Министерство индустрии и новых технологий Республики Казахстан **Химико-металлургический институт**

Концепция хаотизированных частиц и ее приложения

Докладчик: Турдукожаева Астра Мундуковна доктор технических наук, профессор

Chemical and Metallurgical Institute Karaganda, Republic of Kazakhstan

THE CONCEPT OF CHAOTIC PARTICLES AND ITS APPLICATIONS

Professor Astra Mundukovna Turdukozhayeva

Людвиг Больцман (Ludwig Eduard Boltzmann) 20.02.1844 – 05.09.1906 Австрийский физиктеоретик, основатель статистической механики и молекулярно-кинетической теории

Клод Элвуд Шеннон (Claude Elwood Shannon) 30.04.1916-24.02.2001 Американский инженер и математик, автор фундаментальных трудов по теории информации, электротехнике и криптографии

Распределение и энтропия Больцмана. Доля сверхбарьерных частиц

$$H = -\sum P_i \ln P_i \tag{1}$$

$$P_i = N_i / N = \exp\left[-\varepsilon_i / (kT)\right] / \sum_{i=1}^m \exp\left[-\varepsilon_i / (kT)\right]$$
(2)

$$P_a = \exp\left[-\varepsilon_a / (kT)\right] \tag{3}$$

$$P_a = \exp\left[-E_a/(RT)\right] \tag{4}$$

(5)

Закон Шеннона-Хартли: $I + H = H_{max}$

$$H_{\rm III} = -\sum_{1}^{N} P_i \log_2 P_i \tag{6}$$

$$H_{\rm E} = -\sum_{1}^{m} P_i \ln P_i \tag{7}$$

$$S' = -k \sum_{1}^{m} P_{i} \ln P_{i}$$
 (8)

Распределение (энергетический спектр) Больцмана при плавлении и кипении

Концепция хаотизированных частиц

$$P_{crm} + P_{lqm} + P_{vm} = 1$$

Доля кристаллоподвижных частиц:

$$P_{crm} = 1 - \exp\left[-\Delta H_m / (RT)\right]$$

Доля пароподвижных частиц:

$$P_{vm} = \exp\left[-\Delta H_b/(RT)\right]$$

Доля жидкоподвижных частиц:

$$P_{lqm} = 1 - P_{crm} - P_{vm} = \exp\left[-\Delta H_m/(RT)\right] - \exp\left[-\Delta H_b/(RT)\right]$$

Соотношение долей кристаллоподвижных, жидкоподвижных и пароподвижных частиц в точках плавления и кипения

 $P_{lqm+vm} = \exp(-T_m/T_b)$

Зависимость долей хаотизированных частиц от температуры для бария

Пропорция золотого сечения 0,62:0,38

При
$$T = T_m$$
:
 $P_{crm} = 1 - \exp(-T_m/T_m) = 1 - e^{-1} \cong 0,63 \Longrightarrow 0,62:0,38$

При
$$T = T_b$$
:
 $P_{vm} = \exp(-T_b/T_b) = e^{-1} \cong 0,37 \Longrightarrow 0,37:0,63$

Физико-химические инварианты плавления металлов

$$\Delta S_m = \Delta H_m / T_m \tag{1}$$

$$\Delta H_m = 9,048T_m, Дж/моль$$
 (2)

$$\Delta S_m = \Delta S_{pos} + \Delta S_{vib} + \Delta S_e \tag{3}$$

 $\Delta S_{ch} = RT_m/T_m = R = 8,31441 \ Дж/(моль·К)$ (4)

$$\Delta S_{ph} = R T_{ph} / T_{ph} = R \tag{5}$$

 $P_{ph} = \exp(-RT_{ph}/RT_{ph}) = e^{-1} \cong 0,37, \Rightarrow 0,62:0,38 \quad (6)$ $\Delta S_m \cong \Delta S_{pos} \equiv \Delta S_{ch} = R \quad (7)$

Анализ уравнения Шредера и его расширительное толкование применительно к пластичности

$$k_{i,\phi} = a_{i,\beta} / a_{i,\alpha} \tag{1}$$

$$\left(\frac{\partial \ln k_{i,\phi}}{\partial T}\right)_{P} = \frac{\Delta H_{m}}{RT^{2}}$$
(2)

Уравнение Шредера в дифференциальном

$$\left(\frac{\partial \ln x}{\partial T}\right)_{P} = \frac{\Delta H_{m}}{RT^{2}}$$
(3)

и интегральном виде

$$x = \exp\left(-\frac{\Delta H_m}{RT}\right) \tag{4}$$

Идеальный кристалл = хаотизированные частицы + + виртуальные вакансии + (5) + дефектная кристаллическая решетка

$$x = \exp\left(-\frac{RT_m}{RT}\right) = \exp\left(-T_m/T\right) = P$$
(6)

