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ZusammenfassungDie vorliegende Arbeit untersu
ht den Zusammenhang zwis
hen Skalen in Sys-temen wei
her Materie, der für Multiskalen-Simulationen eine wi
htige Rollespielt. Zu diesem Zwe
k wurde eine Methode entwi
kelt, die die Approximationder Separierbarkeit von Variablen für die Molekulardynamik und ähnli
he An-wendungen bewertet. Der zweite und gröÿere Teil dieser Arbeit bes
häftigt si
hmit der konzeptionellen und te
hnis
hen Erweiterung des �Adaptive ResolutionS
heme� (AdResS), einer Methode zur glei
hzeitigen Simulation von Systemenmit mehreren Au�ösungsebenen. Diese Methode wurde auf Systeme erweitert,in denen klassis
he und quantenme
hanis
he E�ekte eine Rolle spielen.Die oben genannte erste Methode benötigt nur die analytis
he Form derPotentiale, wie sie die meisten Molekulardynamik-Programme zur Verfügungstellen. Die Anwendung der Methode auf ein spezielles Problem gibt bei er-folgrei
hem Ausgang einen numeris
hen Hinweis auf die Gültigkeit der Vari-ablenseparation. Bei ni
ht erfolgrei
hem Ausgang garantiert sie, dass keineSeparation der Variablen mögli
h ist. Die Methode wird exemplaris
h auf einzweiatomiges Molekül auf einer Ober�ä
he und für die zweidimensionale Versiondes Rotational Isomer State (RIS) Modells einer Polymerkette angewandt.Der zweite Teil der Arbeit behandelt die Entwi
klung eines Algorithmuszur adaptiven Simulation von Systemen, in denen Quantene�ekte berü
ksi
htigtwerden. Die Quantennatur von Atomen wird dabei in der Pfadintegral-Methodedur
h einen klassis
hen Polymerring repräsentiert. Die adaptive Pfadintegral-Methode wird zunä
hst für einatomige Flüssigkeiten und tetraedris
he Moleküleunter normalen thermodynamis
hen Bedingungen getestet. S
hlieÿli
h wird dieStabilität der Methode dur
h ihre Anwendung auf �üssigen para-Wassersto� beiniedrigen Temperaturen geprüft.



SummaryThis thesis investigates the 
onne
tion between the length s
ales in soft mattersystems, whi
h is very important in the �eld of multis
ale modeling. For thispurpose a method was developed to evaluate the approximation of separationof variables in mole
ular dynami
s and related �elds. A se
ond issue, and themain part of this thesis, 
on
erns the 
on
eptual and te
hni
al extension of the�Adaptive Resolution S
heme� (AdResS), a method that allows the simulationof a system with 
on
urrent s
ales, to situations where quantum e�e
ts play arole.The �rst method mentioned above requires only the analyti
al form of thepotential as provided in most of the mole
ular dynami
s programs. The out
omeof the appli
ation to a parti
ular problem gives, in the 
ase of a positive assess-ment, a numeri
al indi
ation about the validity of the separation of variablesand in the negative 
ase the evaluation guarantees stri
tly that no separationwill be possible. This method is then applied to a diatomi
 mole
ule on a �atsurfa
e and the 2D version of the Rotational Isomer State (RIS) model of apolymer 
hain.The se
ond part of this thesis is about the development of an algorithmto perform an adaptive resolution simulation where quantum e�e
ts 
an be in-
luded, by mapping the quantum nature of an atom onto a 
lassi
al polymer ringrepresentation within the path integral formalism. The path integral/adaptivemethod is tested in a model liquid of monoatomi
 and tetrahedral mole
ulesat standard (ambient) thermodynami
 
ondition. Finally, the robustness of themethod is assessed by using it to study liquid para-hydrogen at low tempera-tures.
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Introdu
tionDuring the last few de
ades 
omputer simulations have opened up the possi-bility to in
rease our understanding of nature in several �elds of the s
ien
e.Su
h versatility is due to the presen
e of a growing 
ommunity of s
ientists andthe large amount of 
omputational fa
ilities. Computer simulation has be
omeextremely useful for s
ientists be
ause it allows the study of 
omplex systems.It 
an provide information that is sometime ina

essible by experiments due tothe extreme 
onditions, impossible to reprodu
e in the laboratory. Furthermore,
omputer simulations are used to test various theoreti
al approa
hes.However, there still remains a 
lass of problems where brute for
e simulationsare prohibitive due to the 
omplexity of the system. Typi
ally, the 
omplexityinvolves a large amount of degrees of freedom and the interplay between di�er-ent length and time s
ales. Many of these problems o

ur in the �eld of softmatter. A 
ommon strategy to over
ome these problems is to 
reate simpli�edmodels on ea
h s
ale and then pass the information to next level of 
omplexityin a hierar
hi
al way. Naturally, this give rise to the idea of 
oarse graining pro-
edures to obtain relevant information from ea
h level of des
ription and thusseveral methods have been developed for this purpose. So far, the validity ofsu
h pro
edures is based on the reprodu
ibility of the properties of interest anda true 
ontrol of the approximation 
an not be done in general a priori. In this
ontext is ne
essary to develop numeri
al tools to 
ontrol the underlying 
oarsegrained pro
edures.In the last few years several approa
hes have rea
hed a level of te
hni
alsophisti
ation to study multis
ale problems and among them the Adaptive Res-olution S
heme (AdResS) has maintained also a 
on
eptual development as one
an see in this thesis and referen
es therein. The 
on
ept of adaptability helpsto 
ouple several levels of des
ription on the �y, allowing the �ux of informationfrom one des
ription to the other. However, the quantum-
lassi
al 
oupling is
onsidered to be a hard 
on
eptual problem and the adaptability adds a majordi�
ulty. The present work extends the adaptability for the quantum des
rip-tion in the framework of the AdResS s
heme.This thesis 
onsists of seven 
hapters:
• Chapter 1 introdu
es the basi
 
on
ept of 
oarse graining in soft mattersystems and dis
usses some numeri
al te
hniques, that are used later toobtain e�e
tive 
oarse grained potentials. We also dis
uss the possible1



limitations of this approa
h.
• Chapter 2 is dedi
ated to our method 
alled the Approximation of Separa-tion of variables (ASV). This method was developed to quantify the errorintrodu
ed by te
hniques used to 
al
ulate the e�e
tive 
oarse grained(CG) potential under the approximation of separation of CG variables.
• Chapter 3 is entirely dedi
ated to the 
lassi
al Adaptive Resolution S
heme(AdResS). We des
ribe the 
on
ept of the AdResS equation of motion andthe thermodynami
 equilibrium is de�ned in systems whi
h 
hange theirnumber of degrees of freedom on the �y. Then we use fra
tional 
al
ulusto generalize the 
on
ept of the equipartition theorem and formally de�netemperature in su
h 
onditions. For pra
ti
al purposes, we 
omment onthe results of AdResS for the tetrahedral mole
ules where ea
h mole
uleis mapped onto one 
oarse-grained site. Finally, we dedi
ate a se
tion to
omment on further theoreti
al developments.
• Chapter 4 is about the path integral approa
h, whi
h is 
onsidered to bean alternative formalism of quantum me
hani
s. This 
hapter starts byshowing how to apply the path integral approa
h for a free parti
le andthen generalizes the results for a quantum many-body system. Then themole
ular dynami
s implementation of path integrals, known as PIMDand the 
al
ulation of average of observables within the PIMD formalismis des
ribed. Last se
tion dis
usses the limitations of su
h implementationand possible solutions.
• Chapter 5 is fully dedi
ated to our 
ontribution whi
h extends the 
on
eptof AdResS for 
ertain problems where the quantum 
hara
ter of parti
les(e.g. delo
alization) plays a 
entral role and the adaptability of 
lassi
aland quantum parti
les takes pla
e. For the quantum des
ription we usethe path integral approa
h (see 
hapter 4). We des
ribe how to obtain ane�e
tive 
oarse grained potential from the path integral representation.Finally, we applied this 
on
ept to two model systems, the monoatomi
liquid and mole
ular liquid, for several degrees of �quantumness�.
• Chapter 6 
onsists of the �rst real appli
ation reported with our adap-tive/path integral method to the parahydrogen 
ase.
• Finally, the 
on
lusion and perspe
tives are presented in Chapter 7.

2



Chapter 1Systemati
 Coarse GrainingStatisti
al thermodynami
s des
ribes the ma
ros
opi
 state of N parti
les (e.g.
NA = 6.0221 × 1023mol−1), in terms of a small set of variables, the so-
alled�thermodynami
 variables� (e.g. pressure, entropy, et
), whi
h depend on themi
ros
opi
 states (e.g. positions and velo
ities of parti
les). One 
ould inter-pret these ma
ros
opi
 variables as an e�e
tive or a 
oarser des
ription of themi
ros
opi
 states. At equilibrium, statisti
al thermodynami
s provides uni-versally a

epted re
ipes for su
h 
oarse graining. Thermodynami
 potentials
ontain all the relevant information about a thermodynami
 system in a 
om-pa
t format, and these potentials 
an be 
al
ulated via partition fun
tions interms of statisti
al weighting.Nowadays, due to the rapid enhan
ement of 
omputational resour
es [1℄,one may think that the 
omputer simulation of soft 
ondensed matter representsmerely a te
hni
al task of running larger systems and longer times with standardsimulation s
hemes and that there is no a 
on
eptual 
hallenge. Atomisti
simulations based on mole
ular dynami
s (MD) or monte 
arlo (MC) have shownto be su

essful in order to explore the potential energy surfa
e (PES) [2℄ ofsystems at the mole
ular s
ale (i.e. few ps and nm), but there are still seriouslimitations for a detailed mole
ular des
ription of mesos
opi
 s
ales. The widetime and length s
ales of su
h systems 
ombined with the interplay betweendi�erent s
ales makes the theoreti
al des
ription harder and unfeasible to makemeaningful 
omparison with experiment.One 
an have an idea of this issue, forinstan
e, in the �eld of bio-mole
ular simulation, whi
h requires one to a

essseveral s
ales with a large variety of 
omplexity. The topi
 of protein-generated(or mediated) membrane 
urvature whi
h is known as membrane �remodeling�for example: protein modules (e.g. Bin/amphiphysin/Rvs domain) 
an remodelliposomes having initial diameters of 20 nm into thin tubulated stru
tures withdiameters on the order of 20 to 50 nm over time-s
ales longer than mi
rose
onds[3℄. Another 
ommon example is the folding of proteins of more than �ftyresidues using all-atom for
e �elds. A 
omputer simulation 
overing a times
ale of 5 × 10−8s for a heptapeptide in methanol su

eeds in 
apturing thefolding pro
ess [4, 5℄. For larger systems dire
t atomisti
 simulation has been3



less su

essful [6,7℄. Traditionally, 
omputer simulations are restri
ted to shortlength s
ales or pro
esses whi
h relax in short time s
ales.In order to bridge the atomisti
 and the mesos
opi
 s
ales, one has to developnovel approa
hes that 
an a

ess longer times and larger length s
ales. One su
happroa
h is to 
oarse-grain a system, so that a group of atoms is 
lustered intoa stru
tureless CG bead (i.e. a superatom), whi
h retains the essential physi
sof interest (see Figure 1.1). These CG beads intera
t through more e�
ientpotentials where the �fast� variables responsible for the time limitation havebeen integrated out during its derivation. One expe
ts to get softer potentialswhi
h allow the use of larger time steps. To sum up, the system is repla
ed byfewer parti
les (CG beads) whi
h mimi
 the phenomena of interest as a

uratelyas possible and it is able to rea
h longer time s
ales.

Figure 1.1: A pi
torial 
oarse grained representation of the a-glu
ose mole
ulewhere one monomer has been mapped onto one bead [8℄.The next se
tion is about generalities of the e�e
tive 
oarse-grained poten-tial.1.1 E�e
tive potential for 
oarse grainingAs mentioned before, it is essential to preserve equilibrium thermodynami
 prop-erties of the original system in 
oarse-graining methodologies. This guaranteesthe predi
tability of the 
oarse grained models in a 
ertain range of interest.Consider an expli
it system of N parti
les with 
oordinates {r} = r1 . . . rN . Letus assume for simpli
ity that one is able to distinguish the �important� 
oordi-nates r′ from the full set of variables. In general the partition fun
tion, ZN , for4



a system of N distinguishable parti
les is given by
ZN =

∫
drdp e−H/kBT , (1.1)where H is the total Hamiltonian (i.e kineti
 and potential energy) and kB isBoltzmann`s 
onstant. From this expression, one 
an obtain the Helmholtz freeenergy A for a given volume and temperature T as follows,

A = −kBT lnZN . (1.2)From the Eq. 1.1 one noti
es that the partition fun
tion 
ontains two 
ontribu-tions
ZN = Ztrans × Zconf (1.3)where Ztrans and Zconf is the 
orresponding translational and 
on�gurational
ontributions. While Ztras depends on the temperature and masses of the parti-
les, its 
on�gurational part 
ontains the 
onservative potential of the 
ompletesystem, V (r), as follows,

Zconf =

∫
dre−V (r)/kBT . (1.4)In 
oarse graining one wishes to obtain an e�e
tive potential V eff(r') su
h thatthe Boltzmann distribution in the redu
ed spa
e of important variables remainsthe same as the equilibrium distribution of su
h varibles in the atomisti
 model.As a 
onsequen
e the e�e
tive potential 
an be de�ned as

e−Ueff (r′)/kBT =
Z ′

conf

Zconf

∫
dr e−V (r)/kBT δ(r− r′). (1.5)From Eq. 1.5 it is 
lear that the e�e
tive 
oarse grained potential is not a 
onven-tional potential, but rather a many-body 
on�guration free energy, the so 
alledpotential of mean for
e (PMF). Su
h an approa
h is 
onsidered as a bottom-upre
onstru
tion of the e�e
tive potential be
ause of the use of atomisti
 simula-tions (�ne-grained) to derive su
h a potential in the CG s
ale. In pra
ti
e itis very ine�
ient when one has to deal with multidimensional potentials (e.g.large mole
ules or membranes solvated in water). It is, however, 
onvenientfor low dimensional problems (e.g. a one dimensional rea
tion 
oordinate thatdes
ribes the essential event).In almost all 
ases the bottom-up re
onstru
tion of the e�e
tive potentialwill not get the pre
ision required to a

urately predi
t thermodynami
 quan-tities at the CG level. Alternatively one 
an take a top-down approa
h, whi
hbasi
ally parameterizes the CG models from a ma
ros
opi
 experimental data.For instan
e, a

ording to important thermodynami
 information [9℄ or impor-tant ma
ros
opi
 stru
ture of the referen
e system [10℄ in order to retain asmu
h as possible the essential physi
s of interest. In the following se
tion wewill brie�y introdu
e the stru
tural 
oarse graining whi
h has been used in thisthesis. 5



1.2 Stru
ture-based 
oarse-grainingThe basi
 idea of stru
ture-based 
oarse-graining is to guarantee a 
onsisten
ybetween the stru
ture of high resolution models (atomisti
 s
ale) and the lowresolution ones (
oarse grained s
ale). Ideally, the stru
ture agreement shouldhold down to the smallest length s
ale, whi
h is in the order of the CG unit.One has to be aware that in general all-atom 
on�gurations 
orrespond to asingle CG 
onformation [11℄. Although there is not a one-to-one 
orresponden
ebetween the CG and full-atom 
on�gurations, it is very important that theensemble of 
onformations of the CG model 
orresponds to the atomisti
 ones.Inpra
ti
e, the stru
tural 
oarse-graining is done through the mapping of 
ertaindistribution fun
tions between the mapping points (
enter of masses of CGbeads) in the referen
e system (full atomisti
). Although there is no unique setof mapping points, their 
hoi
e relies on numeri
al 
onvergen
e of the stru
turalproperty [12℄ to be 
al
ulated.At this point, one should 
omment of the methodologies used to generatethe CG for
ed �eld. There are several ways to do this. A popular one is to �t apair potential, so that it reprodu
es the stru
tural quantity desired, su
h as theradial distribution fun
tion, g(r). Ideally, the form of the potential should beindependent of the pro
edure used to 
al
ulate it, as proved by Henderson [13℄,where two �pair potentials� that reprodu
e the same radial distribution fun
tionare equal up to a 
onstant. A more sophisti
ated mathemati
al proof 
an befound in referen
e [14℄. Conventionally, one derives this e�e
tive potential ata given state-point. Thus, one should expe
t �transferability problems� whenthat potential is used at di�erent state points.Te
hni
ally, there is a set of very e�
ient methods used to obtain su
h e�e
-tive potentials. It is important to note that, in these methods small numeri
alerrors 
an lead to di�erent e�e
tive potentials, during the �tting of the ma
ro-s
opi
 property su
h as radial distribution fun
tion. Among the most popularones are the iterative pro
edures, su
h as the Iterative Boltzmann Inversion(IBI) or Reverse Monte Carlo (RMC). They try to reprodu
e stru
tural infor-mation (e.g. radial distribution fun
tions) whi
h 
an be taken from experimentsor all-atom simulations for a given thermodynami
 state. In 2009 a softwarenamed �VOTCA� [15℄ designed spe
i�
ally for stru
tural 
oarse graining was re-leased and the 
urrent version 
ontains several well-known traditional methodsfor 
onstru
ting the e�e
tive potential. In this thesis work we used the IterativeBoltzmann Inversion for 
al
ulating the e�e
tive nonbonded intera
tions, andthe next se
tion is dedi
ated to it.1.3 Nonbonded intera
tion potentialsThe main aim of deriving an e�e
tive nonbonded potential is to reprodu
e stru
-tural properties. These are mainly 
ontained in the radial distribution fun
tionsof some soft matter systems (e.g. liquids or polymer melts). This information is
ommonly obtained from experiment or atomisti
 simulations. The basi
 idea6



is to obtain numeri
al (�tabulated�) potentials, whi
h a
t between the 
oarsegrained units. In a similar way the same 
oarse grained pro
edure 
an be madefor bonded intera
tions (see ref. [16℄).1.3.1 The Iterative Boltzmann InversionThe implementation for non-bonded intera
tions starts with an initial guess forthe nonbonded potential, usually the Boltzmann inverse of the target gtarget(r)is 
hosen as a �rst guess,
V CG

NB,0(r) = −kBT log gtarget(r) (1.6)where T is the temperature and kB is Boltzmann's 
onstant. Last expressionis known as the potential of mean for
e. One then runs a CG simulation andobtains a new g(r) whi
h usually does not mat
h the target stru
ture due to themultibody intera
tion. This is be
ause the potential of mean for
e (Eq. 1.6) isa good estimate for the pair intera
tion of highly dilute systems. To a
hieve thedesired 
onvergen
e an additional 
orre
tion has to be introdu
ed through thefollowing iterative s
heme
V CG

NB,i+1 = V CG
NB,i + kBT log

gi(r)

gtarget(r)
(1.7)Basi
ally, the initial guess for the potential 
an be iteratively re�ned until the de-sired stru
ture is obtained. For small mole
ules and simple liquids su
h as waterand benzene at normal 
onditions, this pro
ess is powerful and straightforwardto implement. On the other hand, for multi
omponent system (several types ofCG beads) e.g. liquid 
rystals or polymer melts, the pro
ess of determining thenonbonded potential is more 
ompli
ated [17℄. The iterative pro
edure guaran-tees a ni
e agreement with the target distribution but not with the pressure.Next se
tion explains how to deal with this problem.1.3.2 Pressure 
orre
tionDuring the stru
ture-based 
oarse-graining, it is also important to �t the pres-sure at the density of the target system in order to retain as mu
h as possiblethe state point of the all atom model. It is well-known that one 
an �t eitherthe pressure or the 
ompressibility, but not both simultaneously [18℄. Typi
ally,a linear term is added to the nonbonded potential interatively in order to �t thepressure:

∆V (r) = A(1 − r

rcut
) (1.8)for r < rcut, where rcut is the 
uto� radius of the pair nonbonded potential and Ais an arbitrary 
onstant whi
h 
an be estimated from the virial expansion [16℄.Basi
ally, the 
orre
tion of Eq. 1.8 yields a 
onstant for
e that makes theintera
tion repulsive if A is positive, and more attra
tive in the opposite 
ase.7



One runs into trouble if A is not small enough, it 
an a�e
t the overall stru
tureand, thus it will have to be readjusted until a good balan
e between pressureand the radial distribution 
an be obtained. Su
h a pro
ess 
ould delay the
onvergen
e of the target radial distribution fun
tion of interest.1.4 Limitation of stru
ture-based 
oarse-grainingIt is worthwhile to emphasize that identifying the proper set of relevantvariables (CG ones) is the key to su

ess in any systemati
 
oarse-grainingpro
edure. In other words, one has to �rst identify a suitable set of relevantvariables for a 
oarser target level and then express them in terms of the variablesof the �ner resolution. The latter is taken as the referen
e in the simulation.In many 
ases, this is given by the atomisti
 level with parti
le positions andmomenta as a variables.Note that the assumption of a pairwise potential is suitable in many 
aseswhere the three-body or higher order for
es are not so relevant for the levelof des
ription. However, one 
an not expe
t the same representation of �allproperties of the system� between the 
oarser des
ription and the atomisti
one. The representability problems are widely spread in 
oarse-graineddes
riptions of soft matter [9, 18℄.Another essential problem is the degree of transferability of the CG modelfrom one thermodynami
 
ondition to another. In prin
iple, as stated before,CG potentials 
annot be fully transferable due to the redu
tion of degrees offreedom (some information has been averaged out), whi
h simpli�es the 
om-plexity of the system.Finally, the dynami
s of 
oarse grained models in many 
ases does not
orrespond to the real dynami
s. Generally, CG dynami
s is faster than the un-derlying atomisti
 one. Thus the CG dynami
s must be properly interpreted; inany 
ase the fa
t that one 
an run mu
h longer simulations implies a mu
h moree�
ient statisti
al sampling for the 
al
ulation of stati
 equilibrium properties.
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Chapter 2Approximation of Separationof VariablesA relevant problem in mole
ular-dynami
s (MD) simulations is the determina-tion of the minimal set of degrees of freedom (DOFs) to be employed in thesimulation study by a systemati
 pro
edure. Parti
ularly, in the �eld of 
oarsegrained simulations, one would like to determine the set of relevant variableswhi
h are su�
ient to properly 
hara
terize the phenomena under investigation.Also in 
omplementary �elds su
h as the study of rare events (e.g protein fold-ing or 
rystal nu
leation) the 
hoi
e of the �
olle
tive variables (CVs)�, typi
allyused in transition path sampling [19℄ or metadynami
s [20℄ is 
hara
terized bythe same problem. The 
hoi
e of a small set of variables is generally guidedby 
hemi
al or physi
al intuition and does not always allow for a systemati

ontrol of the underlying approximations. In this 
ontext it would be optimalto provide some 
riteria to 
ontrol, in a systemati
 way, the 
hoi
e of the set ofDOFs (eg. rea
tion 
oordinate or CVs).In this 
hapter we present the basis of a 
riterion to evaluate how separabletwo DOFs are and its extension to study the interdependen
y of several DOFs.Our algorithm [21℄ mainly requires as input the basi
 information 
ontained inthe potential energy surfa
e (PES) [2℄. The basi
 idea behind the separabilityof some DOFs in the PES typi
ally leads us to propose a redu
tion in thedimensionality of the problem. In 
omplex systems, the PES 
ontains 
ru
ialinformation; in an extreme 
ase, if two DOFs are independent their evolutiono

urs in two orthogonal spa
es. This means that one 
ould negle
t one of thesevariables without altering the dynami
 evolution of the system in the spa
e ofinterest.The present 
hapter begins by exposing the basi
 idea of how to evaluatethe separability of two DOFs through the method developed and 
alled theapproximation of separation of variables (ASV). A methodologi
al example ofhow to apply the ASV will illustrate the idea (the 
ase of the diatomi
 mole
uleswith a �at surfa
e). And �nally we apply the ASV method to a more realisti
9



system, namely the RIS model of polymer 
hain.2.1 The ASV: a �rst 
riterionFor pra
ti
al purposes let us start 
onsidering a two dimensional potential ofthe form V = V (x, y): the extension to more variables will be dis
ussed lateron. The analyti
al form of V is given and only in the 
ase that the two variablesare fully separable one has that:
V (x, y) = V1(x) + V2(y) (2.1)Or equivalently one 
ould write V for any 
ouple of �xed points x0, y0 as:

