approach

allows to significantly reduce the requirements imposed on the control logic.

The piezoelectric sensor is connected directly to a charge amplifier circuit, which

ensures impedance matching and amplification. The output of the charge amplifier is

connected to an optionally activated 0/180◦ phase inverter. Such a solution enables
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Figure 5.1 General schematic diagram of the developed active vibroacoustic control

system (single feedback loop).

coupling piezoelectric sensors and actuators with the same or opposite polarizations,

and increases the versatility of the developed device. The signal from piezoelectric

sensor, after conditioning, is also fed to the input of an analog-to-digital converter,

and further to the control logic unit, where it is processed to extract the information

necessary to determine a current state of the controlled structure and the relevant

optimal control strategy. In parallel, the same signal is also fed to the input of a

variable gain amplifier (VGA) whose gain value is governed by the logic unit. This

block of the system enables realization of the selected control strategy. The output

signal is fed to the piezoelectric actuator via a power amplifier, which is powered

from a separate, symmetrical power supply, with a higher voltage. Such a solution

enables extending the range of the output driving signal and improving its quality.

A circuit diagram of a single channel of the final version of the analog part of

the controller is presented in Figure 5.2. Construction of the signal conditioning

circuit is described in detail in Section 4.4. A high number of the selectable feedback

components of the charge amplifier (10 resistors and 10 capacitors which can be freely

combined in parallel connections using sets of switches) ensures wide possibilities in

adjusting both gain and lower cutoff frequency. The phase inverter is constructed

based on TL072 low noise operational amplifier working as inverting amplifier with

a unity gain.

The SSM2018 voltage controlled amplifier (VCA) is used to adjust the gain of the

feedback loop and perform the optimal control strategy. The gain of this amplifier is
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Figure 5.2 Circuit diagram of the final version of the feedback controller used for

experimental investigations - analogue part, one single channel (out of four in total).

described with the following exponential relation:

gSSM = e(−4·V SSM
C ), (5.67)

where V SSM
C is the constant, control voltage applied to the amplifier. The available

gain range is 140 dB (from -100 dB up to 40 dB). The output of the voltage controlled

amplifier is connected to the input of LM675 power amplifier which can operate at

supply voltages up to 60 V and deliver output currents reaching up to 3 A.

The developed analog part of the active control system was successfully con-

structed and tested. A picture of the final device, implementing four feedback loops,

is presented in Figure 5.3. The electronic components were mounted on a double-

sided printed circuit board. The power amplifiers were attached to heat sinks in order

to prevent their overheating in case of any system failure.

The digital part of the control system was implemented using National Instru-

ments cRIO platform, model 9075. The communication with the described analog

subsystem was performed via additional ADC and DAC modules. The necessary con-

trol software was developed under the LabView environment. The software allows to

view in the real-time signals from eight channels (four sensors and four actuators)

and to adjust gains of four independent feedback loops. The communication with the
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Figure 5.3 Final version of four-channel feedback controller used for experimental

investigations - analogue part.

control logic unit is performed via Ethernet, using a laptop with dedicated software

implementing the user interface. The software control panel of the described system

is presented in Figure 5.4.

Figure 5.4 Software control panel of the developed active control system.
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5.6 Experimental investigations

The experimental investigations concerning capabilities and limitations of the devel-

oped active vibroacoustic control approach were carried out using a rectangle-shaped

aluminium plate, which was 300 mm long, 200 mm wide, and 1 mm thick. The plate

was clamped by a 6 cm long middle section of its shorter edge, with all other edges

free. The considered structure is presented in Figure 5.5. The plate was also used

for other experimental investigations described in the previous chapters of the present

study, thus the obtained results and drawn conclusions concerning the vibrational

characteristics (Chapter 2), acoustic radiation (Chapter 3), and sensing and exciting

vibrations using piezoelectric transducers (Chapter 4) are valid in terms of the present

considerations.

Figure 5.5 Plate structure used for the experimental investigations.

Five pairs of piezoelectric transducers made of Pz29 piezoceramic material (Fer-

roperm) were attached symmetrically on both sides of the considered structure. The

transducers were 3 cm wide, 2 cm long and 0,3 mm thick. The transducers were

glued to the plate using the technology described in Section 4.5, with the plate as a

common ground electrode. In order to describe the positions of the transducers on

the plate and also to define the relative coordinates of points in the ambient space at

which the acoustic measurements were taken, a global cartesian coordinate system,

with XY axes parallel to the shorter and longer edges of the plate, respectively, is
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introduced. Assuming the spatial configuration of the plate during the experiments as

presented in Figure 5.5, with the longer edge perpendicular to the ground plane, the

origin of the coordinate system is situated in the lower left corner of the plate. Posi-

tions of the piezoelectric transducers on the surfaces of the plate can be thus described

as it is presented in Table 5.1.