При
$$T = T_m \quad P = e^{-1} = 0,37$$
 (7)

$$\frac{dP}{dT} = \frac{T_m}{T^2} \exp\left(-\frac{T_m}{T}\right) \tag{8}$$

$$\frac{d^2 P}{dT^2} = -\frac{2T_m}{T^3} \exp\left(-\frac{T_m}{T}\right) + \frac{T_m}{T^2} \cdot \frac{T_m}{T^2} \exp\left(-\frac{T_m}{T}\right) =$$

$$= \frac{T_m}{T^3} \left(\frac{T_m}{T} - 2\right) \exp\left(-\frac{T_m}{T}\right)$$
(9)

$$T_{ip} = \frac{T_m}{2} = 0,5T_m$$
(10)

$$T_{1,2} = (3 \pm \sqrt{3})T_m / 6 \cong (0,2 \div 0,8)T_m$$
 (11)

Соответствует температуре Бочвара-Таммана, ~0,5 T_m и зоне проявления эффектов пластичности $T = (0,3 \div 0,8)T_m$

Применение концепции хаотизированных частиц для расчета полезных энергетических затрат при пластической деформации металлов

$$RT + E_{mec} \ge RT_m \tag{1}$$

$$E_{mec} = RT_m - RT = R(T_m - T)$$
⁽²⁾

$$E_{mec} = 4,3713 \cdot 10^{-3} R (T_m - T), \text{ kBt} \cdot \text{y/t} Cu$$
(3)

$$E_{mec,i} = E_{mec} D\alpha_i = 4,3713 \cdot 10^{-3} R(T_m - T_i) \left(1 - \frac{S_{ex} p_{en}}{S_{en} p_{ex}} \right) \frac{p_{i+1}/S_{i+1} - p_i/S_i}{p_{ex}/S_{ex} - p_{en}/S_{en}}$$
(4)

$$E_{mec,i} = 4,3713 \cdot 10^{-3} R(T_m - T_i) \left(\frac{p_{i+1}}{S_{i+1}} - \frac{p_i}{S_i}\right) \frac{S_{ex}}{p_{ex}}$$
(5)

$$T_{i} = T_{en} - (T_{en} - T_{ex}) \sum_{1}^{i} F_{i} \tau_{i} \left(\frac{T_{i-1} + T_{i}}{2} - T_{0} \right) / \sum_{1}^{n} F_{i} \tau_{i} \left(\frac{T_{i-1} + T_{i}}{2} - T_{0} \right)$$
(6)

$$E_{mec,\Sigma} = \sum_{1}^{n} E_{mec,i} \tag{7}$$

Фактические (1) и теоретические определенные (2) энергозатраты (кВт·ч/т), коэффициент полезного действия в клетях прокатного стана

Клети	<i>Е_{тес}</i> пр 820, <i>T_{ex}</i>	и $T_{en} = 603 {}^{0}\text{C}$	кпд,	E_{mec} пр 830, T_{ex}	и $T_{en} = 610^{0}$ C	кпд,
	1	2	д.с.	1	2	д.с.
1 (черновая)	0,942	0,501	0,532	0,942	0,489	0,519
2+4+6+8 (горизонтальные)	8,892	7,239	0,814	8,662	7,124	0,822
3+5+7+9 (вертикальные)	7,003	6,484	0,926	6,785	6,389	0,942
Итого	16,837	14,224	0,845	16,389	14,002	0,854

Впервые в мире были строго рассчитаны и улучшены процессы подготовки гранул и брикетов для плавки медных концентратов, а также обеспечено получение медной катанки высшего качества.

Виртуальность кристаллического состояния

Предельная сохранность объемной конфигурации при заполнении решетки 5 частицами из 8

 $C_8^5 = \frac{8!}{5!(8-5)!} = 56$ виртуальных комбинаций

$$P_{crm,m} = 5/8 = 0,625 \Longrightarrow P_{gs} \approx 0,618$$

Физическая и вероятностная модели образования кластеров в жидкости на основе кристаллоподвижных частиц

