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Zusammenfassung

Die vorliegende Arbeit untersucht den Zusammenhang zwischen Skalen in Sys-
temen weicher Materie, der fiir Multiskalen-Simulationen eine wichtige Rolle
spielt. Zu diesem Zweck wurde eine Methode entwickelt, die die Approximation
der Separierbarkeit von Variablen fiir die Molekulardynamik und dhnliche An-
wendungen bewertet. Der zweite und grofere Teil dieser Arbeit beschéftigt sich
mit der konzeptionellen und technischen Erweiterung des “Adaptive Resolution
Scheme” (AdResS), einer Methode zur gleichzeitigen Simulation von Systemen
mit mehreren Auflésungsebenen. Diese Methode wurde auf Systeme erweitert,
in denen klassische und quantenmechanische Effekte eine Rolle spielen.

Die oben genannte erste Methode bendtigt nur die analytische Form der
Potentiale, wie sie die meisten Molekulardynamik-Programme zur Verfiigung
stellen. Die Anwendung der Methode auf ein spezielles Problem gibt bei er-
folgreichem Ausgang einen numerischen Hinweis auf die Giiltigkeit der Vari-
ablenseparation. Bei nicht erfolgreichem Ausgang garantiert sie, dass keine
Separation der Variablen mdoglich ist. Die Methode wird exemplarisch auf ein
zweiatomiges Molekiil auf einer Oberflache und fiir die zweidimensionale Version
des Rotational Isomer State (RIS) Modells einer Polymerkette angewandt.

Der zweite Teil der Arbeit behandelt die Entwicklung eines Algorithmus
zur adaptiven Simulation von Systemen, in denen Quanteneffekte beriicksichtigt
werden. Die Quantennatur von Atomen wird dabei in der Pfadintegral-Methode
durch einen klassischen Polymerring représentiert. Die adaptive Pfadintegral-
Methode wird zun#chst fiir einatomige Fliissigkeiten und tetraedrische Molekiile
unter normalen thermodynamischen Bedingungen getestet. Schlieflich wird die
Stabilitit der Methode durch ihre Anwendung auf fliissigen para-Wasserstoff bei
niedrigen Temperaturen gepriift.



Summary

This thesis investigates the connection between the length scales in soft matter
systems, which is very important in the field of multiscale modeling. For this
purpose a method was developed to evaluate the approximation of separation
of variables in molecular dynamics and related fields. A second issue, and the
main part of this thesis, concerns the conceptual and technical extension of the
“Adaptive Resolution Scheme” (AdResS), a method that allows the simulation
of a system with concurrent scales, to situations where quantum effects play a
role.

The first method mentioned above requires only the analytical form of the
potential as provided in most of the molecular dynamics programs. The outcome
of the application to a particular problem gives, in the case of a positive assess-
ment, a numerical indication about the validity of the separation of variables
and in the negative case the evaluation guarantees strictly that no separation
will be possible. This method is then applied to a diatomic molecule on a flat
surface and the 2D version of the Rotational Isomer State (RIS) model of a
polymer chain.

The second part of this thesis is about the development of an algorithm
to perform an adaptive resolution simulation where quantum effects can be in-
cluded, by mapping the quantum nature of an atom onto a classical polymer ring
representation within the path integral formalism. The path integral/adaptive
method is tested in a model liquid of monoatomic and tetrahedral molecules
at standard (ambient) thermodynamic condition. Finally, the robustness of the
method is assessed by using it to study liquid para-hydrogen at low tempera-
tures.
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Introduction

During the last few decades computer simulations have opened up the possi-
bility to increase our understanding of nature in several fields of the science.
Such versatility is due to the presence of a growing community of scientists and
the large amount of computational facilities. Computer simulation has become
extremely useful for scientists because it allows the study of complex systems.
It can provide information that is sometime inaccessible by experiments due to
the extreme conditions, impossible to reproduce in the laboratory. Furthermore,
computer simulations are used to test various theoretical approaches.

However, there still remains a class of problems where brute force simulations
are prohibitive due to the complexity of the system. Typically, the complexity
involves a large amount of degrees of freedom and the interplay between differ-
ent length and time scales. Many of these problems occur in the field of soft
matter. A common strategy to overcome these problems is to create simplified
models on each scale and then pass the information to next level of complexity
in a hierarchical way. Naturally, this give rise to the idea of coarse graining pro-
cedures to obtain relevant information from each level of description and thus
several methods have been developed for this purpose. So far, the validity of
such procedures is based on the reproducibility of the properties of interest and
a true control of the approximation can not be done in general a priori. In this
context is necessary to develop numerical tools to control the underlying coarse
grained procedures.

In the last few years several approaches have reached a level of technical
sophistication to study multiscale problems and among them the Adaptive Res-
olution Scheme (AdResS) has maintained also a conceptual development as one
can see in this thesis and references therein. The concept of adaptability helps
to couple several levels of description on the fly, allowing the flux of information
from one description to the other. However, the quantum-classical coupling is
considered to be a hard conceptual problem and the adaptability adds a major
difficulty. The present work extends the adaptability for the quantum descrip-
tion in the framework of the AdResS scheme.

This thesis consists of seven chapters:

e Chapter 1 introduces the basic concept of coarse graining in soft matter
systems and discusses some numerical techniques, that are used later to
obtain effective coarse grained potentials. We also discuss the possible



limitations of this approach.

e Chapter 2 is dedicated to our method called the Approximation of Separa-
tion of variables (ASV). This method was developed to quantify the error
introduced by techniques used to calculate the effective coarse grained
(CG) potential under the approximation of separation of CG variables.

e Chapter 3 is entirely dedicated to the classical Adaptive Resolution Scheme
(AdResS). We describe the concept of the AdResS equation of motion and
the thermodynamic equilibrium is defined in systems which change their
number of degrees of freedom on the fly. Then we use fractional calculus
to generalize the concept of the equipartition theorem and formally define
temperature in such conditions. For practical purposes, we comment on
the results of AdResS for the tetrahedral molecules where each molecule
is mapped onto one coarse-grained site. Finally, we dedicate a section to
comment on further theoretical developments.

e Chapter 4 is about the path integral approach, which is considered to be
an alternative formalism of quantum mechanics. This chapter starts by
showing how to apply the path integral approach for a free particle and
then generalizes the results for a quantum many-body system. Then the
molecular dynamics implementation of path integrals, known as PIMD
and the calculation of average of observables within the PIMD formalism
is described. Last section discusses the limitations of such implementation
and possible solutions.

e Chapter 5 is fully dedicated to our contribution which extends the concept
of AdResS for certain problems where the quantum character of particles
(e.g. delocalization) plays a central role and the adaptability of classical
and quantum particles takes place. For the quantum description we use
the path integral approach (see chapter 4). We describe how to obtain an
effective coarse grained potential from the path integral representation.
Finally, we applied this concept to two model systems, the monoatomic
liquid and molecular liquid, for several degrees of “quantumness”.

e Chapter 6 consists of the first real application reported with our adap-
tive/path integral method to the parahydrogen case.

e Finally, the conclusion and perspectives are presented in Chapter 7.



Chapter 1

Systematic Coarse Graining

Statistical thermodynamics describes the macroscopic state of N particles (e.g.
N4 = 6.0221 x 10**mol™!), in terms of a small set of variables, the so-called
“thermodynamic variables” (e.g. pressure, entropy, etc), which depend on the
microscopic states (e.g. positions and velocities of particles). One could inter-
pret these macroscopic variables as an effective or a coarser description of the
microscopic states. At equilibrium, statistical thermodynamics provides uni-
versally accepted recipes for such coarse graining. Thermodynamic potentials
contain all the relevant information about a thermodynamic system in a com-
pact format, and these potentials can be calculated via partition functions in
terms of statistical weighting.

Nowadays, due to the rapid enhancement of computational resources [1],
one may think that the computer simulation of soft condensed matter represents
merely a technical task of running larger systems and longer times with standard
simulation schemes and that there is no a conceptual challenge. Atomistic
simulations based on molecular dynamics (MD) or monte carlo (MC) have shown
to be successful in order to explore the potential energy surface (PES) [2] of
systems at the molecular scale (i.e. few ps and nm), but there are still serious
limitations for a detailed molecular description of mesoscopic scales. The wide
time and length scales of such systems combined with the interplay between
different scales makes the theoretical description harder and unfeasible to make
meaningful comparison with experiment.One can have an idea of this issue, for
instance, in the field of bio-molecular simulation, which requires one to access
several scales with a large variety of complexity. The topic of protein-generated
(or mediated) membrane curvature which is known as membrane “remodeling”
for example: protein modules (e.g. Bin/amphiphysin/Rvs domain) can remodel
liposomes having initial diameters of 20 nm into thin tubulated structures with
diameters on the order of 20 to 50 nm over time-scales longer than microseconds
[3]. Another common example is the folding of proteins of more than fifty
residues using all-atom force fields. A computer simulation covering a time
scale of 5 x 1078s for a heptapeptide in methanol succeeds in capturing the
folding process [4,5]. For larger systems direct atomistic simulation has been



less successful [6,7]. Traditionally, computer simulations are restricted to short
length scales or processes which relax in short time scales.

In order to bridge the atomistic and the mesoscopic scales, one has to develop
novel approaches that can access longer times and larger length scales. One such
approach is to coarse-grain a system, so that a group of atoms is clustered into
a structureless CG bead (i.e. a superatom), which retains the essential physics
of interest (see Figure 1.1). These CG beads interact through more efficient
potentials where the “fast” variables responsible for the time limitation have
been integrated out during its derivation. One expects to get softer potentials
which allow the use of larger time steps. To sum up, the system is replaced by
fewer particles (CG beads) which mimic the phenomena of interest as accurately
as possible and it is able to reach longer time scales.

Explicit Particles CG Particles

c‘go.«

>

1 bead per monomer

polymer ‘

Figure 1.1: A pictorial coarse grained representation of the a-glucose molecule
where one monomer has been mapped onto one bead [8].

The next section is about generalities of the effective coarse-grained poten-
tial.

1.1 Effective potential for coarse graining

As mentioned before, it is essential to preserve equilibrium thermodynamic prop-
erties of the original system in coarse-graining methodologies. This guarantees
the predictability of the coarse grained models in a certain range of interest.
Consider an explicit system of N particles with coordinates {r} =71 ...7x. Let
us assume for simplicity that one is able to distinguish the “important” coordi-
nates r’ from the full set of variables. In general the partition function, Z, for



a system of N distinguishable particles is given by
AN :/ drdp e~ M/ksT (1.1)

where H is the total Hamiltonian (i.e kinetic and potential energy) and kg is
Boltzmann‘s constant. From this expression, one can obtain the Helmholtz free
energy A for a given volume and temperature T as follows,

A:—kBTanN. (1.2)

From the Eq. 1.1 one notices that the partition function contains two contribu-
tions

ZN = Ztrans X Zconf (13)

where Zirans and Zeons is the corresponding translational and configurational
contributions. While Z,,s depends on the temperature and masses of the parti-
cles, its configurational part contains the conservative potential of the complete
system, V(r), as follows,

Zconf:/ dre=V()/kBT, (1.4)

In coarse graining one wishes to obtain an effective potential V% (r*) such that
the Boltzmann distribution in the reduced space of important variables remains
the same as the equilibrium distribution of such varibles in the atomistic model.
As a consequence the effective potential can be defined as

e~ U/ /keT _ @ /dr e_V(r)/kBTé(r -r). (1.5)
conf

From Eq. 1.5 it is clear that the effective coarse grained potential is not a conven-
tional potential, but rather a many-body configuration free energy, the so called
potential of mean force (PMF). Such an approach is considered as a bottom-up
reconstruction of the effective potential because of the use of atomistic simula-
tions (fine-grained) to derive such a potential in the CG scale. In practice it
is very inefficient when one has to deal with multidimensional potentials (e.g.
large molecules or membranes solvated in water). It is, however, convenient
for low dimensional problems (e.g. a one dimensional reaction coordinate that
describes the essential event).

In almost all cases the bottom-up reconstruction of the effective potential
will not get the precision required to accurately predict thermodynamic quan-
tities at the CG level. Alternatively one can take a top-down approach, which
basically parameterizes the CG models from a macroscopic experimental data.
For instance, according to important thermodynamic information [9] or impor-
tant macroscopic structure of the reference system [10] in order to retain as
much as possible the essential physics of interest. In the following section we
will briefly introduce the structural coarse graining which has been used in this
thesis.



1.2 Structure-based coarse-graining

The basic idea of structure-based coarse-graining is to guarantee a consistency
between the structure of high resolution models (atomistic scale) and the low
resolution ones (coarse grained scale). Ideally, the structure agreement should
hold down to the smallest length scale, which is in the order of the CG unit.
One has to be aware that in general all-atom configurations correspond to a
single CG conformation [11]. Although there is not a one-to-one correspondence
between the CG and full-atom configurations, it is very important that the
ensemble of conformations of the CG model corresponds to the atomistic ones.In
practice, the structural coarse-graining is done through the mapping of certain
distribution functions between the mapping points (center of masses of CG
beads) in the reference system (full atomistic). Although there is no unique set
of mapping points, their choice relies on numerical convergence of the structural
property [12] to be calculated.

At this point, one should comment of the methodologies used to generate
the CG forced field. There are several ways to do this. A popular one is to fit a
pair potential, so that it reproduces the structural quantity desired, such as the
radial distribution function, g(r). Ideally, the form of the potential should be
independent of the procedure used to calculate it, as proved by Henderson [13],
where two “pair potentials” that reproduce the same radial distribution function
are equal up to a constant. A more sophisticated mathematical proof can be
found in reference [14]. Conventionally, one derives this effective potential at
a given state-point. Thus, one should expect “transferability problems” when
that potential is used at different state points.

Technically, there is a set of very efficient methods used to obtain such effec-
tive potentials. It is important to note that, in these methods small numerical
errors can lead to different effective potentials, during the fitting of the macro-
scopic property such as radial distribution function. Among the most popular
ones are the iterative procedures, such as the Iterative Boltzmann Inversion
(IBI) or Reverse Monte Carlo (RMC). They try to reproduce structural infor-
mation (e.g. radial distribution functions) which can be taken from experiments
or all-atom simulations for a given thermodynamic state. In 2009 a software
named “VOTCA” [15] designed specifically for structural coarse graining was re-
leased and the current version contains several well-known traditional methods
for constructing the effective potential. In this thesis work we used the Iterative
Boltzmann Inversion for calculating the effective nonbonded interactions, and
the next section is dedicated to it.

1.3 Nonbonded interaction potentials

The main aim of deriving an effective nonbonded potential is to reproduce struc-
tural properties. These are mainly contained in the radial distribution functions
of some soft matter systems (e.g. liquids or polymer melts). This information is
commonly obtained from experiment or atomistic simulations. The basic idea



is to obtain numerical (“tabulated”) potentials, which act between the coarse
grained units. In a similar way the same coarse grained procedure can be made
for bonded interactions (see ref. [16]).

1.3.1 The Iterative Boltzmann Inversion

The implementation for non-bonded interactions starts with an initial guess for
the nonbonded potential, usually the Boltzmann inverse of the target giarget (r)
is chosen as a first guess,

VS o(r) = kBT 10g grarger (1) (1.6)

where T is the temperature and kp is Boltzmann’s constant. Last expression
is known as the potential of mean force. One then runs a CG simulation and
obtains a new g(r) which usually does not match the target structure due to the
multibody interaction. This is because the potential of mean force (Eq. 1.6) is
a good estimate for the pair interaction of highly dilute systems. To achieve the
desired convergence an additional correction has to be introduced through the
following iterative scheme

V€S 1 = VG, + kT o ) (1)
’ ’ Jtarget (T)

Basically, the initial guess for the potential can be iteratively refined until the de-
sired structure is obtained. For small molecules and simple liquids such as water
and benzene at normal conditions, this process is powerful and straightforward
to implement. On the other hand, for multicomponent system (several types of
CG beads) e.g. liquid crystals or polymer melts, the process of determining the
nonbonded potential is more complicated [17]. The iterative procedure guaran-
tees a nice agreement with the target distribution but not with the pressure.
Next section explains how to deal with this problem.

1.3.2 Pressure correction

During the structure-based coarse-graining, it is also important to fit the pres-
sure at the density of the target system in order to retain as much as possible
the state point of the all atom model. It is well-known that one can fit either
the pressure or the compressibility, but not both simultaneously [18]. Typically,
a linear term is added to the nonbonded potential interatively in order to fit the
pressure:

r

AV(r) = A(1 —

) (1.8)
Teut

for r < reue, where 7.4 is the cutoff radius of the pair nonbonded potential and A

is an arbitrary constant which can be estimated from the virial expansion [16].

Basically, the correction of Eq. 1.8 yields a constant force that makes the

interaction repulsive if A is positive, and more attractive in the opposite case.



One runs into trouble if A is not small enough, it can affect the overall structure
and, thus it will have to be readjusted until a good balance between pressure
and the radial distribution can be obtained. Such a process could delay the
convergence of the target radial distribution function of interest.

1.4 Limitation of structure-based coarse-graining

It is worthwhile to emphasize that identifying the proper set of relevant
variables (CG ones) is the key to success in any systematic coarse-graining
procedure. In other words, one has to first identify a suitable set of relevant
variables for a coarser target level and then express them in terms of the variables
of the finer resolution. The latter is taken as the reference in the simulation.
In many cases, this is given by the atomistic level with particle positions and
momenta as a variables.

Note that the assumption of a pairwise potential is suitable in many cases
where the three-body or higher order forces are not so relevant for the level
of description. However, one can not expect the same representation of “all
properties of the system” between the coarser description and the atomistic
one. The representability problems are widely spread in coarse-grained
descriptions of soft matter [9,18].

Another essential problem is the degree of transferability of the CG model
from one thermodynamic condition to another. In principle, as stated before,
CG potentials cannot be fully transferable due to the reduction of degrees of
freedom (some information has been averaged out), which simplifies the com-
plexity of the system.

Finally, the dynamics of coarse grained models in many cases does not
correspond to the real dynamics. Generally, CG dynamics is faster than the un-
derlying atomistic one. Thus the CG dynamics must be properly interpreted; in
any case the fact that one can run much longer simulations implies a much more
efficient statistical sampling for the calculation of static equilibrium properties.



Chapter 2

Approximation of Separation
of Variables

A relevant problem in molecular-dynamics (MD) simulations is the determina-
tion of the minimal set of degrees of freedom (DOFs) to be employed in the
simulation study by a systematic procedure. Particularly, in the field of coarse
grained simulations, one would like to determine the set of relevant variables
which are sufficient to properly characterize the phenomena under investigation.
Also in complementary fields such as the study of rare events (e.g protein fold-
ing or crystal nucleation) the choice of the “collective variables (CVs)”, typically
used in transition path sampling [19] or metadynamics [20] is characterized by
the same problem. The choice of a small set of variables is generally guided
by chemical or physical intuition and does not always allow for a systematic
control of the underlying approximations. In this context it would be optimal
to provide some criteria to control, in a systematic way, the choice of the set of
DOFs (eg. reaction coordinate or CVs).