Number of pair of piezoelec-

tric transducers

XY coordinates (in centime-

ters, middle point of the trans-

ducer)
1 (5 ; 7)

2 (7 ; 18)

3 (10 ; 10)

4 (18 ; 25)

5 (16 ; 4)

Table 5.1 Locations of pairs of piezoelectric transducers used for the experimental

investigations on the surfaces of the plate structure.

Pairs of the transducers with numbers 1 to 4 were used as sensors and actuators

(i.e., one of the transducers in each pair served as sensor, while the other, attached

symmetrically, as actuator). Thus, up to four independent feedback loops were avail-

able in the assumed configuration of the control system. The pair number 5 was used

to generate vibrations of the structure, simulating external excitation source – both

transducers were connected to the harmonic signal generator, with adjustable am-

plitude and frequency. Accordingly to the considerations presented in Chapter 4, the

transducers arranged in the described configurations create collocated sensor-actuator

pairs. Such a configuration should theoretically ensure an absolute stability of the

control system, at least in the case of a single feedback loop operation, as the prod-

ucts of the corresponding modal sensitivity and selectivity values in the denominator

in Equation (5.17) are always positive.

The experiments were carried out in an anechoic chamber. The plate was clamped

with a vice attached to a tripod. The acoustic measurements were performed using

Brüel&Kjær half inch, precise electret microphone, connected to a Nexus preampli-

fier by the same manufacturer. The amplitude of the acoustic pressure was determined

using Tektronix TDS2004C oscilloscope. The wires attached to the microphone and

piezoelectric transducers were routed outside the acoustic chamber, to another room,

where all the necessary control and measurement equipment was situated. The stands

for both plate and microphone were covered with acoustic foam panels, in order to

minimize the reflections. The laboratory stand used for the experimental investiga-

tions on the active vibroacoustic control is presented in Figure 5.6.
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Figure 5.6 Laboratory stand used for the experimental investigations on the active

vibroacoustic control.

The piezoelectric transducers used to generate vibrations of the plate were fed

with harmonic signals from a programmable generator, with voltage amplitudes reach-

ing up to ±30 V. The levels of excitations were limited by occurring nonlinear effects.

Very sharp resonant characteristics of vibrations of the plate were observed, with very

high amplitudes at frequencies corresponding to the determined eigenfrequencies of

the structure (see Table 2.1) and very low levels of vibrations for off-resonant excita-

tions. The acoustic measurements revealed that significant noise levels generated by

the plate are observed only for resonant vibrations. For this reason only the excita-

tion frequencies equal to some selected eigenfrequencies of the structure were used

in the experiments. According to considerations presented in Sections 2.1 and 4.7 of

the present study, in such cases only one mode of vibrations, corresponding to the

selected eigenfrequency, can be considered, as the amplitudes of other forms of vi-

brations are relatively low enough to be neglected. This conclusion was also verified

by the measurements performed using a laser vibrometer. Thus, the control strategy,

resulting from the theoretical approach presented in Sections 5.1-5.4 can be signifi-

cantly simplified. The adaptivity process can be based only on the frequency analysis

of the signals from the piezoelectric sensors, as the state of the structure in the con-
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sidered case is uniquely determined by the resonant frequency and the amplitude of

vibrations. The optimal control strategy in such case should theoretically consist of

setting the gains of all the feedback loops of the system to their maximum available

values.

The measurements were performed using a microphone positioned at different

points of the ambient space. The coordinates of those points are expressed in terms of

the assumed global coordinate system, with the plate located in the plane z = 0. The

microphone was calibrated before each session of measurements, using a dedicated

calibrator from Brüel&Kjær. Thus, the determined amplitudes of the electric signals

from the preamplifier were converted into the true values of the acoustic pressure.

The experiments were carried out for various configurations of the involved feedback

loops in the active control system. The results are presented in plots and tables below.

The non-dimensional gain value Gx

[

V
V

]

, where x denotes the number of considered

feedback loops, define the actual gain of the corresponding voltage controlled am-

plifier (see schematic diagram in Figure 5.1), set by the digital part of the control

system. It does not include either the gain of the charge amplifier or the gain of the

output power amplifier – those parameters of the control system were held constant

for every measurement.

The presented results concern four different vibrational modes of the plate, namely,

the 9th, 11th, 13th, and 14th mode (see Table 2.1 for details). The selected forms of

vibrations were chosen due to relatively high observed sound pressure levels and due

to the fact that the considered results are representative in terms of the control system

performance and stability. In other words, the presented levels of sound reduction

cover the whole range of the observed cases, for all investigated structural modes of

the considered structure, including the both highest and lowest reduction levels. The

number of introduced results is limited to such a representative set, as the purpose

of the present study is not to focus on one, specific structure and system configura-

tion, but to investigate the general idea and the underlying mechanisms basing on a

representative example.