Первый способ:		Второй способ:	
$P_{crm,n} = P_{crm}^n$	(1)	$nK_{n-1} = (n-1)K_n$	(1)
$P_{crm,n} = P_{crm}^{n} = P_{crm}^{n-1} P_{crm} = P_{crm}^{n-2} P_{crm}^{2} = P_{crm}^{n-3} P_{crm}^{3} \dots$	(2)	$P_{K_{n-1}}^n = P_{K_n}^{n-1}$	(2)
$P_{crm} + P_{crm}^2 + P_{crm}^3 + P_{crm}^4 + \dots + P_{crm}^n + \dots$	(3)	$P_{1, \text{ wcx}} = P_{crm}$	(3)
Разложение функции $(1-x)^{-1}$ в ряд при условии $ x < 1$:		$P_{2,\text{ucx}} = P_{1,\text{ucx}}^2 = P_{crm}^2$	(4)
$\frac{1}{1-x} = 1 + x + x^{2} + x^{3} + x^{4} + \dots + x^{n} + \dots$	(4)	$P_{1} = P_{1, \text{ ucx}} - P_{2, \text{ ucx}} = P_{crm} - P_{crm}^{2} = P_{crm}(1 - P_{crm})$	(5)
$P_{crm} = (1 - P_{crm})(P_{crm} + P_{crm}^2 + P_{crm}^3 + P_{crm}^4 + \dots + P_{crm}^n + \dots)$	(5)	$P_{2,\text{ucx}}^3 = \left(P_{crm}^2\right)^3 = P_{crm}^6 = P_{3,\text{ucx}}^2$	(6)
		$P_{3, \text{ ucx}} = P_{crm}^3$	(7)
		$P_{2} = P_{2, \text{ ucx}} - P_{3, \text{ ucx}} = P_{crm}^{2}$ $- P_{crm}^{3} = P_{crm}^{2} (1 - P_{crm})$	(8)

$$P_{crm,n} = \left(1 - P_{crm}\right) P_{crm}^{n}$$

$$N_{crm,n} = P_{crm,n} \cdot N_A = e^{-1} (1 - e^{-1})^n \cdot 6,022045 \cdot 10^{23}$$

Долевое и количественное для моля вещества содержание кластеров в точке кристаллизации

$$\overline{n} = \frac{1}{0,4} \sum_{n=2}^{n=15} n P_{crm,n} = 3,7 \approx 4$$

Долевое и количественное содержание кластеров в точке кипения для моля вещества

$$P_{crm,n} = P_{crm}^{n} (1 - P_{crm}) = (1 - e^{-0.5})^{n} e^{-0.5}$$

 $N_{crm,n} = P_{crm,n} \cdot N_A = (1 - e^{-0.5})^n e^{-0.5} \cdot 6,022045 \cdot 10^{23}$

$$\overline{n} = \frac{1}{0,155} \sum_{n=2}^{n=11} n P_{crm,n} = 2,6 \approx 3$$

Кристаллоподвижные частицы – источник образования виртуальных кластеров в жидкости и газе

Распределение кластеров по числу входящих в них частиц

$$P_{crm} = \sum_{i=1}^{n} P_{crm,n}$$

Доля кластеров с числом частиц *n*

$$P_{crm,n} = P_{crm}^n \left(1 - P_{crm}\right)$$

Радиус *п*-частичного кластера

$$R = \left(\frac{3n}{4\pi}\right)^{1/3}$$
 частиц, или $r(6n/\pi)^{1/3}$ м.

Площадь поверхности *п*-частичного кластера

$$F_{k,n} = 4\pi r^2 (6n/\pi)^{2/3}$$
, M².

Площадь поверхности всех *п*-частичных кластеров

$$F_{\Sigma,k,n} = 4\pi r^2 N_A (1 - P_{crm}) (6/\pi)^{2/3} P_{crm}^n / n^{1/3}, \text{м}^2 / \text{моль.}$$

Суммарная площадь всех кластеров

$$F_{\Sigma,k} = \sum_{n=2}^{\infty} F_{\Sigma,k,n} = 4\pi r^2 N_A (1 - P_{crm}) (6/\pi)^{2/3} \sum_{n=2}^{\infty} P_{crm}^n / n^{1/3}, \mathrm{M}^2 / \mathrm{MOJL}.$$

Для кремния:

 $T_m = 1688$ К, $T_b = 3522$ К, $\Delta H_m = 49797$ Дж/моль, откуда по

$$\overline{n} = n_i - \left\{ \ln \left[1 - \exp \left(-\frac{\Delta H_m}{RT} \right) \right] \right\}^{-1}$$
(1)

находим $\overline{n}_m = 35,24$, $\overline{n}_b = 5,96$, $T_{\text{опт}} = 2279$ К, $\overline{n}_{\text{опт}} = 14,34$.

$$d_{\hat{e}} = \sqrt[3]{6n/\pi}, \qquad (2)$$

$$d_{\rm e} = 2r\sqrt[3]{6n/\pi} \,. \tag{3}$$

r = 0,134 нм $\Rightarrow d_{\kappa}(T_m) = 4,07$ частицы, или 1,09 нм; $d_{\kappa}(T_b) = 2,25$ частицы, или 0,603 нм; $d_{\kappa}(T_{\text{опт}}) = 3,01$ частицы, или 0,808 нм.