In this chapter we present the basis of a criterion to evaluate how separable
two DOFs are and its extension to study the interdependency of several DOFs.
Our algorithm [21] mainly requires as input the basic information contained in
the potential energy surface (PES) [2]. The basic idea behind the separability
of some DOFs in the PES typically leads us to propose a reduction in the
dimensionality of the problem. In complex systems, the PES contains crucial
information; in an extreme case, if two DOFs are independent their evolution
occurs in two orthogonal spaces. This means that one could neglect one of these
variables without altering the dynamic evolution of the system in the space of
interest.

The present chapter begins by exposing the basic idea of how to evaluate
the separability of two DOFs through the method developed and called the
approximation of separation of variables (ASV). A methodological example of
how to apply the ASV will illustrate the idea (the case of the diatomic molecules
with a flat surface). And finally we apply the ASV method to a more realistic



system, namely the RIS model of polymer chain.

2.1 The ASV: a first criterion

For practical purposes let us start considering a two dimensional potential of
the form V = V(z,y): the extension to more variables will be discussed later
on. The analytical form of V' is given and only in the case that the two variables
are fully separable one has that:

Vi(z,y) = Vi(z) + Va(y) (2.1)
Or equivalently one could write V' for any couple of fixed points xg, yo as:

V(z,y) = Vi(z) + Va(y) = V(z,90) + V(x0,y) — V(x0, Y0). (2.2)

In other fields of science the fixed point has many meanings, for example, in
mathematics is defined as a point that is mapped to itself by the function, in
physics is commomly used in the renormalization group theory languagee, in
chemistry is used as the point under which rotation of the molecule occurs, to
name a few. In this thesis the fixed points are defined as the set of points that
decouple the potential for each DOF (see Eq. 2.2).

Up to now this is exact and represents the ideal case of complete separability
of two DOFs. A reasonable criterion to indicate how good the approximation of
separation of variables is, is to calculate its deviation from the ideal case of Eq.
2.2. This can be done with the definition of an estimator A of the difference
between the true potential where the variables are still coupled and the potential
where one introduces by hand the separability in the fashion of Eq. 2.2. For
instance, given a potential V(z,y) where z and y are not decoupled one defines
A as,

Asg o, y) = V(z,y) = [V(z,90) + V(z0,y) — V(x0,50)], (2.3)

Vx,y # xo,yo. Basically this is a point-by-point evaluation in order to compare
the potential V' and its respective version where the ASV was introduced.

To know how meaningful the energetic discrepancy between the coupled
potential and the ASV for a specific problem is, one needs to define a scale of
energy. Since we deal with energy scales of the order of thermal fluctuations
(~ kpT in classical simulation of soft matter systems). One could define the
quality factor for the ASV as follows,

|A960 yo|
T,y) = —2— 2.4
Qlay) = 522 (2.4)
where kp is Boltzmann’s constant and T is the temperature. The simple form
of Eq. 2.4 defines the “first criterion” of our algorithm; this form is easy to
treat numerically. From Eq. 2.4 one sees that if () is much larger than one,
then the assumption of the approximation of separation of variables will lead

10



to false dynamics and thus its exploration by MD can be questionable. The
choice of the reference is system dependent, for instance, if one is studying the
conformational space of a molecule which is characterized by an energy barrier
€p that separates two important and well-defined states, in this case A can be
compared with €.

So far, we have not commented about the dependence of @ with respect to
the fixed points (zg, yo). The treatment of this problem will strengthen the
criterion designed previously and this is the focus of the next section.

2.2 Dependence of QQ on the fixed point: A com-
plementary criterion

A formal way to determine the dependence of @ on the fixed points (zq,yo) is
to monitor the variation of @ upon the variation of xg or yo. We define:

6Q($07 Yo, ‘T?y)

Oy =
0 83:0

(2.5)

aQ(‘IOa y07$7y)

5'90 = ayo

. (2.6)
These variations are calculated over a certain range of fixed points (zo, o) and
on a certain (x,y) domain. In general, if the ASV is reasonable, the dependence
of @, given by Eq. 2.5 and 2.6, on the fixed point is indeed negligible by
construction. In such a case, one would have for Eq. 2.5 that,

10V (xo,y0) OV (w0,y)
kT Oxg 0w

bz = | <1, (2.7)

if x and y are not highly correlated, and one immediately sees that

OV (z0,y0)/0x0 = OV (x9)/dx¢ and similarly for OV (zg,y)/0x0 = IV (x¢)/0x0.
This demonstrates that d,, ~ 0 for the case of weak coupling between x and
y, the same holds for é,,. When the ASV is questionable, the quality factor @
will be dependent on the values of the fixed points. This seems to be a negative
aspect of the algorithm proposed; but eventually here we propose to use it as
a “complementary criterion” to identify the regions of (x,y) where the validity
of the ASV is very critical. The recipe is the following: first one studies g,
and &y, as a function of z¢ and yo using « and y as parameters to vary, which
helps us to identify the critical regions. Second, one chooses xy and yy outside
the critical region. Finally, one applies the ASV over all relevant xy space to
quantify the degree of separability (A). One could summarize these ideas as
follows,

e It defines regions where the choice of the fixed points for @ is delicate and
those where it is not.
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e It also defines a region of the (x,y) space where the ASV is likely not to
hold, compared with other (z,y) regions.

This part of the procedure is rather important. Instead of only minimizing
the dependence of fixed points on @, it also takes care of the fact that critical
region may be too small and a fixed point taken from such a region may be too
close to some of the (z,y) points, so that when one evaluates @ one gets small
values because of the close values of V(z,y), V(x,y0), V(x0,y) and V(xo,yo).
Basically, the analysis is prevented from being very local.

In summary, the simple recipe for the ASV criteria can be given as

1. Choose an arbitrary fixed point.
2. Calculate the quality factor Q.

3. Study the dependence on the fixed points by calculating the corresponding
J.

4. Identify the critical region.

5. Choose a fixed point outside the critical region (the optimal would be
where § = 0).

6. Calculate @ once again using the fixed points of step 5 and analyze @ in
the critical region.

In the next sections, we show first a simple example of how to apply the
ASV. The second example is more complex and will help us to generalize our
ideas for a multidimensional system.

2.3 A guiding example: A rigid diatomic molecule
interacting with a surface

This is a simple example of how to apply the ASV criteria. The system consists
of a diatomic molecule of equivalent atoms which interact with a uniform rigid
surface via a potential given by

20020 4 (Zyw0) - ( 2yt 4 (Zy4 (2.8)

5 24 2p Za 2p

U(za, 2p) = €f

The question we want to address is whether there is a region z,, 2, where the
molecule can be treated as an effective “point-like” particle (see Figure 2.1) and
whose interaction point is located at the center of mass.

An equivalent way to describe the same system is to transform the set of
variables z,, 2 to another set of degrees of freedom. One variable is the distance
r from the surface to the center of mass, while the rotation around it by the
variable #. Now, the previous question becomes: is it possible to separate r and
0?7
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r

(I

Figure 2.1: Schematic representation of the system considered. Part (I) shows
pictorially the mapping from (z,, ) to (r,6) and part (II) describes the case
when 6 is completely independent from 7.

For this purpose, one has to transform the old set of variables to the new
ones:

2 =7 +d-sin(0); 2z, = r —d - sin(0) (2.9)

and thus, substituting the last expression into Eq. 2.8 one writes the potential
in terms of the new variables r, 0 as

_e< (7«+d:m(9))4+<T_d2m(9)>4]> (2.10)

where 6 € [0,7/2] due to the symmetry of the system and d is the fixed
distance from the center of mass to each single atom. The values used here for
various parameters were taken from an atomistic model which was employed to
study the absorption of a molecule on a surface [22]. Firstly, by using Q(r, 0)
one could determine the minimum distance r from the surface for which the
separation is still reasonable, and thus for distances larger than this one is able
to neglect the molecular rotation and represent the molecule (with respect to
the surface) as one effective interaction site located at the center of mass. Now
we show the factor of quality for this problem and its study with respect to the
fixed points.

2.3.1 The factor of quality Q

One should start to define the threshold for the potential discrepancy. Let us use
for this 2kpT in Eq. 2.4. Energy errors that exceed this number may alter the
dynamics of the process of absorption. With the help of Eq. 2.4 one computes
the quality factor of the problem. The result of this calculation is shown in

13



0.6 08 1.0 1.2 1.4
O(rad)

Figure 2.2: The quality factor @ studied as a function of the angle 6 varying
parametrically r from 3.0 nm to 1.0 nm. The fixed point used in this example
is: 0o = § and 7o = 2.0 nm. Here o = 0.5 nm; [ = 0.5 nm, € = 10kgT. As
the distance of the center of mass from the surface decreases the dependence
on 6 becomes stronger and for approximately » < 1.2 nm the ASV starts to be

questionable since the error induced can be larger than 2 kgT.

Figure 2.2. As long as r takes values in the range of 1.0 — 1.2 nm the potential
where the separation is applied overestimates the true potential of the relevant
quantity by around 2 — 3kgT, as expected, and this overestimation increases as
0 increases.

From this part one sees the following for the separability: as the molecule is
close, i.e. r < 1.2 nm, the assumption of separation of  and 8 not longer holds.
For this example we use the values of the fixed points which at least affect the
quality factor @ in the range of interest. This will be explained in detail in the
next section.

2.3.2 The complementary criterion

Methodologically, as we pointed out before, one can start to look at the small
variation of @) as a function of the fixed points. For this specific example, we
show the variation of @) with respect to r¢ and 6y. The results are shown in
Figure 2.3 and 2.4 respectively. For d,, the critical region corresponds to the
region where r < 1.4 nm (by construction r cannot be less than 0.5 nm). For
dp, the critical region varies from 7/4 < 6 < /2. In fact, Figure 2.3 shows,
for different values of 6 and 6y, a trend according to which for o < 1.4 nm the
dependence of @) on g becomes relevant. Similarly, one sees in Figure 2.4 that
the critical region is located in 7/4 < 6 < 7/2.
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70

Figure 2.3: The variation of Q w.r.t. 7o, (d,,), for some example values of 0y and
6. We plot also the extreme values taken by 6y and 6 (symmetric curves) allowed
by the atomistic model and, in between, two more examples. The message of
this plot is that there is a general trend according to which the dependence of
Q@ on ry becomes crucial for, approximatively, ro < 1.4 nm. The vertical dashed
line indicates that the region ry < 1.4 nm should be considered as the critical
region for the variable r.

From these studies one can optimize the choice of fixed points, ro and 6,
for Q. Thus, if one performs the analysis of @ in the region of r < 1.4 nm and
m/4 < 0 < m/2, then the optimal choice of the fixed points would be 7y = 1.2
nm and 6y = 7/6 as given in Figure 2.2. From this it emerges easily that for
r < 1.2 nm the ASV starts to be questionable. Basically, these studies of drg
and 660y show how to refine the analysis of ) for the region of large discrepancy.
The studies of @Q and drg, 06y complement each other and shows how one can
determine the validity of the ASV.

2.4 Extension to higher dimensions: Parametric
study

The criteria presented before can be in principle extended to more dimensions
although the computational demands would inevitably increase. The most sim-
ple way to proceed is by looking at two variables at a time with the rest frozen.
Let us suppose the potential in a generic form U(z,y, z,...). Then, one may
focus on two variables per time and see how the separation can be carry out.
For simplicity, we consider U = U (x, y, z) as function of three variables z,y and
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Figure 2.4: The variation of @ w.r.t. 6y, (dg,), for some examples values of

ro and r. For values of ry and r outside the critical region defined by Figure

2.3, the dependence of @ from 6y is negligible, however for values within the

critical region of r, g < 1.4 nm the dependence becomes stronger and identifies

the critical region of the variable 6. The vertical dashed line indicates that the
us

region fp > 7 is the critical one.

z. In this case A is written as
A101.740 (Ia Y, 2) = U(II?, Y, 2) - [U(Ia Yo, 2) + U(:EO? Y, 2) - U(z()v Yo, 2)] (2]‘]‘)

if one is interested in how separable x and y are, under the assumption that z
can be factorized from the others. In Eq. 2.11, Z means all the possible values
of z that could decouple it from x and y. In the same way one could analyze
Ay, 2 (Z,y, ) if one were interested in how separable are y and z, under the
implicit hypothesis that z can be separated from the others or similarly for
Ay (2,7, 2), if the interest is in the separation of = and z.

2.5 A second example: 2D version of the RIS
model of a polymer chain

The Rotational Isomeric State (RIS) theory is considerd to be the standard
method [23] to study the conformational properties of macromolecules. Here we
define the RIS model of our polymer chain, where all torsions are set to zero (i.e.
2D case). such a condition will be fulfilled for all the dihedral angles around
the bonds. In our model system we apply the ASV criteria for two different
mapping schemes (MSs) (see section 2.5.2). Let us explain in the next section
the problem of choosing the mapping scheme for a polymer system.
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2.5.1 A general problem in coarse grained modeling of
bonded interactions

In the previous chapter we comment about the mapping scheme (MS) as the
common CG strategy to reduce the large number DOFs in soft matter simula-
tions. After one defines a MS (which also defines implicitly the CG variables
of interest) one performs simulations to obtain the effective potential (bonded
and nonbonded) among the set of CG variables. Here, let us focus on the case
of bonded potential for a polymer. For example one replaces each chemical
group in a polymer by spheres that become the new effective particles of such
system. The new CG variables are the following: bond lengths (), bond angles
(¢) and torsion (¢) associated with two, three or four chemical groups respec-
tively. Next, one has to think about the effective potential for this minimal set
of variables. Some methods are based on all-atom simulations of a single chain
in vacuum, the corresponding distribution of the CG variables is obtained in
these MD runs and under the approximation that they are decoupled.
Then one can write,

P(r,6,0,T) = P(r,T) P(0,T) P(¢,T) (2.12)
and by Boltzmann inversion [16] at the given temperature 7" one has:
U(r,0,¢) =U(r) +U(0) + U (¢) (2.13)

This new potential mainly reproduces some features of the full atomistic model
but at much lower computational demands (less variables to integrate in MD).
However, a priori one does not know how far the hypothesis of separability
could hold for a given MS. This means, so far, that there is not a systematic
approach to control the underlying ASV implied by the potential derived in Eq.
2.13. Here we can apply straightforwardly the criteria developed previously.

2.5.2 Mapping schemes

In order to make a comparison between our model system and a real polymer
chain we use the parameters that characterize the energy and length scales
corresponding to the n-alkane chain (see Appendix A). The structure of an
alkane chain (AC) is illustrated in Figure 2.5. This simple polymer is composed
of several repeat units with each one corresponding to either methyl groups
(CHs) in both ends or ethyl groups (CHs) along the backbone. We study two
different MSs for our model system which are depicted in Figure 2.6. They are
indicated as the 1:2 and 1:3 mapping schemes (MSs). By convention the right
number denotes the number of carbons which will be replace by a sphere (left
number), this means that the 1:3 MS is more coarser than 1:2 MS. Now we
define the variables as follows:

e the distance between close beads R and R(®

e the angle Q between the vectors BY) and R
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H,C ' CH,

Figure 2.5: Chemical structure of the n-alkane chain in which each vertex of the
backbone represents a carbon.

Even though in Figure 2.6 both MSs result in the same set of CG variables, they
depend on different atomistic variables. The point we want to address is how

separable are these CG variables, that is how independent are R(Y) and R,
RW and Q, and R® and Q.

2.6 Results

There are some basic steps that one has to follow in order to evaluate the quality
of each MSs. First, one has to express the atomistic potential as a function of
the CG variables R, R and Q (see Appendix B). After that we follow the
steps of the ASV discussed at the begin of this chapter. We discuss here some
technical details for this system which can be useful for more complex systems.

First, we calculate @ in regions of the CG variables allowed by the atomistic
conformations. This means that the regions of () where bond breaking or overlap
of two atoms occur, are not taken in account during the analysis.

The choice of fixed points is not so trivial (§ = 0) as in the first example.
This time 4 is not likely to be zero given the complexity of the molecule. Thus,
we extend the previously used criteria as follows:

a) If 6 has a region where it varies slowly and then a region where its variation
increases rapidly, we define the first region as non critical and choose
the final fixed point from there (possibly the point corresponding to the
minimum value of d, that is, the minimum dependence on the fixed point)
or we choose several fixed points and sample @ over all of them.

b) If § is constant, but it is characterized by a high value or it increases rapidly
over the whole domain, then the whole domain is defined as critical, which
means that the ASV does not hold. Since we need a fixed point to quan-
tify the error introduced by the ASV. This time one could choose several
fixed points all over the whole domain of fixed points and for each choice
calculate the @ separately. For the final @) one takes the average (plus the
fluctuations) of all the values obtained for each study. What changes from

18



Figure 2.6: The figure shows the typical CG structure of the polymeric chain
studied. Each chemical group is represented by blue circles close to a letter.
Part (a) shows the MS where there are two carbon groups per bead (1:2), while
part (b) shows three per bead (1:3). The “atomistic” variables 0; Vi = 1,2,3,4
and the CG variables R, R®and Q are also shown.

case (a) is that one needs a large sample of fixed points. Typically in this
case one can expect that the approximation leads to very large errors.

With these remarks in mind, we proceed to show the results for each mapping
scheme.

2.6.1 The 1:2 MS

As we stated before one performs a systematic study of @ for each parametric
CG variable. Since we have three CG variables one defines also three different
@ for each parametric value. For example @Q; indicates the case for R() as a
parametric, Qo for R and Qs for Q.

To obtain @7, see Figure 2.7(a), we first choose an arbitrary set of fixed

points (R(()z),QO) and then analyze @) and its dependence on the fixed points
as shown in part (b). Next, similar to the procedure shown for the diatomic
molecule, we can determine if there are critical regions, which in this case are
given by VR(? € [2.425,2.525] and VQ{? € [145°,180°]. Accordingly, we have
chosen the fixed points outside these critical regions to be Rgz) = 2.4A and
Qo = 140°. With this optimized set of fixed points one estimates the error
in the potential that one makes under the hypothesis of separability of 2 and
R® which turns out to be ~ 9kgT; this is larger than the expected thermal
fluctuations.