V (x, y) = V1(x) + V2(y) = V (x, y0) + V (x0, y) − V (x0, y0). (2.2)In other �elds of s
ien
e the �xed point has many meanings, for example, inmathemati
s is de�ned as a point that is mapped to itself by the fun
tion, inphysi
s is 
ommomly used in the renormalization group theory languagee, in
hemistry is used as the point under whi
h rotation of the mole
ule o

urs, toname a few. In this thesis the �xed points are de�ned as the set of points thatde
ouple the potential for ea
h DOF (see Eq. 2.2).Up to now this is exa
t and represents the ideal 
ase of 
omplete separabilityof two DOFs. A reasonable 
riterion to indi
ate how good the approximation ofseparation of variables is, is to 
al
ulate its deviation from the ideal 
ase of Eq.2.2. This 
an be done with the de�nition of an estimator ∆ of the di�eren
ebetween the true potential where the variables are still 
oupled and the potentialwhere one introdu
es by hand the separability in the fashion of Eq. 2.2. Forinstan
e, given a potential V (x, y) where x and y are not de
oupled one de�nes
∆ as,

∆x0,y0(x, y) = V (x, y) − [V (x, y0) + V (x0, y) − V (x0, y0)], (2.3)
∀x, y 6= x0, y0. Basi
ally this is a point-by-point evaluation in order to 
omparethe potential V and its respe
tive version where the ASV was introdu
ed.To know how meaningful the energeti
 dis
repan
y between the 
oupledpotential and the ASV for a spe
i�
 problem is, one needs to de�ne a s
ale ofenergy. Sin
e we deal with energy s
ales of the order of thermal �u
tuations(∼ kBT in 
lassi
al simulation of soft matter systems). One 
ould de�ne thequality fa
tor for the ASV as follows,

Q(x, y) =
|∆x0,y0 |

kBT
(2.4)where kB is Boltzmann's 
onstant and T is the temperature. The simple formof Eq. 2.4 de�nes the ��rst 
riterion� of our algorithm; this form is easy totreat numeri
ally. From Eq. 2.4 one sees that if Q is mu
h larger than one,then the assumption of the approximation of separation of variables will lead10



to false dynami
s and thus its exploration by MD 
an be questionable. The
hoi
e of the referen
e is system dependent, for instan
e, if one is studying the
onformational spa
e of a mole
ule whi
h is 
hara
terized by an energy barrier
ǫb that separates two important and well-de�ned states, in this 
ase ∆ 
an be
ompared with ǫb.So far, we have not 
ommented about the dependen
e of Q with respe
t tothe �xed points (x0, y0). The treatment of this problem will strengthen the
riterion designed previously and this is the fo
us of the next se
tion.2.2 Dependen
e of Q on the �xed point: A 
om-plementary 
riterionA formal way to determine the dependen
e of Q on the �xed points (x0, y0) isto monitor the variation of Q upon the variation of x0 or y0. We de�ne:

δx0 =
∂Q(x0, y0, x, y)

∂x0
(2.5)

δy0 =
∂Q(x0, y0, x, y)

∂y0
. (2.6)These variations are 
al
ulated over a 
ertain range of �xed points (x0, y0) andon a 
ertain (x, y) domain. In general, if the ASV is reasonable, the dependen
eof Q, given by Eq. 2.5 and 2.6, on the �xed point is indeed negligible by
onstru
tion. In su
h a 
ase, one would have for Eq. 2.5 that,

δx0 =
1

kBT
[
∂V (x0, y0)

∂x0
− ∂V (x0, y)

∂x0
] ≪ 1, (2.7)if x and y are not highly 
orrelated, and one immediately sees that

∂V (x0, y0)/∂x0 ≈ ∂V (x0)/∂x0 and similarly for ∂V (x0, y)/∂x0 ≈ ∂V (x0)/∂x0.This demonstrates that δx0 ≈ 0 for the 
ase of weak 
oupling between x and
y, the same holds for δy0 . When the ASV is questionable, the quality fa
tor Qwill be dependent on the values of the �xed points. This seems to be a negativeaspe
t of the algorithm proposed; but eventually here we propose to use it asa �
omplementary 
riterion� to identify the regions of (x, y) where the validityof the ASV is very 
riti
al. The re
ipe is the following: �rst one studies δx0and δy0 as a fun
tion of x0 and y0 using x and y as parameters to vary, whi
hhelps us to identify the 
riti
al regions. Se
ond, one 
hooses x0 and y0 outsidethe 
riti
al region. Finally, one applies the ASV over all relevant xy spa
e toquantify the degree of separability (∆). One 
ould summarize these ideas asfollows,

• It de�nes regions where the 
hoi
e of the �xed points for Q is deli
ate andthose where it is not. 11



• It also de�nes a region of the (x, y) spa
e where the ASV is likely not tohold, 
ompared with other (x, y) regions.This part of the pro
edure is rather important. Instead of only minimizingthe dependen
e of �xed points on Q, it also takes 
are of the fa
t that 
riti
alregion may be too small and a �xed point taken from su
h a region may be too
lose to some of the (x, y) points, so that when one evaluates Q one gets smallvalues be
ause of the 
lose values of V (x, y), V (x, y0), V (x0, y) and V (x0, y0).Basi
ally, the analysis is prevented from being very lo
al.In summary, the simple re
ipe for the ASV 
riteria 
an be given as1. Choose an arbitrary �xed point.2. Cal
ulate the quality fa
tor Q.3. Study the dependen
e on the �xed points by 
al
ulating the 
orresponding
δ.4. Identify the 
riti
al region.5. Choose a �xed point outside the 
riti
al region (the optimal would bewhere δ = 0).6. Cal
ulate Q on
e again using the �xed points of step 5 and analyze Q inthe 
riti
al region.In the next se
tions, we show �rst a simple example of how to apply theASV. The se
ond example is more 
omplex and will help us to generalize ourideas for a multidimensional system.2.3 A guiding example: A rigid diatomi
 mole
uleintera
ting with a surfa
eThis is a simple example of how to apply the ASV 
riteria. The system 
onsistsof a diatomi
 mole
ule of equivalent atoms whi
h intera
t with a uniform rigidsurfa
e via a potential given by

U(za, zb) = ǫ{2

5
[(

σ

za
)10 + (

σ

zb
)10] − [(

σ

za
)4 + (

σ

zb
)4]} (2.8)The question we want to address is whether there is a region za, zb where themole
ule 
an be treated as an e�e
tive �point-like� parti
le (see Figure 2.1) andwhose intera
tion point is lo
ated at the 
enter of mass.An equivalent way to des
ribe the same system is to transform the set ofvariables za, zb to another set of degrees of freedom. One variable is the distan
e

r from the surfa
e to the 
enter of mass, while the rotation around it by thevariable θ. Now, the previous question be
omes: is it possible to separate r and
θ? 12
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(I) (II)Figure 2.1: S
hemati
 representation of the system 
onsidered. Part (I) showspi
torially the mapping from (za, zb) to (r, θ) and part (II) des
ribes the 
asewhen θ is 
ompletely independent from r.For this purpose, one has to transform the old set of variables to the newones:
za = r + d · sin(θ); zb = r − d · sin(θ) (2.9)and thus, substituting the last expression into Eq. 2.8 one writes the potentialin terms of the new variables r, θ as

U(r, θ) = ǫ

(
2

5

[(
σ

r + d · sin(θ)

)10

+

(
σ

r − d · sin(θ)

)10
])

−

−ǫ

([(
σ

r + d · sin(θ)

)4

+

(
σ

r − d · sin(θ)

)4
]) (2.10)where θ ∈ [0, π/2] due to the symmetry of the system and d is the �xeddistan
e from the 
enter of mass to ea
h single atom. The values used here forvarious parameters were taken from an atomisti
 model whi
h was employed tostudy the absorption of a mole
ule on a surfa
e [22℄. Firstly, by using Q(r, θ)one 
ould determine the minimum distan
e r from the surfa
e for whi
h theseparation is still reasonable, and thus for distan
es larger than this one is ableto negle
t the mole
ular rotation and represent the mole
ule (with respe
t tothe surfa
e) as one e�e
tive intera
tion site lo
ated at the 
enter of mass. Nowwe show the fa
tor of quality for this problem and its study with respe
t to the�xed points.2.3.1 The fa
tor of quality QOne should start to de�ne the threshold for the potential dis
repan
y. Let us usefor this 2kBT in Eq. 2.4. Energy errors that ex
eed this number may alter thedynami
s of the pro
ess of absorption. With the help of Eq. 2.4 one 
omputesthe quality fa
tor of the problem. The result of this 
al
ulation is shown in13
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Figure 2.2: The quality fa
tor Q studied as a fun
tion of the angle θ varyingparametri
ally r from 3.0 nm to 1.0 nm. The �xed point used in this exampleis: θ0 = π
6 and r0 = 2.0 nm. Here σ = 0.5 nm; l = 0.5 nm, ǫ = 10kBT . Asthe distan
e of the 
enter of mass from the surfa
e de
reases the dependen
eon θ be
omes stronger and for approximately r ≤ 1.2 nm the ASV starts to bequestionable sin
e the error indu
ed 
an be larger than 2 kBT .Figure 2.2. As long as r takes values in the range of 1.0 − 1.2 nm the potentialwhere the separation is applied overestimates the true potential of the relevantquantity by around 2− 3kBT , as expe
ted, and this overestimation in
reases as

θ in
reases.From this part one sees the following for the separability: as the mole
ule is
lose, i.e. r ≤ 1.2 nm, the assumption of separation of r and θ not longer holds.For this example we use the values of the �xed points whi
h at least a�e
t thequality fa
tor Q in the range of interest. This will be explained in detail in thenext se
tion.2.3.2 The 
omplementary 
riterionMethodologi
ally, as we pointed out before, one 
an start to look at the smallvariation of Q as a fun
tion of the �xed points. For this spe
i�
 example, weshow the variation of Q with respe
t to r0 and θ0. The results are shown inFigure 2.3 and 2.4 respe
tively. For δr0 the 
riti
al region 
orresponds to theregion where r < 1.4 nm (by 
onstru
tion r 
annot be less than 0.5 nm). For
δθ0 the 
riti
al region varies from π/4 ≤ θ ≤ π/2. In fa
t, Figure 2.3 shows,for di�erent values of θ and θ0, a trend a

ording to whi
h for r0 ≤ 1.4 nm thedependen
e of Q on r0 be
omes relevant. Similarly, one sees in Figure 2.4 thatthe 
riti
al region is lo
ated in π/4 ≤ θ ≤ π/2.14
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Figure 2.3: The variation of Q w.r.t. r0, (δr0), for some example values of θ0 and
θ. We plot also the extreme values taken by θ0 and θ (symmetri
 
urves) allowedby the atomisti
 model and, in between, two more examples. The message ofthis plot is that there is a general trend a

ording to whi
h the dependen
e of
Q on r0 be
omes 
ru
ial for, approximatively, r0 ≤ 1.4 nm. The verti
al dashedline indi
ates that the region r0 ≤ 1.4 nm should be 
onsidered as the 
riti
alregion for the variable r.From these studies one 
an optimize the 
hoi
e of �xed points, r0 and θ0,for Q. Thus, if one performs the analysis of Q in the region of r ≤ 1.4 nm and
π/4 ≤ θ ≤ π/2, then the optimal 
hoi
e of the �xed points would be r0 = 1.2nm and θ0 = π/6 as given in Figure 2.2. From this it emerges easily that for
r ≤ 1.2 nm the ASV starts to be questionable. Basi
ally, these studies of δr0and δθ0 show how to re�ne the analysis of Q for the region of large dis
repan
y.The studies of Q and δr0, δθ0 
omplement ea
h other and shows how one 
andetermine the validity of the ASV.2.4 Extension to higher dimensions: Parametri
studyThe 
riteria presented before 
an be in prin
iple extended to more dimensionsalthough the 
omputational demands would inevitably in
rease. The most sim-ple way to pro
eed is by looking at two variables at a time with the rest frozen.Let us suppose the potential in a generi
 form U(x, y, z, . . .). Then, one mayfo
us on two variables per time and see how the separation 
an be 
arry out.For simpli
ity, we 
onsider U = U(x, y, z) as fun
tion of three variables x, y and15
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Figure 2.4: The variation of Q w.r.t. θ0, (δθ0), for some examples values of
r0 and r. For values of r0 and r outside the 
riti
al region de�ned by Figure2.3, the dependen
e of Q from θ0 is negligible, however for values within the
riti
al region of r, r0 ≤ 1.4 nm the dependen
e be
omes stronger and identi�esthe 
riti
al region of the variable θ. The verti
al dashed line indi
ates that theregion θ0 ≥ π

4 is the 
riti
al one.
z. In this 
ase ∆ is written as

∆x0,y0(x, y, z̄) = U(x, y, z̄) − [U(x, y0, z̄) + U(x0, y, z̄) − U(x0, y0, z̄)] (2.11)if one is interested in how separable x and y are, under the assumption that z
an be fa
torized from the others. In Eq. 2.11, z̄ means all the possible valuesof z that 
ould de
ouple it from x and y. In the same way one 
ould analyze
∆y0,z0(x̄, y, z) if one were interested in how separable are y and z, under theimpli
it hypothesis that x 
an be separated from the others or similarly for
∆x0,z0(x, ȳ, z), if the interest is in the separation of x and z.2.5 A se
ond example: 2D version of the RISmodel of a polymer 
hainThe Rotational Isomeri
 State (RIS) theory is 
onsiderd to be the standardmethod [23℄ to study the 
onformational properties of ma
romole
ules. Here wede�ne the RIS model of our polymer 
hain, where all torsions are set to zero (i.e.2D 
ase). su
h a 
ondition will be ful�lled for all the dihedral angles aroundthe bonds. In our model system we apply the ASV 
riteria for two di�erentmapping s
hemes (MSs) (see se
tion 2.5.2). Let us explain in the next se
tionthe problem of 
hoosing the mapping s
heme for a polymer system.16



2.5.1 A general problem in 
oarse grained modeling ofbonded intera
tionsIn the previous 
hapter we 
omment about the mapping s
heme (MS) as the
ommon CG strategy to redu
e the large number DOFs in soft matter simula-tions. After one de�nes a MS (whi
h also de�nes impli
itly the CG variablesof interest) one performs simulations to obtain the e�e
tive potential (bondedand nonbonded) among the set of CG variables. Here, let us fo
us on the 
aseof bonded potential for a polymer. For example one repla
es ea
h 
hemi
algroup in a polymer by spheres that be
ome the new e�e
tive parti
les of su
hsystem. The new CG variables are the following: bond lengths (r), bond angles(θ) and torsion (φ) asso
iated with two, three or four 
hemi
al groups respe
-tively. Next, one has to think about the e�e
tive potential for this minimal setof variables. Some methods are based on all-atom simulations of a single 
hainin va
uum, the 
orresponding distribution of the CG variables is obtained inthese MD runs and under the approximation that they are de
oupled.Then one 
an write,
P (r, θ, φ, T ) = P (r, T )P (θ, T )P (φ, T ) (2.12)and by Boltzmann inversion [16℄ at the given temperature T one has:

U (r, θ, φ) = U (r) + U (θ) + U (φ) (2.13)This new potential mainly reprodu
es some features of the full atomisti
 modelbut at mu
h lower 
omputational demands (less variables to integrate in MD).However, a priori one does not know how far the hypothesis of separability
ould hold for a given MS. This means, so far, that there is not a systemati
approa
h to 
ontrol the underlying ASV implied by the potential derived in Eq.2.13. Here we 
an apply straightforwardly the 
riteria developed previously.2.5.2 Mapping s
hemesIn order to make a 
omparison between our model system and a real polymer
hain we use the parameters that 
hara
terize the energy and length s
ales
orresponding to the n-alkane 
hain (see Appendix A). The stru
ture of analkane 
hain (AC) is illustrated in Figure 2.5. This simple polymer is 
omposedof several repeat units with ea
h one 
orresponding to either methyl groups(CH3) in both ends or ethyl groups (CH2) along the ba
kbone. We study twodi�erent MSs for our model system whi
h are depi
ted in Figure 2.6. They areindi
ated as the 1:2 and 1:3 mapping s
hemes (MSs). By 
onvention the rightnumber denotes the number of 
arbons whi
h will be repla
e by a sphere (leftnumber), this means that the 1:3 MS is more 
oarser than 1:2 MS. Now wede�ne the variables as follows:
• the distan
e between 
lose beads R(1) and R(2)

• the angle Ω between the ve
tors ~R(1) and ~R(2).17



Figure 2.5: Chemi
al stru
ture of the n-alkane 
hain in whi
h ea
h vertex of theba
kbone represents a 
arbon.Even though in Figure 2.6 both MSs result in the same set of CG variables, theydepend on di�erent atomisti
 variables. The point we want to address is howseparable are these CG variables, that is how independent are R(1) and R(2),
R(1) and Ω, and R(2) and Ω.2.6 ResultsThere are some basi
 steps that one has to follow in order to evaluate the qualityof ea
h MSs. First, one has to express the atomisti
 potential as a fun
tion ofthe CG variables R(1), R(2) and Ω (see Appendix B). After that we follow thesteps of the ASV dis
ussed at the begin of this 
hapter. We dis
uss here somete
hni
al details for this system whi
h 
an be useful for more 
omplex systems.First, we 
al
ulate Q in regions of the CG variables allowed by the atomisti

onformations. This means that the regions of Q where bond breaking or overlapof two atoms o

ur, are not taken in a

ount during the analysis.The 
hoi
e of �xed points is not so trivial (δ = 0) as in the �rst example.This time δ is not likely to be zero given the 
omplexity of the mole
ule. Thus,we extend the previously used 
riteria as follows:a) If δ has a region where it varies slowly and then a region where its variationin
reases rapidly, we de�ne the �rst region as non 
riti
al and 
hoosethe �nal �xed point from there (possibly the point 
orresponding to theminimum value of δ, that is, the minimum dependen
e on the �xed point)or we 
hoose several �xed points and sample Q over all of them.b) If δ is 
onstant, but it is 
hara
terized by a high value or it in
reases rapidlyover the whole domain, then the whole domain is de�ned as 
riti
al, whi
hmeans that the ASV does not hold. Sin
e we need a �xed point to quan-tify the error introdu
ed by the ASV. This time one 
ould 
hoose several�xed points all over the whole domain of �xed points and for ea
h 
hoi
e
al
ulate the Q separately. For the �nal Q one takes the average (plus the�u
tuations) of all the values obtained for ea
h study. What 
hanges from18



Figure 2.6: The �gure shows the typi
al CG stru
ture of the polymeri
 
hainstudied. Ea
h 
hemi
al group is represented by blue 
ir
les 
lose to a letter.Part (a) shows the MS where there are two 
arbon groups per bead (1:2), whilepart (b) shows three per bead (1:3). The �atomisti
� variables θi ∀i = 1, 2, 3, 4and the CG variables R(1), R(2)and Ω are also shown.
ase (a) is that one needs a large sample of �xed points. Typi
ally in this
ase one 
an expe
t that the approximation leads to very large errors.With these remarks in mind, we pro
eed to show the results for ea
h mappings
heme.2.6.1 The 1:2 MSAs we stated before one performs a systemati
 study of Q for ea
h parametri
CG variable. Sin
e we have three CG variables one de�nes also three di�erent
Q for ea
h parametri
 value. For example Q1 indi
ates the 
ase for R̄(1) as aparametri
, Q2 for R̄(2) and Q3 for Ω̄.To obtain Q1, see Figure 2.7(a), we �rst 
hoose an arbitrary set of �xedpoints (R

(2)
0 , Ω0) and then analyze Q and its dependen
e on the �xed pointsas shown in part (b). Next, similar to the pro
edure shown for the diatomi
mole
ule, we 
an determine if there are 
riti
al regions, whi
h in this 
ase aregiven by ∀R

(2)
0 ∈ [2.425, 2.525] and ∀Ω

(2)
0 ∈ [145◦, 180◦]. A

ordingly, we have
hosen the �xed points outside these 
riti
al regions to be R

(2)
o = 2.4Å and

Ω0 = 140◦. With this optimized set of �xed points one estimates the errorin the potential that one makes under the hypothesis of separability of Ω and
R(2) whi
h turns out to be ∼ 9kBT ; this is larger than the expe
ted thermal�u
tuations. 19



Similarly, in Figure 2.8 and 2.9 we show the results for Q2 and Q3 respe
-tively. We note that in the 
ase of Figure 2.8 the analysis of δ does not lead toidentify proper 
riti
al regions. This time we use the extension (b) of the ASVgiven in the previous se
tion to quantify the quality fa
tor (Q2) of the MS. Thegeneral message is that in ea
h plot for the 1:2 MS there are extended regionswhere the error varies between 6kBT and 9kBT , whi
h is mu
h larger than thereferen
e energy.
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Figure 2.7: The �gure (a) shows the quality fa
tor Q1 = Q(R̄(1)) =
∆

R
(2)
0 ,Ω0

(R̄(1))/kBT for the mapping 1:2 with R̄(1) = 2.4Å as a parametri
 valueand the �xed points equal to R
(2)
o = 2.4Å and Ω0 = 140◦. In (b) and (
) are shown
riti
al regions ∀R

(2)
o ∈ [2.425, 2.525] and ∀Ωo ∈ [145◦, 180◦] . In (a), the light grayregion represents the vi
inity of the �xed point (R