Вывод базовой формулы для динамической вязкости в зависимости от температуры

 $T_r \geq$ $T \ge$ $T \rightarrow \infty$ для температуры 0 для вязкости $\eta_r \geq$ $\eta \geq$ $\left[1 - \exp\left(-\frac{\Delta H_m}{RT_m}\right)\right]^2 \ge \left[1 - \exp\left(-\frac{\Delta H_m}{RT}\right)\right]^2 = \left[1 - \exp\left(-\frac{\Delta H_m}{RT}\right)\right]^$ для P_{crm} 0 <u>При *T_r*:</u> $1 \ge \eta/\eta_r \ge 0$ $1 \ge \frac{T_r}{T} \ge 0$ $1 \ge \left(T_r / T\right)^a \ge 0$ $\frac{\eta}{\eta_r} = \left(\frac{T_r}{T}\right)^a,$

 $\eta = \eta_r (T_r/T)^a$

$$\overline{a} = \frac{1}{m} \sum_{\substack{i=1\\i\neq r}}^{m} a_i = \frac{1}{m} \sum_{\substack{i=1\\i\neq r}}^{m} \frac{\ln(\eta_i/\eta_r)}{\ln(T_r/T_i)}$$

$$a = a_2(T_2/T)^b$$

$$a_2 = \frac{\ln(\eta_2/\eta_1)}{\ln(T_1/T_2)}$$

$$\eta = \eta_1 (T_1/T)^{a_2(T_2/T)^b}$$

$$a_3 = \frac{\ln(\eta_3/\eta_1)}{\ln(T_1/T_3)}$$

$$b = \frac{\ln(a_3/a_2)}{\ln(T_2/T_3)}$$

Согласованность динамической вязкости, плотности и кинематической вязкости

 $\eta = \rho v$

Рисунок – Нормированные справочные значения динамической, $\eta/\eta_r(1)$, кинематической, $\nu/\nu_r(2)$, вязкости и плотности, $\rho/\rho_r(3)$, для жидкого лития. T_m – температура плавления

$$\rho = \rho_1 (T_1/T)^a = \rho_1 (T_1/T)^{a_2 (T_2/T)^b}$$

Согласованные температурные зависимости динамической вязкости, плотности и кинематической вязкости простых веществ в жидком состоянии (T_m – температура плавления, T_b – температура кипения, T_{cr} – критическая температура)

№ п п	Веществ о	η (мПа·с), ρ (кг/м ³), ν (м ² /с)	Коэффициен т корреляции	Интервал применимости , К
1	Литий	$\eta = 0.503(523/T)^{1.0413(1073/T)^{0.1478}}$	$R \rightarrow 1$	$T_m - T_{cr}$
		$\rho = 509 (473/T)^{0.116247 (873/T)^{-0.583140}}$	<i>R</i> = 0,99955	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta/\rho =$ $= 10^{-3} \frac{0,503(523/T)^{1,0413(1073/T)^{0,1478}}}{509(473/T)^{0,116247(873/T)^{-0,583140}}}$	$R \rightarrow 1$	<i>T_m</i> - 3000
2	Натрий	$\eta = 0.542 (423/T)^{1.2456 (1073/T)^{0.2483}}$	R = 0,99932	$T_m - T_{cr}$
		$\rho = 921 (400/T)^{0.152139(750/T)^{-0.684940}}$	R = 0,99987	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	R = 0,99793	$T_m - 1800$
3	Калий	$\eta = 0.358 (423/T)^{1.1743 (1073/T)^{0.2356}}$	R = 0,98504	$T_m - T_{cr}$
		$\rho = 825,3(350/T)^{a=0,204135(1050/T)^{-0.935209}}$	<i>R</i> = 0,99936	$T_m - T_{cr}$
		$v = 10^{-3} n/\rho$	R = 0.99718	$T_m - 1550$
4	Рубидий	$\eta = 0.542(323/T)^{1.4144(473/T)^{0.2557}}$	R = 0,99988	$T_m - T_{cr}$
		$\rho = 1454, 7(350/T)^{0,136242(500/T)^{-0,644199}}$	<i>R</i> = 0,99691	$T_m - 3500$
		$\nu = 10^{-3} \eta / \rho$	R = 0,99718	$T_m - 1600$
5	Цезий	$\eta = 0.598(323/T)^{1.4264(573/T)^{0.2709}}$	<i>R</i> = 0,99983	$T_m - T_{cr}$
		$\rho = 1809(350/T)^{0.185356(800/T)^{-0.910773}}$	<i>R</i> = 0,99958	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	R = 0,99878	$T_m - 1400$
6	Медь	$\eta = 3,60(1438/T)^{1,727(1653/T)^{0,74874}}$	<i>R</i> = 0,9948	$T_m - T_{cr}$
		$\rho = 7078(1438/T)^{0,156725(1653/T)^{-0,79452}}$	R = 0,99996	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	R = 0,99327	$T_m - 3100$