Similarly, in Figure 2.8 and 2.9 we show the results for Q2 and Q3 respec-
tively. We note that in the case of Figure 2.8 the analysis of § does not lead to
identify proper critical regions. This time we use the extension (b) of the ASV
given in the previous section to quantify the quality factor (Q2) of the MS. The
general message is that in each plot for the 1:2 MS there are extended regions
where the error varies between 6kpT and 9kpT, which is much larger than the
reference energy.
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Figure 2.7: The figure (a) shows the quality factor Q1 = Q(R™)
Ao (RM)/kpT for the mapping 1:2 with RY) = 2.4A as a parametric value
o S0

and the fixed points equal to RS> = 2.4A and Qo = 140°. In (b) and (c) are shown
critical regions VRS € [2.425,2.525] and VS, € [145°,180°] . In (a), the light gray
region represents the vicinity of the fixed point (Réz), Qo) where CG potential is de-
coupled (by definition) and thus of no interest in this context. The real interest is in
the critical regions determined by the plot shown in (b) and (c). There the potential
is no more decoupled and the variables are highly correlated. Note also that the white
regions are those were the CG variables are not defined and thus @ is not calculated.
The same applies for all the next figures.
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Figure 2.8: The plot (a) shows the quality Q2 = Q(R®) = AN 0 (R®)/kpT for
6

the mapping 1:2 with R® = 2354 as a parametric value and the fixed points equal
to RS = 2.54 and Qo = 162°. To be noticed that the value of the derivatives shown
in (b) and (c) are almost constant for each parametric curve. This means that there
exists no real definition of critical region and in this case one can proceed by using
several fixed points in the domain and averaging the quality factor resulting from
each study. In (a) the light gray colour indicates the region close to the fixed points
( ,(31)7 Qo) where the potential is decouple by definition. Totally white regions indicate
configuration space of R and Q not allowed by the atomistic model.
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Figure 2.9: The plot (a) shows the quality factor Q3 = Q(Q) = Apm) p@ (Q)/ksT
_ o 1o
for the mapping 1:2 with Q = 162° as a parametric value and the fixed points equal

to RSY = 2.6A and R%? = 2.4A. The procedure for analyzing (b) and (c) is the same
as described by the previous figures.

2.6.2 The 1:3 MS

Similarly as in the previous case we perform a study of @ for each CG variables.
The results for each @ and the analysis of § with respect to the critical points
are shown from Figure 2.10 to 2.12. A common aspect for @)1 and @ is that one

cannot, find a critical region within the domain of the fixed points, (R((J2),QO)
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and (R(gl), 0p), respectively. Thus, one has to use the extension of our criteria
given in section 2.6.

In comparison to the 1:2 MS the maximum value of @ is between 6kgT
and TkgT. This means that the ASV is a better approximation for the 1:3 MS
than for the 1:2 MS. This is true in polymer theory [24] because the coarser
the system becomes the closer it is to a freely jointed chain and thus more
separable. Implicitly the 1:3 MS becomes more efficient than the 1:2 MS (see
also the analysis of the average values of @ reported in the next section), this
means that a CG model using the former MS will better resemble the underlying
atomistic model than the latter.
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Figure 2.10: Plot (a) shows the quality factor Q1 = Q(R(l)) = AL . (R(l))/kBT
0 s

of the mapping 1:3 with RM = 27A and 6, = 126° as parametric values. The
corresponding fixed points are R =3.254 and Qp = 176.5°. As for Figure 2.7, but
in this case due to the rapidly varying dependence on the fixed point (see (b) and
(c)) one has to use several fixed points and consider the @Q resulting from the average
of each study, in order to have a more valid quantitative information. The light blue
colour indicates the region close to the fixed points (R(()Z)7 Qo). The totally white colour
is not allowed to be sample by the underlying atomistic model (e.g. a chemical bond
is broken).
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Figure 2.11: Plot (a) shows the quality factor Q2 = Q(R(Z)) = AR(l) . (R(2))/k3T
6 s

for the mapping 1:3 with R® = 3957 and 6, = 126° as parametric values. The
corresponding fixed points are Rf,l) = 2.7A and Qo = 176.5°. As the previous figure,
does not exist a non critical region, see (b) and (c¢). This means that one must explore
critical points over the whole domain in order to estimate quantitatively Q.
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Figure 2.12: Plot (a) shows the quality factor Q3 = Q(Q) = Ay p@ (Q)/kpT for
— ‘0 70

the mapping 1:3 with = 174° and 6> = 126° as parametric values. The corresponding

fixed points are RV = 2.71A and R(? = 3.4A. As in the other cases for Q1, Q2 and

now for (3 non critical regions within the domains of the CG variables cannot be

found (see (b) and (c)) and thus it applies the same considerations of the previous two

figures.

2.6.3 Average of () in fixed point and CG variable para-

metric space

In this section we explain in detail how to deal numerically with systems where a
critical region cannot be defined due to the strong dependency of quality factor
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(Q) with respect to the fixed points. Using the extensions of our criteria given
in the section 2.6 we can still get a reasonable estimate of the quality factor. We
provide as an example the case of the RIS model for a polymer chain. Due to
its complexity we cannot expect to always find critical regions. The same may
occur in more complex systems. In the case of the 1:2 MS, one notes that for Q4
(with R®) as a parametric value) in Figure 2.8 that the study of 6R§)1) (part (a))

and dq, (part (b)) do not provide a critical region, this means that R") and
are not likely to be separable under the assumption that both CG variables are
independent from R(® in the PES. This case represents the negative assessment
of the ASV. With this in mind we proceed to quantify how much the total
energy deviates, when one assumes separability of these two CG variables. In
order to do that one samples a few different fixed points in both regions and
for each pair (Rél),Qo) we quantify the corresponding value of Q3. Next one
takes the average over all of them. This procedure optimizes Q2 making it less

dependent on its fixed points.

As we report in Table 2.1 for the 1:2 MS the mean value of Q5 is characterized
by a large value compared to Q1 and Q3 in the same table. For example, the
value 16.0 4 4.6 tells us that on average the error introduced is 16kpT with a
corresponding maximum of 20.6kp7T and a minimum of 11.4kg7T. In the case
of the 1:3 MS reported in Table 2.2 it was also not possible to find any critical
region. Thus, we employed a similar procedure as for Q2 in the 1:2 MS case.
Comparing both tables we observe that the errors introduced by the ASV in
the 1:3 MS are much smaller than in the 1:2 MS.

Finally, in Table 2.3 we show the average of Q@ over the parametric values
of the CG variables. This evaluation of @ is an indirect indication of the three-
variable dependence. According to Table 2.3 the correlations due to the third
variables do not alter our conclusions, that is the two variables correlation are
more representative for this system than the three-variables correlations.

Table 2.1: Quality Factor for 1:2 MS (average in fixed points space)
<Q(RW=2444) > <Q(R® =247A) > <Q(Q=162°) >
9.10 +0.40 16.00 + 4.60 6.20 £ 1.60

Table 2.2: Quality Factor for 1:3 MS (average in fixed points space)
<Q(RMW=278)> <Q(R®=3294)> <Q(Q=170°) >
3.50 +1.20 7.20 £ 2.70 2.10 £ 0.60
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Table 2.3: Quality Factor (average in parametric space)
MS <Q(RW)> <Q(RP)> <Q) >
1:2 8.20 £ 1.50 15.0£6.00  5.40£2.50
1:3 4.90 +2.90 6.50+£3.70  3.00 £ 1.60

2.7 Preliminary conclusions

The aim of this part of the thesis was to develop a formal procedure for analyzing
the approximation of separation of variables in certain problems where it is
required. First we introduced the mathematical basis of the procedure and
summarized in section 2.2. The extension to higher dimensions (e.g. complex
systems) was given in section 2.4.

This procedure was applied first to a simple system, namely the diatomic
molecule on a flat surface. Our physical intuition tells us that a clear separation
of variables can be obtained among the distance r from the center of mass to the
surface and the orientation angle 6 of molecule, as long as the molecule explores
configurations far away from the surface. In fact, this is corroborated from the
application of our procedure for this system. The advantage is that now we are
able to know in all the configurational space of the molecule the regions where
the separation of variables is still questionable up to a known error in energy.

Finally, the second system represented a non-trivial case due the larger num-
ber of DOFs compared to the previous system. For this case, we generalized
the criteria used in the previous example in order to estimate the error of the
separation of variables among the collective variables (e.g. R(M), R and Q).
Methodologically we tested our procedure on two different mapping schemes,
which maintain the same set of CVs, but not the same dependence on the atom-
istic variables. In summary, our method showed that the 1:3 MS, which results
in a coarser model, introduces a smaller error in the energy than the 1:2 MS.
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Chapter 3

The Adaptive Resolution
Scheme

In recent years there has been a continuing growth of interest in multiscale
modeling due to the applications in many fields such as chemistry, biology and
material science. Most problems in such areas are related to the interplay be-
tween different time and length scales; this means that relevant properties of
many systems are typically determined by the interplay of these various tem-
poral and spatial scales. Generally, it is useful to divide the multiscale problem
into several scales making a simpler description of the system possible.

However, there are certain categories of problems where it is not possi-
ble to perform such separation within reasonable numerical accuracy. Typi-
cal examples of such situation is found in the description of edge dislocation
in metal [25], cracks propagation in solid materials [26] or large molecules on
metal surfaces [27] where the local chemistry affects the large scale properties
and vice versa. As a consequence, the system of interest has to be described in
a detailed manner, which turns out impossible to be handled computationally
due to the large number of degrees of freedom.

In order to overcome this bottleneck, and to study such systems was first
incorporated several levels of descriptions based on a hierarchy of theories, for
instance, whether the problem requires, from a quantum until a mesoscopic de-
scription, which will take account of both the small and large scale phenomena.
A systematic coarse graining (CG) procedure may help to build each level of
description based on information accessible on previous scales. So far, there are
diverse hybrid multiscale techniques aiming to bridge the gap between closer
scales, for instance, the atomistic and mesoscopic scales [27 31| or the quantum
and classical scales [32,33]. However, in all those methods the regions or parts of
the system treated at different level of resolution are fixed and thus the exchange
of particles among these regions is not allowed. This approximation turns out
to be not very relevant in hard condensed matter, but it becomes crucial in soft
matter systems. In the former bulk properties are determined by the strength
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of the intermolecular forces, which restrict the motion of particles, and in the
latter thermal fluctuations (e.g. density fluctuations) contribute to the overall
behavior of the system.

In this context, the adaptive resolution methods which not only couple di-
verse scales (or resolutions) and also allow for particle fluctuations represent
the most natural way to overcome such problems. Recently, some methods
based on this idea have captured the attention of many researchers and sev-
eral schemes have been developed for coupling the atomistic and coarse grained
level of description in classical MD. Typically, the coupling can be performed
through the smooth interpolation of forces (AdResS) [34], potentials [35] and
Lagrangians [36] by using a switching or interpolating function. Although the
equation of motion in the AdResS method cannot be derived within a Hamilto-
nian formalism, it has been shown to preserve the thermodynamic equilibrium
of the whole system and the result is independent of the switching function. The
second method integrates in principle the same set of equation as the AdResS
method and it claims to conserve the total energy of the system. This has been
shown to be flawed, because the total Hamiltonian cannot be defined in both
hybrid schemes [37]. Finally, the last method presents an energy conserving
protocol whose dynamics depends explictly on the switching function and its
derivative. Moreover, its implementation is too complex for large applications.

In any case, all of them must not change the physics of the system, since the
change of resolution does not affect the physical nature of particles. Thus, adap-
tive schemes should preserve the thermodynamic equilibrium during the simu-
lation, this implies that thermal, mechanical and chemical equilibrium should
not be modified by the scheme of interpolation used.

As a part of this thesis work, we have studied the quantum/classical adap-
tivity in the framework of force interpolation and this topic will be discussed
in the following chapters. In the present chapter, we will give an overview of
the Adaptive Resolution Scheme (AdResS); we start describing the equation of
motion of AdResS, then a description of the thermodynamic equilibrium of a
system follows, where the change of degrees of freedom is allowed. Then we
comment about the theoretical foundation of the AdResS scheme. Finally, the
method is applied to a liquid system of tetrahedral molecules as proof of validity
of the scheme.

3.1 The equation of motion

The first step is to derive the effective Coarse-Grained potential between the
interacting sites, mapped at the center of mass of each molecule, by the iterative
Boltzmann inversion method, presented in chapter 1. This CG potential has to
be obtained at the same thermodynamic state point, thus a pressure correction
must be done to retain the same pressure. Once this is done, one proceeds
to couple the forces derived from the atomistic (AT) and coarse-grained (CG)
potentials by the following expression,

Fap = w(Ra)w(Rs)Fag + (1 — w(Ra)w(Rs)) Foj (3.1)
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where av an (3 are the labels for two different molecules. FO%T is the corresponding
force derived from the atomistic force field where each atom of molecule «
interacts with each atom of 3, and FO%} is the pairwise force obtained from
the CG potential between the centers of mass of the coarse grained molecules.
One important element of this equation is given by the “weighting function”,
w(R), whose functional form is shown in Figure 3.1, varying from 0 to 1. This
function depends on the position (R) of the center of mass of the molecules «
and 8. A simple way to interpret this function is by switching of “degrees of
freedom”. From the Eq. 3.1, it is evident that w = 0 represents the case of
pure coarse-grained force field, while w = 1 keeps the system fully atomistic.
The region of non-integer values of w is called the “hybrid region” and there the
particles maintain at the same time a double resolution or representation (eg.

AT/CG).

1.0

s 05F @ AT ]

0.0

A EY -
2 2
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Figure 3.1: Here is depicted the functional form of the weighting function w(z) € [0, 1].
The values 1 and 0 correspond to the regions where the molecules are fully atomistic
(AT) or fully coarse grained (CG) respectively. While values in between, 0 < w(z) < 1,
correspond to the hybrid region. In this figure, the total box length is equal to L,
atomistic and CG region have the same length and A is the length of hybrid region.

An important consequence of the analytical form of Eq. 3.1 is that, by con-
struction, it preserves Newton’s third law (conservation of linear momentum),
despite the fact that a Hamiltonian in the transition region cannot be defined.
This guarantees that the diffusion of particles between regions is not affected
by the change of resolution.

3.2 Thermodynamic equilibrium

The Eq. 3.1 cannot be obtained from a potential and thus there would not have
an energy to conserve in such circumstances. This scheme resembles a non-
Hamiltonian equation of motion, where new DOFs are couple to the system, in
order to design new MD schemes for different equilibrium ensembles [38]. Since
we want to study systems in equilibrium, a natural question arises immediately,
how to control the thermodynamic equilibrium. Conceptually, in the adaptive
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scheme the number of degrees of freedom is not homogeneous in the space and
therefore the free energy density is not uniform. This situation creates non-
physical flux of particles in the direction of less DOFs in order to lower the free
energy of the whole system. In spite of that, one expects the same physical
scenario everywhere by construction (i.e. same state point), this means that
all molecules must maintain the same underlying physical nature in all the
space and later one must learn how to deal with the artifact of the formalism
used. An illustrative way to understand this process is the following: when a
molecule goes from an atomistic to a coarse grained region, it experiences a
transition where it loses vibrational and rotational DOFs and when it arrives to
the CG region a natural process of accommodating its exclude volume may take
place. The inverse process is more complicate, a molecule in this case acquires
rotational and vibration DOFs and tries to enter in a region where the other
molecules are locally in equilibrium. In such circumstances, a way back to the
coarse grained region is more preferable than remaining in the atomistic one.
In thermodynamic terms, as an artifact of the method, the different regions are
characterized by a different chemical potential. Since, this is a consequence of
the formalism and it is not generated by the physics of the system, thus one
has to correct this thermodynamic unbalance. Based on these arguments, one
sees that Eq. 3.1 alone cannot maintain the thermodynamic equilibrium and
further considerations concerning the variables of the problem, should be used
to guarantee the equilibrium. This is the aim of the next sections, by analyzing
the process of changing degrees of freedom from a thermodynamic and statistical
framework.

3.3 Theoretical principles of thermodynamic equi-
librium in AdResS

We present the theoretical basis for the thermodynamic equilibrium of a sys-
tem where the number of DOFs are, by construction, space dependent and yet
molecular properties are maintained as close as possible to the reference system
in all the space.

3.3.1 The geometrically induced phase transition

We provide a parallel description between the space dependent change of res-
olution and the physical phase transition, in this context we will identify the
former as a ficticious geometrically induced phase transition. To describe a
phase transition, one uses the concept of the latent heat to associate the energy
required by the system to account for a transition. For example, typically the
transition from a liquid to a gas phase requires energy (latent heat) to activate
those vibrational modes that make the molecules free from the tight bonding of
the liquid state. In the adaptive scheme a similar process occurs to a molecules
which passes from a coarse grained to an atomistic resolution, in this case such
molecule needs latent heat to reactivate the vibrational and rotational DOFs in
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order to reach the equilibrium with the atomistic surrounding. In the reverse
process, the molecule releases latent heat, when a transition from a gas to a
liquid phase occurs, during such transition a molecule increases the bond to
the other molecules at each time, in the same way in the adaptive scheme, the
passage from the atomistic to the coarse grained description happens, formally
losing DOFs and therefore the associate heat. All this is synthesized in the
following relation:

pt = + ¢, (3.2)

where ;A7 is the chemical potential calculated with the atomistic representa-
tion, u¢“ that of the coarse grained one, and ¢ is the latent heat associated to
the process. To satisfy Eq. 3.2 a simple solution is devised, basically one has to
couple the system to a local thermostat (see Appendix C), whose main function
is to provide (or removes) the required latent heat. Such thermostat ensures
the equilibrium and the stability of the algorithm. Naturally, such a coupling
raises serious questions on how to define thermodynamic quantities in a region
where the number of DOFs is space-dependent and Hamiltonian is not defined.
This question is answered in the next section.

3.3.2 Thermodynamic quantities in AdResS

In this section we describe all the thermodynamic quantities used typically in
the terminology of AdResS. These quantities are relevant for a cross check of the
thermodynamic equilibrium during an AdResS simulation. As we stated before
the thermodynamic equilibrium is maintained in each region provided that the
average of temperature, pressure and chemical potential do not change in the
MD simulation.

In order to define the pressure in a system where atomistic and coarse-grained
particles coexist, one proceeds to use the concept of molecular pressure instead
of the atomistic one. The equivalence between these two expression has been
proved by Ciccotti et al. (1986) [39] and discussed recently [40]. The molecular
pressure is given by,

1 1
p = [NksT + 3 > Rag Fagl (3.3)

a [B>a

where N is the number of molecules, V' is the volume of system, T is the
temperature and R,g and F,g correspond to distance and total force (see Eq.
3.1) between the molecules o and /.

The temperature is provided by the equipartition theorem [41].