(2)
0 , Ω0) where CG potential is de-
oupled (by de�nition) and thus of no interest in this 
ontext. The real interest is inthe 
riti
al regions determined by the plot shown in (b) and (
). There the potentialis no more de
oupled and the variables are highly 
orrelated. Note also that the whiteregions are those were the CG variables are not de�ned and thus Q is not 
al
ulated.The same applies for all the next �gures. 21
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(1)
0 = 2.65Å
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Figure 2.8: The plot (a) shows the quality Q2 = Q(R̄(2)) = ∆
R

(1)
0 ,Ω0

(R̄(2))/kBT forthe mapping 1:2 with R̄(2) = 2.35Å as a parametri
 value and the �xed points equalto R
(1)
o = 2.5Å and Ω0 = 162◦. To be noti
ed that the value of the derivatives shownin (b) and (
) are almost 
onstant for ea
h parametri
 
urve. This means that thereexists no real de�nition of 
riti
al region and in this 
ase one 
an pro
eed by usingseveral �xed points in the domain and averaging the quality fa
tor resulting fromea
h study. In (a) the light gray 
olour indi
ates the region 
lose to the �xed points

(R
(1)
o , Ω0) where the potential is de
ouple by de�nition. Totally white regions indi
ate
on�guration spa
e of R(1) and Ω not allowed by the atomisti
 model..
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Figure 2.9: The plot (a) shows the quality fa
tor Q3 = Q(Ω̄) = ∆
R

(1)
0 ,R

(2)
0

(Ω̄)/kBTfor the mapping 1:2 with Ω̄ = 162◦ as a parametri
 value and the �xed points equalto R
(1)
o = 2.6Å and R

(2)
o = 2.4Å. The pro
edure for analyzing (b) and (
) is the sameas des
ribed by the previous �gures.2.6.2 The 1:3 MSSimilarly as in the previous 
ase we perform a study of Q for ea
h CG variables.The results for ea
h Q and the analysis of δ with respe
t to the 
riti
al pointsare shown from Figure 2.10 to 2.12. A 
ommon aspe
t for Q1 and Q2 is that one
annot �nd a 
riti
al region within the domain of the �xed points, (R

(2)
0 , Ω0)23



and (R
(1)
0 , Ω0), respe
tively. Thus, one has to use the extension of our 
riteriagiven in se
tion 2.6.In 
omparison to the 1:2 MS the maximum value of Q is between 6kBTand 7kBT . This means that the ASV is a better approximation for the 1:3 MSthan for the 1:2 MS. This is true in polymer theory [24℄ be
ause the 
oarserthe system be
omes the 
loser it is to a freely jointed 
hain and thus moreseparable. Impli
itly the 1:3 MS be
omes more e�
ient than the 1:2 MS (seealso the analysis of the average values of Q reported in the next se
tion), thismeans that a CG model using the former MS will better resemble the underlyingatomisti
 model than the latter.
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Figure 2.10: Plot (a) shows the quality fa
tor Q1 = Q(R̄(1)) = ∆
R

(2)
0 ,Ω0

(R̄(1))/kBTof the mapping 1:3 with R̄(1) = 2.7Å and θ2 = 126◦ as parametri
 values. The
orresponding �xed points are R
(2)
o = 3.25Å and Ω0 = 176.5◦. As for Figure 2.7, butin this 
ase due to the rapidly varying dependen
e on the �xed point (see (b) and(
)) one has to use several �xed points and 
onsider the Q resulting from the averageof ea
h study, in order to have a more valid quantitative information. The light blue
olour indi
ates the region 
lose to the �xed points (R

(2)
0 , Ω0). The totally white 
olouris not allowed to be sample by the underlying atomisti
 model (e.g. a 
hemi
al bondis broken).
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Figure 2.11: Plot (a) shows the quality fa
tor Q2 = Q(R̄(2)) = ∆
R
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0 ,Ω0

(R̄(2))/kBTfor the mapping 1:3 with R̄(2) = 3.25Å and θ2 = 126◦ as parametri
 values. The
orresponding �xed points are R
(1)
o = 2.7Å and Ω0 = 176.5◦. As the previous �gure,does not exist a non 
riti
al region, see (b) and (
). This means that one must explore
riti
al points over the whole domain in order to estimate quantitatively Q.
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Figure 2.12: Plot (a) shows the quality fa
tor Q3 = Q(Ω̄) = ∆
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(Ω̄)/kBT forthe mapping 1:3 with Ω̄ = 174◦ and θ2 = 126◦ as parametri
 values. The 
orresponding�xed points are R
(1)
o = 2.71Å and R

(2)
o = 3.4Å. As in the other 
ases for Q1, Q2 andnow for Q3 non 
riti
al regions within the domains of the CG variables 
annot befound (see (b) and (
)) and thus it applies the same 
onsiderations of the previous two�gures.2.6.3 Average of Q in �xed point and CG variable para-metri
 spa
eIn this se
tion we explain in detail how to deal numeri
ally with systems where a
riti
al region 
annot be de�ned due to the strong dependen
y of quality fa
tor27



(Q) with respe
t to the �xed points. Using the extensions of our 
riteria givenin the se
tion 2.6 we 
an still get a reasonable estimate of the quality fa
tor. Weprovide as an example the 
ase of the RIS model for a polymer 
hain. Due toits 
omplexity we 
annot expe
t to always �nd 
riti
al regions. The same mayo

ur in more 
omplex systems. In the 
ase of the 1:2 MS, one notes that for Q2(with R̄(2) as a parametri
 value) in Figure 2.8 that the study of δ
R

(1)
0

(part (a))and δΩ0 (part (b)) do not provide a 
riti
al region, this means that R(1) and Ωare not likely to be separable under the assumption that both CG variables areindependent from R(2) in the PES. This 
ase represents the negative assessmentof the ASV. With this in mind we pro
eed to quantify how mu
h the totalenergy deviates, when one assumes separability of these two CG variables. Inorder to do that one samples a few di�erent �xed points in both regions andfor ea
h pair (R
(1)
0 , Ω0) we quantify the 
orresponding value of Q2. Next onetakes the average over all of them. This pro
edure optimizes Q2 making it lessdependent on its �xed points.As we report in Table 2.1 for the 1:2 MS the mean value of Q2 is 
hara
terizedby a large value 
ompared to Q1 and Q3 in the same table. For example, thevalue 16.0 ± 4.6 tells us that on average the error introdu
ed is 16kBT with a
orresponding maximum of 20.6kBT and a minimum of 11.4kBT . In the 
aseof the 1:3 MS reported in Table 2.2 it was also not possible to �nd any 
riti
alregion. Thus, we employed a similar pro
edure as for Q2 in the 1:2 MS 
ase.Comparing both tables we observe that the errors introdu
ed by the ASV inthe 1:3 MS are mu
h smaller than in the 1:2 MS.Finally, in Table 2.3 we show the average of Q over the parametri
 valuesof the CG variables. This evaluation of Q is an indire
t indi
ation of the three-variable dependen
e. A

ording to Table 2.3 the 
orrelations due to the thirdvariables do not alter our 
on
lusions, that is the two variables 
orrelation aremore representative for this system than the three-variables 
orrelations.Table 2.1: Quality Fa
tor for 1:2 MS (average in �xed points spa
e)

< Q
(
R̄(1) = 2.44Å) > < Q

(
R̄(2) = 2.47Å) > < Q

(
Ω̄ = 162◦

)
>

9.10 ± 0.40 16.00 ± 4.60 6.20 ± 1.60

Table 2.2: Quality Fa
tor for 1:3 MS (average in �xed points spa
e)
< Q

(
R̄(1) = 2.7Å) > < Q

(
R̄(2) = 3.29Å) > < Q

(
Ω̄ = 170◦

)
>

3.50 ± 1.20 7.20 ± 2.70 2.10 ± 0.6028



Table 2.3: Quality Fa
tor (average in parametri
 spa
e)MS < Q
(
R̄(1)

)
> < Q

(
R̄(2)

)
> < Q(Ω̄) >1:2 8.20 ± 1.50 15.0 ± 6.00 5.40 ± 2.501:3 4.90 ± 2.90 6.50 ± 3.70 3.00 ± 1.602.7 Preliminary 
on
lusionsThe aim of this part of the thesis was to develop a formal pro
edure for analyzingthe approximation of separation of variables in 
ertain problems where it isrequired. First we introdu
ed the mathemati
al basis of the pro
edure andsummarized in se
tion 2.2. The extension to higher dimensions (e.g. 
omplexsystems) was given in se
tion 2.4.This pro
edure was applied �rst to a simple system, namely the diatomi
mole
ule on a �at surfa
e. Our physi
al intuition tells us that a 
lear separationof variables 
an be obtained among the distan
e r from the 
enter of mass to thesurfa
e and the orientation angle θ of mole
ule, as long as the mole
ule explores
on�gurations far away from the surfa
e. In fa
t, this is 
orroborated from theappli
ation of our pro
edure for this system. The advantage is that now we areable to know in all the 
on�gurational spa
e of the mole
ule the regions wherethe separation of variables is still questionable up to a known error in energy.Finally, the se
ond system represented a non-trivial 
ase due the larger num-ber of DOFs 
ompared to the previous system. For this 
ase, we generalizedthe 
riteria used in the previous example in order to estimate the error of theseparation of variables among the 
olle
tive variables (e.g. R(1), R(2) and Ω).Methodologi
ally we tested our pro
edure on two di�erent mapping s
hemes,whi
h maintain the same set of CVs, but not the same dependen
e on the atom-isti
 variables. In summary, our method showed that the 1:3 MS, whi
h resultsin a 
oarser model, introdu
es a smaller error in the energy than the 1:2 MS.
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Chapter 3The Adaptive ResolutionS
hemeIn re
ent years there has been a 
ontinuing growth of interest in multis
alemodeling due to the appli
ations in many �elds su
h as 
hemistry, biology andmaterial s
ien
e. Most problems in su
h areas are related to the interplay be-tween di�erent time and length s
ales; this means that relevant properties ofmany systems are typi
ally determined by the interplay of these various tem-poral and spatial s
ales. Generally, it is useful to divide the multis
ale probleminto several s
ales making a simpler des
ription of the system possible.However, there are 
ertain 
ategories of problems where it is not possi-ble to perform su
h separation within reasonable numeri
al a

ura
y. Typi-
al examples of su
h situation is found in the des
ription of edge dislo
ationin metal [25℄, 
ra
ks propagation in solid materials [26℄ or large mole
ules onmetal surfa
es [27℄ where the lo
al 
hemistry a�e
ts the large s
ale propertiesand vi
e versa. As a 
onsequen
e, the system of interest has to be des
ribed ina detailed manner, whi
h turns out impossible to be handled 
omputationallydue to the large number of degrees of freedom.In order to over
ome this bottlene
k, and to study su
h systems was �rstin
orporated several levels of des
riptions based on a hierar
hy of theories, forinstan
e, whether the problem requires, from a quantum until a mesos
opi
 de-s
ription, whi
h will take a

ount of both the small and large s
ale phenomena.A systemati
 
oarse graining (CG) pro
edure may help to build ea
h level ofdes
ription based on information a

essible on previous s
ales. So far, there arediverse hybrid multis
ale te
hniques aiming to bridge the gap between 
losers
ales, for instan
e, the atomisti
 and mesos
opi
 s
ales [27�31℄ or the quantumand 
lassi
al s
ales [32,33℄. However, in all those methods the regions or parts ofthe system treated at di�erent level of resolution are �xed and thus the ex
hangeof parti
les among these regions is not allowed. This approximation turns outto be not very relevant in hard 
ondensed matter, but it be
omes 
ru
ial in softmatter systems. In the former bulk properties are determined by the strength31



of the intermole
ular for
es, whi
h restri
t the motion of parti
les, and in thelatter thermal �u
tuations (e.g. density �u
tuations) 
ontribute to the overallbehavior of the system.In this 
ontext, the adaptive resolution methods whi
h not only 
ouple di-verse s
ales (or resolutions) and also allow for parti
le �u
tuations representthe most natural way to over
ome su
h problems. Re
ently, some methodsbased on this idea have 
aptured the attention of many resear
hers and sev-eral s
hemes have been developed for 
oupling the atomisti
 and 
oarse grainedlevel of des
ription in 
lassi
al MD. Typi
ally, the 
oupling 
an be performedthrough the smooth interpolation of for
es (AdResS) [34℄, potentials [35℄ andLagrangians [36℄ by using a swit
hing or interpolating fun
tion. Although theequation of motion in the AdResS method 
annot be derived within a Hamilto-nian formalism, it has been shown to preserve the thermodynami
 equilibriumof the whole system and the result is independent of the swit
hing fun
tion. These
ond method integrates in prin
iple the same set of equation as the AdResSmethod and it 
laims to 
onserve the total energy of the system. This has beenshown to be �awed, be
ause the total Hamiltonian 
annot be de�ned in bothhybrid s
hemes [37℄. Finally, the last method presents an energy 
onservingproto
ol whose dynami
s depends expli
tly on the swit
hing fun
tion and itsderivative. Moreover, its implementation is too 
omplex for large appli
ations.In any 
ase, all of them must not 
hange the physi
s of the system, sin
e the
hange of resolution does not a�e
t the physi
al nature of parti
les. Thus, adap-tive s
hemes should preserve the thermodynami
 equilibrium during the simu-lation, this implies that thermal, me
hani
al and 
hemi
al equilibrium shouldnot be modi�ed by the s
heme of interpolation used.As a part of this thesis work, we have studied the quantum/
lassi
al adap-tivity in the framework of for
e interpolation and this topi
 will be dis
ussedin the following 
hapters. In the present 
hapter, we will give an overview ofthe Adaptive Resolution S
heme (AdResS); we start des
ribing the equation ofmotion of AdResS, then a des
ription of the thermodynami
 equilibrium of asystem follows, where the 
hange of degrees of freedom is allowed. Then we
omment about the theoreti
al foundation of the AdResS s
heme. Finally, themethod is applied to a liquid system of tetrahedral mole
ules as proof of validityof the s
heme.3.1 The equation of motionThe �rst step is to derive the e�e
tive Coarse-Grained potential between theintera
ting sites, mapped at the 
enter of mass of ea
h mole
ule, by the iterativeBoltzmann inversion method, presented in 
hapter 1. This CG potential has tobe obtained at the same thermodynami
 state point, thus a pressure 
orre
tionmust be done to retain the same pressure. On
e this is done, one pro
eedsto 
ouple the for
es derived from the atomisti
 (AT) and 
oarse-grained (CG)potentials by the following expression,
Fαβ = w(Rα)w(Rβ)FAT

αβ + (1 − w(Rα)w(Rβ))FCG
αβ (3.1)32



where α an β are the labels for two di�erent mole
ules. FAT
αβ is the 
orrespondingfor
e derived from the atomisti
 for
e �eld where ea
h atom of mole
ule αintera
ts with ea
h atom of β, and FCG

αβ is the pairwise for
e obtained fromthe CG potential between the 
enters of mass of the 
oarse grained mole
ules.One important element of this equation is given by the �weighting fun
tion�,
w(R), whose fun
tional form is shown in Figure 3.1, varying from 0 to 1. Thisfun
tion depends on the position (R) of the 
enter of mass of the mole
ules αand β. A simple way to interpret this fun
tion is by swit
hing of �degrees offreedom�. From the Eq. 3.1, it is evident that w = 0 represents the 
ase ofpure 
oarse-grained for
e �eld, while w = 1 keeps the system fully atomisti
.The region of non-integer values of w is 
alled the �hybrid region� and there theparti
les maintain at the same time a double resolution or representation (eg.AT/CG).
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2Figure 3.1: Here is depi
ted the fun
tional form of the weighting fun
tion w(x) ∈ [0, 1].The values 1 and 0 
orrespond to the regions where the mole
ules are fully atomisti
(AT) or fully 
oarse grained (CG) respe
tively. While values in between, 0 < w(x) < 1,
orrespond to the hybrid region. In this �gure, the total box length is equal to L,atomisti
 and CG region have the same length and ∆ is the length of hybrid region.An important 
onsequen
e of the analyti
al form of Eq. 3.1 is that, by 
on-stru
tion, it preserves Newton's third law (
onservation of linear momentum),despite the fa
t that a Hamiltonian in the transition region 
annot be de�ned.This guarantees that the di�usion of parti
les between regions is not a�e
tedby the 
hange of resolution.3.2 Thermodynami
 equilibriumThe Eq. 3.1 
annot be obtained from a potential and thus there would not havean energy to 
onserve in su
h 
ir
umstan
es. This s
heme resembles a non-Hamiltonian equation of motion, where new DOFs are 
ouple to the system, inorder to design new MD s
hemes for di�erent equilibrium ensembles [38℄. Sin
ewe want to study systems in equilibrium, a natural question arises immediately,how to 
ontrol the thermodynami
 equilibrium. Con
eptually, in the adaptive33



s
heme the number of degrees of freedom is not homogeneous in the spa
e andtherefore the free energy density is not uniform. This situation 
reates non-physi
al �ux of parti
les in the dire
tion of less DOFs in order to lower the freeenergy of the whole system. In spite of that, one expe
ts the same physi
als
enario everywhere by 
onstru
tion (i.e. same state point), this means thatall mole
ules must maintain the same underlying physi
al nature in all thespa
e and later one must learn how to deal with the artifa
t of the formalismused. An illustrative way to understand this pro
ess is the following: when amole
ule goes from an atomisti
 to a 
oarse grained region, it experien
es atransition where it loses vibrational and rotational DOFs and when it arrives tothe CG region a natural pro
ess of a

ommodating its ex
lude volume may takepla
e. The inverse pro
ess is more 
ompli
ate, a mole
ule in this 
ase a
quiresrotational and vibration DOFs and tries to enter in a region where the othermole
ules are lo
ally in equilibrium. In su
h 
ir
umstan
es, a way ba
k to the
oarse grained region is more preferable than remaining in the atomisti
 one.In thermodynami
 terms, as an artifa
t of the method, the di�erent regions are
hara
terized by a di�erent 
hemi
al potential. Sin
e, this is a 
onsequen
e ofthe formalism and it is not generated by the physi
s of the system, thus onehas to 
orre
t this thermodynami
 unbalan
e. Based on these arguments, onesees that Eq. 3.1 alone 
annot maintain the thermodynami
 equilibrium andfurther 
onsiderations 
on
erning the variables of the problem, should be usedto guarantee the equilibrium. This is the aim of the next se
tions, by analyzingthe pro
ess of 
hanging degrees of freedom from a thermodynami
 and statisti
alframework.3.3 Theoreti
al prin
iples of thermodynami
 equi-librium in AdResSWe present the theoreti
al basis for the thermodynami
 equilibrium of a sys-tem where the number of DOFs are, by 
onstru
tion, spa
e dependent and yetmole
ular properties are maintained as 
lose as possible to the referen
e systemin all the spa
e.3.3.1 The geometri
ally indu
ed phase transitionWe provide a parallel des
ription between the spa
e dependent 
hange of res-olution and the physi
al phase transition, in this 
ontext we will identify theformer as a �
ti
ious geometri
ally indu
ed phase transition. To des
ribe aphase transition, one uses the 
on
ept of the latent heat to asso
iate the energyrequired by the system to a

ount for a transition. For example, typi
ally thetransition from a liquid to a gas phase requires energy (latent heat) to a
tivatethose vibrational modes that make the mole
ules free from the tight bonding ofthe liquid state. In the adaptive s
heme a similar pro
ess o

urs to a mole
uleswhi
h passes from a 
oarse grained to an atomisti
 resolution, in this 
ase su
hmole
ule needs latent heat to rea
tivate the vibrational and rotational DOFs in34



order to rea
h the equilibrium with the atomisti
 surrounding. In the reversepro
ess, the mole
ule releases latent heat, when a transition from a gas to aliquid phase o

urs, during su
h transition a mole
ule in
reases the bond tothe other mole
ules at ea
h time, in the same way in the adaptive s
heme, thepassage from the atomisti
 to the 
oarse grained des
ription happens, formallylosing DOFs and therefore the asso
iate heat. All this is synthesized in thefollowing relation:
µAT = µCG + φ, (3.2)where µAT is the 
hemi
al potential 
al
ulated with the atomisti
 representa-tion, µCG that of the 
oarse grained one, and φ is the latent heat asso
iated tothe pro
ess. To satisfy Eq. 3.2 a simple solution is devised, basi
ally one has to
ouple the system to a lo
al thermostat (see Appendix C), whose main fun
tionis to provide (or removes) the required latent heat. Su
h thermostat ensuresthe equilibrium and the stability of the algorithm. Naturally, su
h a 
ouplingraises serious questions on how to de�ne thermodynami
 quantities in a regionwhere the number of DOFs is spa
e-dependent and Hamiltonian is not de�ned.This question is answered in the next se
tion.3.3.2 Thermodynami
 quantities in AdResSIn this se
tion we des
ribe all the thermodynami
 quantities used typi
ally inthe terminology of AdResS. These quantities are relevant for a 
ross 
he
k of thethermodynami
 equilibrium during an AdResS simulation. As we stated beforethe thermodynami
 equilibrium is maintained in ea
h region provided that theaverage of temperature, pressure and 
hemi
al potential do not 
hange in theMD simulation.In order to de�ne the pressure in a system where atomisti
 and 
oarse-grainedparti
les 
oexist, one pro
eeds to use the 
on
ept of mole
ular pressure insteadof the atomisti
 one. The equivalen
e between these two expression has beenproved by Ci

otti et al. (1986) [39℄ and dis
ussed re
ently [40℄. The mole
ularpressure is given by,

p =
1

V
[NkBT +

1

3

∑

α

∑

β>α

Rαβ ·Fαβ ] (3.3)where N is the number of mole
ules, V is the volume of system, T is thetemperature and Rαβ and Fαβ 
orrespond to distan
e and total for
e (see Eq.3.1) between the mole
ules α and β.The temperature is provided by the equipartition theorem [41℄.
T AT/CG = 2

< KAT/CG >

NAT/CG
, (3.4)where < KAT/CG > represent the average kineti
 energy of the atomisti
/
oarsegrained region and NAT/CG is the total average number of degrees of freedom35



(DOFs) in the respe
tive representation. This prin
iple is well-de�ned in ea
hregion (AT/CG), but the same 
an not be applied in the transition region where
N = N (x). Therefore, in the hybrid region one has to extend the prin
iple ofequipartition for a swit
hable DOF q to properly de�ne its kineti
 
ontributionto the temperature. To a

ount for that, we observe the spa
e dependen
y ofsu
h DOF in ea
h region, being fully represented in the atomisti
 region andvanishing in the 
oarse grained region. This behavior should be taken intoa

ount, when 
al
ulating the average of statisti
al quantities. In a formalmathemati
al language, this is a 
ommon problem in fra
tional 
al
ulus [42℄.Using this mathemati
al tool to des
ribe the 
hange of dimensionality of thephase spa
e of q (between one and zero), one has that

dVw =
Γ(w

2 )