7	Серебро	$\eta = 3,69(1293/T)^{1,9783(1463/T)^{0,08957}}$	<i>R</i> = 0,9911	$T_m - T_{cr}$
		$\rho = 9346 (1234, 93/T)^{0,179378 (1373/T)^{-0,051921}}$	<i>R</i> = 0,991364	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	R = 0,98756	$T_m - 4000$
8	Золото	$\eta = 4,74 (1337,33/T)^{1,3673(1487/T)^{0,58716}}$	<i>R</i> = 0,9994	$T_m - T_{cr}$
		$\rho = 17231 (1373/T)^{0,100238(1473/T)^{-1,72173}}$	R = 0,960169	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	_	$T_m - 2300$
9	Бериллий	$\eta = 0.55 (1580/T)^{7,2351(1640/T)^{8,0632}}$	R = 0,97693	$T_m - 1700$
		$\rho = 1690(1556/T)^{0,129280(2200/T)^{-0,67471}}$	$R \rightarrow 1$	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	_	$T_m - 1700$
10	Магний	$\eta = 1,52(973/T)^{1,8733(1373/T)^{0,46109}}$	$R \rightarrow 1$	$T_m - T_{cr}$
		$\rho = 1585 (923/T)^{0.148285 (1073/T)^{-0.923180}}$	<i>R</i> = 0,99923	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	<i>R</i> = 0,99998	$T_m - 2200$
11	Кальций	$\eta = 1,453(1173/T)^{2,0073(1373/T)^{0,4763}}$	$R \rightarrow 1$	$T_m - T_{cr}$
		$\rho = 1344 (1173/T)^{0,17246 (1373/T)^{-0,3427}}$	R = 0,99723	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	<i>R</i> = 0,99997	$T_m - 2900$
12	Стронций	$\eta = 1,8751(1073/T)^{2,1866(1373/T)^{0,46883}}$	$R \rightarrow 1$	$T_m - T_{cr}$
		$\rho = 2301 (1073/T)^{0.112603(1373/T)^{-0.605350}}$	$R \rightarrow 1$	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	<i>R</i> = 0,99993	$T_m - 2700$
13	Барий	$\eta = 1,5187 (1073/T)^{1,7324 (1373/T)^{0,47389}}$	$R \rightarrow 1$	$T_m - T_{cr}$
		$\rho = 3328 (1073/T)^{0,125759(1473/T)^{-0,604472}}$	$R \rightarrow 1$	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	$R \rightarrow 1$	$T_m - 3600$
14	Цинк	$\eta = 3,20(692,7/T)^{1,58056(873/T)^{0,65066}}$	R = 0,99990	$T_m - T_{cr}$
		$\rho = 6562 (692, 7/T)^{0,128366(873/T)^{-0,742598}}$	<i>R</i> = 0,99925	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	R = 0,99991	$T_m - 1800$

15	Кадмий	$\eta = 3,05(600/T)^{1,5371(800/T)^{0,7939}}$	<i>R</i> = 0,99696	$T_m - T_{cr}$
		$\rho = 8010 (603/T)^{0.0913949(673/T)^{-0.332777}}$	$R \rightarrow 1$	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	—	$T_m - T_{cr}$
16	Ртуть	$\eta = 1,692(273/T)^{1,00617(373/T)^{0,38073}}$	<i>R</i> = 0,99386	$T_m - T_{cr}$
		$\rho = 13690(234, 2/T)^{0,0475705(298/T)^{-0,546556}}$	$R \rightarrow 1$	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	R = 0,98482	$T_m - 1400$

17	Бор	По η данных не найдено	—	—
		$\rho = 2180(2420/T)^{1,15968}$	_	$T_m - T_{cr}$
18	Алюминий	$\eta = 1,1603(942/T)^{1,53091(1049/T)^{0,182802}}$	<i>R</i> = 0,99914	$T_m - T_{cr}$
		$\rho = 2368(933/T)^{0,109575(1073/T)^{-0,991033}}$	<i>R</i> = 0,99963	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	R = 0,84320	$T_m - 3700$
19	Галлий	$\eta = 1,89(326/T)^{1,05028(675/T)^{0,339546}}$	<i>R</i> = 0,99943	$T_m - T_{cr}$
		$\rho = 6094, 7(302, 8/T)^{0,0532518(675/T)^{-0,474378}}$	R = 0,99992	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	_	$T_m - 2500$
20	Индий	$\eta = 1,92(436/T)^{1,2056(667/T)^{0,22877}}$	R = 0,9967	$T_m - T_{cr}$
		$\rho = 7727 (443/T)^{0,158093(773/T)^{-0,971624}}$	<i>R</i> = 0,99533	$T_m - T_{cr}$
		$v = 10^{-3} \eta/\rho$	R = 0,99969	$T_m - 1700$
21	Таллий	$\eta = 2,611(579,2/T)^{1,49683(730,7/T)^{0,59811}}$	R = 0,99902	$T_m - T_{cr}$
		$\rho = 11289(579,5/T)^{0,087058(603/T)^{-0,336477}}$	$R \rightarrow 1$	$T_m - T_{cr}$
		$v = 10^{-3} \eta/\rho$	R = 0,98223	$T_m - 2000$