PAT/CG _ 2< KAT/CG <

NAT/CG (3.4)

where < KAT/CG > represent the average kinetic energy of the atomistic/coarse
grained region and NA7/CG is the total average number of degrees of freedom
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(DOFs) in the respective representation. This principle is well-defined in each
region (AT /CG), but the same can not be applied in the transition region where
N = N(z). Therefore, in the hybrid region one has to extend the principle of
equipartition for a switchable DOF ¢ to properly define its kinetic contribution
to the temperature. To account for that, we observe the space dependency of
such DOF in each region, being fully represented in the atomistic region and
vanishing in the coarse grained region. This behavior should be taken into
account, when calculating the average of statistical quantities. In a formal
mathematical language, this is a common problem in fractional calculus [42].
Using this mathematical tool to describe the change of dimensionality of the
phase space of ¢ (between one and zero), one has that

NG T

AV = ——2)
27w/2T (w) ¢ I'(w)

dq” (3.5)

where I' is well-known I'-function [43]. The kinetic contribution of a quadratic
DOFs is given by

e P gt dg

< Kg>u= S5 3.6
q fo e_ﬁqzqw_ldq ( )
and the solution of Eq. 3.6 was demonstrated to be [44]:
w
K, >u=—. 3.7

The last result generalizes the equipartition theorem for a non integer DOFs
whose functional form is quadratic. This states that the kinetic energy is pro-
portional to its dimensionality (w).

So far, all the concepts presented in this section help to control thermody-
namic quantities (Eq. 3.3) and establish a thermodynamic counsistency (Eq. 3.6)
in our studies within the AdResS framework.

3.4 Application to simple liquid of tetrahedral
molecules

The generality of the results shown in this section are independent of the sys-
tem under study. More complex systems as the solvation of an ideal bead-spring
model for a polymer in a tetrahedral liquid and liquid water were carried out
in refs. [45,46]. The results for the tetrahedral molecules in AdResS were com-
pared to the atomistic ones. All the result were obtained in a cubic symmetry,
however in Figure 3.2 we depict the same model system for another symmetry
(i.e. spherical). The following functional form was proposed for the weighting
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Figure 3.2: Snapshot of tetrahedral molecules in a spherical symmetric in AdResS.
Atomistic molecules are represented in the inner shell, subsequently follows the shell
that contains hybrid molecules which is surrounded by CG particles.

function w(zx):

1; d<zr<§-—d
0; —§+dSZE<—d
w(zx) = sin®[ % (z + d)]; —d<z<d (3.8)
cos’ [ (x — 5 +d)]; s—d<z<3g
cos? [ Sz +2+d); —$<z<-%+d,

where a is the box length and d is the half-width of the hybrid region. In general
this function has to be monotonic, continue, differentiable and with zero slope
at boundaries of the atomistic and coarse grained regions. These mathematical
assumptions guarantee a smooth transition of one molecule from the CG region
to the atomistic and vice versa [47].

Once the atomistic force field (see Appendix D) is well-defined we proceed
to derive from it the effective coarse grained potential. In Figure 3.3 the CG
potential, between the center of mass of the molecules U™, obtained for a liquid
of tetrahedral molecules at p* = 0.1 and 7™ = 1.0 in the reduced Lennard-Jones
units (e = 1 and o = 1 as the unit of energy and length respectively).

The first way to compare the reliability of the AdResS method is by compar-
ison of the the global structure of the liquid in AdResS with the result of the full
atomistic simulation. This is done by computing the center of mass radial dis-
tribution function (RDF). The result is shown on the left side of the Figure 3.4.
One can see a satisfactory agreement between the AdResS method and the full
atomistic reference calculations. Similarly, the density profile of the molecules in
AdResS (See right side of Figure 3.4) is presented . From this figure one can see
how the density is maintained homogeneous in the atomistic and coarse grained
regions, however, in the hybrid region the density drops about 5% compared to
to the average value of p* = 0.175 of the reference all atom case. However, this
small perturbation neither affects the structure nor the thermodynamics of the
system.

As a final test we show the study of the diffusion of molecules close to the
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Figure 3.3: The effective CG potential obtained by the iterative Boltzmann method
[16] and the potential of mean force (PMF) for the highly diluted explicit system at
p* = 0.0025 used as the first guest in the iterative procedure are shown. (Figure was
taken from Ref. [34]).
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Figure 3.4: Left part shows the radial distribution function of the center of masses
at p* = 0.175 and T* = 1. Right part shows the typical normalized density profile in
the x direction in AdResS with 12.00 interface layer width. Vertical lines denote the
boundary between atomistic, hybrid and coarse grained region.

hybrid region in Figure 3.5. This result tells us that no artificial effect like
spurious reflexion of molecules, occurs while they move from one region to the
other one.

3.5 Further development

There are mainly two new contributions to the AdResS method. One has to do
with the generalization of the scheme based on thermodynamic arguments, by
means of a thermodynamic force to ensure the equilibrium from first principles
of thermodynamics. Concerning this first part one must say that equilibrium in
the traditional AdResS is ensured by the use of a stochastic thermostat which
removes or adds latent heat to the system in order to maintain the thermal
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Figure 3.5: Time evolution of diffusion profiles of molecules for two different initial
condition at two neighboring slabs of the hybrid region. Left side corresponds to the
case of molecules localized on the CG side and in right side to molecules localized in
the atomistic region.

equilibrium. The formal demonstration of this generalized scheme can be found
in [48].

The other important contribution is a conceptual improvement to the method.
It concerns the extension of the scheme for a wide variety of problems where
quantum mechanical description may take place. This is related to the current
thesis work and is primarily devoted to the understanding of the quantum-
classical adaptivity. The next chapter provides a general overview of the path
integral formalism. Such a method was used in our studies of quantum-classical
coupling due to a key feature of its formalism. This is given by the fact that
path integral method translates the representation of a quantum particle into
the evaluation of certain classical objects (i.e. ring polymers).
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Chapter 4

Path Integral formulation

The basic idea of the path integral formulation of quantum mechanics can be
traced back to P. A. M. Dirac in his original book [49] of 1930 and later on
his paper [50] of 1933. Later, the completed method was developed by Richard
Feynman [51] in 1948 as an alternative formulation of the non-relativistic quan-
tum mechanics and since then it is widely used in several fields of science, for
example, many-body theoretical quantum physics [52], superfludity [53], poly-
mer science [54,55], financial markets [56], to name a few.

The path integral formalism is convenient not only for its mathematical ele-
gance, but also for its treatable numerical form with a structure that is suitable
for an implementation in parallel computing. Furthermore, path integrals have
been succeeded in calculating several equilibrium properties like the free en-
ergy and structural quantities of quantum systems [57-59] in comparison with
other quantum methods. Finally, path integral can be used in several thermo-
dynamic ensembles, for instance, the microcanonical (NVE) [60], the canonical
(NVT) [61], isothermal-isobaric (NPT) [62] and gran-canonical (uVT) [63]. This
versatility allows us to study systems under several experimental conditions.
The path integral formulation translates the quantum description of a many
body problem into the classical representation due to the so-called isomorphism
of the quantum partition function.

The next section describes in detail the aforementioned isomorphism, then
we introduce the idea of how to combine path integral formulation with molec-
ular dynamics (PIMD) and the calculation of statistical properties. In the end
we comment about the limitation of the PIMD scheme and possible numerical
solutions.

4.1 Derivation of the formalism
One quantum particle

The definition of the partition function for a system of a single quantum
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particle is
Z = Z(N,V,T) = Tr[e "M (4.1)

where “Tr” denotes a trace and 8 = 1/kpT. T is the temperature and kp is the
Boltzmann constant. This trace can be evaluated in the position eigenstates,
|R), as follows

Z= /dR (Rle "™"|R), (4.2)

Given that the kinetic and the potential energy operator do not commute,
[T, V] #0, (4.3)

one can use the Trotter theorem [64], which states that for any two operator, A
and B, which in general do not commute

AA+E) — i [e%B %Ae%B]”, (4.4)

e

where n is an integer and known as the Trotter number. Now substituting the
Trotter theorem into Eq. 4.2 yields,

Z = lim [ dR (RIQ"R)= lim [ dR (RIQ-Q---Q|R) (4.5)

n—oo
For simplicity, we define

O = ¢~ BV/(@n) BT /n—BV/(2n) (4.6)

Introducing the identity operator

I— /dR IRY(R|, (4.7)
n — 1 times in the Eq. 4.5 in the following way
Q" =QLO5--- Q1,0 (4.8)

and using the definition of the identity, the integration term in Eq. 4.5 results

(RIQ"|R) /dR2 ... dR (R Ra) (Ra |9 Rs) x

n

— /ng - dR,[[[(Ri|QIRi 1) R, =R, (4.9)
=1

where the condition Ry = R, is the result of the trace. One can evaluate
each matrix element of €,

(Ri|QRig1) = (Ry|ePV/ (@) e=BT/ne=BV/@n)| R Y. (4.10)
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One knows that the potential operators are space dependent and they are acting
on the coordinate eigenstates in the last equation. Thus, the following expression
is derived

(Ri|QRig1) = e BVEN/Cn) (R 1e=AT/n|R, | )e=BY (Rix1)/(2n), (4.11)

Now, we use the identity operator in the representation of momentum eigen-
states,

= / dp 1p) (o, (4.12)

then the remaining matrix elements can be written as
(Rile™T/™ Riyq) = /dp (Rilp)(ple™""/"|Riy1). (4.13)

In the last expression, T = p?/2m acts on one of its eigenstates from the left,
yielding:

(Bile T Ropa) = [ dp (Rilp) plRosa) e/ (aa)
The projection of a momentum eigenstate on a position eigenstate is given by
(Flp) = <=0 (415)

Then we find that
(Rile=PT/n| Ry ) = % dp P (Ri= R /b =pp?(2mn). (4.16)

To solve the integral, we complete the square in the exponential and then inte-
grate as follows:

[ 1 mni
(Rile /" Riy1) = 3F dp o~ T P~ (B (Ri—Ris) o
XE*;g—h%(Ri*RiJrl)z. (417)

The first exponential in the integral is a Gaussian-like and the second is a
constant, thus one obtains,

mn )1/2 e—M(Ri—Ri+1)2

(Rile P1/™|Riyq) = (27T6ﬁ2 26h2

(4.18)

Substituting our last result into the expression for the whole partition function

Z = lm mng)"/Q/de dR,, x
n—00 27T6ﬁ
"1 1
exp (—5 2[577%};2)(& — Ri1)? + EV(Rz‘)]> , (419)
=1 Rp+1=R1
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and,

wp = X, (4.20)

vn
Bh
is the “frequency” of the ring polymer.

The outcome indicates the isomorphism between a static quantum mechan-
ical problem and the classical problem of a replicate classical particle which in-
teracts with a potential V(R)/n and two of its own images through a quadratic
potential. We illustrate the idea of such a isomorphism in Figure 4.1. This result
is well-known as the discrete path integral for the quantum partition function,
which is exact for a large value of Trotter number (i.e, n — 00).

Figure 4.1: Path integral representation of 2 quantum particles with n = 7 beads
each. In the path integral formalism the interaction between the beads with the same
label is given by the classical potential V,z3.

Many quantum particle

The same result obtained for an isolated particle can be extended for a
system of N-particles interacting by the potential V' ({R;}). This time each par-
ticles is represented by a ring polymer and so that the interaction is delocalized
among its conforming beads. In other words, beads with the same label “s” will
interact by the potential V({Rgs)}) and no cross interactions are allowed as it
is depicted in Fig. 4.1. For example, the bead 1 of the molecule o will only
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interact with the bead 1 of the molecule 8 and so on. Such generalization is
not trivial and can be found in traditional textbooks of path integral methods

as [65,66]. In summary, the quantum partition function of N particles is given
by,

N
z = Jim 2,0 = lim [[] (755" / RV .. dR™] x
I=1
n N
exp<_5Z{Z%mwn<R“’ R+ V<{RS>}>}><4-21>
s=1 I=1

where R§n+1) = Rﬁl) and wy, is given by Eq. 4.20. Finally, the above expression
can be sampled by Monte Carlo (MC) methods or by molecular dynamics (MD)
adding some effective Gaussian distribution in the momentum space, PI(S). The
next section will show how to perform a MD implementation of the path integral
formalism.

4.2 The Path Integral Molecular Dynamics (PIMD)

The path integral expression of Eq. 4.21 of the quantum N-particles system can
be written in the following form

N
Z,(8) = H ”/2/dR§”...dR§">]><

f w6ﬁ2
s s+1 s
xeap (—ﬁz {Z Smwh(RY = RY) 4V ({R] 4)})
s=1 \I=1
_ HN/ del)_” n) o—BUest (R ..R{") (4.22)
where N = (%)"/2 is a constant and
n N 1 1
s s+1 s

=2 0 gmwi(RyY = Ry 4 VR (4.23)

s=1 I=1

is considered as the effective potential.

The Eq. 4.22 looks like the classical configuration partition function for a
system of N ring polymers with n particles (or beads) each. Thus, it is the so-
called isomorphism of the quantum partition function due to the path integral
formalism.

To perform a molecular dynamics implementation [67] one needs to use con-
servative forces derived from the Eq. 4.23, which also obey the equipartition
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theorem. From Eq. 4.22 one can see the connection with Molecular Dynamics
(MD) by adding n-Gaussian integrals under the condition that,

n/2 n N (s)2
p / (1) (n) ¥
Py dPy =1 4.24
(27Tm1 d -d exp( 68521 2 2 I[ ) ( )

where m/; is an arbitrary mass parameter. The value of this parameter affects the
rate at which the molecular dynamics trajectories move and thus, the efficiency
of the sampling. Inserting last equation into Eq. 4.22 gives,

N
H/\f’/ drY .. .d R(”)/ ar™t .. .dp™ x

N (s)2
xeap( ﬂZ{ZP ; (R(S) R(erl))
s=1 [=1
FIVIRODY), (4.25)

where N is a new normalization factor. The Gaussian variables are uncoupled
and can be integrated analytically to obtain the prefactor A from Eq. 4.22.
The derivation presented here only involves the partition function, thus only
statistical properties of the quantum system can be calculated. This means, that
although one can derive a corresponding Hamiltonian for the whole partition
function as

"= Z{Z n Smrd (RO~ R Lv((ROY), (4.26)

I — — N .
s=1 I=1 ! " !

the dynamics of this system cannot be directly related to the quantum system,
but rather only the statistical properties of the ensemble which are the results
of the sampling of this pseudo-dynamics. Formally, now we can use the term
PIMD to denominate the Hamiltonian obtained above. The PIMD technique
uses the classical dynamics of the ring-polymer Hamiltonian, i.e.,

- (s) OH PI(S)
RI = w =7

0P, my
(s 8 s s s—
PO = T 2R - BT RV

ORS
_dV({R;Y) 427)
AR

to propagate the trajectories and thus sample the phase space of the ring poly-
mers.

The final result of the path integral in a MD scheme is considered ideal for
the design of parallel implementation, turning such representation in a powerful
tool to calculate statistical properties of materials in the presence of quantum
effects.
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4.3 Static properties from PIMD

The path integral formulation of the quantum statistical mechanics provides
an efficient method to evaluate the quantum static equilibrium properties of a
system of N particles. Suppose we want to calculate the expectation value of
the position-dependent operator A. By definition, the expectation value of A
is:

Tr[Ae=FH]  Tr[Ae A%

D)= Fe = 2 (4.28)

This evaluation can be performed using the path integral approach described
above. The result is

»
Il
—_
~
Il
—-

with Rg"H) = Rgl). The above integral is invariant under a cyclic relabeling of

all the path integration variables, Rgl) — R§2), R§2) — R§3)7 and so forth. Such
a relabeling can be carried out n times, the resulting expression added together
and divided by n equals:

N

~ mirn
A _ n/2
< > Z n—»oo 1;[ 27Tﬁh2
/ dr .. ar(m L Z A(R')) e Ptlert (4.30)
I 1 n po— A

where Ueg is given in Eq. 4.23. Now a finite expression for (A) can be obtained
by substituting Z from Eq. 4.21. This yields,

N
A 1 . min
A, = ——1 I I n/2 «
(4) o 121(27rﬁh2)

1 ¢ S
/ dR}" .. AR} =Y A(R)em Mo (4.31)
s=1

from which one obtains the true value of the expectation of A in the limit of
n — oo:

(A) = lim (A), (4.32)

n—oo

Eq. 4.31 can be evaluated using a Monte Carlo (MC) scheme, since such average
is computed in the configuration space. A trick can be done in order to compute
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the same average in a Molecular Dynamics (MD) scheme as we did in Eq. 4.25.
Substituting the identity 4.24 into Eq. 4.31 we obtain that,

N
(A = HN/dR?)---dRY‘)/dP}”---dP,("> x
I=1
RS 9 pls
= ST ARY PP e (4.33)
n
s=1

where H is the Hamiltonian defined in Eq. 4.26. Since the momenta are only a
trick to compute the averages of A in a different scheme, no meaningful quantum
dynamics can be extracted from the new set of trajectories. The next section
shows the limitations of the MD implementation and a posteriori solutions.

4.4 Limitations of the PIMD and possible solu-
tions

The PIMD equations of motion derived in Eq. 4.27 explore the phase space
that is consistent with their energy (i.e. microcanonical ensemble). Thus, they
fail to sample a canonical distribution. These fixed-energy trajectories must be
modified if they pretend to produce a fixed temperature distribution (canon-
ical distribution). A natural solution for achieving this involves the coupling
to a thermostat. Several approaches have been used so far to maintain the
temperature, a very popular one involves linking additional vibrational modes
onto the physical degrees of freedom of the system [68,69]. The ficticious ther-
mostat modes are coupled to the momenta of the physical DOFs and regulate
the kinetic fluctuations to produce constant temperature trajectories. It turns
out that DOFs which are dominated by harmonic motion require the use of
not one but a chain of thermostats [70]. Such systems plus the thermostat will
require a massive solution of a set of equation of motion. Although the canon-
ical distribution is rigorously reproduced with a thermostat chains of sufficient
length [71], the dynamics of the thermostated and the unthermostated system
is not clear. This last point is not of relevance but will be crucial in algorithms
based on path integral formulation where quantum dynamics can be extracted
from [72,73]. An alternative technique for generating a canonical distribution
from microcanonical trajectories involves the use of thermostats whose physical
principle involves a periodically resampling of their momenta from a Maxwell-
Boltzmann distribution [74]. Physically this thermostat mimics inelastic col-
lision with a thermal bath at fixed temperature. Another type of thermostat
commonly used in the molecular dynamics community are the stochastic ther-
mostats due to their local behavior and easy implementation. One can use a
Langevin thermostat [75] to compute static properties, but it is well-known that
such a thermostat does not preserve the true dynamics of the system. Recent
development of more sofisticated stochastic thermostats such as the Dissipative
Particle Dynamics (DPD) has shown to preserve the hydrodynamics [76] or the
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possibility to control transport coeficients [77]. Since hydrodynamics is not im-
portant in the scale of observation, therefore a simple langevin thermostat will
be sufficient to properly thermostat the ring polymers.