2πw/2Γ(w)
dwq =

|q|w−1

Γ(w)
dq =

1

wΓ(w)
dqw (3.5)where Γ is well-known Γ-fun
tion [43℄. The kineti
 
ontribution of a quadrati
DOFs is given by

< Kq >w=

∫∞
0 e−βq2

qw+1dq∫∞
0 e−βq2qw−1dq

(3.6)and the solution of Eq. 3.6 was demonstrated to be [44℄:
< Kq >w=

w

2β
. (3.7)The last result generalizes the equipartition theorem for a non integer DOFswhose fun
tional form is quadrati
. This states that the kineti
 energy is pro-portional to its dimensionality (w).So far, all the 
on
epts presented in this se
tion help to 
ontrol thermody-nami
 quantities (Eq. 3.3) and establish a thermodynami
 
onsisten
y (Eq. 3.6)in our studies within the AdResS framework.3.4 Appli
ation to simple liquid of tetrahedralmole
ulesThe generality of the results shown in this se
tion are independent of the sys-tem under study. More 
omplex systems as the solvation of an ideal bead-springmodel for a polymer in a tetrahedral liquid and liquid water were 
arried outin refs. [45, 46℄. The results for the tetrahedral mole
ules in AdResS were 
om-pared to the atomisti
 ones. All the result were obtained in a 
ubi
 symmetry,however in Figure 3.2 we depi
t the same model system for another symmetry(i.e. spheri
al). The following fun
tional form was proposed for the weighting36



Figure 3.2: Snapshot of tetrahedral mole
ules in a spheri
al symmetri
 in AdResS.Atomisti
 mole
ules are represented in the inner shell, subsequently follows the shellthat 
ontains hybrid mole
ules whi
h is surrounded by CG parti
les.fun
tion w(x):
w(x) =





1; d < x ≤ a
2 − d

0; −a
2 + d ≤ x < −d

sin2[ π
4d (x + d)]; −d ≤ x ≤ d

cos2[ π
4d(x − a

2 + d)]; a
2 − d < x ≤ a

2
cos2[ π

4d(x + a
2 + d)]; −a

2 ≤ x < −a
2 + d,

(3.8)where a is the box length and d is the half-width of the hybrid region. In generalthis fun
tion has to be monotoni
, 
ontinue, di�erentiable and with zero slopeat boundaries of the atomisti
 and 
oarse grained regions. These mathemati
alassumptions guarantee a smooth transition of one mole
ule from the CG regionto the atomisti
 and vi
e versa [47℄.On
e the atomisti
 for
e �eld (see Appendix D) is well-de�ned we pro
eedto derive from it the e�e
tive 
oarse grained potential. In Figure 3.3 the CGpotential, between the 
enter of mass of the mole
ules U cm, obtained for a liquidof tetrahedral mole
ules at ρ∗ = 0.1 and T ∗ = 1.0 in the redu
ed Lennard-Jonesunits (ǫ = 1 and σ = 1 as the unit of energy and length respe
tively).The �rst way to 
ompare the reliability of the AdResS method is by 
ompar-ison of the the global stru
ture of the liquid in AdResS with the result of the fullatomisti
 simulation. This is done by 
omputing the 
enter of mass radial dis-tribution fun
tion (RDF). The result is shown on the left side of the Figure 3.4.One 
an see a satisfa
tory agreement between the AdResS method and the fullatomisti
 referen
e 
al
ulations. Similarly, the density pro�le of the mole
ules inAdResS (See right side of Figure 3.4) is presented . From this �gure one 
an seehow the density is maintained homogeneous in the atomisti
 and 
oarse grainedregions, however, in the hybrid region the density drops about 5% 
ompared toto the average value of ρ∗ = 0.175 of the referen
e all atom 
ase. However, thissmall perturbation neither a�e
ts the stru
ture nor the thermodynami
s of thesystem.As a �nal test we show the study of the di�usion of mole
ules 
lose to the37
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Figure 3.3: The e�e
tive CG potential obtained by the iterative Boltzmann method[16℄ and the potential of mean for
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it system at
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edure are shown. (Figure wastaken from Ref. [34℄).
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Figure 3.4: Left part shows the radial distribution fun
tion of the 
enter of massesat ρ∗ = 0.175 and T ∗ = 1. Right part shows the typi
al normalized density pro�le inthe x dire
tion in AdResS with 12.0σ interfa
e layer width. Verti
al lines denote theboundary between atomisti
, hybrid and 
oarse grained region.hybrid region in Figure 3.5. This result tells us that no arti�
ial e�e
t likespurious re�exion of mole
ules, o

urs while they move from one region to theother one.3.5 Further developmentThere are mainly two new 
ontributions to the AdResS method. One has to dowith the generalization of the s
heme based on thermodynami
 arguments, bymeans of a thermodynami
 for
e to ensure the equilibrium from �rst prin
iplesof thermodynami
s. Con
erning this �rst part one must say that equilibrium inthe traditional AdResS is ensured by the use of a sto
hasti
 thermostat whi
hremoves or adds latent heat to the system in order to maintain the thermal38
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Figure 3.5: Time evolution of di�usion pro�les of mole
ules for two di�erent initial
ondition at two neighboring slabs of the hybrid region. Left side 
orresponds to the
ase of mole
ules lo
alized on the CG side and in right side to mole
ules lo
alized inthe atomisti
 region.equilibrium. The formal demonstration of this generalized s
heme 
an be foundin [48℄.The other important 
ontribution is a 
on
eptual improvement to the method.It 
on
erns the extension of the s
heme for a wide variety of problems wherequantum me
hani
al des
ription may take pla
e. This is related to the 
urrentthesis work and is primarily devoted to the understanding of the quantum-
lassi
al adaptivity. The next 
hapter provides a general overview of the pathintegral formalism. Su
h a method was used in our studies of quantum-
lassi
al
oupling due to a key feature of its formalism. This is given by the fa
t thatpath integral method translates the representation of a quantum parti
le intothe evaluation of 
ertain 
lassi
al obje
ts (i.e. ring polymers).
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Chapter 4Path Integral formulationThe basi
 idea of the path integral formulation of quantum me
hani
s 
an betra
ed ba
k to P. A. M. Dira
 in his original book [49℄ of 1930 and later onhis paper [50℄ of 1933. Later, the 
ompleted method was developed by Ri
hardFeynman [51℄ in 1948 as an alternative formulation of the non-relativisti
 quan-tum me
hani
s and sin
e then it is widely used in several �elds of s
ien
e, forexample, many-body theoreti
al quantum physi
s [52℄, super�udity [53℄, poly-mer s
ien
e [54, 55℄, �nan
ial markets [56℄, to name a few.The path integral formalism is 
onvenient not only for its mathemati
al ele-gan
e, but also for its treatable numeri
al form with a stru
ture that is suitablefor an implementation in parallel 
omputing. Furthermore, path integrals havebeen su

eeded in 
al
ulating several equilibrium properties like the free en-ergy and stru
tural quantities of quantum systems [57�59℄ in 
omparison withother quantum methods. Finally, path integral 
an be used in several thermo-dynami
 ensembles, for instan
e, the mi
ro
anoni
al (NVE) [60℄, the 
anoni
al(NVT) [61℄, isothermal-isobari
 (NPT) [62℄ and gran-
anoni
al (µVT) [63℄. Thisversatility allows us to study systems under several experimental 
onditions.The path integral formulation translates the quantum des
ription of a manybody problem into the 
lassi
al representation due to the so-
alled isomorphismof the quantum partition fun
tion.The next se
tion des
ribes in detail the aforementioned isomorphism, thenwe introdu
e the idea of how to 
ombine path integral formulation with mole
-ular dynami
s (PIMD) and the 
al
ulation of statisti
al properties. In the endwe 
omment about the limitation of the PIMD s
heme and possible numeri
alsolutions.4.1 Derivation of the formalismOne quantum parti
leThe de�nition of the partition fun
tion for a system of a single quantum41



parti
le is
Z ≡ Z(N, V, T ) = Tr[e−βH] (4.1)where �Tr� denotes a tra
e and β = 1/kBT . T is the temperature and kB is theBoltzmann 
onstant. This tra
e 
an be evaluated in the position eigenstates,

|R〉, as follows
Z =

∫
dR 〈R|e−βH|R〉, (4.2)Given that the kineti
 and the potential energy operator do not 
ommute,

[T̂ , V̂ ] 6= 0, (4.3)one 
an use the Trotter theorem [64℄, whi
h states that for any two operator, Aand B, whi
h in general do not 
ommute
eλ(A+B) = lim

n→∞
[e

λ
2n

Be
λ
n

Ae
λ
2n

B]n, (4.4)where n is an integer and known as the Trotter number. Now substituting theTrotter theorem into Eq. 4.2 yields,
Z = lim

n→∞

∫
dR 〈R|Ωn|R〉 = lim

n→∞

∫
dR 〈R|Ω · Ω · · ·Ω|R〉 (4.5)For simpli
ity, we de�ne

Ω = e−βV̂ /(2n)e−βT̂/ne−βV̂ /(2n). (4.6)Introdu
ing the identity operator
I =

∫
dR |R〉〈R|, (4.7)

n − 1 times in the Eq. 4.5 in the following way
Ωn = ΩI2ΩI3 · · ·ΩInΩ (4.8)and using the de�nition of the identity, the integration term in Eq. 4.5 results

〈R|Ωn|R〉 =

∫
dR2 . . . dRn〈R|Ω|R2〉〈R2|Ω|R3〉 ×

×〈R3| . . . |Rn〉〈Rn|Ω|R〉

=

∫
dR2 . . . dRn[

n∏

i=1

〈Ri|Ω|Ri+1〉|R1=Rn+1 (4.9)where the 
ondition R1 = Rn+1 is the result of the tra
e. One 
an evaluateea
h matrix element of Ω,
〈Ri|Ω|Ri+1〉 = 〈Ri|e−βV̂ /(2n)e−βT̂/ne−βV̂ /(2n)|Ri+1〉. (4.10)42



One knows that the potential operators are spa
e dependent and they are a
tingon the 
oordinate eigenstates in the last equation. Thus, the following expressionis derived
〈Ri|Ω|Ri+1〉 = e−βV (Ri)/(2n)〈Ri|e−βT̂/n|Ri+1〉e−βV (Ri+1)/(2n). (4.11)Now, we use the identity operator in the representation of momentum eigen-states,

I =

∫
dp |p〉〈p|, (4.12)then the remaining matrix elements 
an be written as

〈Ri|e−βT̂/n|Ri+1〉 =

∫
dp 〈Ri|p〉〈p|e−βT̂/n|Ri+1〉. (4.13)In the last expression, T̂ = p2/2m a
ts on one of its eigenstates from the left,yielding:

〈Ri|e−βT̂/n|Ri+1〉 =

∫
dp 〈Ri|p〉〈p|Ri+1〉 e−βp2/(2mn). (4.14)The proje
tion of a momentum eigenstate on a position eigenstate is given by

〈R|p〉 =
1√
2πh̄

eipR/h̄. (4.15)Then we �nd that
〈Ri|e−βT̂/n|Ri+1〉 =

1

2πh̄

∫
dp eip(Ri−Ri+1)/h̄e−βp2/(2mn). (4.16)To solve the integral, we 
omplete the square in the exponential and then inte-grate as follows:

〈Ri|e−βT̂/n|Ri+1〉 =
1

2πh̄

∫
dp e−

β
2mn

[p−( mni
h̄β

(Ri−Ri+1))]
2 ×

×e
− mn

2βh̄2 (Ri−Ri+1)
2

. (4.17)The �rst exponential in the integral is a Gaussian-like and the se
ond is a
onstant, thus one obtains,
〈Ri|e−βT̂/n|Ri+1〉 = (

mn

2πβh̄2 )1/2 e
− mn

2βh̄2 (Ri−Ri+1)
2 (4.18)Substituting our last result into the expression for the whole partition fun
tion

Z = lim
n→∞

(
mn

2πβh̄2 )n/2

∫
dR1 . . . dRn ×

exp

(
−β

n∑

i=1

[
1

2
mω2

p(Ri − Ri+1)
2 +

1

n
V (Ri)]

)

Rn+1=R1

, (4.19)43



and,
ωn =

√
n

βh̄
, (4.20)is the �frequen
y� of the ring polymer.The out
ome indi
ates the isomorphism between a stati
 quantum me
han-i
al problem and the 
lassi
al problem of a repli
ate 
lassi
al parti
le whi
h in-tera
ts with a potential V (R)/n and two of its own images through a quadrati
potential. We illustrate the idea of su
h a isomorphism in Figure 4.1. This resultis well-known as the dis
rete path integral for the quantum partition fun
tion,whi
h is exa
t for a large value of Trotter number (i.e, n → ∞).

Figure 4.1: Path integral representation of 2 quantum parti
les with n = 7 beadsea
h. In the path integral formalism the intera
tion between the beads with the samelabel is given by the 
lassi
al potential Vαβ.Many quantum parti
leThe same result obtained for an isolated parti
le 
an be extended for asystem of N-parti
les intera
ting by the potential V ({RI}). This time ea
h par-ti
les is represented by a ring polymer and so that the intera
tion is delo
alizedamong its 
onforming beads. In other words, beads with the same label �s� willintera
t by the potential V ({R(s)
I }) and no 
ross intera
tions are allowed as itis depi
ted in Fig. 4.1. For example, the bead 1 of the mole
ule α will only44



intera
t with the bead 1 of the mole
ule β and so on. Su
h generalization isnot trivial and 
an be found in traditional textbooks of path integral methodsas [65, 66℄. In summary, the quantum partition fun
tion of N parti
les is givenby,
Z = lim

n→∞
Zn(β) = lim

n→∞
[

N∏

I=1

(
mIn

2πβh̄2 )n/2

∫
dR

(1)
I . . . dR

(n)
I ] ×

exp

(
−β

n∑

s=1

{
N∑

I=1

1

2
mIω

2
n(R

(s)
I − R

(s+1)
I )2 +

1

n
V ({R(s)

I })}
)(4.21)where R

(n+1)
I = R

(1)
I and ωn is given by Eq. 4.20. Finally, the above expression
an be sampled by Monte Carlo (MC) methods or by mole
ular dynami
s (MD)adding some e�e
tive Gaussian distribution in the momentum spa
e, P

(s)
I . Thenext se
tion will show how to perform a MD implementation of the path integralformalism.4.2 The Path Integral Mole
ular Dynami
s (PIMD)The path integral expression of Eq. 4.21 of the quantum N-parti
les system 
anbe written in the following form

Zn(β) = [

N∏

I=1

(
mIn

2πβh̄2 )n/2

∫
dR

(1)
I . . . dR

(n)
I ] ×

×exp

(
−β

n∑

s=1

{
N∑

I=1

1

2
mIω

2
n(R

(s)
I − R

(s+1)
I )2 +

1

n
V ({R(s)

I })
})

=

N∏

I=1

N
∫

dR
(1)
I . . . dR

(n)
I e−βUeff (R

(1)
I

...R
(n)
I

) (4.22)where N = ( mIn
2πβh̄2 )n/2 is a 
onstant and

Ueff =

n∑

s=1

{
N∑

I=1

1

2
mIω

2
n(R

(s)
I − R

(s+1)
I )2 +

1

n
V ({R(s)

I })} (4.23)is 
onsidered as the e�e
tive potential.The Eq. 4.22 looks like the 
lassi
al 
on�guration partition fun
tion for asystem of N ring polymers with n parti
les (or beads) ea
h. Thus, it is the so-
alled isomorphism of the quantum partition fun
tion due to the path integralformalism.To perform a mole
ular dynami
s implementation [67℄ one needs to use 
on-servative for
es derived from the Eq. 4.23, whi
h also obey the equipartition45



theorem. From Eq. 4.22 one 
an see the 
onne
tion with Mole
ular Dynami
s(MD) by adding n-Gaussian integrals under the 
ondition that,
(

β

2πmI

)n/2 ∫
dP

(1)
I · · · dP

(n)
I exp(−β

n∑

s=1

N∑

I=1

P
(s)2
I

2m′
I

) = 1 (4.24)wherem′
I is an arbitrarymass parameter. The value of this parameter a�e
ts therate at whi
h the mole
ular dynami
s traje
tories move and thus, the e�
ien
yof the sampling. Inserting last equation into Eq. 4.22 gives,

Zn(β) =

N∏

I=1

N ′
∫

dR
(1)
I . . . dR

(n)
I

∫
dP

(1)
I . . . dP

(n)
I ×

×exp(−β
n∑

s=1

{
N∑

I=1

P
(s)2
I

2m
′

I

+
1

2
mIω

2
n(R

(s)
I − R

(s+1)
I )2 +

+
1

n
V ({R(s)

I })}), (4.25)where N ′ is a new normalization fa
tor. The Gaussian variables are un
oupledand 
an be integrated analyti
ally to obtain the prefa
tor N from Eq. 4.22.The derivation presented here only involves the partition fun
tion, thus onlystatisti
al properties of the quantum system 
an be 
al
ulated. This means, thatalthough one 
an derive a 
orresponding Hamiltonian for the whole partitionfun
tion as
H =

n∑

s=1

{
N∑

I=1

P
(s)2
I

2m
′

I

+
1

2
mIω

2
n(R

(s)
I − R

(s+1)
I )2 +

1

n
V ({R(s)

I })}, (4.26)the dynami
s of this system 
annot be dire
tly related to the quantum system,but rather only the statisti
al properties of the ensemble whi
h are the resultsof the sampling of this pseudo-dynami
s. Formally, now we 
an use the termPIMD to denominate the Hamiltonian obtained above. The PIMD te
hniqueuses the 
lassi
al dynami
s of the ring-polymer Hamiltonian, i.e.,
Ṙ

(s)
I =

∂H
∂P

(s)
I

=
P

(s)
I

m
′

I

,

Ṗ
(s)
I = − ∂H

∂R
(s)
I

= −mIω
2
n[2R

(s)
I − R

(s+1)
I − R

(s−1)
I ]

−dV ({R(s)
I })

dR
(s)
I

(4.27)to propagate the traje
tories and thus sample the phase spa
e of the ring poly-mers.The �nal result of the path integral in a MD s
heme is 
onsidered ideal forthe design of parallel implementation, turning su
h representation in a powerfultool to 
al
ulate statisti
al properties of materials in the presen
e of quantume�e
ts. 46



4.3 Stati
 properties from PIMDThe path integral formulation of the quantum statisti
al me
hani
s providesan e�
ient method to evaluate the quantum stati
 equilibrium properties of asystem of N parti
les. Suppose we want to 
al
ulate the expe
tation value ofthe position-dependent operator Â. By de�nition, the expe
tation value of Âis:
〈Â〉 =

Tr[Âe−βH]

Tr[e−βH]
=

Tr[Âe−βH]

Z (4.28)This evaluation 
an be performed using the path integral approa
h des
ribedabove. The result is
〈Â〉 =

1

Z(β)
lim

n→∞

N∏

I=1

(
mIn

2πβh̄2 )n/2

∫
dR

(1)
I . . . dR

(n)
I A(R

(1)
I ) ×

exp(−β

n∑

s=1

{
N∑

I=1

1

2
mIω

2
n(R

(s)
I − R

(s+1)
I )2 +

1

n
V ({R(s)

I })}) (4.29)with R
(n+1)
I = R

(1)
I . The above integral is invariant under a 
y
li
 relabeling ofall the path integration variables, R

(1)
I → R

(2)
I , R

(2)
I → R

(3)
I , and so forth. Su
ha relabeling 
an be 
arried out n times, the resulting expression added togetherand divided by n equals:

〈Â〉 =
1

Z lim
n→∞

N∏

I=1

(
mIn

2πβh̄2 )n/2 ×

∫
dR

(1)
I . . . dR

(n)
I

1

n

n∑

s=1

A(R
(s)
I )e−βUeff (4.30)where Ueff is given in Eq. 4.23. Now a �nite expression for 〈Â〉 
an be obtainedby substituting Z from Eq. 4.21. This yields,

〈Â〉n =
1

Zn(β)
lim

n→∞

N∏

I=1

(
mIn

2πβh̄2 )n/2 ×

∫
dR

(1)
I . . . dR

(n)
I

1

n

n∑

s=1

A(R
(s)
I )e−βUeff (4.31)from whi
h one obtains the true value of the expe
tation of Â in the limit of

n → ∞:
〈Â〉 = lim

n→∞
〈Â〉n (4.32)Eq. 4.31 
an be evaluated using a Monte Carlo (MC) s
heme, sin
e su
h averageis 
omputed in the 
on�guration spa
e. A tri
k 
an be done in order to 
ompute47



the same average in a Mole
ular Dynami
s (MD) s
heme as we did in Eq. 4.25.Substituting the identity 4.24 into Eq. 4.31 we obtain that,
〈Â〉n =

N∏

I=1

N
∫

dR
(1)
I · · · dR

(n)
I

∫
dP

(1)
I · · · dP

(n)
I ×

1

n

n∑

s=1

A(R
(s)
I , P

(s)
I )e−βH, (4.33)where H is the Hamiltonian de�ned in Eq. 4.26. Sin
e the momenta are only atri
k to 
ompute the averages of A in a di�erent s
heme, no meaningful quantumdynami
s 
an be extra
ted from the new set of traje
tories. The next se
tionshows the limitations of the MD implementation and a posteriori solutions.4.4 Limitations of the PIMD and possible solu-tionsThe PIMD equations of motion derived in Eq. 4.27 explore the phase spa
ethat is 
onsistent with their energy (i.e. mi
ro
anoni
al ensemble). Thus, theyfail to sample a 
anoni
al distribution. These �xed-energy traje
tories must bemodi�ed if they pretend to produ
e a �xed temperature distribution (
anon-i
al distribution). A natural solution for a
hieving this involves the 
ouplingto a thermostat. Several approa
hes have been used so far to maintain thetemperature, a very popular one involves linking additional vibrational modesonto the physi
al degrees of freedom of the system [68,69℄. The �
ti
ious ther-mostat modes are 
oupled to the momenta of the physi
al DOFs and regulatethe kineti
 �u
tuations to produ
e 
onstant temperature traje
tories. It turnsout that DOFs whi
h are dominated by harmoni
 motion require the use ofnot one but a 
hain of thermostats [70℄. Su
h systems plus the thermostat willrequire a massive solution of a set of equation of motion. Although the 
anon-i
al distribution is rigorously reprodu
ed with a thermostat 
hains of su�
ientlength [71℄, the dynami
s of the thermostated and the unthermostated systemis not 
lear. This last point is not of relevan
e but will be 
ru
ial in algorithmsbased on path integral formulation where quantum dynami
s 
an be extra
tedfrom [72, 73℄. An alternative te
hnique for generating a 
anoni
al distributionfrom mi
ro
anoni
al traje
tories involves the use of thermostats whose physi
alprin
iple involves a periodi
ally resampling of their momenta from a Maxwell-Boltzmann distribution [74℄. Physi
ally this thermostat mimi
s inelasti
 
ol-lision with a thermal bath at �xed temperature. Another type of thermostat
ommonly used in the mole
ular dynami
s 
ommunity are the sto
hasti
 ther-mostats due to their lo
al behavior and easy implementation. One 
an use aLangevin thermostat [75℄ to 
ompute stati
 properties, but it is well-known thatsu
h a thermostat does not preserve the true dynami
s of the system. Re
entdevelopment of more so�sti
ated sto
hasti
 thermostats su
h as the DissipativeParti
le Dynami
s (DPD) has shown to preserve the hydrodynami
s [76℄ or the48



possibility to 
ontrol transport 
oe�
ients [77℄. Sin
e hydrodynami
s is not im-portant in the s
ale of observation, therefore a simple langevin thermostat willbe su�
ient to properly thermostat the ring polymers.A se
ond limitation of the dire
t implementation of the Eq. 4.27 is dueto the large number of beads required to approa
h the true value of quantumpartition fun
tion. As one in
reases this number, the harmoni
 spring termsbe
ome sti�er and start to dominate the dynami
s. Thus, the sampling of theentire spe
trum of frequen
ies be
omes poorly evaluated. It is known that mi-
ro
anoni
al traje
tories in su
h system may not event follow a mi
ro
anoni
aldistribution and ergodi
ity problems may arise [78℄, i.e. on the time s
ale a
-
essible to a 
omputer simulation. This 
an be synthesized as follows:
lim

n→∞

1

n

n∑

i=1

A(R(i), ti) 6=
1

Ω(E)