22	Кремний	$\eta = 0,741 (1723/T)^{3,3032(1833/T)^{0,83937}}$	R = 0,9772	$T_m - T_{cr}$
		$\rho = 2510(1723/T)^{0,231265(1753/T)^{-1,614898}}$	R = 0,98564	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	<i>R</i> = 0,89423	$T_m - 3000$
23	Германий	$\eta = 0,68 (1248/T)^{1,8683(1403/T)^{0,72272}}$	R = 0,98272	$T_m - T_{cr}$
		$\rho = 5510 (1218/T)^{0.144552 (1573/T)^{-0.135294}}$	R = 0,99826	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	R = 0,97473	$T_m - 3700$
24	Олово	$\eta = 1,54(573/T)^{0,91233(973/T)^{0,47899}}$	<i>R</i> = 0,99976	$T_m - T_{cr}$
		$\rho = 6980 (499/T)^{0,0682625(796/T)^{-0,415231}}$	<i>R</i> = 0,99838	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	_	$T_m - 2100$
25	Свинец	$\eta = 2,17(573/T)^{1,27197(823/T)^{0,44074}}$	R = 0,9989	$T_m - T_{cr}$
		$\rho = 10686(600/T)^{0,0803711(823/T)^{-0,485240}}$	R = 0,9990	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	_	$T_m - 2600$
26	Азот	$\eta = 15,8(77,4/T)^{2,09182(104,1/T)^{0,39496}}$	<i>R</i> = 0,9985	$T_m - T_{cr}$
		По ρ данных не найдено	_	_
27	Белый фосфор	$\eta = 1,73(316,2/T)^{3,371485(333,2/T)^{0,608698}}$	$R \rightarrow 1$	$T_m - T_{cr}$
		По ρ данных не найдено	_	_
28	Сурьма	$\eta = 1,5(923/T)^{1,818567(1123/T)^{0,85272}}$	R = 0,96312	$T_m - T_{cr}$
		По ρ данных не найдено	—	—

29	Висмут	$\eta = 1,662(548,8/T)^{1,24127(636/T)^{0,31854}}$	R = 0,99872	$T_m - T_{cr}$
		$\rho = 10070(544, 2/T)^{0,092014(773/T)^{-0,296677}}$	R = 0,98258	$T_m - T_{cr}$
		$v = 10^{-3} \eta/\rho$	R = 0,9333	$T_m - 3000$
30	Кислород	$\eta = 12,5(111/T)^{1,18297(125,6/T)^{1,073937}}$	R = 0,98664	$T_m - T_{cr}$
		По $ ho$ данных не найдено	_	
31	Сера (по	$\eta = 10,94 (396/T)^{7,5202(408,5/T)^{0,833738}}$	_	$T_m - T_{cr}$
	кластерной составляющей	$\rho = 1798,8(398/T)^{0,187224(423/T)^{0,130815}}$	$R \rightarrow 1$	$T_m - T_{cr}$
	вязкости)	$\nu = 10^{-3} \eta/\rho$	—	$T_m - 1200$
32	Теллур	$\eta = 0.951 (950/T)^{0.75784(1100/T)^{0.028039}}$	<i>R</i> = 0,999522	$T_m - T_{cr}$
		$\rho = 5770 (758/T)^{0,113161 (1003/T)^{-0,495170}}$	<i>R</i> = 0,98198	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta/\rho$	<i>R</i> = 0,995994	$T_m - T_{cr}$
33	Водород	$\eta = 2,34(15/T)^{1,742452(19/T)^{0,105584}}$	$R \rightarrow 1$	$T_m - T_{cr}$
		По ρ данных не найдено	_	_
34	Фтор	$\eta = 4,14(69,2/T)^{2,756325(75,3/T)^{0,469534}}$	<i>R</i> = 0,99885	$T_m - T_{cr}$
		$\rho = 1640 (65/T)^{0.302996(80/T)^{-1.060994}}$	<i>R</i> = 0,99978	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	_	$(T_m - T_{cr})$
35	Хлор	$\eta = 0,569(219,9/T)^{1,815921(237,7/T)^{1,563298}}$	-	$T_m - T_{cr}$
		$\rho = 1655, 2(203/T)^{0,405112(273/T)^{-1,229602}}$	R = 0,99977	$T_m - T_{cr}$
		$\nu = 10^{-3} \eta / \rho$	_	$T_m - 275$
36	Бром	$\eta = 1,253(273/T)^{3,317945(293/T)^{0,752033}}$	<i>R</i> = 0,99993	$T_m - T_{cr}$
		По $ ho$ данных не найдено	_	-
37	Марганец	$\eta = 6,22(1550/T)^{1,625984(1625/T)^{0,485664}}$	R = 0,99992	$T_m - T_{cr}$
		По ρ данных не найдено	_	_
38	Железо	$\eta = 3,31 (1823/T)^{3,695867(1913/T)^{0,986443}}$	R = 0,98808	$T_m - T_{cr}$
		$\rho = 7010(1838/T)^{0,124374}$	R = 0,98108	$T_m - T_b$
		$\nu = 10^{-3} \eta / \rho$	_	$T_m - 4000$
39	Кобальт	$\eta = 5,89 (1768/T)^{3,189685(1873/T)^{0,938741}}$	<i>R</i> = 0,89352	$T_m - T_b$
		По $ ho$ данных не найдено	—	_