A second limitation of the direct implementation of the Eq. 4.27 is due
to the large number of beads required to approach the true value of quantum
partition function. As one increases this number, the harmonic spring terms
become stiffer and start to dominate the dynamics. Thus, the sampling of the
entire spectrum of frequencies becomes poorly evaluated. It is known that mi-
crocanonical trajectories in such system may not event follow a microcanonical
distribution and ergodicity problems may arise [78], i.e. on the time scale ac-
cessible to a computer simulation. This can be synthesized as follows:

1L @) 1
nlingon;A(R i) # ) /dP/dR A(R)S(E —H) (4.34)
where t; = iAt for some time interval A along the microcanonical trajectory
with fixed energy E and Q(F) as the microcanonical partition function at that
energy.

The last problem is due to the choice of the mass parameter, m/, in the
PIMD scheme. To illustrate this problem we can see in Figure 4.2 how the size
of the ring polymer decreases for heavier particles. Thus, one has to decrease
the integration time to sample high frequencies. However, the choice of the mass
parameter will affect the efficiency of the molecular dynamics sampling since it
governs the rate at which the trajectories moves through the phase space. A
large-mass trajectory will move relatively slow and will take a long time to sam-
ple the whole phase space. During the last decades some solutions to tackle this
particular problem of the molecular implementation of path integral have been
developed. For instance, one is the change of variable (Staging transformation)
or the use of the normal modes (NM algorithm) to evolve the equation of mo-
tion of the ring polymer. Only the NM algorithm was implemented and used in
the last chapter for numerical accuracy. These two solution will be discussed in
detail in the following section.

4.5 The Staging transformation

If n is large, the springs are n-times stiffer and the potential n-times weaker.
Then the spring dominates the dynamics and the system does not explore the
rest, of the phase space required to compute properly the static properties.
Therefore, for a large n the harmonic modes have to be decoupled so that
one could move all the modes in the same time scale. This can be done by
the staging transformation [79], which was developed in analogy to the staging
Monte Carlo method [80]. Each degree of freedom is transformed as

W = RY,
ugs) _ Rgs)—Rf,S)*, s=2,...,m, (4.35)
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Figure 4.2: Path integral collapse due to the effect of heavier particles (with
Muon(Mu), Hydrogen(H) and Deuterium(D)).

with
) -1 R(S""l) R(l)
s
Such transformation can be inverted as
R§1) _ u(]l),
S S - S — 1 t
R® = u§>+z_;mu§>,s=2,...,n, (4.37)
Substituting into Eq. 4.25, the partition function results
N
HJ\// du§1>...du§")/ arP® ... dpPf™ x
P(S (51,2 (092
n(ur )"+
s=1 1=12m
L (R (1,0
+=VI(R ({ur D)D), (4.38)
where the staging masses mgs) are defined as
(1) = my
mgs) = ilml, $=2,...,n. (4.39)

The harmonic oscillators are decoupled from each other in the staging variables.
From Eq. 4.38 one can notice that the Hamiltonian in the staging variables is
given by

(s)2
Z{ZP,(S) W)+ LV RS (), (440)

sl]l
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using this Hamiltonian, the path integral calculation is expected to sample its
corresponding phase space much faster than the Hamiltonian (see Eq. 4.26) in
the primitive variables. The Hamiltonian in Eq. 4.40 suggests that an optimal
choice of the mass parameters is given by

/(1) (1)

my = my
mll(s) = mgs) (4.41)
Such choice will move the staging modes, u(ll), . ,u(ln) on the same time scale

facilitating the sampling of all the modes during the MD run. Alternatively
to the staging transformation and with the same efficiency was developed the
normal modes algorithm.

4.6 The Normal Mode transformation

NM transformation has been extensively used in the field of polymer science
to study the Rouse dynamics of unentangled short chains [81]. In our system,
for n — oo, the simulation of ring polymer will tend to suffer of convergence
problems as we described before. This is partly due to the time scale separation
between the intermolecular and intramolecular potentials. While the former
scales as 1/n, n being the number of beads, the latter follows n. However, in
the path integral approach, the internal modes of the ring polymer are mixed
due to the interaction between beads of different polymer rings and this is the
physical scenario that one wants to preserve in the simulation. The numerical
implementation of the normal modes (see Appendix E) takes into account the
mixing of the modes in a good approximation. This transformation has been
used in this thesis to express the harmonic spring potential VhaTm({Rgs)}) from
Eq. 4.26 as a sum of n uncoupled harmonic oscillators. The harmonic potential
for a system of N particles can be written as

N
Vharm {R] Z {R(S (442)
I=1

where the potential due to the Ith ring-polymer is
s . 1 s s+1
VIARY) = Y gmiwd(RY) - RV
= 1 S S S
=3 L PR

RETDRO 4 pl2) (4.43)
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After rearranging the terms in the sum, it becomes

S - 1 S S S S S—
Vi({R\} 25 2Ry — RORYSTY — RPVRPTY) (4.44)
which in vector notation is
s 1
Vi{R\}) = §m1wZR}r "A-R; (4.45)
where
2 -1 -1
-1 2 -1
-1 2 -1
-1 -1 2

is independent of the particular value of I.

It can be noted that for the Ith ring polymer, the coordinates of different
beads are coupled by the off-diagonal therm of the matrix A. Thus, the un-
coupling of the coordinates can be done by diagonalizing A, i.e., this means,
finding the matrices a and C such that

A=C-a-C7T, (4.46)
where a is a diagonal matrix and C is an orthogonal matrix such that
ch.c=1, (4.47)

due to the symmetry of A. Theses matrices can be found by exploiting the
analytical form of A and writing the Eq. 4.46 in the following form:

—Ck—a,s T 2Ck,s — Ck+1,s = Ck,s0s, Vk,s=1,...,n. (448)

The boundary condition ¢,41,s = ¢1,s and co s = ¢, can be satisfied by the
following independent solutions

ck,s = N cos(2mks/n) (4.49)
fors=1,...,n/2 and

ks = Nsin(2rks/n), (4.50)
for s = n/2 4+ 1,...,n where N is a normalization constant. Combining Eq.

4.46 and Eq. 4.49 gives

0= —cos(2m(k —1)/n)+ (2 — as) cos(2mks/n) — cos(2n(k + 1)s/n). (4.51)
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and using the identity:
cos(x £+ y) = cos(z) cos(y) % sin(z) sin(y), (4.52)

the expression above can be arranged and yields

asdsin®(st/n), Vs =1,...,n. (4.53)
This implies that the eigenvalue a,/24¢ is degenerate with a,, /o for s =
1,...,(n/2 —1). Thus, the normalization constants are
N - V1/n, for s =n/2 or n (distinct eigenvalues) (4.54)
- \/2/n, for all other s (degenerate eigenvalues). '

With the diagonalization of A, one can insert Eq. 4.46 into Eq. 4.45 and
this yields

({Qﬁ})——mzw?czf ‘a-Qy, (4.55)
where
Q=CT R, (4.56)

and it defines the transformation to the ring polymer in the Normal Modes
coordinates. And now using the property of a being diagonal, the Eq. 4.44
becomes

n

Vi@ ) = g Zasczz S Smie2Q? (4.57)

s=1

which is the potential for a collection of n uncoupled harmonic oscillators with
normal-mode frequencies equal to

Qs = wpr/as = 2w, sin(sm/n). (4.58)

Similarly as in Eq. 4.38 one can notice that the Hamiltonian in the normal
modes (NM) is given by

s)2

Hxar = Z{Z M D+ VRDUQP). (459)

5111

For s = n in Eq. 4.53, one obtains a,, = 0 . Thus, the Eq. 4.57 defines a
potential for a zero-frequency. We also define the ring polymer centroid as

Zn: . (4.60)

:I>—l
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So that, one defines the nth normal mode with elements ¢y, , = ﬁ independent
of the value of k£ and therefore Eq. 4.56 yields

Qn = % SZER?) =vnR. (4.61)

Through this expression, the normal-modes transformation introduces the cen-
troid variable. In the Appendix E is described in detail the numerical imple-
mentation of the normal mode transformation .

4.7 Similarities between the path integral formal-
ism and the statistics of ring polymers

4.7.1 The free ring polymer

Let us start the comparison between both approaches by studying the behaviour
of a single ring polymer in the absence of an intermolecular potential between
beads of different ring polymers (see Eq. 4.21). This case has an analytical
solution and will illustrate the similarities. Due to the simplicity the distribution
of beads is given by,

efﬁmwi(Ri*Ri+l)2/27 (462)

and from which the average distance between bead is,

[ 1 h?
<(Ri - Ri+1)2>1/2 = ﬁm—w% = i—n (4.63)

Thus, as the number of beads, mass of the particle or the temperature is in-
creased the average distance between the bead decreases (see Fig. 4.3).
Another important property which can be quantified is the radius of gyra-
tion, g, which describes the spread of an individual bead from the centroid
(center of mass) of the ring polymer. In one dimension can be defined as

1 n
P - > lak = aef? (4.64)
k=1
where z. is the position of the ring centroid,

T = ! Z T (4.65)

n
k=1

The thermal average of the radius of gyration can be calculated exactly for a
free ring polymer as follows

S ok — 7)) = = D) (@) (4.66)

k=1 k=1

S|

(wg) =
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Figure 4.3: Length scale of the free ring polymer in three dimensions. It is shown
the thermal average of the root mean square radius of gyration and root mean square
bond length of the ring polymer.

For a gaussian chain the radius of gyration scales as 7% ~ n [81], however, for a
ring polymer, the path intgral approach predicts a constant value in the limit of
n — oo (see below). This is due to the non-trivial n-dependence of the spring
constant in the path integral approach Eq. 4.21. In the case of a free ring
polymer, the thermal average is given by

fd"xe_ﬁ ZZ:1[mwi(Ek—fEk+1)2/2]( )

()= T e B it @ 07/ (4.67)

where w, = \/n/Bh. The above expression can be analytically evaluated by
transforming the coordinate system to the normal modes coordinates of the
ring polymer (i.e. Q; = (&;,41,2),Y] = 1,...,n). The main result that we
used is that the free ring polymer potential energy expressed in terms of bead
coordinates,

3N

Vx) =) m;} (zr — xg1)?, (4.68)
k=1

can be transformed using the orthogonal transformation C as follows:
n
T = Z Ci kg (4.69)
k=1

to a set of normal modes coordinates Z;.
In this new set of coordinates the ring polymer potential energy can be
expressed as a set of uncoupled harmonic oscillators

"1
V(E)=> imejf (4.70)
=1

where ; are the frequencies of the free ring polymer,

Q = 2wy sin(lr/n) (4.71)
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and n-th normal modes frequency is given by €, = 0 and is related to the
centroid of the ring polymer by

. 1<
= ;xk = Vnze. (4.72)

Transforming to the normal modes coordinates and using

> ap =) i, (4.73)
k=1

=1

which follows directly from the orthogonality of the transformation, the average
of radius of gyration can be expressed as

Z (&, /v/n)?) % Z (4.74)

The expectation value of (7?) is therefore

§I>—‘

o [drE e PEI 1[m97E /2] (72)
<xl> fdnx e B3, [sz 2/2] )

(4.75)

which is a typical Gaussian integral, that can be easily evaluated and gives

2 I ph’
) = BmQ?  dnmsin®(I7/n)’ (4.76)

Finally, the square radius of gyration is

2 n—1
() = 22 Zsin(l . (4.77)

dmn w/n)

Using the identity,

> —— %(n2 -1), (4.78)

— sin? lw/n

the square radius of gyration in one dimension is,

Bh* 1
(2%) = o Gl R (4.79)
So in three dimension we have,
Bh? 1
(ré) = (e +y& + 22) = 3(ag) = T\l ) (4.80)

which is consequence of the isotropy of the space. As previously mentioned, the
radius of gyration approaches a constant value in the limit of n — oo. This is
an important consequence of the path integral formalism with respect to the
classical ring polymers. Fig. 4.3 depicts the radius of gyration in the path
integral approach.
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4.7.2 Rouse theory for ring polymers

In this section we reproduce first some important results from the well-known
Rouse theory for a “classical” ring polymer and later we provide a comparison
with the path integral approach. Such a theory became extremly useful for the
early understanding of the dynamics of short (non-entangled) polymer chains.
Here we describe a bead-spring model of a classical ring polymer under the
Rouse theory. The potential between beads is given by

n

U= %k > (ri—rio1)? (4.81)

i=1

where k = 3kpT/b? is the spring constant. It is important to emphasize the
differences between the potential energy for a ring polymer under the classical
and the path integral approaches. In the former, the spring constant depends on
the temperature the effective bond length. In the latter, it is also proportional
to the temperature and additionally to the number of beads (Trotter number).
In the Rouse model each monomer is subjected to a Brownian motion. Thus,
one could assume that each bead will experience a drag force proportional to
the velocitiy and random kicks which rapidly decorrelates in time.
The position of a single bead is given by,

dr; ou
gd—’;:—a—mjuri, fori=1,...,n (4.82)
here ¢ is the friction coeffient of a bead and T'; is the noise acting on the bead
with the following properties:

i) =0
TeOTH)) = 2kpTES(t — 1)1 bap, (4.83)

where «, 3 = 1,2,3 are cartesian indexes. One could see from Eq. 4.81 and
4.82 that the equations of motion (EOM) will be coupled due to the form of the
potential. A simple idea to overcome this difficulty is to introduce normalized
coordinates which decompose the motion into independent modes (i.e. “Rouse
modes”). Following the treatment of the Rouse model for ring polymers [82],
to solve Eq. 4.82 in the continuos limit (i.e n — o0), we introduce the normal
coordinates as follows:

1 [ i
Qi(t) =— / dn r;(t) cos (ﬂ> for1=0,1,2,3,... (4.84)
n 0 n
and the inverse transform is
> lmi
ri(t) = Qo +2)_ Qicos —=) fori=0,1,2.3,... (4.85)
=1
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Now, applying the boundary condition for the case of a ring polymer, ro = 7,

and %’"ii o = %’;i .—,, we find that all odd modes vanish. This means that
> Imi
ri(t) = Qo+2 Y Qicos <l)
l,even n
1 /m i
Qit) = — dn ri(t)cos (| — | for1=0,2,4,... (4.86)
nJo n

where the summation is evaluated for even modes (i.e. [,even =2,4,6,...).
The Eq. 4.82 in the continuous limit can be written as:

51% =—kQi+ fi (4.87)

and using Eq. 4.83, we also find that

kgT
(QF (Q1(0) = Sapdur———e "/, for 1 =2,4,6,... (4.88)
l

where

Kl =

2212 6m2kgTI?
k =
n b%n
2ng &n?b?
ki 3m2kgTi?’

7 for | =2,4,6,... (4.89)
and 7; is known as the relaxation time of the Rouse modes. The derivation of Eq.
4.88 and Eq. 4.89 is fully transferable to the case of the ring polymer in the path
integral (PI) approach and when the proper spring constant, k = mn/(8h)?, is
used we have that,

b 2n%(kpT)*mi2
T T TR
2
PI &nh
= ————— forl=24,6,.... 4.90
T 7T2(kBT)2ml2, or ) Ey Yy ( )

Comparing the relaxation time predicted by the Rouse theory between Eq. 4.89
and Eq. 4.90, one could see that modes of the polymer rings in the path integral
approach relax faster than classical ring polymers.

4.7.3 Application of the Rouse theory for the para-hydrogen
liquid

A test case is studied under the Rouse theory for polymer rings. More details

about the forced field between para-hydrogen molecules and the application of

our novel approach will be presented later in the chapter 6. Here we report
briefly the analysis of the Rouse modes using path integral molecular dynamic
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Figure 4.4: The square amplitude of the Rouse normal modes (Q7(0)) for the path in-
tegral representation of para-hydrogen molecules as a function of 1/l2. Here is depicted
for the ring polymer with lentgh n=28 and n=48 beads at T=25 K.

(PIMD) simulations with normal modes (see section 4.6 and Appendix E). We
perform simulations for two different Trotter number, namely n = 28 and n = 48
at T—25 K. The trajectories accumulated in the simulation serve as a starting
point for testing the new insight about the Rouse theory for the ring polymer
representation of the para-hydrogen molecules.

There are several test that one can think of: the first is to test the Eq. 4.88
that the mean square amplitude (Q7(0)) of the l-th Rouse modes scales with [
as 1/1%2. Results obtained for the two ring polymers are shown in the Fig. 4.4.
For a given number of beads n, the Rouse scaling is seen to be followed only for
the lower [ modes, for higher [ modes there are significant deviation from the
Rouse theory, specially the shorter one.

A second test of the Rouse mode for the ring polymer refers to the time decay
of the normalized autocorrelation function (Q;(¢)Q;(0))/(Q#(0)). According to
Eq. 4.88, a log-linear plot of (Q;(£)Q:(0))/(Q7(0)) versus ¢/(1/1%) should yield
a straight line. Numerical results for the relation times are shown in Fig. 4.5.
If the ring polymer behaves identically as a Rouse chain, all the curve should
have collapsed on a straight line. This is not the case in the data reported in the
figure and significant deviation from the ideal Rouse behaviour are observed, in
special for higher modes (I > 2). The same behaviour dominates the larger ring
polymer (not reported here).
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Figure 4.5: Time autocorrelation function of the first normal modes for ring polymer
representation of para-hydrogen molecules with n—28 (beads) plotted against ¢/(1/1%)
in a log-linear plot.
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Chapter 5

An adaptive classical-path
integral scheme in Molecular
Simulation

In Chapter ITI, we described the classical adaptive resolution simulations where
the simulation domain is subdivided in regions of different molecular resolution
and particles can easily diffuse between these two resolutions. However, while
the adaptive process of changing resolution on the fly can be described within a
reasonable simulation accuracy according to the basic principles of classical dy-
namics and thermodynamics, the same cannot be said when quantum mechanics
becomes relevant. The proper coupling of quantum and classical mechanics is
known to be a non trivial (and open) problem [83] and hence the adaptive
character adds up as a further difficulty [84]. Practical methods [85 87] that
couple the two regimes, in general, do not take into account the “conceptual”
discontinuity of going from a probabilistic (quantum) to a deterministic (classi-
cal) approach (and vice versa), and usually base their validity on empirical and
numerical criterion. In this chapter, we present a new scheme [88] where the
coupling between classical and quantum regime can be achieved in a smooth
and consistent way. This chapter is organized as follows: First a section about
the importance of the quantum effects in the matter, then a section is dedi-
cated to the basic idea of quantum-classical coupling and finally a test of our
approach PIMD/CG within AdResS framework in two model systems, namely
the monoatomic liquid and molecular liquid.

5.1 Quantum description in soft matter
Generally, the extent to which the quantum nature of the systems matters is a

crucial aspect of modeling any soft matter system (e.g. proteins, liquid, poly-
mers, etc ). This is partly due to the variety of processes whose quantum
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character influence several other scales. It is undeniable that a full quantum de-
scription of a system (by Density Functional Theory (DFT) methods) is often
computationally too expensive. Therefore, typically the modeling of many soft
matter systems starts to incorporate partial quantum effects into the so-called
classical force fields (e.g. CHARMM [89], GROMOS [90] and several others).
However, there are many interesting problems where such approximation is not
accurate and detailed quantum description is needed in certain regions of the
space, for example, the inherently quantum nature of a chemical reaction in
biological processes [91] and the quantum nature of the nuclei of light particles
as hydrogens in important molecules as water [92] at room temperature require
a proper quantum description, to name a couple.