∫
dP

∫
dR A(R)δ(E −H) (4.34)where ti = i∆t for some time interval ∆ along the mi
ro
anoni
al traje
torywith �xed energy E and Ω(E) as the mi
ro
anoni
al partition fun
tion at thatenergy.The last problem is due to the 
hoi
e of the mass parameter, m′

I , in thePIMD s
heme. To illustrate this problem we 
an see in Figure 4.2 how the sizeof the ring polymer de
reases for heavier parti
les. Thus, one has to de
reasethe integration time to sample high frequen
ies. However, the 
hoi
e of the massparameter will a�e
t the e�
ien
y of the mole
ular dynami
s sampling sin
e itgoverns the rate at whi
h the traje
tories moves through the phase spa
e. Alarge-mass traje
tory will move relatively slow and will take a long time to sam-ple the whole phase spa
e. During the last de
ades some solutions to ta
kle thisparti
ular problem of the mole
ular implementation of path integral have beendeveloped. For instan
e, one is the 
hange of variable (Staging transformation)or the use of the normal modes (NM algorithm) to evolve the equation of mo-tion of the ring polymer. Only the NM algorithm was implemented and used inthe last 
hapter for numeri
al a

ura
y. These two solution will be dis
ussed indetail in the following se
tion.4.5 The Staging transformationIf n is large, the springs are n-times sti�er and the potential n-times weaker.Then the spring dominates the dynami
s and the system does not explore therest of the phase spa
e required to 
ompute properly the stati
 properties.Therefore, for a large n the harmoni
 modes have to be de
oupled so thatone 
ould move all the modes in the same time s
ale. This 
an be done bythe staging transformation [79℄, whi
h was developed in analogy to the stagingMonte Carlo method [80℄. Ea
h degree of freedom is transformed as
u

(1)
I = R

(1)
I ,

u
(s)
I = R

(s)
I − R

(s)∗
I , s = 2, . . . , n, (4.35)49



Figure 4.2: Path integral 
ollapse due to the e�e
t of heavier parti
les (withMuon(Mu), Hydrogen(H) and Deuterium(D)).with
R

(s)∗
I =

(s − 1)R
(s+1)
I + R

(1)
I

s
(4.36)Su
h transformation 
an be inverted as

R
(1)
I = u

(1)
I ,

R
(s)
I = u

(s)
I +

n∑

t=s

s − 1

t − 1
u

(t)
I , s = 2, . . . , n, (4.37)Substituting into Eq. 4.25, the partition fun
tion results

Zn(β) =

N∏

I=1

N
∫

du
(1)
I . . . du

(n)
I

∫
dP

(1)
I . . . dP

(n)
I ×

×exp(−β

n∑

s=1

{
N∑

I=1

P
(s)2
I

2m
′(s)
I

+
1

2
m

(s)
I ω2

n(u
(s)
I )2 +

+
1

n
V (R

(s)
I ({u(s)

I }))}), (4.38)where the staging masses m
(s)
I are de�ned as

m
(1)
I = mI

m
(s)
I =

s

s − 1
mI , s = 2, . . . , n. (4.39)The harmoni
 os
illators are de
oupled from ea
h other in the staging variables.From Eq. 4.38 one 
an noti
e that the Hamiltonian in the staging variables isgiven by

Hstage =
n∑

s=1

{
N∑

I=1

P
(s)2
I

2m
′(s)
I

+
1

2
m

(s)
I ω2

n(u
(s)
I )2 +

1

n
V (R

(s)
I ({u(s)

I }))}, (4.40)50



using this Hamiltonian, the path integral 
al
ulation is expe
ted to sample its
orresponding phase spa
e mu
h faster than the Hamiltonian (see Eq. 4.26) inthe primitive variables. The Hamiltonian in Eq. 4.40 suggests that an optimal
hoi
e of the mass parameters is given by
m

′(1)
I = m

(1)
I... =

...
m

′(s)
I = m

(s)
I (4.41)Su
h 
hoi
e will move the staging modes, u

(1)
I , . . . , u

(n)
I on the same time s
alefa
ilitating the sampling of all the modes during the MD run. Alternativelyto the staging transformation and with the same e�
ien
y was developed thenormal modes algorithm.4.6 The Normal Mode transformationNM transformation has been extensively used in the �eld of polymer s
ien
eto study the Rouse dynami
s of unentangled short 
hains [81℄. In our system,for n → ∞, the simulation of ring polymer will tend to su�er of 
onvergen
eproblems as we des
ribed before. This is partly due to the time s
ale separationbetween the intermole
ular and intramole
ular potentials. While the formers
ales as 1/n, n being the number of beads, the latter follows n. However, inthe path integral approa
h, the internal modes of the ring polymer are mixeddue to the intera
tion between beads of di�erent polymer rings and this is thephysi
al s
enario that one wants to preserve in the simulation. The numeri
alimplementation of the normal modes (see Appendix E) takes into a

ount themixing of the modes in a good approximation. This transformation has beenused in this thesis to express the harmoni
 spring potential Vharm({R(s)

I }) fromEq. 4.26 as a sum of n un
oupled harmoni
 os
illators. The harmoni
 potentialfor a system of N parti
les 
an be written as
Vharm({R(s)

I }) =

N∑

I=1

VI({R(s)
I }) (4.42)where the potential due to the Ith ring-polymer is

VI({R(s)
I }) =

n∑

s=1

1

2
mIw

2
n(R

(s)
I − R

(s+1)
I )2

=
n∑

s=1

1

2
mIw

2
n(R

(s)2
I − R

(s)
I R

(s+1)
I −

R
(s+1)
I R

(s)
I + R

(s+1)2
I ). (4.43)51



After rearranging the terms in the sum, it be
omes
VI({R(s)

I }) =

n∑

s=1

1

2
mIw

2
n(2R

(s)2
I − R

(s)
I R

(s+1)
I − R

(s)
I R

(s−1)
I ) (4.44)whi
h in ve
tor notation is

VI({R(s)
I }) =

1

2
mIw

2
nRT

I ·A ·RI (4.45)where A =




2 −1 −1
−1 2 −1. . . . . . . . .

−1 2 −1
−1 −1 2


is independent of the parti
ular value of I.It 
an be noted that for the Ith ring polymer, the 
oordinates of di�erentbeads are 
oupled by the o�-diagonal therm of the matrix A. Thus, the un-
oupling of the 
oordinates 
an be done by diagonalizing A, i.e., this means,�nding the matri
es a and C su
h thatA = C · a ·CT , (4.46)where a is a diagonal matrix and C is an orthogonal matrix su
h thatCT ·C = I, (4.47)due to the symmetry of A. Theses matri
es 
an be found by exploiting theanalyti
al form of A and writing the Eq. 4.46 in the following form:

−ck−a,s + 2ck,s − ck+1,s = ck,sas, ∀k, s = 1, . . . , n. (4.48)The boundary 
ondition cn+1,s = c1,s and c0,s = cn,s 
an be satis�ed by thefollowing independent solutions
ck,s = N cos(2πks/n) (4.49)for s = 1, . . . , n/2 and
ck,s = N sin(2πks/n), (4.50)for s = n/2 + 1, . . . , n where N is a normalization 
onstant. Combining Eq.4.46 and Eq. 4.49 gives

0 = − cos(2π(k − 1)/n) + (2 − as) cos(2πks/n) − cos(2π(k + 1)s/n). (4.51)52



and using the identity:
cos(x ± y) = cos(x) cos(y) ± sin(x) sin(y), (4.52)the expression above 
an be arranged and yields

as4 sin2(sπ/n), ∀s = 1, . . . , n. (4.53)This implies that the eigenvalue an/2+s′ is degenerate with an/2−s′ for s′ =
1, . . . , (n/2 − 1). Thus, the normalization 
onstants are

N =

{√
1/n, for s = n/2 or n (distin
t eigenvalues)√
2/n, for all other s (degenerate eigenvalues). (4.54)With the diagonalization of A, one 
an insert Eq. 4.46 into Eq. 4.45 andthis yields

VI({Q(s)
I }) =

1

2
mIw

2
nQT

I · a ·QI , (4.55)where Q = CT ·R, (4.56)and it de�nes the transformation to the ring polymer in the Normal Modes
oordinates. And now using the property of a being diagonal, the Eq. 4.44be
omes
VI({Q(s)

I }) =
1

2
mIω

2
n

n∑

s=1

asQ
2
s =

n∑

s=1

1

2
mIΩ

2
sQ

2
s (4.57)whi
h is the potential for a 
olle
tion of n un
oupled harmoni
 os
illators withnormal-mode frequen
ies equal to

Ωs = ωn
√

as = 2ωn sin(sπ/n). (4.58)Similarly as in Eq. 4.38 one 
an noti
e that the Hamiltonian in the normalmodes (NM) is given by
HNM =

n∑

s=1

{
N∑

I=1

P
(s)2
I

2m
′(s)
I

+
1

2
mIΩ

2
s(Q

(s)
I )2 +

1

n
V (R

(s)
I ({Q(s)

I }))}. (4.59)For s = n in Eq. 4.53, one obtains an = 0 . Thus, the Eq. 4.57 de�nes apotential for a zero-frequen
y. We also de�ne the ring polymer 
entroid as
Rc =

1

n

n∑

s=1

R
(s)
I . (4.60)53



So that, one de�nes the nth normal mode with elements ck,n = 1√
n
independentof the value of k and therefore Eq. 4.56 yields

Qn =
1√
n

n∑

s=1

R
(s)
I =

√
nRc (4.61)Through this expression, the normal-modes transformation introdu
es the 
en-troid variable. In the Appendix E is des
ribed in detail the numeri
al imple-mentation of the normal mode transformation .4.7 Similarities between the path integral formal-ism and the statisti
s of ring polymers4.7.1 The free ring polymerLet us start the 
omparison between both approa
hes by studying the behaviourof a single ring polymer in the absen
e of an intermole
ular potential betweenbeads of di�erent ring polymers (see Eq. 4.21). This 
ase has an analyti
alsolution and will illustrate the similarities. Due to the simpli
ity the distributionof beads is given by,

e−βmω2
n(Ri−Ri+1)

2/2, (4.62)and from whi
h the average distan
e between bead is,
〈(Ri − Ri+1)

2〉1/2 =

√
1

βmω2
n

=
βh̄2

mn
. (4.63)Thus, as the number of beads, mass of the parti
le or the temperature is in-
reased the average distan
e between the bead de
reases (see Fig. 4.3).Another important property whi
h 
an be quanti�ed is the radius of gyra-tion, rG, whi
h des
ribes the spread of an individual bead from the 
entroid(
enter of mass) of the ring polymer. In one dimension 
an be de�ned as

x2
G =

1

n

n∑

k=1

|xk − xc|2 (4.64)where xc is the position of the ring 
entroid,
xc =

1

n

n∑

k=1

xk (4.65)The thermal average of the radius of gyration 
an be 
al
ulated exa
tly for afree ring polymer as follows
〈x2

G〉 =
1

n

n∑

k=1

〈(xk − xc)
2〉 =

1

n

n∑

k=1

(〈x2
k〉 − 〈x2

c〉) (4.66)54



Figure 4.3: Length s
ale of the free ring polymer in three dimensions. It is shownthe thermal average of the root mean square radius of gyration and root mean squarebond length of the ring polymer.For a gaussian 
hain the radius of gyration s
ales as r2
G ∼ n [81℄, however, for aring polymer, the path intgral approa
h predi
ts a 
onstant value in the limit of

n → ∞ (see below). This is due to the non-trivial n-dependen
e of the spring
onstant in the path integral approa
h Eq. 4.21. In the 
ase of a free ringpolymer, the thermal average is given by
〈. . .〉 =

∫
dnxe−β

Pn
k=1[mω2

n(xk−xk+1)
2/2](. . .)∫

dnxe−β
P

n
k=1[mω2

n(xk−xk+1)2/2]
(4.67)where ωn =

√
n/βh̄. The above expression 
an be analyti
ally evaluated bytransforming the 
oordinate system to the normal modes 
oordinates of thering polymer (i.e. Ql = (x̃l, ỹl, z̃l), ∀l = 1, . . . , n). The main result that weused is that the free ring polymer potential energy expressed in terms of bead
oordinates,

V (x) =
n∑

k=1

mω2
n

2
(xk − xk+1)

2, (4.68)
an be transformed using the orthogonal transformation C as follows:
x̃l =

n∑

k=1

Cl,kxk (4.69)to a set of normal modes 
oordinates x̃l.In this new set of 
oordinates the ring polymer potential energy 
an beexpressed as a set of un
oupled harmoni
 os
illators
V (x̃) =

n∑

l=1

1

2
mΩ2

l x̃
2
l (4.70)where Ωl are the frequen
ies of the free ring polymer,

Ωl = 2ωn sin(lπ/n) (4.71)55



and n-th normal modes frequen
y is given by Ωn = 0 and is related to the
entroid of the ring polymer by
x̃n =

1√
n

n∑

k=1

xk =
√

nxc. (4.72)Transforming to the normal modes 
oordinates and using
n∑

k=1

x2
k =

n∑

l=1

x̃2
l , (4.73)whi
h follows dire
tly from the orthogonality of the transformation, the averageof radius of gyration 
an be expressed as

〈x2
G〉 =

1

n

n∑

l=1

(〈x̃2
l 〉 − 〈(x̃n/

√
n)2〉) =

1

n

n−1∑

l=1

〈x̃2
l 〉. (4.74)The expe
tation value of 〈x̃2

l 〉 is therefore
〈x̃2

l 〉 =

∫
dnx̃ e−β

P

n
l=1[mΩ2

l x̃2
l /2](x̃2

l )∫
dnx̃ e−β

P

n
l=1[mΩ2

l
x̃2

l
/2]

, (4.75)whi
h is a typi
al Gaussian integral, that 
an be easily evaluated and gives
〈x̃2

l 〉 =
1

βmΩ2
l

=
βh̄2

4nmsin2(lπ/n)
. (4.76)Finally, the square radius of gyration is

〈x2
G〉 =

βh̄2

4mn

n−1∑

l=1

1

sin(π/n)
. (4.77)Using the identity,

n∑

l=1

1

sin2(lπ/n)
=

1

3
(n2 − 1), (4.78)the square radius of gyration in one dimension is,

〈x2
G〉 =

βh̄2

12m

(
1 − 1

n2

)
. (4.79)So in three dimension we have,

〈r2
G〉 = 〈x2

G + y2
G + z2

G〉 = 3〈x2
G〉 =

βh̄2

4m

(
1 − 1

n2

)
, (4.80)whi
h is 
onsequen
e of the isotropy of the spa
e. As previously mentioned, theradius of gyration approa
hes a 
onstant value in the limit of n → ∞. This isan important 
onsequen
e of the path integral formalism with respe
t to the
lassi
al ring polymers. Fig. 4.3 depi
ts the radius of gyration in the pathintegral approa
h. 56



4.7.2 Rouse theory for ring polymersIn this se
tion we reprodu
e �rst some important results from the well-knownRouse theory for a �
lassi
al� ring polymer and later we provide a 
omparisonwith the path integral approa
h. Su
h a theory be
ame extremly useful for theearly understanding of the dynami
s of short (non-entangled) polymer 
hains.Here we des
ribe a bead-spring model of a 
lassi
al ring polymer under theRouse theory. The potential between beads is given by
U =

1

2
k

n∑

i=1

(ri − ri−1)
2 (4.81)where k = 3kBT/b2 is the spring 
onstant. It is important to emphasize thedi�eren
es between the potential energy for a ring polymer under the 
lassi
aland the path integral approa
hes. In the former, the spring 
onstant depends onthe temperature the e�e
tive bond length. In the latter, it is also proportionalto the temperature and additionally to the number of beads (Trotter number).In the Rouse model ea
h monomer is subje
ted to a Brownian motion. Thus,one 
ould assume that ea
h bead will experien
e a drag for
e proportional tothe velo
itiy and random ki
ks whi
h rapidly de
orrelates in time.The position of a single bead is given by,

ξ
dri

dt
= −∂U

∂ri
+ Γi, for i = 1, . . . , n (4.82)here ξ is the fri
tion 
oe�ent of a bead and Γi is the noise a
ting on the beadwith the following properties:

〈Γi〉 = 0

〈Γα
i (t)Γβ

i′ (t
′)〉 = 2kBTξδ(t− t′)δii′δαβ, (4.83)where α, β = 1, 2, 3 are 
artesian indexes. One 
ould see from Eq. 4.81 and4.82 that the equations of motion (EOM) will be 
oupled due to the form of thepotential. A simple idea to over
ome this di�
ulty is to introdu
e normalized
oordinates whi
h de
ompose the motion into independent modes (i.e. �Rousemodes�). Following the treatment of the Rouse model for ring polymers [82℄,to solve Eq. 4.82 in the 
ontinuos limit (i.e n → ∞), we introdu
e the normal
oordinates as follows:

Ql(t) =
1

n

∫ n

0

dn ri(t) cos

(
lπi

n

) for l = 0, 1, 2, 3, . . . (4.84)and the inverse transform is
ri(t) = Q0 + 2

∞∑

l=1

Ql cos

(
lπi

n

) for l = 0, 1, 2, 3, . . . . (4.85)57



Now, applying the boundary 
ondition for the 
ase of a ring polymer, r0 = rnand ∂ri

∂i |i=0
= ∂ri

∂i |i=n
, we �nd that all odd modes vanish. This means that

ri(t) = Q0 + 2

∞∑

l,even

Ql cos

(
lπi

n

)

Ql(t) =
1

n

∫ n

0

dn ri(t) cos

(
lπi

n

) for l = 0, 2, 4, . . . (4.86)where the summation is evaluated for even modes (i.e. l, even = 2, 4, 6, . . .).The Eq. 4.82 in the 
ontinuous limit 
an be written as:
ξl

∂Ql

∂t
= −klQl + fl (4.87)and using Eq. 4.83, we also �nd that

〈Qα
l (t)Qβ

l′(0)〉 = δαβδll′
kBT

κl
e−t/τl , for l = 2, 4, 6, . . . (4.88)where

κl =
2π2l2

n
k =

6π2kBT l2

b2n

τl =
2nξ

κl
=

ξn2b2

3π2kBT l2
, for l = 2, 4, 6, . . . (4.89)and τl is known as the relaxation time of the Rouse modes. The derivation of Eq.4.88 and Eq. 4.89 is fully transferable to the 
ase of the ring polymer in the pathintegral (PI) approa
h and when the proper spring 
onstant, k = mn/(βh̄)2, isused we have that,

κPI
l = =

2π2(kBT )2ml2

h̄2

τPI
l =

ξnh̄2

π2(kBT )2ml2
, for l = 2, 4, 6, . . . . (4.90)Comparing the relaxation time predi
ted by the Rouse theory between Eq. 4.89and Eq. 4.90, one 
ould see that modes of the polymer rings in the path integralapproa
h relax faster than 
lassi
al ring polymers.4.7.3 Appli
ation of the Rouse theory for the para-hydrogenliquidA test 
ase is studied under the Rouse theory for polymer rings. More detailsabout the for
ed �eld between para-hydrogen mole
ules and the appli
ation ofour novel approa
h will be presented later in the 
hapter 6. Here we reportbrie�y the analysis of the Rouse modes using path integral mole
ular dynami
58