40	Никель	$\eta = 5,21(1728/T)^{2,12472(1823/T)^{0,782697}}$	$R \rightarrow 1$	$T_m - T_{cr}$
		$\rho = 7830(1728/T)^{0,060196(1803/T)^{-1,819539}}$	<i>R</i> = 0,996752	$T_m - T_b$
		$\nu = 10^{-3} \eta / \rho$	-	$T_m - 3400$
41	Палладий	По η данных не найдено	-	_
		$\rho = 10490(1825/T)^{0,232537(2000/T)^{-0,673850}}$	<i>R</i> = 0,99436	$T_m - T_{cr}$
42	Платина	По η данных не найдено	-	_
		$\rho = 19000 (2042/T)^{0.327403(2200/T)^{-0.694031}}$	<i>R</i> = 0,99735	$T_m - T_{cr}$
43	Лантан	$\eta = 4,08(1200/T)^{0,800955(2000/T)^{0,430738}}$	<i>R</i> = 0,99992	$T_m - T_{cr}$
		По ρ данных не найдено	_	_
44	Церий	$\eta = 4,85(1283/T)^{0.95785(2500/T)^{0.445093}}$	<i>R</i> = 0,99986	$T_m - T_{cr}$
		По ρ данных не найдено	-	_
45	Празеодим	$\eta = 3,70(1500/T)^{0,609365(2250/T)^{0,444726}}$	<i>R</i> = 0,99978	$T_m - T_{cr}$
		По ρ данных не найдено	-	_
46	Уран	$\eta = 10,00(1404/T)^{2,309924(1501/T)^{0,619149}}$	R = 0,99053	$T_m - T_b$
		По ρ данных не найдено	-	_
47	Плутоний	$\eta = 5,93(913/T)^{1,61361(1000/T)^{0,473894}}$	_	$T_m - T_{cr}$
		По $ ho$ данных не найдено	_	_
48	Гелий	По η данных не найдено	-	_
		$\rho = 145,47(1,2/T)^{0,0332875(3/T)^{-3,985569}}$	<i>R</i> = 0,99924	$T_m - T_{cr}$
49	Неон	По η данных не найдено	-	_
		$\rho = 1207 (24, 48/T)^{1,531928(44,45/T)^{-1,676422}}$	-	$(T_m - T_{cr})$
50	Аргон	По η данных не найдено	-	_
		$\rho = 1399,8(83,8/T)^{1,63261(150,87/T)^{-1,70072}}$	-	$(T_m - T_{cr})$
51	Криптон	По η данных не найдено	-	_
		$\rho = 2826(115,79/T)^{1,91619(209,41/T)^{-1,68772}}$	-	$(T_m - T_{cr})$
52	Ксенон	По η данных не найдено	-	_
		$\rho = 3399(161,36/T)^{1,92702(289,77/T)^{-1,70809}}$	-	$(T_m - T_{cr})$
53	Радон	По η данных не найдено	_	_
		$\rho = 5700 (202/T)^{2,49712(377/T)^{-1,60262}}$	-	$(T_m - T_{cr})$