The quantum character of particles becomes particularly relevant for the
regime of low temperatures and light particles. In such conditions, the quan-
tum nature of matter play important roles in modifying the structure and dy-
namics of the entire system. Soft matter systems are typically around room
temperature and their behavior is generally determined by the thermal fluc-
tuations, which are of the order of a few kpT. However, as we illustrate in
Figure 5.1, some biological systems may need to incorporate quantum details
to completely describe the structure and dynamics. In this figure we illustrate
a large molecule solvated in a model system of tetrahedral molecules, in part
(a) of Figure 5.1 the full quantum mechanical description of the system with
path integral description is shown. This makes the molecule more flexible and
new conformations can be explored in presence of the solvent. For example, the
red circle indicates a typical region where the atoms become delocalized and
thus they induce conformational changes in the molecule. Let us assume that
such conformations are only observed in presence of the quantum character of
the particles and therefore, a conventional simulation with the path integral ap-
proach will be computationally expensive, due to the system size. In Figure 5.1
(b) we depict a solution which combines the advantage of a systematic struc-
tural coarse graining (see chapter I) to reduce the number of degrees of freedom
in a region of no interest and the adaptive resolution scheme (see chapter III)
to allow the change of degrees of freedom on the fly. The preceding description
maintains particle fluctuations between all the regions. The basic idea of how
one can implement such approach is presented in the next section.

5.2 The basic idea of the quantum-classical adap-
tivity

As discussed in the chapter III, the AdResS method is numerically robust and
its theoretical background has been well-established. In our case, the AdResS
method becomes an important tool for the adaptivity of the quantum-classical
system. More specifically, for the adaptive process the path integral approach of
atoms has far-reaching consequences, because it translates the quantum-classical
coupling into the coupling of two effective classical regions characterized by a
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Figure 5.1: A pictorial representation of a large molecule solvated in a liquid of tetra-
hedral molecules. In part (a) the quantum mechanics description of the whole system
generates conformational changes that are not observed in classical MD simulations.
In (b) the PIMD/CG approach is depicted, the space is partitioned in a central region
described with quantum mechanics, molecules that are far of the central region can be
replaced by CG spheres and in between a transition region with hybrid particles.
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different number of (as a matter of fact) “classical” degrees of freedom; thus the
whole machinery of classical adaptive methods would apply straightforwardly.

In this chapter, we show that this indeed is the case. It must be noticed
that our PIMD/CG approach in AdResS (see next section) aims to calculate
static equilibrium properties within a quantum mechanical description and not
for the true quantum dynamics. Practical adaptive methods where electrons
are considered are already available [85 87], however the nuclei are in these
cases classical. In the next section, we test our approach systematically in two
systems, namely the monoatomic liquid and molecular (tetrahedral) liquid. As
in the classical AdResS a coarse graining procedure is used to obtain an effective
one site potential which is coupled to the explicit force field using the equation
of motion of AdResS. Similarly here, one obtains an effective potential from the
path integral representation and then performs PIMD/CG simulation within
the AdResS framework.

5.3 PIMD/CG approach in AdResS

The purpose of our hybrid scheme is to use a path integral (PI) description of the
molecules in a certain region of interest, instead of using PI representation (i.e.
ring polymers) throughout the simulation domain. We use a reduced number
of path integral molecules in equilibrium with an effective coarse grained (CG)
region (classical particles), where the effective potential is derived from a full
path integral simulation. The main advantage of the hybrid scheme is that
we do not need to represent all the particles by the path integral formalism,
which is computationally expensive for large systems. Details of the procedure
used to characterize the CG particles are given in the next sections. Let us
now consider the total number of particles, N, in the simulation box to be
fixed, which represents the total number of atoms or molecules. Our results
in the next sections show that a fraction of the total number of particles can
be represented by ring polymers, which remain in thermodynamic equilibrium
with the classical CG representation and at the same time preserve quantum
properties, for example the distributions of delocalized particles in the quantum
region.

5.3.1 Effective potential derived from a path integral rep-
resentation

The force field needed for the path integral simulation has to be parametrized
without the quantum effects, which are important at a given thermodynamic
condition. Otherwise, the system under study will overcount the quantum effects
due to the additional path integral approach. Such a problem has been addressed
recently for the case of path integral simulation of a flexible water model [92]. In
our study, we use a classical force field that does not include quantum effects.
Then the effective coarse-grained model is derived from a full path integral
representation. To obtain an effective coarse grained potential from a path
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integral representation of atoms/molecules we have used the iterative Boltzmann
inversion procedure available in the literature [16]. The main idea is to calculate
the non-bonded potential V°f(R) between the center of masses (R = Rcm) of
the particles from their path integral representation at given temperature. For
example the CG procedure for the monoatomic liquid consists of replacing the
path integral representation of an atoms (i.e. ring polymers) by an effective
particle (CG bead), which interacts through the potential V¢ (R). Thus, such
CG potential takes into account (in average) the quantum corrections to the
classical CG potential as shown below,

VT(R) = VYR) + AUDM(R), (5.1)

where V° is the classical CG potential and AU®M is the corresponding correc-
tion due to quantum effects. Therefore, as the temperature T or the mass of the
particle decreases the quantum corrections to the Ve become more important.
To guarantee that our hybrid scheme reproduces the same thermodynamic state
point one has to correct the shift in the pressure produced by the artifact of the
iterative procedure (see section 1.3.2).

5.4 Results and Discussion

In this section, we present the results of our PIMD/CG approach in AdResS for
the two model systems studied in a regime of low temperatures, which corre-
sponds to the extreme thermodynamic condition where the quantum description
provided by path integral becomes relevant. In general, for soft matter applica-
tions the temperature is usually high and thus our approach, if it works at low
temperature, should then work even better. As we have seen before the quantum
character of the path integral representation (see chapter IV) is characterized
by the number “n” of beads (Trotter number) at given temperature. In our sim-
ulation, we have fixed the Trotter number and change the thermal energy from
a high temperature (classical) to a lower temperature regime where quantum
effects become important. A procedure to achieve such conditions is to decrease
the temperature 7. However, in the path integral formalism one can also mod-
ify the spring constant (due to its temperature dependence, k = %ETF) to
resemble such conditions. Thus, one can mimic temperature effects by tuning
the spring constant. This plays the same role as the temperature and helps
us to explore a broad picture of delocalization. This procedure is used here to
test our PIMD /CG approach in AdResS from a moderate to a strong quantum
regime. Note that in real physical systems each temperature defines one fixed
value of k. In the first part of this section we show the results for a simple model
of a repulsive monoatomic liquid and later we test the method in a rather more
complicated molecular system.
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5.4.1 Case I: The monoatomic liquid

To begin with our analysis, we start to simulate a generic simple model of a
monoatomic system within its quantum limit. The idea here is to test the
switching of degrees of freedom from the path integral representation in the
“primitive coordinates” to an effective CG one site representation. The Figure
5.2 illustrates the process of changing on the fly the representation of a single
quantum atom in its path integral representation to the effective classical model.
The process that we address is the free passage of atoms from a path integral
region to a coarser one and vice versa.

Atomistic Hybrid
representation Path Integral/atomistic representation

Path Integral

Figure 5.2: The on-the-fly interchange among the path integral (PI) and coarse-
grained (CG) representation. Here we depict the case of a quantum particle in the high
resolution (Right side) given by the PI representation which due to the isomorphism
of the quantum partition function becomes a polymer ring.

To account for several degrees of “quantumness” (i.e. delocalization) we per-
form a systematic study decreasing the temperature associated with each quan-
tum regime as we disscused at the beginning of this section. For the purpose
of testing, we define the reference temperature, 7% = 1 in the Lennard-Jones
units (with e = 1 and ¢ = 1 as the unit of energy and length respectively), to
be the temperature associated with classical regime. We perform simulations at
different temperatures 7*//10, T*/5, T*/v/50 and T*/10. We show the effect
of decreasing the temperature in Table 5.1, where we compare the radius of
gyration for the free ring polymer r4(free) and the one obtained in our simu-
lations of full path integral for each respective temperature. The contraction
observed in the r, is due to the presence of the intermolecular interactions in
the simulation.

The force field used to describe the classical condition is a repulsive Morse
potential parameterized as follows:

V() = {1 - exp(—a*(r* —r5)}? (5.2)
where v* = /e = 0.105, a* = o = 2.4 and 1§ = ro/o = 2.31, and cutoff at .
In this case o and e represent the length and energy units.

The next section focus on the technical details about the calculation of the
effective potential using the iterative Boltzmann inversion method.
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Table 5.1: Radius of gyration obtained from PIMD simulation and its theoretical
2
value in the approach of free ring polymer, i.e. rfl (free) = %(1 -1

nZ
Temperature T, r, (free)
T*/10 0.59+£0.01 [ 0.70
T*/v/50 0.42+0.01 | 0.49
T*/5 0.2940.02 | 0.32
T*/3/10 0.20+0.01 | 0.22
T* 0.05+0.01 | 0.07

Determination of the effective potential

We calculate the effective non-bonded pair potential V' (R) between the CM
of the polymer rings using the Iterative Boltzmann Inversion (IBI) method [16]
and subsequent pressure correction for a given degree of delocalization. As men-
tioned earlier the “quantumness” becomes more evident at lower temperatures.
For each temperature a numerical set of effective potentials is obtained, which
reproduces the center-of-mass radial distribution function (RDF) and total pres-
sure for a given thermodynamic state point. This process was repeated for two
number densities which correspond to the medium density liquid with p* = 0.1
and the high density liquid with p* = 0.175.

Figure 5.3 (a) shows the effective potentials for the very quantum case equal
to T* /10 and for T* /5 where the “quantumness” is negligible at density p* = 0.1.
Part (b) shows the distribution from the beads to the center-of-mass of each
ring polymer in the path integral representation which provides a signal of the
delocalization of particles for lower temperatures. We infer from both pictures
that for this particular system as the temperature becomes lower, the effective
coarse grained potential is more softer. Thus, atoms can occupy more space in
the statistical sense (i.e quantum delocalization) due to quantum aspects of the
matter present at given temperature.

Statistical properties

In this part, we present the numerical results of our adaptive simulation of
PIMD/CG in AdResS for the monoatomic liquid. It is important to emphasize
that the atoms diffuse freely in time traveling from the path integral region to
the coarser region and vice versa. Thus, one must check the thermodynamic
consistency of our results based on the criteria introduced in the chapter of the
AdResS (see Chapter III). As we described for the classical system the path
integral particles interact with CG ones by the interpolation force scheme [93].
Our simulations are tested by comparing the computed statistical properties of
the PIMD/CG in AdResS with the corresponding properties in the full path
integral (reference system). As we show below, the results are in good agree-
ment up to approximately the same error known from the classical adaptive
simulation.
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Figure 5.3: (a) The effective potential V* between center of masses (CMs) of the
polymer rings for 7% /10 (more quantum regime) and for 7% /5 (classical regime) with
p* = 0.1. As the temperature decreases the effective CG potential, V*, approaches to
the classical force field (in blue). (b) Shows the distribution distance (dy, _,,,) from
each single beads to its corresponding CM of the ring polymers, for lower temperatures
the distribution spreads more in the space.

We start to compare compare the CG level of description in our adaptive
simulation. In part (a) of Figures 5.4, 5.5 and 5.6 is compared the center-of-mass
radial distribution function (RDF) calculated in all the space in the adaptive
scheme with the full explicit path integral simulation. We note that for 7' >
T*/5 the effect of the delocalization implicitly determined by the temperature
ceases as soon as the temperature approaches to the reference (classical) value,
T =1.

Figure 5.7 shows the normalized density profile along the x direction for
the same set of temperatures. Once again, for 7' > T*/5 the drop of density
disappears indicating that both representations: path integral (PI) and coarse
grained (CG) are thermodynamically equivalent. To guarantee the free diffusion
of particles and their subsequent transformation from one representation to the
other one, we plot the center-of-mass diffusion profile for two slab of particles,
one is localized on the quantum region and the other in CG one in Figure 5.8.
This tells us that the atoms can freely diffusive and we can see how the initial
set of particles spread as the time goes.

The second level of comparison is due to the local information accessible
only in the path integral region. To show the consistency for this level, we
plot the partial bead-bead RDF which is calculated only in path integral region
in our adaptive simulation. This is compared with RDFs calculated in the
same subregion but from a full explicit path integral simulation (see part (b) of
Figures 5.4, 5.5 and 5.6). For the set of temperatures the agreement is highly
satisfactory. The coexistence of path integral, hybrid and CG particles can be
observed in the Table 5.2. From this table, we note that approximately 1/3 (due
to the size of the hybrid zone) of the total number of atoms are represented as
ring polymers and they are in good thermodynamic equilibrium with 1/3 of
coarse grained particles. The remaining particles are represented by hybrids.
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It is important to note that the thermodynamic equilibrium is maintained for
each region. This means the pressure P, temperature T and average density are
kept in equilibrium. Same results are obtained for the density p* = 0.175, not
reported here.
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Figure 5.4: (a)Center-of-mass radial distribution function (RDF) evaluated in the
whole box. The dashed lines (in red) indicates the result in AdResS which is compared
with the RDF obtained from a full path integral simulation (reference system) for
T7%/10, p* = 0.1. (b) Shows the bead-bead radial distribution function calculate in the
path integral region. This is compared with the RDF from the reference system.
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Figure 5.5: As for Figure 5.4, but in this case for 7% /1/50. The same agreement for
the global center of mass and local bead-bead radial distribution functions.
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Figure 5.6: As for Figure 5.4, but this time for 7" /5. The same agreement as before
is reported in this figure.
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Figure 5.7: Normalized density profile in the x direction for the monoatomic liquid
in AdResS. In all the graphics the interface region layer is given by 8c. The vertical
lines denote the boundaries between the path integral (PI), coarse grained (CG) and
hybrid (A) regions of the system. In figure (a) is showed the case of lowest temperature
studied 7*/10, in (b) for T*/4/50 and (c) for T*/5. From all of them, one observes
how the drop in density for high temperatures is suppressed by the thermodynamic
similarity between the PI and CG model.
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Figure 5.8: Time evolution of diffusion profile for particles that are initially, at time
t* = 0, localized at two neighboring slabs of the midinterface layer with 8¢ interface
layer width (n is the number of atoms with the CM position at a given coordinate
z"). The width of the slab is L, /10. Vertical lines denote the boundary of the hybrid
regions. (a) The diffusion profile for the monoatomic liquid at 7" /10, averaged over
1000 different time origins, at t* = 0, t* = 10 and ¢* = 150 for atoms that are initially
localized at the slab on the CG region (left part) and also on the path integral region
(right part) for the temperature 7 /10. In b) and c¢) for the temperature 7™ /+/50 and

T* /5 respectively.
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5.4.2 Case II: The molecular liquid

Here we use a tetrahedral model [93] for the molecular liquid which can be used
to test the methodology introduced at the begin of this chapter. The quantum
representation for each atom of the tetrahedral molecule is given by a ring poly-
mer whose Trotter number or number of beads “n” is set to 30, which is usually
used in the path integral simulation of water molecules in the liquid phase [92].
The corresponding coarse-grained model for the tetrahedral molecule is seen
as an effective one-site classical force field. For this system the idea of chang-
ing the molecular representation on the fly is “more challenging” due to the
very extended reduction of degrees of freedom in comparison to the monatomic
case. The Figure 5.9 illustrates the process of changing representation on the
fly starting on the right side with the path integral representation of tetrahe-
dral molecule and ending in the opposite side as one coarse-grained sphere, in
between the system becomes a hybrid particle. Note: the center of mass (CM)

of a path integral tetrahedral molecule is obtained as the average position of
(e),.()

all the beads per molecule (i.e Rey = Zizl Z?ﬂl 7m:n(£§ ). We have studied

a system of thousand molecules at temperature 77 = % and T = % where

T* =1 (in the reduced Lennard-Jones units, e = 1 and ¢ = 1) corresponds to

the classical limit. For the purpose of testing we have chosen the temperatures

to be lower than that employed in the classical simulation T7*, such condition

mimics the thermodynamic conditions of a “more quantum” system.

Atomistic Hybrid Path Integral
representation Path Integral/atomistic represengim

Figure 5.9: The on-the-fly interchange among the path integral (PI) and coarse-
grained (CG) representation. Here we depict the case of a quantum molecule in the
high resolution (right side) given by the PI representation which due to the isomor-
phism of the quantum partition function, each atom becomes a ring polymer.

Determination of the effective potential

Here we perform also the Iterative Boltzmann Inversion [16] method and pres-
sure correction to obtain the effective potential, V¥ (R) for the CM between
tetrahedral molecules. We emphasize, that each single atom in the tetrahe-
dral molecule is represented by 30 beads due to the path integral approach.
Thus, the effective potential takes into account the spatial reduction of degrees
of freedom (DOF) from 360 to 3 per molecule. As in the monoatomic case,
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we obtained a set of potentials corresponding to different temperatures and for
density p* = 0.1. We depict in Figure 5.10 (a) the CG potential obtained by IBI
with pressure correction. One can see that as the temperature decreases, the
CG potential becomes more repulsive (less softer), contradicting our previous
results (monoatomic liquid). This effect can be explained if we see the part (b)
of this figure, where the bond length distribution, P(d*), between the atoms in
the tetrahedral molecules is plotted. Therefore, one can infer how the molecule
is delocalized as the temperature decreases in its path integral representation,

generating the net effect of moving away the center of masses.
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Figure 5.10: (a) The effective potential V* for the center of masses (CMs) of the
tetrahedral molecules in their path integral representation for p* = 0.1 at 7" = 1.
Similarly as in Figure 5.3 when the temperature is high the effective CG potential
approaches to the classical CM-CM effective potential obtained from a classical sim-
ulation. (b) Shows the bond length distribution for the tetrahedral molecule in the
path integral approach.