1/l2

〈Q
(0

)2 l
〉

10.10.010.001

1

0.1

0.01

0.001

n = 28

n = 48

Figure 4.4: The square amplitude of the Rouse normal modes 〈Q2
l (0)〉 for the path in-tegral representation of para-hydrogen mole
ules as a fun
tion of 1/l2. Here is depi
tedfor the ring polymer with lentgh n=28 and n=48 beads at T=25 K.(PIMD) simulations with normal modes (see se
tion 4.6 and Appendix E). Weperform simulations for two di�erent Trotter number, namely n = 28 and n = 48at T=25 K. The traje
tories a

umulated in the simulation serve as a startingpoint for testing the new insight about the Rouse theory for the ring polymerrepresentation of the para-hydrogen mole
ules.There are several test that one 
an think of: the �rst is to test the Eq. 4.88that the mean square amplitude 〈Q2

l (0)〉 of the l-th Rouse modes s
ales with las 1/l2. Results obtained for the two ring polymers are shown in the Fig. 4.4.For a given number of beads n, the Rouse s
aling is seen to be followed only forthe lower l modes, for higher l modes there are signi�
ant deviation from theRouse theory, spe
ially the shorter one.A se
ond test of the Rouse mode for the ring polymer refers to the time de
ayof the normalized auto
orrelation fun
tion 〈Ql(t)Ql(0)〉/〈Q2
l (0)〉. A

ording toEq. 4.88, a log-linear plot of 〈Ql(t)Ql(0)〉/〈Q2

l (0)〉 versus t/(1/l2) should yielda straight line. Numeri
al results for the relation times are shown in Fig. 4.5.If the ring polymer behaves identi
ally as a Rouse 
hain, all the 
urve shouldhave 
ollapsed on a straight line. This is not the 
ase in the data reported in the�gure and signi�
ant deviation from the ideal Rouse behaviour are observed, inspe
ial for higher modes (l > 2). The same behaviour dominates the larger ringpolymer (not reported here).
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Figure 4.5: Time auto
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tion of the �rst normal modes for ring polymerrepresentation of para-hydrogen mole
ules with n=28 (beads) plotted against t/(1/l2)in a log-linear plot.
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Chapter 5An adaptive 
lassi
al-pathintegral s
heme in Mole
ularSimulationIn Chapter III, we des
ribed the 
lassi
al adaptive resolution simulations wherethe simulation domain is subdivided in regions of di�erent mole
ular resolutionand parti
les 
an easily di�use between these two resolutions. However, whilethe adaptive pro
ess of 
hanging resolution on the �y 
an be des
ribed within areasonable simulation a

ura
y a

ording to the basi
 prin
iples of 
lassi
al dy-nami
s and thermodynami
s, the same 
annot be said when quantum me
hani
sbe
omes relevant. The proper 
oupling of quantum and 
lassi
al me
hani
s isknown to be a non trivial (and open) problem [83℄ and hen
e the adaptive
hara
ter adds up as a further di�
ulty [84℄. Pra
ti
al methods [85�87℄ that
ouple the two regimes, in general, do not take into a

ount the �
on
eptual�dis
ontinuity of going from a probabilisti
 (quantum) to a deterministi
 (
lassi-
al) approa
h (and vi
e versa), and usually base their validity on empiri
al andnumeri
al 
riterion. In this 
hapter, we present a new s
heme [88℄ where the
oupling between 
lassi
al and quantum regime 
an be a
hieved in a smoothand 
onsistent way. This 
hapter is organized as follows: First a se
tion aboutthe importan
e of the quantum e�e
ts in the matter, then a se
tion is dedi-
ated to the basi
 idea of quantum-
lassi
al 
oupling and �nally a test of ourapproa
h PIMD/CG within AdResS framework in two model systems, namelythe monoatomi
 liquid and mole
ular liquid.5.1 Quantum des
ription in soft matterGenerally, the extent to whi
h the quantum nature of the systems matters is a
ru
ial aspe
t of modeling any soft matter system (e.g. proteins, liquid, poly-mers, et
 ). This is partly due to the variety of pro
esses whose quantum61




hara
ter in�uen
e several other s
ales. It is undeniable that a full quantum de-s
ription of a system (by Density Fun
tional Theory (DFT) methods) is often
omputationally too expensive. Therefore, typi
ally the modeling of many softmatter systems starts to in
orporate partial quantum e�e
ts into the so-
alled
lassi
al for
e �elds (e.g. CHARMM [89℄, GROMOS [90℄ and several others).However, there are many interesting problems where su
h approximation is nota

urate and detailed quantum des
ription is needed in 
ertain regions of thespa
e, for example, the inherently quantum nature of a 
hemi
al rea
tion inbiologi
al pro
esses [91℄ and the quantum nature of the nu
lei of light parti
lesas hydrogens in important mole
ules as water [92℄ at room temperature requirea proper quantum des
ription, to name a 
ouple.The quantum 
hara
ter of parti
les be
omes parti
ularly relevant for theregime of low temperatures and light parti
les. In su
h 
onditions, the quan-tum nature of matter play important roles in modifying the stru
ture and dy-nami
s of the entire system. Soft matter systems are typi
ally around roomtemperature and their behavior is generally determined by the thermal �u
-tuations, whi
h are of the order of a few kBT . However, as we illustrate inFigure 5.1, some biologi
al systems may need to in
orporate quantum detailsto 
ompletely des
ribe the stru
ture and dynami
s. In this �gure we illustratea large mole
ule solvated in a model system of tetrahedral mole
ules, in part(a) of Figure 5.1 the full quantum me
hani
al des
ription of the system withpath integral des
ription is shown. This makes the mole
ule more �exible andnew 
onformations 
an be explored in presen
e of the solvent. For example, thered 
ir
le indi
ates a typi
al region where the atoms be
ome delo
alized andthus they indu
e 
onformational 
hanges in the mole
ule. Let us assume thatsu
h 
onformations are only observed in presen
e of the quantum 
hara
ter ofthe parti
les and therefore, a 
onventional simulation with the path integral ap-proa
h will be 
omputationally expensive, due to the system size. In Figure 5.1(b) we depi
t a solution whi
h 
ombines the advantage of a systemati
 stru
-tural 
oarse graining (see 
hapter I) to redu
e the number of degrees of freedomin a region of no interest and the adaptive resolution s
heme (see 
hapter III)to allow the 
hange of degrees of freedom on the �y. The pre
eding des
riptionmaintains parti
le �u
tuations between all the regions. The basi
 idea of howone 
an implement su
h approa
h is presented in the next se
tion.5.2 The basi
 idea of the quantum-
lassi
al adap-tivityAs dis
ussed in the 
hapter III, the AdResS method is numeri
ally robust andits theoreti
al ba
kground has been well-established. In our 
ase, the AdResSmethod be
omes an important tool for the adaptivity of the quantum-
lassi
alsystem. More spe
i�
ally, for the adaptive pro
ess the path integral approa
h ofatoms has far-rea
hing 
onsequen
es, be
ause it translates the quantum-
lassi
al
oupling into the 
oupling of two e�e
tive 
lassi
al regions 
hara
terized by a62



Figure 5.1: A pi
torial representation of a large mole
ule solvated in a liquid of tetra-hedral mole
ules. In part (a) the quantum me
hani
s des
ription of the whole systemgenerates 
onformational 
hanges that are not observed in 
lassi
al MD simulations.In (b) the PIMD/CG approa
h is depi
ted, the spa
e is partitioned in a 
entral regiondes
ribed with quantum me
hani
s, mole
ules that are far of the 
entral region 
an berepla
ed by CG spheres and in between a transition region with hybrid parti
les.
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di�erent number of (as a matter of fa
t) �
lassi
al� degrees of freedom; thus thewhole ma
hinery of 
lassi
al adaptive methods would apply straightforwardly.In this 
hapter, we show that this indeed is the 
ase. It must be noti
edthat our PIMD/CG approa
h in AdResS (see next se
tion) aims to 
al
ulatestati
 equilibrium properties within a quantum me
hani
al des
ription and notfor the true quantum dynami
s. Pra
ti
al adaptive methods where ele
tronsare 
onsidered are already available [85�87℄, however the nu
lei are in these
ases 
lassi
al. In the next se
tion, we test our approa
h systemati
ally in twosystems, namely the monoatomi
 liquid and mole
ular (tetrahedral) liquid. Asin the 
lassi
al AdResS a 
oarse graining pro
edure is used to obtain an e�e
tiveone site potential whi
h is 
oupled to the expli
it for
e �eld using the equationof motion of AdResS. Similarly here, one obtains an e�e
tive potential from thepath integral representation and then performs PIMD/CG simulation withinthe AdResS framework.5.3 PIMD/CG approa
h in AdResSThe purpose of our hybrid s
heme is to use a path integral (PI) des
ription of themole
ules in a 
ertain region of interest, instead of using PI representation (i.e.ring polymers) throughout the simulation domain. We use a redu
ed numberof path integral mole
ules in equilibrium with an e�e
tive 
oarse grained (CG)region (
lassi
al parti
les), where the e�e
tive potential is derived from a fullpath integral simulation. The main advantage of the hybrid s
heme is thatwe do not need to represent all the parti
les by the path integral formalism,whi
h is 
omputationally expensive for large systems. Details of the pro
edureused to 
hara
terize the CG parti
les are given in the next se
tions. Let usnow 
onsider the total number of parti
les, N , in the simulation box to be�xed, whi
h represents the total number of atoms or mole
ules. Our resultsin the next se
tions show that a fra
tion of the total number of parti
les 
anbe represented by ring polymers, whi
h remain in thermodynami
 equilibriumwith the 
lassi
al CG representation and at the same time preserve quantumproperties, for example the distributions of delo
alized parti
les in the quantumregion.5.3.1 E�e
tive potential derived from a path integral rep-resentationThe for
e �eld needed for the path integral simulation has to be parametrizedwithout the quantum e�e
ts, whi
h are important at a given thermodynami

ondition. Otherwise, the system under study will over
ount the quantum e�e
tsdue to the additional path integral approa
h. Su
h a problem has been addressedre
ently for the 
ase of path integral simulation of a �exible water model [92℄. Inour study, we use a 
lassi
al for
e �eld that does not in
lude quantum e�e
ts.Then the e�e
tive 
oarse-grained model is derived from a full path integralrepresentation. To obtain an e�e
tive 
oarse grained potential from a path64



integral representation of atoms/mole
ules we have used the iterative Boltzmanninversion pro
edure available in the literature [16℄. The main idea is to 
al
ulatethe non-bonded potential V eff(R) between the 
enter of masses (R = RCM) ofthe parti
les from their path integral representation at given temperature. Forexample the CG pro
edure for the monoatomi
 liquid 
onsists of repla
ing thepath integral representation of an atoms (i.e. ring polymers) by an e�e
tiveparti
le (CG bead), whi
h intera
ts through the potential V eff(R). Thus, su
hCG potential takes into a

ount (in average) the quantum 
orre
tions to the
lassi
al CG potential as shown below,
V eff(R) = V cl(R) + ∆UQM(R), (5.1)where V cl is the 
lassi
al CG potential and ∆UQM is the 
orresponding 
orre
-tion due to quantum e�e
ts. Therefore, as the temperature T or the mass of theparti
le de
reases the quantum 
orre
tions to the V eff be
ome more important.To guarantee that our hybrid s
heme reprodu
es the same thermodynami
 statepoint one has to 
orre
t the shift in the pressure produ
ed by the artifa
t of theiterative pro
edure (see se
tion 1.3.2).5.4 Results and Dis
ussionIn this se
tion, we present the results of our PIMD/CG approa
h in AdResS forthe two model systems studied in a regime of low temperatures, whi
h 
orre-sponds to the extreme thermodynami
 
ondition where the quantum des
riptionprovided by path integral be
omes relevant. In general, for soft matter appli
a-tions the temperature is usually high and thus our approa
h, if it works at lowtemperature, should then work even better. As we have seen before the quantum
hara
ter of the path integral representation (see 
hapter IV) is 
hara
terizedby the number �n� of beads (Trotter number) at given temperature. In our sim-ulation, we have �xed the Trotter number and 
hange the thermal energy froma high temperature (
lassi
al) to a lower temperature regime where quantume�e
ts be
ome important. A pro
edure to a
hieve su
h 
onditions is to de
reasethe temperature T . However, in the path integral formalism one 
an also mod-ify the spring 
onstant (due to its temperature dependen
e, k = mn(kBT )2

h̄2 ) toresemble su
h 
onditions. Thus, one 
an mimi
 temperature e�e
ts by tuningthe spring 
onstant. This plays the same role as the temperature and helpsus to explore a broad pi
ture of delo
alization. This pro
edure is used here totest our PIMD/CG approa
h in AdResS from a moderate to a strong quantumregime. Note that in real physi
al systems ea
h temperature de�nes one �xedvalue of k. In the �rst part of this se
tion we show the results for a simple modelof a repulsive monoatomi
 liquid and later we test the method in a rather more
ompli
ated mole
ular system. 65



5.4.1 Case I: The monoatomi
 liquidTo begin with our analysis, we start to simulate a generi
 simple model of amonoatomi
 system within its quantum limit. The idea here is to test theswit
hing of degrees of freedom from the path integral representation in the�primitive 
oordinates� to an e�e
tive CG one site representation. The Figure5.2 illustrates the pro
ess of 
hanging on the �y the representation of a singlequantum atom in its path integral representation to the e�e
tive 
lassi
al model.The pro
ess that we address is the free passage of atoms from a path integralregion to a 
oarser one and vi
e versa.
Figure 5.2: The on-the-�y inter
hange among the path integral (PI) and 
oarse-grained (CG) representation. Here we depi
t the 
ase of a quantum parti
le in the highresolution (Right side) given by the PI representation whi
h due to the isomorphismof the quantum partition fun
tion be
omes a polymer ring.To a

ount for several degrees of �quantumness� (i.e. delo
alization) we per-form a systemati
 study de
reasing the temperature asso
iated with ea
h quan-tum regime as we diss
used at the beginning of this se
tion. For the purposeof testing, we de�ne the referen
e temperature, T ∗ = 1 in the Lennard-Jonesunits (with ǫ = 1 and σ = 1 as the unit of energy and length respe
tively), tobe the temperature asso
iated with 
lassi
al regime. We perform simulations atdi�erent temperatures T ∗/

√
10, T ∗/5, T ∗/

√
50 and T ∗/10. We show the e�e
tof de
reasing the temperature in Table 5.1, where we 
ompare the radius ofgyration for the free ring polymer rg(free) and the one obtained in our simu-lations of full path integral for ea
h respe
tive temperature. The 
ontra
tionobserved in the rg is due to the presen
e of the intermole
ular intera
tions inthe simulation.The for
e �eld used to des
ribe the 
lassi
al 
ondition is a repulsive Morsepotential parameterized as follows:

V (r∗) = γ∗{1 − exp(−α∗(r∗ − r∗0)}2 (5.2)where γ∗ = γ/ǫ = 0.105, α∗ = ασ = 2.4 and r∗0 = r0/σ = 2.31, and 
uto� at r∗0 .In this 
ase σ and ǫ represent the length and energy units.The next se
tion fo
us on the te
hni
al details about the 
al
ulation of thee�e
tive potential using the iterative Boltzmann inversion method.66



Table 5.1: Radius of gyration obtained from PIMD simulation and its theoreti
alvalue in the approa
h of free ring polymer, i.e. r2
g(free) = βh̄2

4m (1 − 1
n2 ).

Temperature r
g

r
g
(free)

T ∗/10 0.59 ± 0.01 0.70

T ∗/
√

50 0.42 ± 0.01 0.49
T ∗/5 0.29 ± 0.02 0.32

T ∗/
√

10 0.20 ± 0.01 0.22
T ∗ 0.05 ± 0.01 0.07Determination of the e�e
tive potentialWe 
al
ulate the e�e
tive non-bonded pair potential V eff(R) between the CMof the polymer rings using the Iterative Boltzmann Inversion (IBI) method [16℄and subsequent pressure 
orre
tion for a given degree of delo
alization. As men-tioned earlier the �quantumness� be
omes more evident at lower temperatures.For ea
h temperature a numeri
al set of e�e
tive potentials is obtained, whi
hreprodu
es the 
enter-of-mass radial distribution fun
tion (RDF) and total pres-sure for a given thermodynami
 state point. This pro
ess was repeated for twonumber densities whi
h 
orrespond to the medium density liquid with ρ∗ = 0.1and the high density liquid with ρ∗ = 0.175.Figure 5.3 (a) shows the e�e
tive potentials for the very quantum 
ase equalto T ∗/10 and for T ∗/5 where the �quantumness� is negligible at density ρ∗ = 0.1.Part (b) shows the distribution from the beads to the 
enter-of-mass of ea
hring polymer in the path integral representation whi
h provides a signal of thedelo
alization of parti
les for lower temperatures. We infer from both pi
turesthat for this parti
ular system as the temperature be
omes lower, the e�e
tive
oarse grained potential is more softer. Thus, atoms 
an o

upy more spa
e inthe statisti
al sense (i.e quantum delo
alization) due to quantum aspe
ts of thematter present at given temperature.Statisti
al propertiesIn this part, we present the numeri
al results of our adaptive simulation ofPIMD/CG in AdResS for the monoatomi
 liquid. It is important to emphasizethat the atoms di�use freely in time traveling from the path integral region tothe 
oarser region and vi
e versa. Thus, one must 
he
k the thermodynami

onsisten
y of our results based on the 
riteria introdu
ed in the 
hapter of theAdResS (see Chapter III). As we des
ribed for the 
lassi
al system the pathintegral parti
les intera
t with CG ones by the interpolation for
e s
heme [93℄.Our simulations are tested by 
omparing the 
omputed statisti
al properties ofthe PIMD/CG in AdResS with the 
orresponding properties in the full pathintegral (referen
e system). As we show below, the results are in good agree-ment up to approximately the same error known from the 
lassi
al adaptivesimulation. 67
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Figure 5.3: (a) The e�e
tive potential V ∗ between 
enter of masses (CMs) of thepolymer rings for T ∗/10 (more quantum regime) and for T ∗/5 (
lassi
al regime) with
ρ∗ = 0.1. As the temperature de
reases the e�e
tive CG potential, V ∗, approa
hes tothe 
lassi
al for
e �eld (in blue). (b) Shows the distribution distan
e (d∗

rb−rCM
) fromea
h single beads to its 
orresponding CM of the ring polymers, for lower temperaturesthe distribution spreads more in the spa
e.We start to 
ompare 
ompare the CG level of des
ription in our adaptivesimulation. In part (a) of Figures 5.4, 5.5 and 5.6 is 
ompared the 
enter-of-massradial distribution fun
tion (RDF) 
al
ulated in all the spa
e in the adaptives
heme with the full expli
it path integral simulation. We note that for T >

T ∗/5 the e�e
t of the delo
alization impli
itly determined by the temperature
eases as soon as the temperature approa
hes to the referen
e (
lassi
al) value,
T ∗ = 1.Figure 5.7 shows the normalized density pro�le along the x dire
tion forthe same set of temperatures. On
e again, for T ≥ T ∗/5 the drop of densitydisappears indi
ating that both representations: path integral (PI) and 
oarsegrained (CG) are thermodynami
ally equivalent. To guarantee the free di�usionof parti
les and their subsequent transformation from one representation to theother one, we plot the 
enter-of-mass di�usion pro�le for two slab of parti
les,one is lo
alized on the quantum region and the other in CG one in Figure 5.8.This tells us that the atoms 
an freely di�usive and we 
an see how the initialset of parti
les spread as the time goes.The se
ond level of 
omparison is due to the lo
al information a

essibleonly in the path integral region. To show the 
onsisten
y for this level, weplot the partial bead-bead RDF whi
h is 
al
ulated only in path integral regionin our adaptive simulation. This is 
ompared with RDFs 
al
ulated in thesame subregion but from a full expli
it path integral simulation (see part (b) ofFigures 5.4, 5.5 and 5.6). For the set of temperatures the agreement is highlysatisfa
tory. The 
oexisten
e of path integral, hybrid and CG parti
les 
an beobserved in the Table 5.2. From this table, we note that approximately 1/3 (dueto the size of the hybrid zone) of the total number of atoms are represented asring polymers and they are in good thermodynami
 equilibrium with 1/3 of
oarse grained parti
les. The remaining parti
les are represented by hybrids.68



It is important to note that the thermodynami
 equilibrium is maintained forea
h region. This means the pressure P , temperature T and average density arekept in equilibrium. Same results are obtained for the density ρ∗ = 0.175, notreported here.
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Figure 5.4: (a)Center-of-mass radial distribution fun
tion (RDF) evaluated in thewhole box. The dashed lines (in red) indi
ates the result in AdResS whi
h is 
omparedwith the RDF obtained from a full path integral simulation (referen
e system) for
T ∗/10, ρ∗ = 0.1. (b) Shows the bead-bead radial distribution fun
tion 
al
ulate in thepath integral region. This is 
ompared with the RDF from the referen
e system.
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Figure 5.5: As for Figure 5.4, but in this 
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√

50. The same agreement forthe global 
enter of mass and lo
al bead-bead radial distribution fun
tions.
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 liquidin AdResS. In all the graphi
s the interfa
e region layer is given by 8σ. The verti
allines denote the boundaries between the path integral (PI), 
oarse grained (CG) andhybrid (∆) regions of the system. In �gure (a) is showed the 
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Figure 5.8: Time evolution of di�usion pro�le for parti
les that are initially, at time
t∗ = 0, lo
alized at two neighboring slabs of the midinterfa
e layer with 8σ interfa
elayer width (n is the number of atoms with the CM position at a given 
oordinate
x∗). The width of the slab is Lx/10. Verti
al lines denote the boundary of the hybridregions. (a) The di�usion pro�le for the monoatomi
 liquid at T ∗/10, averaged over1000 di�erent time origins, at t∗ = 0, t∗ = 10 and t∗ = 150 for atoms that are initiallylo
alized at the slab on the CG region (left part) and also on the path integral region(right part) for the temperature T ∗/10. In b) and 
) for the temperature T ∗/

√
50 and

T ∗/5 respe
tively.
72



5.4.2 Case II: The mole
ular liquidHere we use a tetrahedral model [93℄ for the mole
ular liquid whi
h 
an be usedto test the methodology introdu
ed at the begin of this 
hapter. The quantumrepresentation for ea
h atom of the tetrahedral mole
ule is given by a ring poly-mer whose Trotter number or number of beads �n� is set to 30, whi
h is usuallyused in the path integral simulation of water mole
ules in the liquid phase [92℄.The 
orresponding 
oarse-grained model for the tetrahedral mole
ule is seenas an e�e
tive one-site 
lassi
al for
e �eld. For this system the idea of 
hang-ing the mole
ular representation on the �y is �more 
hallenging� due to thevery extended redu
tion of degrees of freedom in 
omparison to the monatomi

ase. The Figure 5.9 illustrates the pro
ess of 
hanging representation on the�y starting on the right side with the path integral representation of tetrahe-dral mole
ule and ending in the opposite side as one 
oarse-grained sphere, inbetween the system be
omes a hybrid parti
le. Note: the 
enter of mass (CM)of a path integral tetrahedral mole
ule is obtained as the average position ofall the beads per mole
ule (i.e RCM =
∑4

α=1

∑30
i=1

m
(α)
i

r
(α)
i

m
(α)
i

). We have studieda system of thousand mole
ules at temperature T1 = T∗

√
2
and T2 = T∗

√
10

where
T ∗ = 1 (in the redu
ed Lennard-Jones units, ǫ = 1 and σ = 1) 
orresponds tothe 
lassi
al limit. For the purpose of testing we have 
hosen the temperaturesto be lower than that employed in the 
lassi
al simulation T ∗, su
h 
onditionmimi
s the thermodynami
 
onditions of a �more quantum� system.
Figure 5.9: The on-the-�y inter
hange among the path integral (PI) and 
oarse-grained (CG) representation. Here we depi
t the 
ase of a quantum mole
ule in thehigh resolution (right side) given by the PI representation whi
h due to the isomor-phism of the quantum partition fun
tion, ea
h atom be
omes a ring polymer.Determination of the e�e
tive potentialHere we perform also the Iterative Boltzmann Inversion [16℄ method and pres-sure 
orre
tion to obtain the e�e
tive potential, V eff(R) for the CM betweentetrahedral mole
ules. We emphasize, that ea
h single atom in the tetrahe-dral mole
ule is represented by 30 beads due to the path integral approa
h.Thus, the e�e
tive potential takes into a

ount the spatial redu
tion of degreesof freedom (DOF) from 360 to 3 per mole
ule. As in the monoatomi
 
ase,73



we obtained a set of potentials 
orresponding to di�erent temperatures and fordensity ρ∗ = 0.1. We depi
t in Figure 5.10 (a) the CG potential obtained by IBIwith pressure 
orre
tion. One 
an see that as the temperature de
reases, theCG potential be
omes more repulsive (less softer), 
ontradi
ting our previousresults (monoatomi
 liquid). This e�e
t 
an be explained if we see the part (b)of this �gure, where the bond length distribution, P (d∗), between the atoms inthe tetrahedral mole
ules is plotted. Therefore, one 
an infer how the mole
uleis delo
alized as the temperature de
reases in its path integral representation,generating the net e�e
t of moving away the 
enter of masses.
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Figure 5.10: (a) The e�e
tive potential V ∗ for the 
enter of masses (CMs) of thetetrahedral mole
ules in their path integral representation for ρ∗ = 0.1 at T ∗ = 1.Similarly as in Figure 5.3 when the temperature is high the e�e
tive CG potentialapproa
hes to the 
lassi
al CM-CM e�e
tive potential obtained from a 
lassi
al sim-ulation. (b) Shows the bond length distribution for the tetrahedral mole
ule in thepath integral approa
h.Statisti
al propertiesHere we report two important aspe
ts of our PIMD/CG approa
h with AdResS.The �rst has to do with the ma
ros
opi
 information su
h as the 
enter of massesradial distribution fun
tion (RDF) and the di�usion of 
enter of masses alongthe x dire
tion (see part (a) in Figures 5.11, 5.12 and 5.13). The se
ond aspe
trelates the mi
ros
opi
 information (quantum delo
alization) of the mole
ules.To guarantee that we have sampled appropriately the bead-bead 
on�gurationsin our hybrid algorithm within AdResS framework, we 
al
ulate the partialbead-bead RDF in the quantum region of the adaptive simulation (see part (b)in Figures 5.11 and 5.12). This is 
ompared with the RDF 
al
ulated in thesame subregion, but from a full expli
it path integral simulation. The lo
al andglobal information is preserved in our hybrid s
heme in all over the simulationbox. This means that a quantum mole
ule is able to 
hange representation froma detailed path integral des
ription to a single 
lassi
al CG site and vi
e versaand hen
e su
h a pro
ess maintains the thermodynami
 equilibrium. Table 5.3shows the number of parti
les for ea
h des
ription at given temperature, the74



path integral (PI) and 
oarse grained (CG), whi
h maintain almost the samevalue (not spurious �ux of parti
les) and same pressure, P , is ensured for ea
hresolution, maintaining the me
hani
al equilibrium.
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Figure 5.11: Center-of-mass radial distribution fun
tion (RDF) for all the mole
ulesin the box. We 
ompare the RDF of CMs in AdResS and the 
orresponding fullexpli
it PI simulation (referen
e system), the agreement is a

eptable in all box. (b)Corresponds to bead-bead radial distribution fun
tion obtained with AdResS in thequantum region 
ompared with that of the full path integral referen
e system for thetemperature, T ∗/
√