Plots in Figures 5.7 and 5.8 present the measured sound pressure level generated

by the plate structure vibrating in the 11th structural mode at frequency 320 Hz, at

a point of the ambient space with coordinates x = 2 cm, y = 25 cm, z = 3 cm, as a

function of the gain of feedback loops no. 1 and 2, respectively. Only one feedback

loop of the control system was active during the measurements. As it can be seen,

very similar, significant reductions in the sound pressure level – reaching about 3 dB

– were achieved in both considered cases. The investigations also revealed problems

with stability of the developed active control system which were not predicted by the
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theoretical considerations. In theory, the utilized collocated pairs of piezoelectric sen-

sors and actuators should ensure a total stability of the system. However, in practice

it turned out, that for every frequency of vibrations and every feedback loop exists

some critical gain value beyond which the plate falls into some higher order reso-

nances, at eigenfrequencies greater than about 1-2 kHz. Decreasing the gain below

this critical value instantly eliminates the problem. Thus, the maximum gain value in

all of the presented further plots and tables is not the maximum available gain but it

is determined only by the stability issues (unless otherwise noted).
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Mode no. 11, frequency 320 Hz, feedback loop no. 1

Figure 5.7 Sound pressure level as a function of gain value of feedback loop no. 1 for

the plate vibrating in the 11th structural mode, at frequency 320 Hz. Position of the

microphone: x = 2 cm, y = 25 cm, z = 3 cm.

The plot in Figure 5.9 presents the measured sound pressure level generated by

the plate structure vibrating in the 11th structural mode at frequency 320 Hz, at a point

of the ambient space with coordinates x = 2 cm, y = 25 cm, z = 3 cm, as a function of

gains G1 and G2 of feedback loops no. 1 and 2, operating together. As it can be seen,

by combining the operation of the two independent control loops, further reduction in

generated noise can be achieved – the minimum measured sound pressure level in this

case is equal 74,72 dB, which is about 3 dB less than the minimum levels obtained

for both feedback loops operating alone (about 6 dB drop in total is observed). It is

worth noticing, that this result is obtained for lower maximum available gain values

than in the cases illustrated in Figures 5.7 and 5.8, as the critical gains determined by

the stability issues were significantly lower, as compared to the independent, single-

feedback loop operation.

The plots in Figures 5.10 and 5.11 present the measured sound pressure level
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Mode no. 11, frequency 320 Hz, feedback loop no. 2

Figure 5.8 Sound pressure level as a function of gain value of feedback loop no. 2 for

the plate vibrating in the 11th structural mode, at frequency 320 Hz. Position of the

microphone: x = 2 cm, y = 25 cm, z = 3 cm.
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Figure 5.9 Sound pressure level as a function of gain values of feedback loops no.

1 and 2, for the plate vibrating in the 11th structural mode, at frequency 320 Hz.

Position of the microphone: x = 2 cm, y = 25 cm, z = 3 cm.

generated by the plate structure vibrating in the 13th structural mode at frequency

380 Hz, at the same point of the ambient space, with the coordinates x = 2 cm, y =

25 cm, z = 3 cm, as a function of the gain of feedback loops no. 1 and 2, respectively.

About a 3,5 dB drop in the sound pressure level is observed due to the operation of

loop no. 1, and almost a 6 db drop for loop no. 2. Thus, the reduction is better than

in the previously described case concerning structural mode no. 11, even though the
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maximum applied gain values were identical in both cases. This observation agrees

with the theoretical predictions that the control performance should strongly depend

on both parameters of vibrations and modal characteristics of the utilized sensor-

actuator pairs.
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Figure 5.10 Sound pressure level as a function of gain value of feedback loop no. 1

for the plate vibrating in the 13th structural mode, at frequency 380 Hz. Position of

the microphone: x = 2 cm, y = 25 cm, z = 3 cm.
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Figure 5.11 Sound pressure level as a function of gain value of feedback loop no. 2

for the plate vibrating in the 13th structural mode, at frequency 380 Hz. Position of

the microphone: x = 2 cm, y = 25 cm, z = 3 cm.