Statistical properties

Here we report two important aspects of our PIMD /CG approach with AdResS.
The first has to do with the macroscopic information such as the center of masses
radial distribution function (RDF) and the diffusion of center of masses along
the x direction (see part (a) in Figures 5.11, 5.12 and 5.13). The second aspect
relates the microscopic information (quantum delocalization) of the molecules.
To guarantee that we have sampled appropriately the bead-bead configurations
in our hybrid algorithm within AdResS framework, we calculate the partial
bead-bead RDF in the quantum region of the adaptive simulation (see part (b)
in Figures 5.11 and 5.12). This is compared with the RDF calculated in the
same subregion, but from a full explicit path integral simulation. The local and
global information is preserved in our hybrid scheme in all over the simulation
box. This means that a quantum molecule is able to change representation from
a detailed path integral description to a single classical CG site and vice versa
and hence such a process maintains the thermodynamic equilibrium. Table 5.3
shows the number of particles for each description at given temperature, the
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path integral (PI) and coarse grained (CG), which maintain almost the same

value (not spurious flux of particles) and same pressure, P, is ensured for each
resolution, maintaining the mechanical equilibrium.
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Figure 5.11: Center-of-mass radial distribution function (RDF) for all the molecules
in the box. We compare the RDF of CMs in AdResS and the corresponding full
explicit PI simulation (reference system), the agreement is acceptable in all box. (b)
Corresponds to bead-bead radial distribution function obtained with AdResS in the
quantum region compared with that of the full path integral reference system for the
temperature, 7" /+/10.
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Figure 5.12: As for Figure 5.11, but in this case for 7%/v/2. The same agreement
between the global center-of-mass and local bead-bead radial distribution function
with the full path integral reference system.
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Figure 5.13: Normalized density profile of the center of masses in the x direction
for tetrahedral molecules in AdResS. The width of the interface regions layer is given
by 6o. The vertical lines denote the boundaries between explicit path integral (PI),
coarse grained (CG) and hybrid (A) regions of the system. Top (a) corresponds to the
temperature, 7*/+/10 (more quantum case). Bottom (b) for T /+/2 .
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Figure 5.14: Time evolution of diffusion profile for the tetrahedral molecules that
are initially, at time t* = 0, localized at two neighboring slabs of the midinterface
layer with 60 interface layer width (n is the number of atoms/molecules with the
CM position at a given coordinate x*). The width of the slab is 4. Vertical lines
denote the boundary of the hybrid regions. The diffusion profile is averaged over 1000
different time origins, at t* = 0, t* = 10 and ¢* = 200 for molecules that are initially
localized at the slab on the CG region (left part) and also on the path integral region
(right part) for the temperature 7 /+/10 (more quantum regime).
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Table 5.2: The monoatomic liquid: Number of explicit (PI representation), hybrid and CG particles as a function of the different
temperatures studied within AdResS method. The interface layer width is given by dj,,;, = 8. Column 5t 6" and 7'" show the pressure

calculated in the path integral zone (P.y), CG zone (P.4) and full hybrid system with w = 0.5.

Temperature Nea Neg Nhyb P, Py P,—1 /2
T/10 3104+10 | 307+ 14 | 382+ 16 | 0.797 £ 0.013 | 0.797 4+ 0.008 | 0.874 +0.013
T/\/% 306+ 17 | 304 +£12 | 389+ 21 | 0.638 +0.013 | 0.639 4+ 0.008 | 0.668 +0.012
T/5 30313 | 297+ 18 | 400 £20 | 0.481 £0.013 | 0.481 £ 0.015 | 0.4854+0.014
T/\/ﬁ 295+ 18 | 300 £ 14 | 405+ 21 | 0.443 £0.015 | 0.444 4+ 0.015 | 0.450 +0.014
T 301 +£12 | 299+11 | 406 £15 | 0.382+£0.012 | 0.382+0.012 | 0.381 4+ 0.013

Table 5.3: The molecular liquid: Number of explicit (PI representation), hybrid and CG particles as a function of different tempera-
tures studied with AdResS. The interface layer width is given by dj,,, = 6. Column 5" and 6" show the pressure of the path integral

(Pes) and cg systems (Psg).

Temperature Neg Neg Nhyb P.. Py
T/v/10 305+15 | 304+16 | 382+ 14 | 0.582+0.08 | 0.581 £ 0.021
T/\/§ 30314 | 302+ 15 | 387+ 16 | 0.431 £0.08 | 0.430 £+ 0.021
T 300£15 | 300+ 15 | 400415 | 0.382+0.08 | 0.381 £0.021
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Chapter 6

The para-hydrogen liquid in
AdResS

In the previous chapter, we developed the basic idea of a quantum-classical
adaptive coupling by mapping the quantum nature of an atom onto a classi-
cal polymer ring representation. To test the applicability of the method we
have used a toy model of tetrahedral molecules with limited physical meaning,
however it was appropriate to test our approach for a broad range of thermo-
dynamic situations. The tetrahedral molecule possesses enough structural com-
plexity, typical of small multiatomic molecules, and we have proven that a large
reduction of the number of degrees of freedom in the adaptive process could be
described by the AdResS method. Typically, there are critical situations (e.g.
low temperatures or light particles) where the quantum description of the mat-
ter is mandatory in order to describe the relevant properties of the system. In
such cases, a good starting point to include quantum effects, e.g. “delocalization
or tunneling” of particles, is given by path integral methods. Here we study the
para-hydrogen molecules at low temperatures as the first real application of our
method because of: (a) the extreme thermodynamic condition at low tempera-
ture and pressure and (b) the strong quantum nature of the hydrogen molecule
under these conditions. We do not aim to explore the low temperature physics
within the AdResS framework, since our interest is primarily focused on the soft
matter scale at ambient condition, where quantum effects are not very dominat.
If our approach works technically and conceptually, one should expect even a
better agreement at ambient conditions.

This chapter is organized as follows. First we introduce a brief description
of the physics of the hydrogen, then we present the path integral representation
of one of its molecular states, the para-hydrogen at low temperature. Next
section presents the basis of the adaptive resolution scheme used to study the
para-hydrogen molecules. The last two sections show the technical details of
our simulation, the results and discussion.
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6.1 Basic physics of hydrogen

During the early development of the quantum mechanics the significance of
understanding a single hydrogen atom /molecule played an important role in the
theoretical and experimental foundation of this theory. For instance, the atomic
and molecular form of hydrogen were used to study the quantum structure of
matter by N. Bohr and A. Sommerfeld [94,95] (e.g. atomic shell model), and
later it was also used for the development of the chemical binding by L. Pauling
and several others [96,97].

The liquid and solid phases of molecular hydrogen and deuterium have been
studied experimentally [98,99] and theoretically [100,101]. These many body
systems continue to attract great deal of interest due to its fundamental nature.
It is known that hydrogen molecules are the principal constituents of distant
planets [102] and in the field of high-pressure physics the hydrogen exhibits the
fluid metal-insulator transition [103,104]. In soft matter systems, the hydrogen
becomes important as a constituent of important molecules such as water, DNA
and proteins. The presence of hydrogen in such systems play an important role
in the structure of the molecules by forming covalent or hydrogen bonds.

It is known that the spectrum of molecular hydrogen in the liquid phase ex-
hibits the effect of the internal nuclear degrees of freedom which lead to the char-
acterization of two spin isomers of hydrogen diatomic molecules and different
levels of excitations. One of the isomeric forms is the ortho-hydrogen where the
two proton spins are aligned parallel and form a triplet with a total spin quan-
tum number of J = 1; in the para-hydrogen form the proton spins are aligned
antiparallel and form a singlet with a total spin quantum number of J = 0.
At standard temperature and pressure (STP) of 0 °C and 1 atm respectively,
the hydrogen gas consists of about 25% para-hydrogen and 75% ortho-hydrogen
which is a consequence of the spin degeneracy ratio. This scenario changes
significantly if thermal equilibrium is established at low temperatures between
the two forms of hydrogen. At 20 K, for example, natural hydrogen consists
of 99.8% of parahydrogen. In the following section the quantum description of
para-hydrogen is introduced by the path integral method.

6.2 The path integral description of para-hydrogen

As we described previously the para-hydrogen represents an ideal system for
testing of new methods which include quantum effects in molecular dynamics
simulation. In general, liquid hydrogen does not exhibit the strong identical par-
ticle exchange effects typically observed in liquid helium, and thus the physics
of the system is simplified. Even at very low temperature (e.g. around the triple
point, 13.8 K) the thermal de Broglie wavelength A = h/(2rmkpT)"/? = 3.3 A is
slightly larger than the mean distance between two hard spheres in the classi-
cal representation of hydrogen molecules (¢ = 3.0 A). This implies that the
exchange of identical para-hydrogen molecules will not have a pronounced ef-
fect in the properties of the liquid phase [105] and therefore the para-hydrogen
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molecules follow Boltzmann statistics. Another characteristic of the liquid
molecular hydrogen at low temperatures is the inversion of the predominant
population, i.e.; ortho-hydrogen at room temperature to the para-hydrogen at
lower temperatures. Since the majority of the para-hydrogen molecules are in
the ground state (J = 0), the wave functions that characterize such a molecular
state are spherically symmetric, and hence the interaction between molecules
can be modeled by an effective isotropic pair potential [106] (see Figure 6.4).

Due to the inherent quantum behavior of the para-hydrogen molecules at
low temperatures, several computational techniques based on the path integral
formulation of quantum mechanics (see chapter IV) became routine methods
to calculate static [107-109] and dynamic [110-112] properties of this quantum
liquid. In Figure 6.1, we show the conceptual transition from the “effective
spherical” classical model to the corresponding quantum “ring polymer” model
by means of the path integral approach.

In the next section, we describe the coupling of the path integral representa-
tion with an effective classical representation, where only the classical spherical
symmetry is preserved and still, locally, quantum information can be extracted
in the spirit of AdResS.

Classical representation Quantum representation

Figure 6.1: Quantum representation of the para-hydrogen by the path integral ap-
proach. On the left side the classical form for a diatomic hydrogen molecule is illus-
trated and in the opposite side the quantum description of the molecule by a ring-
polymer as it is known from the path integral approach.

6.3 Para-hydrogen in AdResS

As stated previously the para-hydrogen can be accurately described by the path
integral approach and represents a valid conceptual and technical test for the
adaptive simulation approach in its extension to (some) quantum problems.
For this reason we have performed simulations of the liquid pare-hydrogen us-
ing AdResS. In Figure 6.2 we illustrate the particle transition from a classical,
one-site, coarse grained representation to a quantum representation by means
of the path integral approach. In between, we depict the hybrid resolution that
characterizes the transition region. Our scheme allows the switching of repre-
sentations according to the molecular position in the simulation box. This will
be explained further in the next section.

An important key feature of the adaptive simulation scheme is the interpo-
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Path integral Path integral/CG

Figure 6.2: Adaptive resolution scheme for para-hydrogen: the high resolution on the
left corresponds to the quantum path integral representation. The low resolution on
right corresponds to the effective spherical classical model obtained by coarse-graining
the high resolution.

lation function, w(zx), which weighs the force contributions coming from each
representation (i.e. path integral, hybrid and coarse grained) and also makes
a smooth transition from the classical to quantum regime and vice versa. The
functional form of w(x) is the same as the one used in classical adaptive sim-
ulation. In figure 6.3, we depict the weighting function and the para-hydrogen
molecules in our adaptive simulation as a function of their position. The classical
CG, path integral and hybrid description of the molecules are restricted in the
space, but free diffusion of the molecules takes place and thus single molecules
undergo an adaptive process from the path integral to classical representation.

Figure 6.3: AdResS set up for the para-hydrogen liquid. In this figure the weighting
function is shown and it varies from 0 in the coarse grained region to 1 in the path
integral region, in between takes continuous values and molecules become hybrid in
the sense of classical/quantum description.

6.4 Technical details

To perform an adaptive PIMD/CG simulation of liquid para-hydrogen we have
used the Silvera-Goldman pair potential [106],

V(r) = o Pr=ar® _ (— + =t m) fe(r) + %fo(r)a (6.1)



where

ef(rc/rfl)z, ifr <r,

6.2
1, otherwise, (6.2)

1) = {

here the interacting diatomic molecules are treated as spheres. This is justified
by the fact that molecules are in the rotational ground state (J-0) at the two
temperatures of interest, i.e.; 25 K and 14 K. The first term on the Eq. 6.1 corre-
sponds to the short-range repulsive interaction, while the second term describes
the long-range attractive interaction. The last term, Co/r?, is an effective two
body approximation to the three-body dispersion interaction. The f.(r) is used
to screen the effect of the attractive interaction at short distance. The values of
the parameter are listed in Table 6.1. V(r) is shown in Figure 6.4

Table 6.1: Parameters used in the Silvera-Goldman pair potential (in atomic
units).

o 1713 Cg 12.14

B 15671  Cs 215.2
v 0.00993  Co 143.1

re 832  Cho 4813.9

In our adaptive simulation of the para-hydrogen, we used the theoretical
number density obtained from the earlier path integral Monte Carlo (PIMC)
[107] (p = 0.0035(bohr)~2 at 14 K and p = 0.0028(bohr)~3 at 25 K), under
the condition of almost zero pressure. Important quantities are expressed in
atomic units (i.e. e,h,m = 1). This gives the unit of energy in Hartree (E}, =
4.3597 x 107'8J) and the distance in Bohr radius (ag = 0.529A) The bead-bead
interaction of neighboring ring-polymers is truncated at 15 bohr.

From the earlier simulation with PIMC it is known that at the low tem-
perature (T' = 14 K) the degree of quantumness for para-hydrogen become
stronger and the Trotter number used in the path integral approach should be
increased to 48 beads. For the high temperature (T = 25 K) case, 28 beads
are enough to guarantee the convergence of the static properties. For compar-
ison we perform adaptive simulations of two kinds of path integrals; (a) path
integral formulation in the primitive (real) space PIMD (see chapter IV), which
is computationally less demanding, but shown to be not accurate enough for
the low temperature limit and (b) the path integral formulation in terms of the
normal modes (PIMD+NM), computationally more demanding but more accu-
rate at the low temperature. In fact, at the low temperatures, the use of the
large number of beads leads to the situation that the interaction between the
corresponding beads of different ring polymers becomes less relevant because it
follows %VmJﬂ (icv indicates the i-th bead of the molecules «, same for 3, and
n is the number of beads). However, the bead-bead interaction between bonded
neighboring beads of the same ring polymer becomes dominant, because it scales
as n. This leads to the problems of ergodicity in a real space approach, which
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can be overcome in the normal mode approach, by ensuring the proper sampling
of all the frequency of the system, solves the problem [113] (see appendix E).

Each simulation was equilibrated for 100 ps and then the static properties
were calculated by averaging over 1000 consecutive 10 ps path integral trajec-
tories with a time step of 0.5 fs.

6.4.1 Effective coarse grained potential

To obtain an effective one-site coarse grained (CG) potential from the path in-
tegral representation of para-hydrogen, we have used the standard procedure
known as the Iterative Boltzmann Inversion (IBI) [16]. Such procedure derives
an effective potential by using the full explicit (path integral) center-of-mass
radial distribution function (RDF) as a target. Also for this system a pres-
sure correction has been employed to ensure as close as possible to the target
pressure. In this aspect, the coarse-graining procedure at these thermodynamic
conditions becomes more difficult since the large pressure fluctuations (of the
order of 10~7 Ej, /bohr~?) and the inherent error of the iterative procedure lead
to a large relative error on the pressure of the coarse-grained model. For each
system the IBI was applied over 30 iterations until the convergency of the tar-
get radial distribution was reached. Each iteration consists of 50 ps and 500 ps
of equilibration and production respectively. A smoothing procedure over the
potential was applied 5 times per iteration.

Our results are shown in Figure 6.4 where we plot the effective CG poten-
tial obtained for each temperature studied and for comparison is depicted the
classical Silvera and Goldman potential from Eq. 6.1. One can see the effective
potential becomes less attractive and the minima of the potential is shifted as
the temperature decreases from T=25 K to T=14 K.

6.5 Results and Discussion

In this section we present the results of our approach in AdResS for the two
thermodynamic state points studied. The path integral implementation in the
real space will be denoted by PIMD while the normal modes implementation as
PIMD-+NM.

6.5.1 For T=25 K

This thermodynamic state represents a “less quantum” system with Trotter num-
ber (number of beads) n=28 compared to the other system at T=14 K shown
later. As one can see in the Figure 6.5 (a) for the bead-bead RDF for the
full (explicit) path integral simulation the PIMD and PIMD+NM implemen-
tation perform quite well and no differences with the reference data is found
compared to the reference data [107]. In part (b) and (¢) we report the par-
tial bead-bead RDF obtained within AdResS, with PIMD and the PIMD+NM,
calculated in the quantum region of the adaptive resolution system. This is
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Figure 6.4: A plot of the potentials resulting from the Iterative Boltzmann Inversion
(IBT) procedure. The solid (blue) line corresponds to T—25 K, p = 0.0028(bohr) >
and the (black) dashed line for T=14 K, p = 0.0035(bohr)™®. The classical Silvera
and Goldman potential [106] in solid (black) line is also depicted.

compared with the RDF calculated in the same subregion but from a full ex-
plicit path integral simulation. The agreement is highly satisfactory. In Figure
6.6 we compare the center-of-mass RDF over the entire simulation box for the
PIMD and PIMD+NM in AdResS and compared it with the reference data; also
in this case a full agreement is found at this temperature.

To further prove the validity of the adaptive simulation to achieve thermo-
dynamic equilibrium, we have calculated the density profile in Figure 6.7. This
shows the typical 5% drop of density in the hybrid region (A), which is compen-
sated by the increment of the density in the path integral and coarse grained
regions. The slightly large density in the coarse-grained region is mostly due to
the abovementioned problem of the difficulties of targeting the coarse-grained
model to the exact pressure of the high resolution system. However, the overall
agreement is rather satisfactory.

Finally, in order to check the free diffusion of particles across the region
we have calculated the diffusion profile in Figure 6.8; which proves that indeed
the para-hydrogen molecules move through the hybrid region diffusing from the
high resolution to the low resolution and vice versa.
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Figure 6.5: (a) Comparison of the bead-bead radial distribution functions (RDF) in a
full path integral simulation at T—25 K. The primitive path integral (PIMD) and the
path integral in the normal modes (PIMD+NM) are compared to earlier work [107]
and full agreement is obtained. (b) The bead-bead partial RDF calculate only in the
quantum region in AdResS for the PIMD compared with the same quantity calculated
in the PIMD/AdResS approach. (c) Shows the same as in (b), but for PIMD+NM
implementation.
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Figure 6.6: Center-of-mass radial distribution function (RDF) evaluated in the whole
box at T=25 K. The agreement between the reference [107] calculation, the primitive
path integral (PIMD) in AdResS and PIMD+NM in AdResS are highly satisfactory.
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Figure 6.7: Normalized density profile along the x direction at T=25 K in AdResS.
The interface region layer is given by 20 bohr. The vertical lines denote the boundaries
between the path integral (PI), coarse grained (CG) and hybrid (A) regions of the
system. In the figure is depicted the case for the primitive path integral in the real
space (PIMD) and in the normal modes (PIMD-+NM) in AdResS. Drop of density in
the hybrid region is about 5% of the reference value (horizontal dashed line), while
the overestimation in the CG region is below 3%.
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Figure 6.8: Time evolution of diffusion profile for para-hydrogen molecules that are
initially, a time t—0, localized at two neighboring slabs of the midinterface layer with
20 bohr. interface layer width. The width of the slab is L, /10, Vertical lines denote
the boundary of the hybrid regions. The diffusion profile obtained by averaging over
1000 different time origins, at t=0, t—=100 and t=350 for molecules that are initially
localized as the slab on the CG region (right side) and also on the path integral (PI)
region (left side) for the temperature T—25 k.