10.
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e system.
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e regions layer is givenby 6σ. The verti
al lines denote the boundaries between expli
it path integral (PI),
oarse grained (CG) and hybrid (∆) regions of the system. Top (a) 
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10 (more quantum 
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Figure 5.14: Time evolution of di�usion pro�le for the tetrahedral mole
ules thatare initially, at time t∗ = 0, lo
alized at two neighboring slabs of the midinterfa
elayer with 6σ interfa
e layer width (n is the number of atoms/mole
ules with theCM position at a given 
oordinate x∗). The width of the slab is 4σ. Verti
al linesdenote the boundary of the hybrid regions. The di�usion pro�le is averaged over 1000di�erent time origins, at t∗ = 0, t∗ = 10 and t∗ = 200 for mole
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Table 5.2: The monoatomi
 liquid: Number of expli
it (PI representation), hybrid and CG parti
les as a fun
tion of the di�erenttemperatures studied within AdResS method. The interfa
e layer width is given by d∗

hyb = 8. Column 5th, 6th and 7th show the pressure
al
ulated in the path integral zone (Pex), CG zone (Pcg) and full hybrid system with w = 0.5.
Temperature nex ncg nhyb Pex Pcg Pw=1/2

T/10 310 ± 10 307 ± 14 382 ± 16 0.797 ± 0.013 0.797± 0.008 0.874± 0.013

T/
√

50 306 ± 17 304 ± 12 389 ± 21 0.638 ± 0.013 0.639± 0.008 0.668± 0.012
T/5 303 ± 13 297 ± 18 400 ± 20 0.481 ± 0.013 0.481± 0.015 0.485± 0.014

T/
√

10 295 ± 18 300 ± 14 405 ± 21 0.443 ± 0.015 0.444± 0.015 0.450± 0.014
T 301 ± 12 299 ± 11 406 ± 15 0.382 ± 0.012 0.382± 0.012 0.381± 0.013

Table 5.3: The mole
ular liquid: Number of expli
it (PI representation), hybrid and CG parti
les as a fun
tion of di�erent tempera-tures studied with AdResS. The interfa
e layer width is given by d∗

hyb = 6. Column 5th and 6th show the pressure of the path integral(Pex) and 
g systems (Pcg).

Temperature nex ncg nhyb Pex Pcg

T/
√

10 305 ± 15 304 ± 16 382 ± 14 0.582± 0.08 0.581 ± 0.021

T/
√

2 303 ± 14 302 ± 15 387 ± 16 0.431± 0.08 0.430 ± 0.021
T 300 ± 15 300 ± 15 400 ± 15 0.382± 0.08 0.381 ± 0.021
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Chapter 6The para-hydrogen liquid inAdResSIn the previous 
hapter, we developed the basi
 idea of a quantum-
lassi
aladaptive 
oupling by mapping the quantum nature of an atom onto a 
lassi-
al polymer ring representation. To test the appli
ability of the method wehave used a toy model of tetrahedral mole
ules with limited physi
al meaning,however it was appropriate to test our approa
h for a broad range of thermo-dynami
 situations. The tetrahedral mole
ule possesses enough stru
tural 
om-plexity, typi
al of small multiatomi
 mole
ules, and we have proven that a largeredu
tion of the number of degrees of freedom in the adaptive pro
ess 
ould bedes
ribed by the AdResS method. Typi
ally, there are 
riti
al situations (e.g.low temperatures or light parti
les) where the quantum des
ription of the mat-ter is mandatory in order to des
ribe the relevant properties of the system. Insu
h 
ases, a good starting point to in
lude quantum e�e
ts, e.g. �delo
alizationor tunneling� of parti
les, is given by path integral methods. Here we study thepara-hydrogen mole
ules at low temperatures as the �rst real appli
ation of ourmethod be
ause of: (a) the extreme thermodynami
 
ondition at low tempera-ture and pressure and (b) the strong quantum nature of the hydrogen mole
uleunder these 
onditions. We do not aim to explore the low temperature physi
swithin the AdResS framework, sin
e our interest is primarily fo
used on the softmatter s
ale at ambient 
ondition, where quantum e�e
ts are not very dominat.If our approa
h works te
hni
ally and 
on
eptually, one should expe
t even abetter agreement at ambient 
onditions.This 
hapter is organized as follows. First we introdu
e a brief des
riptionof the physi
s of the hydrogen, then we present the path integral representationof one of its mole
ular states, the para-hydrogen at low temperature. Nextse
tion presents the basis of the adaptive resolution s
heme used to study thepara-hydrogen mole
ules. The last two se
tions show the te
hni
al details ofour simulation, the results and dis
ussion.79



6.1 Basi
 physi
s of hydrogenDuring the early development of the quantum me
hani
s the signi�
an
e ofunderstanding a single hydrogen atom/mole
ule played an important role in thetheoreti
al and experimental foundation of this theory. For instan
e, the atomi
and mole
ular form of hydrogen were used to study the quantum stru
ture ofmatter by N. Bohr and A. Sommerfeld [94, 95℄ (e.g. atomi
 shell model), andlater it was also used for the development of the 
hemi
al binding by L. Paulingand several others [96, 97℄.The liquid and solid phases of mole
ular hydrogen and deuterium have beenstudied experimentally [98, 99℄ and theoreti
ally [100, 101℄. These many bodysystems 
ontinue to attra
t great deal of interest due to its fundamental nature.It is known that hydrogen mole
ules are the prin
ipal 
onstituents of distantplanets [102℄ and in the �eld of high-pressure physi
s the hydrogen exhibits the�uid metal-insulator transition [103,104℄. In soft matter systems, the hydrogenbe
omes important as a 
onstituent of important mole
ules su
h as water, DNAand proteins. The presen
e of hydrogen in su
h systems play an important rolein the stru
ture of the mole
ules by forming 
ovalent or hydrogen bonds.It is known that the spe
trum of mole
ular hydrogen in the liquid phase ex-hibits the e�e
t of the internal nu
lear degrees of freedom whi
h lead to the 
har-a
terization of two spin isomers of hydrogen diatomi
 mole
ules and di�erentlevels of ex
itations. One of the isomeri
 forms is the ortho-hydrogen where thetwo proton spins are aligned parallel and form a triplet with a total spin quan-tum number of J = 1; in the para-hydrogen form the proton spins are alignedantiparallel and form a singlet with a total spin quantum number of J = 0.At standard temperature and pressure (STP) of 0 ◦C and 1 atm respe
tively,the hydrogen gas 
onsists of about 25% para-hydrogen and 75% ortho-hydrogenwhi
h is a 
onsequen
e of the spin degenera
y ratio. This s
enario 
hangessigni�
antly if thermal equilibrium is established at low temperatures betweenthe two forms of hydrogen. At 20 K, for example, natural hydrogen 
onsistsof 99.8% of parahydrogen. In the following se
tion the quantum des
ription ofpara-hydrogen is introdu
ed by the path integral method.6.2 The path integral des
ription of para-hydrogenAs we des
ribed previously the para-hydrogen represents an ideal system fortesting of new methods whi
h in
lude quantum e�e
ts in mole
ular dynami
ssimulation. In general, liquid hydrogen does not exhibit the strong identi
al par-ti
le ex
hange e�e
ts typi
ally observed in liquid helium, and thus the physi
sof the system is simpli�ed. Even at very low temperature (e.g. around the triplepoint, 13.8 K) the thermal de Broglie wavelength λ = h/(2πmkBT )1/2 = 3.3 Å isslightly larger than the mean distan
e between two hard spheres in the 
lassi-
al representation of hydrogen mole
ules (σ = 3.0 Å). This implies that theex
hange of identi
al para-hydrogen mole
ules will not have a pronoun
ed ef-fe
t in the properties of the liquid phase [105℄ and therefore the para-hydrogen80



mole
ules follow Boltzmann statisti
s. Another 
hara
teristi
 of the liquidmole
ular hydrogen at low temperatures is the inversion of the predominantpopulation, i.e.; ortho-hydrogen at room temperature to the para-hydrogen atlower temperatures. Sin
e the majority of the para-hydrogen mole
ules are inthe ground state (J = 0), the wave fun
tions that 
hara
terize su
h a mole
ularstate are spheri
ally symmetri
, and hen
e the intera
tion between mole
ules
an be modeled by an e�e
tive isotropi
 pair potential [106℄ (see Figure 6.4).Due to the inherent quantum behavior of the para-hydrogen mole
ules atlow temperatures, several 
omputational te
hniques based on the path integralformulation of quantum me
hani
s (see 
hapter IV) be
ame routine methodsto 
al
ulate stati
 [107�109℄ and dynami
 [110�112℄ properties of this quantumliquid. In Figure 6.1, we show the 
on
eptual transition from the �e�e
tivespheri
al� 
lassi
al model to the 
orresponding quantum �ring polymer� modelby means of the path integral approa
h.In the next se
tion, we des
ribe the 
oupling of the path integral representa-tion with an e�e
tive 
lassi
al representation, where only the 
lassi
al spheri
alsymmetry is preserved and still, lo
ally, quantum information 
an be extra
tedin the spirit of AdResS.
Figure 6.1: Quantum representation of the para-hydrogen by the path integral ap-proa
h. On the left side the 
lassi
al form for a diatomi
 hydrogen mole
ule is illus-trated and in the opposite side the quantum des
ription of the mole
ule by a ring-polymer as it is known from the path integral approa
h.6.3 Para-hydrogen in AdResSAs stated previously the para-hydrogen 
an be a

urately des
ribed by the pathintegral approa
h and represents a valid 
on
eptual and te
hni
al test for theadaptive simulation approa
h in its extension to (some) quantum problems.For this reason we have performed simulations of the liquid para-hydrogen us-ing AdResS. In Figure 6.2 we illustrate the parti
le transition from a 
lassi
al,one-site, 
oarse grained representation to a quantum representation by meansof the path integral approa
h. In between, we depi
t the hybrid resolution that
hara
terizes the transition region. Our s
heme allows the swit
hing of repre-sentations a

ording to the mole
ular position in the simulation box. This willbe explained further in the next se
tion.An important key feature of the adaptive simulation s
heme is the interpo-81



Figure 6.2: Adaptive resolution s
heme for para-hydrogen: the high resolution on theleft 
orresponds to the quantum path integral representation. The low resolution onright 
orresponds to the e�e
tive spheri
al 
lassi
al model obtained by 
oarse-grainingthe high resolution.lation fun
tion, w(x), whi
h weighs the for
e 
ontributions 
oming from ea
hrepresentation (i.e. path integral, hybrid and 
oarse grained) and also makesa smooth transition from the 
lassi
al to quantum regime and vi
e versa. Thefun
tional form of w(x) is the same as the one used in 
lassi
al adaptive sim-ulation. In �gure 6.3, we depi
t the weighting fun
tion and the para-hydrogenmole
ules in our adaptive simulation as a fun
tion of their position. The 
lassi
alCG, path integral and hybrid des
ription of the mole
ules are restri
ted in thespa
e, but free di�usion of the mole
ules takes pla
e and thus single mole
ulesundergo an adaptive pro
ess from the path integral to 
lassi
al representation.
Figure 6.3: AdResS set up for the para-hydrogen liquid. In this �gure the weightingfun
tion is shown and it varies from 0 in the 
oarse grained region to 1 in the pathintegral region, in between takes 
ontinuous values and mole
ules be
ome hybrid inthe sense of 
lassi
al/quantum des
ription.6.4 Te
hni
al detailsTo perform an adaptive PIMD/CG simulation of liquid para-hydrogen we haveused the Silvera-Goldman pair potential [106℄,

V (r) = eα−βr−γr2 −
(

C6

r6
+

C8

r8
+

C10

r10

)
fc(r) +

C9

r9
fc(r), (6.1)82



where
fc(r) =

{
e−(rc/r−1)2 , if r ≤ rc

1, otherwise, (6.2)here the intera
ting diatomi
 mole
ules are treated as spheres. This is justi�edby the fa
t that mole
ules are in the rotational ground state (J-0) at the twotemperatures of interest, i.e.; 25 K and 14 K. The �rst term on the Eq. 6.1 
orre-sponds to the short-range repulsive intera
tion, while the se
ond term des
ribesthe long-range attra
tive intera
tion. The last term, C9/r9, is an e�e
tive twobody approximation to the three-body dispersion intera
tion. The fc(r) is usedto s
reen the e�e
t of the attra
tive intera
tion at short distan
e. The values ofthe parameter are listed in Table 6.1. V(r) is shown in Figure 6.4Table 6.1: Parameters used in the Silvera-Goldman pair potential (in atomi
units).
α 1.713 C6 12.14
β 1.5671 C8 215.2
γ 0.00993 C9 143.1
rc 8.32 C10 4813.9In our adaptive simulation of the para-hydrogen, we used the theoreti
alnumber density obtained from the earlier path integral Monte Carlo (PIMC)[107℄ (ρ = 0.0035(bohr)−3 at 14 K and ρ = 0.0028(bohr)−3 at 25 K), underthe 
ondition of almost zero pressure. Important quantities are expressed inatomi
 units (i.e. e, h̄, m = 1). This gives the unit of energy in Hartree (Eh =

4.3597× 10−18J) and the distan
e in Bohr radius (a0 = 0.529Å) The bead-beadintera
tion of neighboring ring-polymers is trun
ated at 15 bohr.From the earlier simulation with PIMC it is known that at the low tem-perature (T = 14 K) the degree of quantumness for para-hydrogen be
omestronger and the Trotter number used in the path integral approa
h should bein
reased to 48 beads. For the high temperature (T = 25 K) 
ase, 28 beadsare enough to guarantee the 
onvergen
e of the stati
 properties. For 
ompar-ison we perform adaptive simulations of two kinds of path integrals; (a) pathintegral formulation in the primitive (real) spa
e PIMD (see 
hapter IV), whi
his 
omputationally less demanding, but shown to be not a

urate enough forthe low temperature limit and (b) the path integral formulation in terms of thenormal modes (PIMD+NM), 
omputationally more demanding but more a

u-rate at the low temperature. In fa
t, at the low temperatures, the use of thelarge number of beads leads to the situation that the intera
tion between the
orresponding beads of di�erent ring polymers be
omes less relevant be
ause itfollows 1
nViα,jβ (iα indi
ates the i-th bead of the mole
ules α, same for β, and

n is the number of beads). However, the bead-bead intera
tion between bondedneighboring beads of the same ring polymer be
omes dominant, be
ause it s
alesas n. This leads to the problems of ergodi
ity in a real spa
e approa
h, whi
h83




an be over
ome in the normal mode approa
h, by ensuring the proper samplingof all the frequen
y of the system, solves the problem [113℄ (see appendix E).Ea
h simulation was equilibrated for 100 ps and then the stati
 propertieswere 
al
ulated by averaging over 1000 
onse
utive 10 ps path integral traje
-tories with a time step of 0.5 fs.6.4.1 E�e
tive 
oarse grained potentialTo obtain an e�e
tive one-site 
oarse grained (CG) potential from the path in-tegral representation of para-hydrogen, we have used the standard pro
edureknown as the Iterative Boltzmann Inversion (IBI) [16℄. Su
h pro
edure derivesan e�e
tive potential by using the full expli
it (path integral) 
enter-of-massradial distribution fun
tion (RDF) as a target. Also for this system a pres-sure 
orre
tion has been employed to ensure as 
lose as possible to the targetpressure. In this aspe
t, the 
oarse-graining pro
edure at these thermodynami

onditions be
omes more di�
ult sin
e the large pressure �u
tuations (of theorder of 10−7 Eh/bohr−3) and the inherent error of the iterative pro
edure leadto a large relative error on the pressure of the 
oarse-grained model. For ea
hsystem the IBI was applied over 30 iterations until the 
onvergen
y of the tar-get radial distribution was rea
hed. Ea
h iteration 
onsists of 50 ps and 500 psof equilibration and produ
tion respe
tively. A smoothing pro
edure over thepotential was applied 5 times per iteration.Our results are shown in Figure 6.4 where we plot the e�e
tive CG poten-tial obtained for ea
h temperature studied and for 
omparison is depi
ted the
lassi
al Silvera and Goldman potential from Eq. 6.1. One 
an see the e�e
tivepotential be
omes less attra
tive and the minima of the potential is shifted asthe temperature de
reases from T=25 K to T=14 K.6.5 Results and Dis
ussionIn this se
tion we present the results of our approa
h in AdResS for the twothermodynami
 state points studied. The path integral implementation in thereal spa
e will be denoted by PIMD while the normal modes implementation asPIMD+NM.6.5.1 For T=25 KThis thermodynami
 state represents a �less quantum� system with Trotter num-ber (number of beads) n=28 
ompared to the other system at T=14 K shownlater. As one 
an see in the Figure 6.5 (a) for the bead-bead RDF for thefull (expli
it) path integral simulation the PIMD and PIMD+NM implemen-tation perform quite well and no di�eren
es with the referen
e data is found
ompared to the referen
e data [107℄. In part (b) and (
) we report the par-tial bead-bead RDF obtained within AdResS, with PIMD and the PIMD+NM,
al
ulated in the quantum region of the adaptive resolution system. This is84
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Figure 6.4: A plot of the potentials resulting from the Iterative Boltzmann Inversion(IBI) pro
edure. The solid (blue) line 
orresponds to T=25 K, ρ = 0.0028(bohr)−3and the (bla
k) dashed line for T=14 K, ρ = 0.0035(bohr)−3 . The 
lassi
al Silveraand Goldman potential [106℄ in solid (bla
k) line is also depi
ted.
ompared with the RDF 
al
ulated in the same subregion but from a full ex-pli
it path integral simulation. The agreement is highly satisfa
tory. In Figure6.6 we 
ompare the 
enter-of-mass RDF over the entire simulation box for thePIMD and PIMD+NM in AdResS and 
ompared it with the referen
e data; alsoin this 
ase a full agreement is found at this temperature.To further prove the validity of the adaptive simulation to a
hieve thermo-dynami
 equilibrium, we have 
al
ulated the density pro�le in Figure 6.7. Thisshows the typi
al 5% drop of density in the hybrid region (∆), whi
h is 
ompen-sated by the in
rement of the density in the path integral and 
oarse grainedregions. The slightly large density in the 
oarse-grained region is mostly due tothe abovementioned problem of the di�
ulties of targeting the 
oarse-grainedmodel to the exa
t pressure of the high resolution system. However, the overallagreement is rather satisfa
tory.Finally, in order to 
he
k the free di�usion of parti
les a
ross the regionwe have 
al
ulated the di�usion pro�le in Figure 6.8; whi
h proves that indeedthe para-hydrogen mole
ules move through the hybrid region di�using from thehigh resolution to the low resolution and vi
e versa.
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Figure 6.5: (a) Comparison of the bead-bead radial distribution fun
tions (RDF) in afull path integral simulation at T=25 K. The primitive path integral (PIMD) and thepath integral in the normal modes (PIMD+NM) are 
ompared to earlier work [107℄and full agreement is obtained. (b) The bead-bead partial RDF 
al
ulate only in thequantum region in AdResS for the PIMD 
ompared with the same quantity 
al
ulatedin the PIMD/AdResS approa
h. (
) Shows the same as in (b), but for PIMD+NMimplementation. 86
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Figure 6.7: Normalized density pro�le along the x dire
tion at T=25 K in AdResS.The interfa
e region layer is given by 20 bohr. The verti
al lines denote the boundariesbetween the path integral (PI), 
oarse grained (CG) and hybrid (∆) regions of thesystem. In the �gure is depi
ted the 
ase for the primitive path integral in the realspa
e (PIMD) and in the normal modes (PIMD+NM) in AdResS. Drop of density inthe hybrid region is about 5% of the referen
e value (horizontal dashed line), whilethe overestimation in the CG region is below 3%.87