The plot in Figure 5.12 presents the measured sound pressure level generated by
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the plate structure vibrating in the 13th structural mode at frequency 380 Hz, at a point

of the ambient space with the coordinates x = 2 cm, y = 25 cm, z = 3 cm, as a function

of gains G1 and G2 of feedback loops no. 1 and 2, operating together. Once again, the

observations prove that the joint operation of two independent feedback loops helps to

achieve a better control performance than the single-feedback loop operation. In the

described case about a 2,5 dB additional reduction is observed for the joint operation

and identical maximum gain values.
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Figure 5.12 Sound pressure level as a function of gain values of feedback loops no.

1 and 2, for the plate vibrating in the 13th structural mode, at frequency 380 Hz.

Position of the microphone: x = 2 cm, y = 25 cm, z = 3 cm.

The plot in Figure 5.13 presents the measured sound pressure level generated

by the plate structure vibrating in the 14th structural mode at frequency 411 Hz, at

the point of the ambient space with coordinates x = 2 cm, y = 25 cm, z = 3 cm, as a

function of the gain of feedback loop no. 4. In this case, about a 1 dB drop is achieved.

This result, as compared to the other results concerning different modes of vibrations

and different feedback loops, presented for instance in Figures 5.10 and 5.11, can be

regarded as a relatively poor level of noise reduction.

The plot in Figure 5.14 presents analogous results to those presented in the Fig-

ure 5.13, however, obtained for two different feedback loops – namely, no. 1 and 2,

acting simultaneously. As it can be seen, a significantly greater level of noise reduc-

tion is obtained in this case – reaching a maximum of about 4 dB.

Table 5.2 presents measured sound pressure levels for various combinations of

cooperation of feedback loops no. 1, 2 and 4, obtained for analogous conditions to

which the plots in Figures 5.13 and 5.14 are referred. The results clearly indicate that
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Figure 5.13 Sound pressure level as a function of gain value of feedback loop no. 4

for the plate vibrating in the 14th structural mode, at frequency 411 Hz. Position of

the microphone: x = 2 cm, y = 25 cm, z = 3 cm.
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Figure 5.14 Sound pressure level as a function of gain values of feedback loops no. 1

and 2, for plate vibrating in the 14th structural mode, at frequency 411 Hz. Position

of the microphone: x = 2 cm, y = 25 cm, z = 3 cm.

the most beneficial (in terms of achievable levels of sound reduction) is cooperation

of all the considered feedback loops. An interesting observation is that by introducing

the feedback loop no. 4 to loops no. 1 and 2, a further 3,5 dB drop in sound pressure

level is obtained – despite the fact that the loop number 4 operating alone allowed

only for about 1 dB of noise reduction (see plot in Figure 5.13).

The plots in Figures 5.15-5.17 present the sound pressure level generated by the
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G1 G2 G4 SPL [dB]

0 0 0 80.32

3 0 0 78.78

0 5 0 79.64

0 0 3 79.64

3 5 0 76.24

3 0 3 74.93

0 5 3 77.07

3 5 3 72,89

Table 5.2 Sound pressure level as a function of gain values of feedback

loops no. 1, 2 and 4 for the plate vibrating in the 14th structural mode, at frequency

411 Hz. Position of the microphone: x = 2 cm, y = 25 cm, z = 3 cm.

plate structure vibrating in the 9th structural mode at frequency 269 Hz, at a point of

the ambient space with coordinates x=10 cm, y=15 cm, z=5 cm, as a function of the

gains of the feedback loops no. 2, 3 and 4, respectively. The achieved level of noise

reduction is very low in all presented cases – in fact, for feedback loops no. 3 and 4 it

may actually be considered as negligible.
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Mode no. 9, frequency 269 Hz, feedback loop no. 2

Figure 5.15 Sound pressure level as a function of gain value of feedback loop no. 2

for the plate vibrating in the 9th structural mode, at frequency 269 Hz. Position of the

microphone: x = 10 cm, y = 15 cm, z = 5 cm.

The plots in Figures 5.18-5.21 present the sound pressure level generated by the

plate structure vibrating in the 13th structural mode at frequency 380 Hz, at a point of

the ambient space with the coordinates x = 10 cm, y = 15 cm, z = 5 cm, as a function

of the gains of all the considered feedback loops. As it can be seen, the achieved level
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Figure 5.16 Sound pressure level as a function of gain value of feedback loop no. 3

for the plate vibrating in the 9th structural mode, at frequency 269 Hz. Position of the

microphone: x = 10 cm, y = 15 cm, z = 5 cm.
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Figure 5.17 Sound pressure level as a function of gain value of feedback loop no. 4

for the plate vibrating in the 9th structural mode, at frequency 269 Hz. Position of the

microphone: x = 10 cm, y = 15 cm, z = 5 cm.

of noise reduction in the case of feedback loops no. 1 and 2 is higher than in the cases

presented in Figures 5.10 and 5.11 concerning different point of the ambient space.