6.5.2 For T=14 K

This case represents the “more quantum” situation due to the larger Trotter
number used, n—48, in which AdResS has been tested. One can appreciate in the
Figure 6.9 (a) that the path integral implementation in real space (PIMD) does
not converge to the reference data. However, the normal modes implementation
reproduces the reference structure of the system [107]. This indicates only
that PIMD in AdResS may not be suitable to reproduce the true physics of
the system, and hence we will consider here the PIMD-+NM in the adaptive
scheme. Figure 6.9 (b) shows the comparison between the partial bead-bead
RDF (calculated as in Figure 6.5) for the full explicit PIMD+NM and that
of the PIMD+NM in AdResS and in part (c), the center-of-mass RDF for the
PIMD+NM in AdResS with the reference data [107] is compared. A satisfactory
agreement is found in both cases.

Similarly, to the previous case we show the density profile in Figure 6.10 for
the PIMD+NM and once again we note a satisfactory agreement. The same
can be said for the diffusion profile of para-hydrogen molecules shown in Figure
6.11.
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Figure 6.9: (a) Comparison of the bead-bead radial distribution functions (RDF) in
a full path integral simulation at T—14 K. PIMD and PIMD+NM are compared to
earlier work [107]. Agreement between the reference data and PIMD+NM is obtained
while the PIMD shows to no be appropriate at this temperature.
partial RDF for a full explicit PIMD+NM and in AdResS. (¢) Center-of-mass RDF
for PIMD+NM in AdResS compared to the reference data (available up to 16 bohr).
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Figure 6.10: As in Figure 6.7 but for T=14K and only in the case of PIMD-+NM.
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Figure 6.11: As in Figure 6.8 but at the temperature T=14K and only for the
PIMD+NM case.
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Chapter 7

Conclusions

In this thesis, we have dealt with two contributions in the field of method
development, for multiscale problems. Such methods are commonly used to
overcome serious problems of time and length scales in soft matter systems.
Our first contribution dealt with the numerical control of the coarse graining
procedures, typically used in the reduction of degrees of freedom (DOFs) in
complex systems. And the second contribution was a conceptual extension
and technical development of the Adaptive Resolution Scheme (AdResS) for
quantum systems. Let us explain in detail the summary of our findings and
future perspectives:

In the first part, we proposed a systematic procedure to estimate the validity
of the approximation of separation of variables (ASV). The advantage of our
method is that only the analytical form of the potential is needed. This helps
us to define regions where the ASV is reasonable a priori without the task of
performing molecular dynamics simulation to calculate the correlation among
DOFs. As a result, in the positive assessment our procedure indicates the error
introduced by the assumption of ASV and in the negative evaluation guaratees
that no separation will be possible. Our procedure can be seen as a numerical
tool to systematically compare a set of coarse grained (CG) variables and choose
the ones that will better mimic the dynamics of the atomistic system. For this
purpose, we have studied a simple model, namely the diatomic molecule on a
surface. For this system our procedure has shown the regions where the ASV
becomes questionable. A second application of the procedure for two differente
CG mappping schemes of a simple polymer chain has shown its practical use
for polymeric systems.

Further studies can merge our procedure with several other methods, which
implicitly make use of the ASV or require the a priori knowledge of the separa-
bility. For instance, the choice of collective variables (CVs) or order parameters
as in the metadynamics [20] or transition path sampling [19], used commonly in
the study of rare events. All these methods assume one or several CVs, which are
independent from other variables whose contribution is not considered. In this
context, our procedure may help to indentify a minimal set of CVs. Previously,
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we learnt about the problem of choosing the proper set of variables for a coarse
grained description. Then one starts typically the simulation in the CG level
of resolution. However, interesting multiscale problems involve several levels of
description as we described in this thesis, and the need for coupling these levels
and perform one single simulation is now technically possible between several
scales (e.g. atomistic-mesoscopic and mesoscopic-continuum scales). Only the
quantum-classical coupling presents conceptual and technical problems in adap-
tive simulations. In this context the Adaptive Resolution Scheme (AdResS) has
shown to be a robust and successful scheme for the study of a system with
concurrent resolutions.

In the second part of the thesis we extended its applicability to the quantum
description based on the path integral approach of atoms/molecules. Concern-
ing this part of the thesis, the conceptual/technical extension maintains the
quantum character of the particles in the region of interest and away of it, an
effective coarse grained classical description can be used to decrease the compu-
tational demands of performing full path integral simulations in the full space.
We tested successfully our approach in monoatomic and molecular toy models at
standart (ambient) thermodynamic conditions. To end this work we performed
an application with our adaptive/path integral method in a system where quan-
tum effects play a central role. The para-hydrogen molecules were studied at
two different temperatures, namely 25 K and 14 K. We aimed to show the ro-
bustness of the adaptive/path integral within AdResS framework, even for such
critical conditions. To account properly for the quantum effects we implemented
the normal modes (NM), which was necessary for the lower temperature. Our
method reproduces, in a rather satisfactory way, the structural properties when
compared to the results of full explicit path integral simulation and to those
available in literature. To summarize since, at ambient conditions, the quantum
effects can be important, but not dominant, and the coarse-graining procedure
is technically simpler, the adaptive/path integral method can be applied to
standard systems in soft matter and condensed matter.

The adaptive/path integral method allows us to study the static properties
of quantum systems in the region of interest while the rest of the system re-
mains classical. Thus, real quantum “dynamics” cannot be obtained from our
approach. In this respect, possible ways to overcome this problem will involve
the use of more sophisticated techniques, which are still based on the path in-
tegral formalism, such as the Centroid Molecular Dynamics [73] or the Ring
Polymer Molecular Dynamics [72]. Additionally, our adaptive/path integral
method could be merged in the near future with practical adaptive methods for
electrons [85-87], where the adaptivity of nuclei could be taken into account by
our approach.

92



Appendix A: The RIS model
for a polymer chain

The RIS model used in this study resembles the one of n-alkane chain in a plane.
Here the interaction between sites (e.g. atomic or molecular) are described only
by a bond-bending potential [114,115] of the form

1
Vbending(0i) = §K (0; — 9?)2 (7.1)

with K = 115.2kcal/mol and 9 = 112°for T = 450K. 6; is the angle formed
by three consecutive particles, as shown in Figure 2.6. Some DOFs, such as the
torsion angles are disregarded, as we focus on the separation of the variables
RW, R® and Q which (for symmetry) are independent of the torsions in the
RIS model. In both systems with 1:2 or 1:3, we have used a stiff bond length
between carbon atoms equal to Iy = 1.54 . The difference between the two
cases studied lies in the choice of the center for each bead and the number of
particles per bead. For instance, in the first case we take the center of the
distance between two particles as the center of the bead and in the last one we
fix the internal angle formed by three particles and then use the barycenter of
this triangle as the center of the bead. In both cases the angle 6, is kept fixed
at its equilibrium value, that is 6; = 108°, while the other angles are allowed to
vary in such a way that 6, = 115° £+ 10°,Vi = 2, 3,4 as suggested by atomistic
simulations [114,115].
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Appendix B: CG variable as
function of the atomistic
variables

Once the relevant CG variables are determined, one has to proceed to express
the CG variables as a function of the explicit (atomistic) variables. After that
one can apply systematically the criterion of the ASV and calculate the factor of
quality (Q) for this particular mapping scheme . Here, for technical convenience,
we proceed first by expressing the atomistic variables as a function of the new
CG variables and then use the inverse function in order to get the CG variables
as a function of the explicit dependencies. Due to the high complexity of the
system we have fixed some atomistic variables and consider them as possible
parametric variables. This is a useful procedure and a common way to treat a
complex system with a high number of DOFs where some variables are more
relevant than others. In order to obtain a set of equations, we analyze the
geometrical properties of the MS and search for suitable relations between the
explicit and CG variables. The geometrical conditions that we have used to
obtain a system of equations involve the square of the absolute value of R®
and R(Q), which are expressed as the resultants of the sequence of collinear
vectors for each case . For the first MS, now we define 7, = O?i Ty = B—C)’,

— —_— —_—
73 = CO4, ¥y = DFE and 75 = EOs3 (see Figure 2.6). So we have:

R = (7 + 7 +75)
]%@) = T3+ 74+Ts

then the square of the absolute value,

(RV)? = (r1)" + (r2)* + (13)°)
+2 (—r1racos (01) + rirs cos (02 — 01) — rars cos (02))
(R®)? = (r3)" + (ra)* + (r5)°

+2 (—rgrycos (03) + rars cos (04 — 03) — rars cos (04)) (7.2)

— . =

And similarly for the second MS having defined 7} = O1 B, 7y, = BC, 3 = CD,
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once again the square of the absolute value,

(RO = () (1) + () + () + (r5)? + 2(=rar cos( o)

0 0
+ryr3c08(02 — 31) — ryrgcos(fs + ?1 —03) + 1175 cos(fy — O3)

0
—rarg cos(f2) 4+ rory cos(fa — 03) — rars cos(;1 + 65 — 63)

0 0
—rgry cos(f3) + rarys cos(f3 — ?1) — 14T COS(%))

(RO = (rs)+ (r6)? + (1) + (1) + (r0)? + 2 v cos( o)

0 0
+r5r7c08(04 — 51) — r5rgcos(fs + ?1 —04) + 1579 cos(0y — 05)
0
—rer7 cos(0y) 4+ rers cos(05 — 04) — rerg cos(?1 + 6, —05)

0 0
—r71g cos(05) + 1719 cos(fs — ?1) — T8Tg cos(%)) (7.3)

Despite the scalar product of BV - B(® being a valid relation to obtain Q, we
notice that it is not well handled by the conventional inverse procedure because
it involves no simple argument dependencies. Hence we use a particular relation
for each MS as shown below.

1.

Case Figure 2.6(a) : For Q we have: Q =7 — D62\03 + 01/0\207 then use
the scalar product of 7 - 7y = —r3r4cos (03) and since 7y = R — 73 — 7%,
we have that,

—Tr3rqcos (93) = F3 . (ﬁ@) — ’Fg — Fg,)

= (TgR(2)COS (D62\03) — r§ — r3r5cos(fs — 95))

thus inverting this relation we obtain D62\03. The remaining angle 01/0\26’
can be expressed as a function of the R and is equal to:

= (1)y2 _ 201 _
0:0:C = arccos[(R )” —4(rn)"( 2005(91)]

2R(1)T1

. Case Figure 2.6(b) : Q =27 — D/O\QF — Ol/O\gD — 03/0\2F and due to the

symmetry of the system the last two angles on the r.h.s of the equation
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are mathematically similar. We now show the geometrical procedure to
determine the expression for one of them, namely O105D.

AO,DC: O;D? = 01C2+C_D2—20100—Dcos(01/5p)
AO,DOy: O;D2? = 01022+D022—20102D02cos(Ol/O\QD)

Where the symbol A indicates the triangle under consideration defined by
the letters of its vertices (e.g. AO;DC' is the triangle whose vertices are
the points O, D and C. Next we solve for O@D and considering that
01C = DOy we have

arccos (mQ —CD?+20,CCD cos (OT@D))

0105D = _
20,05 0,C

)

for analogy, for the other angle Og,/O\gF:

ATCCOs (mz —FG? +2G0;3 FG cos (Fébg))

050, F = I
20505 GO3

where OﬁD = 0y + O@and Og,//(_-)\\gF = 05 + H/(;\Og. Due to the
symmetry we have that O;CB = HGOs, this angle can be calculated
using the geometrical properties of the triangles and is equal to,

3 1/(5 2
OlCB = g + 5 (Z — COS (91))

From our notation for CG variables we have,

0105 = R,
0503 = R®
and, __
CD=FG=1,.

Despite the appearance of a complicated mathematical procedure, technically
this relations are not difficult to obtain and by using standard computational
tools as Mathematica [116], one can obtain “numerical” expressions of the trans-
formation which can be directly plugged into a computer code. The explicit
expressions are rather lengthy (but easy to use into the numerical procedure of
the ASV) and would occupy too much space, thus they are not reported here.
In any case the formal procedure reported above is sufficient to reproduce all the
calculations we are performing. We have tested the correctness of the explicit
expressions obtained by calculating several values of the potential using both
the explicit atomistic coordinates and the corresponding CG value of R, R()
and . Below the formal relations corresponding to the two MS are reported;
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for the 1:2 MS, we have the following dependencies with #; and [; as parametric
values:

91 = 9_1
RO = ROy, 01,05) — 02 = 0s(51, 01, RV)
R(Q) _ R(Z) (Zl , éh 6‘2, 93’ 94) N 6‘3 93([1 , él, R(l), R(Q), Q)
Q= Q1. 61,02.65.00) — 62 = 64(0,0, RV, R Q) (7.4)

For the 1:3 MS, we fixed 6#,,0> and [; as a parametric values and obtain:

6 = 6
b = 05
RY = RW (11,01,02,05) — 03 = 05 (l_hélvé?aR(l))
R(2) = R(2) (i17é1794795) - 94 = 94 ([17917527R(1)7R(2)7Q)
Q=Q(1,01,05,05,04,05) — 05 = 05 (1_1751752,R(1)7R(2)7Q) (7.5)
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Appendix C: Thermostat

In computer simulations a thermostat is needed to define properly the NVT
ensemble, being it responsible for the control of the temperature. In the case
of the adaptive resolution scheme the thermostat is used to compensate the
switching of the interactions, which occurs during the transition from an atom-
istic to a coarse grained region or viceversa. Such thermostat must ensure that
the atoms of a molecules have the correct velocity distribution when entering
or leaving the switching region. To fulfill this task, we have used the concept
of the Langevin idea or stochastic dynamics to guarantee the sampling of the
appropriate distributions [117]. This is done by adding a random and damping
force as shown below,

pi = ViU + FP + FF, (7.6)

where the damping force FP is a Stokes-like friction force which acts in the
oposite direction of the velocity,

EP = —&/mi pi (7.7)

where ¢; is the friction constant. To compensate for this friction one adds a
random force FZ-R which acts in a random direction and is completely local,

Ff = am(t), (7.8)
where ¢; is the noise amplitute and 7); is a noise with certain properties:
e Homegeneity: < n;(t) >=0
e Independecy of the time and space: < n;(t)n;(t') >= 0;;6(t —t')

The ratio between & and 7; can be obtained from the Fokker-Planck formalism
[118]. Let us write the corresponding Fokker-Planck operator for the stochastic
part of the langevin equation (Eq. 7.6) as follows:

0 OH 0
Lsp = Z 7[& . + 03%] (7.9)

where this sum runs over all the particles. By assuming that the equilibrium
distribution is a Boltzmann type, one has that:

ESDeiH/kBT =0 (7.10)
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and from the above equation one obtains that:
o? = kgT¢; (7.11)

this relation is known as the Fluctuation-Dissipation theorem (FDT). The Langevin
thermostat is one of the standard local stochastic thermostats, which generates

a canonical ensemble. This local thermostat has shown to stabilize the systems,
which a global thermostat cannot do. A drawback of the Langevin thermostat

is its lack of Galilei invariance and the strong dependece of the dynamics on the
friction strength.
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Appendix D: Forcefield of the
tetrahedral molecule

A tetrahedral molecules is characterized by N=4 atoms of the same mass mg
connected by anharmonic bonds. All atoms in the system interact according to
a purely repulsive shifted 12-6 Lennard-Jones potential with a cutoff at 2'/¢
of the form

o 12_ o 6 17. o 1/6
R

Tiaj3 defines the distance between the atom ¢« of the molecule a and the atom j 3
of the molecule 3. We define € and o as a the reference length and energy units.
Neighboring atoms of a molecule are linked via an attractive finite extensible
nonlinear elastic (FENE) potential

_1.p2 _ (Tioja)2). .
UgRa(rasm) = ¢ ~2HRI T CRE) T <My
07 Tiaja > RO

being Ry = 1.50 the divergence length and k = 30e/0? the stiffness. The
equilibrium bond length at kT = ¢ is approximately 1.00.
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Appendix E: Implementation
of the normal modes in

AdResS

We use the Hamiltonian from Eq. 4.59 in the normal modes variables without
the external potential to derive the equation of motion (EOM) of a free ring
polymer. In the new system of coordinates the EOM take the form:

(s)
pl 49
! dt
d S S
EPI( ) = —leﬁ g), Vs=1,...,n, (7.14)

where (), are the normal mode frequencies and they are defined in Eq. 4.58.
These are the EOM of a n-decoupled harmonic oscillators and the solution is
known to be at time t + At

(s)
Pt
D+ Aty = Q% (1) cos(QAL) + —L ()sin(QsAt)
mIQS
PP+ A = —QW(1)Qmrsin(QAL) + P (1) cos(QAL) (7.15)

for all s = 1,...,n and where Q'*(¢) and P{*)(t) are the initial conditions at
time t. In a matrix form,

PI(S)(t+At) cps(QsAt) —Qgmy sin(Q;At) PI(S)(t)
((5) = | sin(2,At) A (s)
QY (t + At) o cos(Q2sAt) Q')

For simplicity we show the component of the matrices for the zero-frequency
(i.e. for the centroid), this is the case of s = 0 and from the previous matrix
form we get

POt + At) < 1 o> PO (t)
QO +an|  \At/mr 1) 100 w)
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where we used the property of lim,_. %(x) = 1. This form is ideal for the

numerical implementation of the algorithm. Now let us synthesize the changes
in the velocity Verlet algorithm to perform the normal modes (NM) in few step:

STEPs of Velocity Verlet with NM in AdResS:

1. Calculate forces using AdResS. Evaluate FI(S) () only from the external
potential in the primitive space.

2. Update velocities, v\* (t+ 8 = 0§ (1) + %F}S)(t), in the primitive space.
3. Evolve positions and velocities at t+At with NM algorithm (See below).

4. Calculate forces, FI(S) (t+ %) as in STEP 1 from positions of STEP 3.

5. Update velocities, vﬁs)(t + At) = vgs) (t+ 3L + %FI(S) (t + At), in the
primitive space.

The STEP 3 concerns the implementation of the normal modes and this is
presented below

NM algorithm:

1. Apply the forward FFT to {r\” ()}, {p\” (1)} — {Q'V ()}, {P® (1)} (co-
ordinates and momenta in NM).

2. Evolve {Q{” ()}, {P{” (1)} according EOM of free ring-polymer (Eq. 7.15)
to t + At.

3. Apply the backward FFT to {Q\” (¢t + At)}, {P\V(t + At)} — {r{7(t +
At} 7 (¢t + At}
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