CG∆PI

x (bohr)

n

50403020100-10-20-30-40-50

30

25

20

15

10

5

0

t∗ = 0
t∗ = 100
t∗ = 350

Figure 6.8: Time evolution of di�usion pro�le for para-hydrogen mole
ules that areinitially, a time t=0, lo
alized at two neighboring slabs of the midinterfa
e layer with20 bohr. interfa
e layer width. The width of the slab is Lx/10, Verti
al lines denotethe boundary of the hybrid regions. The di�usion pro�le obtained by averaging over1000 di�erent time origins, at t=0, t=100 and t=350 for mole
ules that are initiallylo
alized as the slab on the CG region (right side) and also on the path integral (PI)region (left side) for the temperature T=25 k.6.5.2 For T=14 KThis 
ase represents the �more quantum� situation due to the larger Trotternumber used, n=48, in whi
h AdResS has been tested. One 
an appre
iate in theFigure 6.9 (a) that the path integral implementation in real spa
e (PIMD) doesnot 
onverge to the referen
e data. However, the normal modes implementationreprodu
es the referen
e stru
ture of the system [107℄. This indi
ates onlythat PIMD in AdResS may not be suitable to reprodu
e the true physi
s ofthe system, and hen
e we will 
onsider here the PIMD+NM in the adaptives
heme. Figure 6.9 (b) shows the 
omparison between the partial bead-beadRDF (
al
ulated as in Figure 6.5) for the full expli
it PIMD+NM and thatof the PIMD+NM in AdResS and in part (
), the 
enter-of-mass RDF for thePIMD+NM in AdResS with the referen
e data [107℄ is 
ompared. A satisfa
toryagreement is found in both 
ases.Similarly, to the previous 
ase we show the density pro�le in Figure 6.10 forthe PIMD+NM and on
e again we note a satisfa
tory agreement. The same
an be said for the di�usion pro�le of para-hydrogen mole
ules shown in Figure6.11.
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Figure 6.9: (a) Comparison of the bead-bead radial distribution fun
tions (RDF) ina full path integral simulation at T=14 K. PIMD and PIMD+NM are 
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ompared to the referen
e data (available up to 16 bohr).89
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Chapter 7Con
lusionsIn this thesis, we have dealt with two 
ontributions in the �eld of methoddevelopment for multis
ale problems. Su
h methods are 
ommonly used toover
ome serious problems of time and length s
ales in soft matter systems.Our �rst 
ontribution dealt with the numeri
al 
ontrol of the 
oarse grainingpro
edures, typi
ally used in the redu
tion of degrees of freedom (DOFs) in
omplex systems. And the se
ond 
ontribution was a 
on
eptual extensionand te
hni
al development of the Adaptive Resolution S
heme (AdResS) forquantum systems. Let us explain in detail the summary of our �ndings andfuture perspe
tives:In the �rst part, we proposed a systemati
 pro
edure to estimate the validityof the approximation of separation of variables (ASV). The advantage of ourmethod is that only the analyti
al form of the potential is needed. This helpsus to de�ne regions where the ASV is reasonable a priori without the task ofperforming mole
ular dynami
s simulation to 
al
ulate the 
orrelation amongDOFs. As a result, in the positive assessment our pro
edure indi
ates the errorintrodu
ed by the assumption of ASV and in the negative evaluation guarateesthat no separation will be possible. Our pro
edure 
an be seen as a numeri
altool to systemati
ally 
ompare a set of 
oarse grained (CG) variables and 
hoosethe ones that will better mimi
 the dynami
s of the atomisti
 system. For thispurpose, we have studied a simple model, namely the diatomi
 mole
ule on asurfa
e. For this system our pro
edure has shown the regions where the ASVbe
omes questionable. A se
ond appli
ation of the pro
edure for two di�erenteCG mappping s
hemes of a simple polymer 
hain has shown its pra
ti
al usefor polymeri
 systems.Further studies 
an merge our pro
edure with several other methods, whi
himpli
itly make use of the ASV or require the a priori knowledge of the separa-bility. For instan
e, the 
hoi
e of 
olle
tive variables (CVs) or order parametersas in the metadynami
s [20℄ or transition path sampling [19℄, used 
ommonly inthe study of rare events. All these methods assume one or several CVs, whi
h areindependent from other variables whose 
ontribution is not 
onsidered. In this
ontext, our pro
edure may help to indentify a minimal set of CVs. Previously,91



we learnt about the problem of 
hoosing the proper set of variables for a 
oarsegrained des
ription. Then one starts typi
ally the simulation in the CG levelof resolution. However, interesting multis
ale problems involve several levels ofdes
ription as we des
ribed in this thesis, and the need for 
oupling these levelsand perform one single simulation is now te
hni
ally possible between severals
ales (e.g. atomisti
-mesos
opi
 and mesos
opi
-
ontinuum s
ales). Only thequantum-
lassi
al 
oupling presents 
on
eptual and te
hni
al problems in adap-tive simulations. In this 
ontext the Adaptive Resolution S
heme (AdResS) hasshown to be a robust and su

essful s
heme for the study of a system with
on
urrent resolutions.In the se
ond part of the thesis we extended its appli
ability to the quantumdes
ription based on the path integral approa
h of atoms/mole
ules. Con
ern-ing this part of the thesis, the 
on
eptual/te
hni
al extension maintains thequantum 
hara
ter of the parti
les in the region of interest and away of it, ane�e
tive 
oarse grained 
lassi
al des
ription 
an be used to de
rease the 
ompu-tational demands of performing full path integral simulations in the full spa
e.We tested su

essfully our approa
h in monoatomi
 and mole
ular toy models atstandart (ambient) thermodynami
 
onditions. To end this work we performedan appli
ation with our adaptive/path integral method in a system where quan-tum e�e
ts play a 
entral role. The para-hydrogen mole
ules were studied attwo di�erent temperatures, namely 25 K and 14 K. We aimed to show the ro-bustness of the adaptive/path integral within AdResS framework, even for su
h
riti
al 
onditions. To a

ount properly for the quantum e�e
ts we implementedthe normal modes (NM), whi
h was ne
essary for the lower temperature. Ourmethod reprodu
es, in a rather satisfa
tory way, the stru
tural properties when
ompared to the results of full expli
it path integral simulation and to thoseavailable in literature. To summarize sin
e, at ambient 
onditions, the quantume�e
ts 
an be important, but not dominant, and the 
oarse-graining pro
edureis te
hni
ally simpler, the adaptive/path integral method 
an be applied tostandard systems in soft matter and 
ondensed matter.The adaptive/path integral method allows us to study the stati
 propertiesof quantum systems in the region of interest while the rest of the system re-mains 
lassi
al. Thus, real quantum �dynami
s� 
annot be obtained from ourapproa
h. In this respe
t, possible ways to over
ome this problem will involvethe use of more sophisti
ated te
hniques, whi
h are still based on the path in-tegral formalism, su
h as the Centroid Mole
ular Dynami
s [73℄ or the RingPolymer Mole
ular Dynami
s [72℄. Additionally, our adaptive/path integralmethod 
ould be merged in the near future with pra
ti
al adaptive methods forele
trons [85�87℄, where the adaptivity of nu
lei 
ould be taken into a

ount byour approa
h.
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Appendix A: The RIS modelfor a polymer 
hainThe RIS model used in this study resembles the one of n-alkane 
hain in a plane.Here the intera
tion between sites (e.g. atomi
 or mole
ular) are des
ribed onlyby a bond-bending potential [114,115℄ of the form
Vbending(θi) =

1

2
K
(
θi − θ0

i

)2 (7.1)with K = 115.2 kcal/mol and θ0
i = 112◦for T = 450K. θi is the angle formedby three 
onse
utive parti
les, as shown in Figure 2.6. Some DOFs, su
h as thetorsion angles are disregarded, as we fo
us on the separation of the variables

R(1), R(2) and Ω whi
h (for symmetry) are independent of the torsions in theRIS model. In both systems with 1:2 or 1:3, we have used a sti� bond lengthbetween 
arbon atoms equal to l1 = 1.54 . The di�eren
e between the two
ases studied lies in the 
hoi
e of the 
enter for ea
h bead and the number ofparti
les per bead. For instan
e, in the �rst 
ase we take the 
enter of thedistan
e between two parti
les as the 
enter of the bead and in the last one we�x the internal angle formed by three parti
les and then use the bary
enter ofthis triangle as the 
enter of the bead. In both 
ases the angle θ1 is kept �xedat its equilibrium value, that is θ1 = 108◦, while the other angles are allowed tovary in su
h a way that θi = 115◦ ± 10◦, ∀i = 2, 3, 4 as suggested by atomisti
simulations [114,115℄.
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Appendix B: CG variable asfun
tion of the atomisti
variablesOn
e the relevant CG variables are determined, one has to pro
eed to expressthe CG variables as a fun
tion of the expli
it (atomisti
) variables. After thatone 
an apply systemati
ally the 
riterion of the ASV and 
al
ulate the fa
tor ofquality (Q) for this parti
ular mapping s
heme . Here, for te
hni
al 
onvenien
e,we pro
eed �rst by expressing the atomisti
 variables as a fun
tion of the newCG variables and then use the inverse fun
tion in order to get the CG variablesas a fun
tion of the expli
it dependen
ies. Due to the high 
omplexity of thesystem we have �xed some atomisti
 variables and 
onsider them as possibleparametri
 variables. This is a useful pro
edure and a 
ommon way to treat a
omplex system with a high number of DOFs where some variables are morerelevant than others. In order to obtain a set of equations, we analyze thegeometri
al properties of the MS and sear
h for suitable relations between theexpli
it and CG variables. The geometri
al 
onditions that we have used toobtain a system of equations involve the square of the absolute value of ~R(1)and ~R(2), whi
h are expressed as the resultants of the sequen
e of 
ollinearve
tors for ea
h 
ase . For the �rst MS, now we de�ne ~r1 =
−−→
O1B, ~r2 =

−−→
BC,

~r3 =
−−→
CO2, ~r4 =

−−→
DE and ~r5 =

−−→
EO3 (see Figure 2.6). So we have:

~R(1) = −(~r1 + ~r2 + ~r3)

~R(2) = ~r3 + ~r4 + ~r5then the square of the absolute value,
(R(1))2 = (r1)

2
+ (r2)

2
+ (r3)

2
)

+2 (−r1r2 cos (θ1) + r1r3 cos (θ2 − θ1) − r2r3 cos (θ2))

(R(2))2 = (r3)
2 + (r4)

2 + (r5)
2

+2 (−r3r4 cos (θ3) + r3r5 cos (θ4 − θ3) − r4r5 cos (θ4)) (7.2)And similarly for the se
ond MS having de�ned ~r1 =
−−→
O1B, ~r2 =

−−→
BC, ~r3 =

−−→
CD,95



~r4 =
−−→
DE, ~r5 =

−−→
EO2, ~r6 =

−−→
EF , ~r7 =

−−→
FG, ~r8 =

−−→
GH and ~r9 =

−−−→
HO3.

~R(1) = −(~r1 + ~r2 + ~r3 + ~r4 + ~r5)

~R(2) = −~r5 + ~r6 + ~r7 + ~r8 + ~r9on
e again the square of the absolute value,
(R(1))2 = (r1)

2 + (r2)
2 + (r3)

2 + (r4)
2 + (r5)

2 + 2(−r1r2 cos(
θ1

2
)

+r1r3cos(θ2 −
θ1

2
) − r1r4 cos(θ3 +

θ1

2
− θ2) + r1r5 cos(θ2 − θ3)

−r2r3 cos(θ2) + r2r4 cos(θ2 − θ3) − r2r5 cos(
θ1

2
+ θ2 − θ3)

−r3r4 cos(θ3) + r3r5 cos(θ3 −
θ1

2
) − r4r5 cos(

θ1

2
))

(R(2))2 = (r5)
2 + (r6)

2 + (r7)
2 + (r8)

2 + (r9)
2 + 2(−r5r6 cos(

θ1

2
)

+r5r7cos(θ4 −
θ1

2
) − r5r8 cos(θ5 +

θ1

2
− θ4) + r5r9 cos(θ4 − θ5)

−r6r7 cos(θ4) + r6r8 cos(θ5 − θ4) − r6r9 cos(
θ1

2
+ θ4 − θ5)

−r7r8 cos(θ5) + r7r9 cos(θ5 −
θ1

2
) − r8r9 cos(

θ1

2
)) (7.3)Despite the s
alar produ
t of ~R(1) · ~R(2) being a valid relation to obtain Ω, wenoti
e that it is not well handled by the 
onventional inverse pro
edure be
auseit involves no simple argument dependen
ies. Hen
e we use a parti
ular relationfor ea
h MS as shown below.1. Case Figure 2.6(a) : For Ω we have: Ω = π − ̂DO2O3 + ̂O1O2C, then usethe s
alar produ
t of ~r3 ·~r4 = −r3r4cos (θ3) and sin
e ~r4 = ~R(2) −~r3 −~r5,we have that,

−r3r4cos (θ3) = ~r3 ·
(

~R(2) − ~r3 − ~r5

)

=
(
r3R

(2)cos
(
̂DO2O3

)
− r2

3 − r3r5cos(θ4 − θ5)
)thus inverting this relation we obtain ̂DO2O3. The remaining angle ̂O1O2C
an be expressed as a fun
tion of the R(1) and is equal to:

̂O1O2C = arccos

[
(R(1))2 − 4(r1)

2(1 − 2cos(θ1)

2R(1)r1

]2. Case Figure 2.6(b) : Ω = 2π − D̂O2F − ̂O1O2D − ̂O3O2F and due to thesymmetry of the system the last two angles on the r.h.s of the equation96



are mathemati
ally similar. We now show the geometri
al pro
edure todetermine the expression for one of them, namely ̂O1O2D.
△O1DC : O1D

2 = O1C
2 + CD 2 − 2O1C CD cos

(
̂O1CD

)

△O1DO2 : O1D
2 = O1O2

2 + DO2
2 − 2O1O2 DO2 cos

(
̂O1O2D

)Where the symbol △ indi
ates the triangle under 
onsideration de�ned bythe letters of its verti
es (e.g. △O1DC is the triangle whose verti
es arethe points O1, D and C. Next we solve for ̂O1O2D and 
onsidering that
O1C = DO2 we have

̂O1O2D =
arccos

(
O1O2

2 − CD 2 + 2O1C CD cos
(
̂O1CD

))

2O1O2 O1C
,for analogy, for the other angle ̂O3O2F :

̂O3O2F =
arccos

(
O2O3

2 − FG 2 + 2GO3 FGcos
(
̂FGO3

))

2O2O3 GO3

.where ̂O1CD = θ2 + ̂O1CB and ̂O3O2F = θ5 + ̂HGO3. Due to thesymmetry we have that ̂O1CB = ̂HGO3, this angle 
an be 
al
ulatedusing the geometri
al properties of the triangles and is equal to,
̂O1CB =

3

8
+

1

2

(
5

4
− cos (θ1)

) 1
2From our notation for CG variables we have,

O1O2 = R(1),

O2O3 = R(2)and,
CD = FG = l1.Despite the appearan
e of a 
ompli
ated mathemati
al pro
edure, te
hni
allythis relations are not di�
ult to obtain and by using standard 
omputationaltools as Mathemati
a [116℄, one 
an obtain �numeri
al� expressions of the trans-formation whi
h 
an be dire
tly plugged into a 
omputer 
ode. The expli
itexpressions are rather lengthy (but easy to use into the numeri
al pro
edure ofthe ASV) and would o

upy too mu
h spa
e, thus they are not reported here.In any 
ase the formal pro
edure reported above is su�
ient to reprodu
e all the
al
ulations we are performing. We have tested the 
orre
tness of the expli
itexpressions obtained by 
al
ulating several values of the potential using boththe expli
it atomisti
 
oordinates and the 
orresponding CG value of R(1), R(2)and Ω. Below the formal relations 
orresponding to the two MS are reported;97



for the 1:2 MS, we have the following dependen
ies with θ1 and l1 as parametri
values:
θ1 = θ̄1

R(1) = R(1)(l̄1, θ̄1, θ2) −→ θ2 = θ2(l̄1, θ̄1, R
(1))

R(2) = R(2)(l̄1, θ̄1, θ2, θ3, θ4) −→ θ3 = θ3(l̄1, θ̄1, R
(1), R(2), Ω)

Ω = Ω(l̄1, θ̄1, θ2, θ3, θ4) −→ θ4 = θ4(l̄1, θ̄1, R
(1), R(2), Ω) (7.4)For the 1:3 MS, we �xed θ1,θ2 and l1 as a parametri
 values and obtain:

θ1 = θ̄1

θ2 = θ̄2

R(1) = R(1)
(
l̄1, θ̄1, θ̄2, θ3

)
−→ θ3 = θ3

(
l̄1, θ̄1, θ̄2, R

(1)
)

R(2) = R(2)
(
l̄1, θ̄1, θ4, θ5

)
−→ θ4 = θ4

(
l̄1, θ̄1, θ̄2, R

(1), R(2), Ω
)

Ω = Ω
(
l̄1, θ̄1, θ̄2, θ3, θ4, θ5

)
−→ θ5 = θ5

(
l̄1, θ̄1, θ̄2, R

(1), R(2), Ω
) (7.5)
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Appendix C: ThermostatIn 
omputer simulations a thermostat is needed to de�ne properly the NVTensemble, being it responsible for the 
ontrol of the temperature. In the 
aseof the adaptive resolution s
heme the thermostat is used to 
ompensate theswit
hing of the intera
tions, whi
h o

urs during the transition from an atom-isti
 to a 
oarse grained region or vi
eversa. Su
h thermostat must ensure thatthe atoms of a mole
ules have the 
orre
t velo
ity distribution when enteringor leaving the swit
hing region. To ful�ll this task, we have used the 
on
eptof the Langevin idea or sto
hasti
 dynami
s to guarantee the sampling of theappropriate distributions [117℄. This is done by adding a random and dampingfor
e as shown below,
ṗi = ∇iU + FD

i + FR
i , (7.6)where the damping for
e FD

i is a Stokes-like fri
tion for
e whi
h a
ts in theoposite dire
tion of the velo
ity,
FD

i = −ξi/mi pi (7.7)where ξi is the fri
tion 
onstant. To 
ompensate for this fri
tion one adds arandom for
e FR
i whi
h a
ts in a random dire
tion and is 
ompletely lo
al,

FR
i = σiηi(t), (7.8)where σi is the noise amplitute and ηi is a noise with 
ertain properties:

• Homegeneity: < ηi(t) >= 0

• Independe
y of the time and spa
e: < ηi(t)ηj(t
′) >= δijδ(t − t′)The ratio between ξi and ηi 
an be obtained from the Fokker-Plan
k formalism[118℄. Let us write the 
orresponding Fokker-Plan
k operator for the sto
hasti
part of the langevin equation (Eq. 7.6) as follows:

LSD =
∑

i

∂

∂pi
[ξi

∂H
∂pi

+ σ2
i

∂

∂pi
] (7.9)where this sum runs over all the parti
les. By assuming that the equilibriumdistribution is a Boltzmann type, one has that:

LSDe−H/kBT = 0 (7.10)99



and from the above equation one obtains that:
σ2

i = kBTξi (7.11)this relation is known as the Flu
tuation-Dissipation theorem (FDT). The Langevinthermostat is one of the standard lo
al sto
hasti
 thermostats, whi
h generatesa 
anoni
al ensemble. This lo
al thermostat has shown to stabilize the systems,whi
h a global thermostat 
annot do. A drawba
k of the Langevin thermostatis its la
k of Galilei invarian
e and the strong depende
e of the dynami
s on thefri
tion strength.
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Appendix D: For
e�eld of thetetrahedral mole
uleA tetrahedral mole
ules is 
hara
terized by N=4 atoms of the same mass m0
onne
ted by anharmoni
 bonds. All atoms in the system intera
t a

ording toa purely repulsive shifted 12-6 Lennard-Jones potential with a 
uto� at 21/6σof the form
Uatom

LJ (riαjβ) =

{
4ε
[(

σ
riαjβ

)12 −
(

σ
riαjβ

)6
+ 1

4

]
; riαjβ ≤ 21/6σ

0; riαjβ > 21/6σ
(7.12)

riαjβ de�nes the distan
e between the atom iα of the mole
ule α and the atom jβof the mole
ule β. We de�ne ε and σ as a the referen
e length and energy units.Neighboring atoms of a mole
ule are linked via an attra
tive �nite extensiblenonlinear elasti
 (FENE) potential
Uatom

FENE(riαjα) =

{
− 1

2kR2
0 ln
[
1 −

( riαjα

R0

)2]
; riαjα ≤ R0

∞; riαjα > R0

(7.13)being R0 = 1.5σ the divergen
e length and k = 30ε/σ2 the sti�ness. Theequilibrium bond length at kBT = ε is approximately 1.0σ.
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Appendix E: Implementationof the normal modes inAdResSWe use the Hamiltonian from Eq. 4.59 in the normal modes variables withoutthe external potential to derive the equation of motion (EOM) of a free ringpolymer. In the new system of 
oordinates the EOM take the form:
P

(s)
I =

dQ
(s)
I

dt
d

dt
P

(s)
I = −mIΩ

2
sQ

(s)
I , ∀s = 1, . . . , n, (7.14)where Ωs are the normal mode frequen
ies and they are de�ned in Eq. 4.58.These are the EOM of a n-de
oupled harmoni
 os
illators and the solution isknown to be at time t + ∆t

Q
(s)
I (t + ∆t) = Q

(s)
I (t) cos(Ωs∆t) +

P
(s)
I (t)

mIΩs
sin(Ωs∆t)

P
(s)
I (t + ∆t) = −Q

(s)
I (t)ΩsmI sin(Ωs∆t) + P

(s)
I (t) cos(Ωs∆t) (7.15)for all s = 1, . . . , n and where Q

(s)
I (t) and P

(s)
I (t) are the initial 
onditions attime t. In a matrix form,

[
P

(s)
I (t + ∆t)

Q
((s)
I (t + ∆t)

]
=




cos(Ωs∆t) −ΩsmI sin(Ωs∆t)
sin(Ωs∆t)

ΩsmI
cos(Ωs∆t)



[
P

(s)
I (t)

Q
(s)
I (t)

]For simpli
ity we show the 
omponent of the matri
es for the zero-frequen
y(i.e. for the 
entroid), this is the 
ase of s = 0 and from the previous matrixform we get
[

P
(0)
I (t + ∆t)

Q
((0)
I (t + ∆t)

]
=

(
1 0

∆t/mI 1

)[
P

(0)
I (t)

Q
(0)
I (t)

]103



where we used the property of limx→0
sin(x)

x = 1. This form is ideal for thenumeri
al implementation of the algorithm. Now let us synthesize the 
hangesin the velo
ity Verlet algorithm to perform the normal modes (NM) in few step:STEPs of Velo
ity Verlet with NM in AdResS:1. Cal
ulate for
es using AdResS. Evaluate F
(s)
I (t) only from the externalpotential in the primitive spa
e.2. Update velo
ities, v(s)

I (t+ ∆t
2 ) = v

(s)
I (t)+ ∆t

2 F
(s)
I (t), in the primitive spa
e.3. Evolve positions and velo
ities at t+∆t withNM algorithm (See below).4. Cal
ulate for
es, F

(s)
I (t + ∆t

2 ) as in STEP 1 from positions of STEP 3.5. Update velo
ities, v
(s)
I (t + ∆t) = v

(s)
I (t + ∆t

2 ) + ∆t
2 F

(s)
I (t + ∆t), in theprimitive spa
e.The STEP 3 
on
erns the implementation of the normal modes and this ispresented belowNM algorithm:1. Apply the forward FFT to {r(s)

I (t)}, {p(s)
I (t)} −→ {Q(s)

I (t)}, {P (s)
I (t)} (
o-ordinates and momenta in NM).2. Evolve {Q(s)

I (t)}, {P (s)
I (t)} a

ording EOM of free ring-polymer (Eq. 7.15)to t + ∆t.3. Apply the ba
kward FFT to {Q(s)

I (t + ∆t)}, {P (s)
I (t + ∆t)} −→ {r(s)

I (t +

∆t)}, {p(s)
I (t + ∆t)}.
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