The noise reduction achieved with feedback loop no. 3 is almost none. For feedback

loop no. 4 only slight drop in the sound pressure level, less than 1 dB is observed.

The results obtained for the joint operation of feedback loops no. 1 and 2, con-



5.6 Experimental investigations 115

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
73

74

75

76

77

78

G1 [V/V]

S
P

L
[d

B
]

Mode no. 13, frequency 380 Hz, feedback loop no. 1

Figure 5.18 Sound pressure level as a function of gain value of feedback loop no. 1

for the plate vibrating in the 13th structural mode, at frequency 380 Hz. Position of

the microphone: x = 10 cm, y = 15 cm, z = 5 cm.
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Mode no. 13, frequency 380 Hz, feedback loop no. 2

Figure 5.19 Sound pressure level as a function of gain value of feedback loop no. 2

for the plate vibrating in the 13th structural mode, at frequency 380 Hz. Position of

the microphone: x = 10 cm, y = 15 cm, z = 5 cm.

cerning the same operating conditions as in the previously described cases, illustrated

in Figures 5.18-5.21, are presented in Figure 5.22. A 10,2 dB maximum noise re-

duction level is achieved. Once again it can be seen that a simultaneous operation of

multiple feedback loops result in significantly higher levels of noise reduction than in

the cases of single loops operating alone, with the same maximum gain values.
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Figure 5.20 Sound pressure level as a function of gain value of feedback loop no. 3

for the plate vibrating in the 13th structural mode, at frequency 380 Hz. Position of

the microphone: x = 10 cm, y = 15 cm, z = 5 cm.
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Figure 5.21 Sound pressure level as a function of gain value of feedback loop no. 4

for the plate vibrating in the 13th structural mode, at frequency 380 Hz. Position of

the microphone: x = 10 cm, y = 15 cm, z = 5 cm.

Table 5.3 presents the measured sound pressure levels generated by the plate struc-

ture vibrating in the 13th structural mode at frequency 380 Hz, at a point of the ambi-

ent space with the coordinates x = 10 cm, y = 15 cm, z = 5 cm, as a function of various

combinations of the gain values of all the feedback loops included in the control sys-

tem. The initial value of the sound pressure level, measured with the control system
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Figure 5.22 Sound pressure level as a function of gain values of feedback loops no.

1 and 2, for the plate vibrating in the 13th structural mode, at frequency 380 Hz.

Position of the microphone: x = 10 cm, y = 15 cm, z = 5 cm.

turned off, is equal 77,74 dB. As it can be seen, in this case introduction of feedback

loops no. 3 and 4 has almost no effect on the achieved level of noise reduction.

G1 G2 G3 G4 SPL [dB]

0 0 0 0 77.74

2 0 0 0 75.3

0 2 0 0 71.9

0 0 2 0 77.64

0 0 0 2 77.26

2 2 0 0 69.87

2 0 2 0 75.42

2 0 0 2 74.92

0 2 2 0 72.08

0 2 0 2 71.53

0 0 2 2 77.36

2 2 2 0 70.09

2 2 0 2 69.87

2 0 2 2 74.92

0 2 2 2 71.71

2 2 2 2 69.87

Table 5.3 Sound pressure level as a function of gain values of feedback

loops no. 1, 2, 3 and 4 for the plate vibrating in the 13th structural mode, at frequency

380 Hz. Position of the microphone: x = 10 cm, y = 15 cm, z = 5 cm.

The plots in Figures 5.23-5.25 present the measured sound pressure level gener-
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ated by the plate structure vibrating in the 11th structural mode at frequency 320 Hz,

at a point of the ambient space with the coordinates x = 10 cm, y = 20 cm, z = 20 cm,

as a function of the gains of feedback loops no. 1, 2 and 4, respectively. About a

2 dB drop in the sound pressure level is achieved for the maximum available gain of

feedback loop no. 1, a 3 dB drop for loop no. 2, and less than 1 dB for loop no. 4.

However, by combining the operation of loops no. 1 and 2 in the control system, the

maximum achievable noise reduction is increased to 5,56 dB – the relevant results are

presented in Figure 5.26.
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Mode no. 11, frequency 320 Hz, feedback loop no. 1

Figure 5.23 Sound pressure level as a function of gain value of feedback loop no. 1

for the plate vibrating in the 11th structural mode, at frequency 320 Hz. Position of

the microphone: x = 10 cm, y = 20 cm, z = 20 cm.

Table 5.4 presents the measured sound pressure level generated by the plate struc-

ture vibrating in the 11th structural mode at frequency 320 Hz, at a point of the am-

bient space with the coordinates x = 10 cm, y = 20 cm, z = 20 cm, as a function

of various combinations of gain values of feedback loops no. 1, 2 and 4. Despite the

fact that in this case the maximum gains of all the loops were assumed to be signif-

icantly lower than in the previously described cases concerning analogous situation,

presented in Figures 5.23-5.26, the maximum achieved level of noise reduction is

higher, equal to 6,02 dB. Thus, in this case it was possible to compensate the lower

values of applied feedback gains with the higher number of involved control loops.
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Mode no. 11, frequency 320 Hz, feedback loop no. 2

Figure 5.24 Sound pressure level as a function of gain value of feedback loop no. 2

for the plate vibrating in the 11th structural mode, at frequency 320 Hz. Position of

the microphone: x = 10 cm, y = 20 cm, z = 20 cm.
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Figure 5.25 Sound pressure level as a function of gain value of feedback loop no. 4

for the plate vibrating in the 11th structural mode, at frequency 320 Hz. Position of

the microphone: x = 10 cm, y = 20 cm, z = 20 cm.

5.7 Conclusions

Theoretical and experimental investigations on possibilities of an active control of

sound radiated by a vibrating thin plate structure have been described in the present

chapter. The developed control approach, based on the original concept and design of

the active control system has been introduced and evaluated.
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Figure 5.26 Sound pressure level as a function of gain values of feedback loops no.

1 and 2, for the plate vibrating in the 11th structural mode, at frequency 320 Hz.

Position of the microphone: x = 10 cm, y = 20 cm, z = 20 cm.

G1 G2 G4 SPL [dB]

0 0 0 65.66

3 0 0 63.62

0 3 0 63.62

0 0 3 65.12

3 3 0 60.74

3 0 3 62.68

0 3 3 62.17

3 3 3 59.64

Table 5.4 Sound pressure level as a function of gain values of feedback

loops no. 1, 2 and 4 for the plate vibrating in the 11th structural mode, at frequency

320 Hz. Position of the microphone: x = 10 cm, y = 20 cm, z = 20 cm.

The theoretical investigations led to derivation of equations describing the rela-

tions between the parameters of the control system and the vibrational characteristics

of the considered structure. Based on the considerations presented in Chapter 3 of

the present study, under the assumed acoustic boundary conditions, the modal am-

plitudes of vibrations can be converted directly into the parameters describing the

acoustic pressure field in a given point of the ambient space. The derived equations,

presented in the previous sections of the present chapter, reveal a complex character

of the involved phenomena. Each of the piezoelectric sensors responds to vibrations

of the structure in some predefined manner. The induced electric signals are amplified

and fed to the relevant actuators which in turn become the secondary sources of vi-
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brations, influencing the responses of all involved sensors. The resulting steady state

conditions are thus described with relatively complicated formulas which include all

the introduced relationships.

The signals from the piezoelectric sensors can be also used to determine the modal

parameters of vibrations of the plate. However, due to the fact that only a limited

number of transducers is available in the control system, the information obtained in

such way is in general incomplete. The developed adaptation algorithms, presented

in Section 5.4 allow to take advantage of any available additional knowledge about

the parameters of the considered structure or the primary excitation force, in order to

improve the adaptivity capabilities of the control system.

The experimental investigations carried out in an anechoic chamber revealed that

only the resonant vibrations of the considered structure are the source of significant

noise emission. For off-resonant frequencies the measured sound pressure levels and

amplitudes of signals induced on the piezoelectric sensors were too low to efficiently

perform the control process. Low signal to noise ratios caused in such cases instant

problems with stability, as the feedback gains had to be set to relatively high values, in

order to induce significant amplitudes of vibrations using piezoelectric actuators. The

measured amplitudes of the acoustic pressure in the ambient space were close to the

noise floor, and the achievable control performance under such conditions was almost

absent. The plate revealed very sharp resonant characteristics in the considered, low

frequency range and thus, the experiments were focused on resonant vibrations only.

The experimental evaluation of the developed and implemented active vibroa-

coustic control system revealed that under the assumed conditions relatively high

levels of noise reduction, reaching up to about 10 dB, can be achieved. The use of

multiple feedback loops in the system ensured in all cases significantly better results

than single feedback loop operation. The achievable control performance strongly

depends on the relation between vibrational characteristics of the plate and modal

parameters of the involved sensor-actuator pairs, as well as on the choice of a refer-

ence point in the ambient space, at which the sound pressure level is measured. This

complex relation is consistent with the theoretical predictions.

Collocated sensor-actuator pairs were used in the feedback loops. Accordingly

to the results of theoretical considerations, such a configuration should ensure a to-

tal stability of the control system. However, the experimental investigations showed

that in all cases increasing feedback gains beyond some critical values caused loss of

stability and uncontrolled vibrations of the plate in the higher frequency modes (with

frequencies 1-2 kHz and more). Those critical gain values depended on the specific

numbers of involved feedback loops and current parameters of the primary excitation
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source. The described problems are most probably caused by the imperfections in

the control system which were not taken into account in theoretical considerations.

For instance, slight discrepancies in a relative positioning of the sensor and actuator

belonging to the same feedback loop, could explain the observed differences in criti-

cal gain values for various control loops. Another factor that could contribute to the

loss of stability are non-ideal parameters of the electronic components and circuit, the

importance of which can increase at higher frequencies.



Chapter 6

Concluding remarks

6.1 Summary

The aim of the present study was to develop, implement, and evaluate an active vi-

broacoustic control system for reduction of noise generated by vibrating thin plate

structures with arbitrary boundary conditions. The system, including both hardware

and software, has been successfully designed, implemented, and tested, proving a

high potential in terms of the described tasks. Many various aspects regarding the

considered subject were investigated.

The source of the acoustic radiation are the vibrations of the considered thin plate

structure, excited by an external harmonic force. The issues concerning determination

of the response of the plate to the external excitation were discussed in Chapter 2. The

relevant formulas were derived and the results of the numerical simulations were pre-

sented. It was shown that precise modeling of the actual mounting conditions of the

plate is important in terms of view of the accuracy of the determined eigenfrequencies

and the corresponding mode shape functions. The orthogonality of the eigenfunctions

determined numerically using various mesh resolutions was also investigated. An im-

portant conclusion drawn from the results of those investigations, was the necessity

of using relatively dense meshes of finite elements in order to avoid errors in further

computations, as many among the derived relations are based on the assumption of

fulfilling the orthogonality criteria by the shape functions.

The issues concerning coupling between the vibrating structure and the acoustic

medium were discussed in Chapter 3. It was shown that in the considered case, if

the plate is surrounded with air, the influence of the inertial loading introduced by

the medium on the vibrational parameters can be neglected. An original algorithm

for determination of a free-field acoustic pressure distribution, based on the Indirect
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Variational Boundary Element Method, was proposed. The algorithm was success-

fully implemented and tested. The obtained results of simulations were validated by

comparison with the results of experimental investigations carried out in an anechoic

chamber. The overall agreement between the numerical predictions and measure-

ments was fair, and the results of simulations were most accurate for the far-field re-

gion. Taking into account a high computational efficiency of the proposed approach,

it may be regarded as effective and useful tool for determining the acoustic pressure

field distribution generated by vibrating thin, rectangle-shaped plate structures.

The developed active vibroacoustic control system uses piezoelectric sensors and

actuators to sense and excite vibrations of the controlled structure. The issues re-

garding various aspects of utilization of piezoelectric transducers in such applications

were discussed in chapter 4. A new form of a theoretical description, introducing

modal sensitivity and selectivity functions was proposed. Using the introduced ap-

proach, modal parameters of sensors and actuators attached to various beam and plate

structures were determined both numerically and experimentally. It was shown that

proper positioning of small, rectangle-shaped piezoelectric transducers on the sur-

faces of the considered structures can provide either a very high or very low sensitivity

to selected forms of vibrations.

Special attention was given to the problem of exciting resonant vibrations of the

structure with piezoelectric transducers. Due to the fact that in such cases the ampli-

tudes of vibrations are limited by occurring nonlinear effects which were not included

in simple models used for theoretical considerations an important question was raised

if the relation between those amplitudes and the amplitude of the electric signal driv-

ing actuator is linear. The carried out experimental investigations confirmed this hy-

pothesis, with a very good accuracy.

An original technology for gluing piezoelectric transducers to the surfaces of

structures made of electrically conductive material was introduced. The developed

method allows to ensure both very good bonding conditions and sure electrical con-

nection, while preventing short-circuiting of the electrodes of the transducer. The

technology was implemented in practice and proved highly efficient in numerous ex-

perimental investigations. The relevant description can be found in Section 4.5 of the

present study.

Based on the developed form of description of modal parameters of piezoelectric

sensors and actuators, the equations linking the modal amplitudes of vibrations with

the parameters of the control system were derived. Fast and computationally effective

algorithms for solving the introduced formulas were developed and described in Sec-

tions 5.2 and 5.3. The results of investigations presented in Chapter 3 concerning the
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phenomenon of structure-borne sound generation allowed to link the amplitudes of

vibrations with the acoustic pressure field distribution in the ambient space. Based on

the introduced form of cost function, a control optimization algorithm was proposed.

In order to ensure the adaptivity capabilities of the system, an original algorithm for

determining the parameters of the external excitation source was developed and de-

scribed. The presented theoretical considerations are of great importance from the

point of view of the experimental part of the present study, as they allow to better

understand the observed phenomena.

The design and construction of the hardware components of the developed ac-

tive control system were presented in Section 5.5 of the present study. An original

approach, with a separate fully analogue feedback loop and digital control unit was

proposed. The system, as well as the relevant control software including the user

interface, were implemented in practice and tested in numerous experimental inves-

tigations. High levels of noise reduction, reaching up to about 10 dB were observed

for various points of the ambient space, forms of vibrations and configurations of the

control system (i.e., numbers of included feedback loops).

The obtained results of theoretical investigations, numerical simulations, and ex-

perimental research allow to conclude that the thesis of the present study is confirmed.

6.2 Scope of contribution

The following investigated issues are the original contribution of the present study on

the background of the current state of the art presented in Section 1.3:

• A novel active vibroacoustic control system (hardware and software) has been

developed and constructed. The system is described in Section 5.5.

• A dedicated control algorithm for determination of the optimal feedback gain

values in a decentralized active control system has been developed. The de-

tailed description of the algorithm is presented in Sections 5.1-5.3.

• A novel form of description of the active vibroacoustic control system based on

piezotransducers, introducing modal sensitivity and selectivity functions has

been developed. The modal parameters of sensors and actuators were deter-

mined analytically and numerically and compared to the results of the experi-

mental investigations carried out using various beam and plate structures made

from aluminium or composite materials, including the actual materials used in
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aviation. The introduced approach and the results of investigations are pre-

sented in Chapter 4.

• A dedicated adaptation algorithm for determination of the modal parameters

of the external force exciting vibrations of the controlled structure has been

developed. The algorithm is described in Section 5.4.

• A dedicated algorithm implementing the Indirect Variational Boundary Ele-

ment Method, intended for determination of acoustic radiation characteristics

of a vibrating, rectangle-shaped, thin plate structure with arbitrary boundary

conditions has been developed and implemented. The algorithm takes advan-

tage of the features of simple geometry of the considered problem to optimize

the computational time and cost. The obtained results of the numerical simu-

lations have been compared to the results of the experiments carried out in an

anechoic chamber. The relevant description can be found in Sections 3.4 and

3.5.

• The control performance and stability of the developed active vibroacoustic

control system have been evaluated during numerous experimental investiga-

tions carried out in an anechoic chamber. The results of experiments are pre-

sented in Section 5.6.

6.3 Recommendations for future work

The presented theoretical investigations concerning active control of vibrations of thin

plates with arbitrary boundary conditions can be developed into cases of different,

more complex structures. If only the undertaken assumptions regarding linearity of

the involved phenomena are fulfilled, then such procedure would require only deriva-

tion of new, relevant forms of modal sensitivity and selectivity functions of piezo-

electric transducers, as well as relations describing response to the external excitation

source. Those functions could be directly implemented into equations describing the

control system, introduced in Sections 5.2-5.4 of the present study. If such a new

structure would reveal significant levels of noise emission for off-resonant excita-

tions, then the potential and capabilities of the proposed approach could be entirely

utilized.

The developed algorithm for determination of acoustic radiation characteristics

of thin plate structures, based on the Indirect Variational Boundary Element Method,
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could also be a subject of further investigations. In this case, the recommended further

research would include the following issues:

• development of the proposed approach into more complex geometries,

• implementation of the developed solver using different, independent and more

computationally-effective environment,

• direct integration with structural dynamics analysis.

An interesting direction of further investigations is utilization of piezoelectric

transducers with more complex shapes in the control system – especially defining

such shapes of transducers that could ensure specific modal characteristics, for a given

number of forms of vibrations. Based on the introduced theoretical description of the

control process, the geometry of such elements could be optimized in terms of some

specific operating conditions. Different materials, such as, for instance, thin piezo-

electric cables could be used in order to achieve various, complex forms of transduc-

ers.

One of the major problems encountered during experimental investigations on ac-

tive vibroacoustic control, was the loss of stability associated with exceeding certain

critical feedback gain values. Due to the fact that the amplification levels are directly

connected with achievable control performance, elimination of the described prob-

lem, or at least maximization of the stability range is highly desired. This aim can

be achieved by either improving the parameters of collocated sensor-actuator pairs,

or by modifications of the electronic circuits of the control system. Additional low-

pass filters could be implemented, but one should notice that every filter introduces an

additional, frequency-dependent phase shift, and that the considered system is very

sensitive to phase differences. Thus, this effect should be compensated, possibly with

additional, controllable electronic circuit. The solution to the stability problem could

bring the presented approach closer to practical implementations in various real-life

structures and systems.
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