Разработка новой температурной зависимости упругости пара

$$\ln p = -\frac{\Delta H}{RT} + const \tag{1}$$

(3)

$$\frac{d(\Delta H)}{dT} = C_{\Gamma} - C_{\kappa} = \Delta C_{p} = f(T), \qquad (2)$$

$$\Delta H = \Delta H_0 + aT + bT^2 + cT^3 + \dots$$

$$\lg p(\text{MM.pt.ct.}) = A + \frac{B}{T} + cT + D\lg T$$
(4)

$$P_{crm} = \exp[-\Delta H_b/(RT)]$$
(5)

температура:
$$T = 0$$
 $0 < T < T_b$ $T = T_b$
давление p_n : 0 $0 < f(T) < 1$ 1 (6)
доля P_{crm} : $0 < \exp[-\Delta H_b/(RT)] < \exp[-\Delta H_b/(RT_b)],$ (7)
 $0 < \frac{\exp[-\Delta H_b/(RT)]}{\exp[-\Delta H_b/(RT_b)]} < 1$ (8)
 $p_n = \frac{p}{p_b} = f(T) = \frac{\exp[-\Delta H_b/(RT)]}{\exp[-\Delta H_b/(RT_b)]} = \exp\frac{\Delta H_b(T - T_b)}{RT_bT}.$ (9)
 $p = p_b \exp\frac{\Delta H_b(T - T_b)}{RT_bT},$ (10)
 $p = 101325 \exp\frac{\Delta H_b(T - T_b)}{RT_bT}$ (11)

Предлагаемые новые уравнения температурной зависимости давления пара для s-, sp-, sd-, f-

металлов

Элемент	Предлагаемое уравнение
	<i>s</i> -металлы
Цезий	$p = 101325 \exp \frac{68330(T - 943)}{8,31441 \cdot 943T} = 101325 \exp(8,715 - 8219,3/T)$
Бериллий	$p = 101325 \exp \frac{309975(T - 2723)}{8,31441 \cdot 2723T} = 101325 \exp(13,691 - 31282/T)$
Стронций	$p = 101325 \exp \frac{140720(T - 1657)}{8,31441 \cdot 1657T} = 101325 \exp(10,214 - 16925/T)$
Цинк	$p = 101325 \exp \frac{114840(T - 1180)}{8,31441 \cdot 1180T} = 101325 \exp(11,705 - 13812/T)$
	<i>sp</i> -металлы
Таллий	$p = 101325 \exp \frac{162489(T - 1730)}{8,31441 \cdot 1730 \cdot T} = 101325 \exp(11,297 - 19543/T)$
Олово	$p = 101325 \exp \frac{290399(T - 2995)}{8,31441 \cdot 2995T} = 101325 \exp(11,662 - 34927 / T)$
Свинец	$p = 101325 \exp \frac{177900(T - 2023)}{8,31441 \cdot 2023T} = 101325 \exp(10,577 - 21397/T)$

	sd-металлы
Серебро	$p = 101325 \exp \frac{254220(T - 2485)}{8,31441 \cdot 2485T} = 101325 \exp(12,304 - 30576/T)$
Золото	$p = 101325 \exp \frac{335055(T - 3150)}{8,31441 \cdot 3150T} = 101325 \exp(12,793 - 40298/T)$
Скандий	$p = 101325 \exp \frac{335000(T - 3109)}{8,31441 \cdot 3109T} = 101325 \exp(12,96 - 40292/T)$
Иттрий	$p = 101325 \exp \frac{392964(T - 3500)}{8,31441 \cdot 3500} = 101325 \exp(13,504 - 47263/T)$
Лантан	$p = 101325 \exp \frac{402422(T - 3727)}{8,31441 \cdot 3727T} = 101325 \exp(12,986 - 48400/T)$
Актиний	$p = 101325 \exp \frac{397000(T - 3570)}{8,31441 \cdot 3570T} = 101325 \exp(13,375 - 47748/T)$
Гафний	$p = 101325 \exp \frac{575141(T - 4876)}{8,31441 \cdot 4876T} = 101325 \exp(14,187 - 69174/T)$
Ванадий	$p = 101325 \exp \frac{547199(T - 3665)}{8,31441 \cdot 3665T} = 101325 \exp(15,004 - 54989/T)$
Ниобий	$p = 101325 \exp \frac{718217(T - 5017)}{8,31441 \cdot 5017T} = 101325 \exp(17,218 - 86382/T)$
Тантал	$p = 101325 \exp \frac{770186(T - 5638)}{8,31441 \cdot 5638T} = 101325 \exp(16,430 - 92633/T)$
Молибден	$p = 101325 \exp \frac{592789(T - 5077)}{8,31441 \cdot 5077T} = 101325 \exp(14,043 - 71297/T)$
Марганец	$p = 101325 \exp \frac{226066(T - 2392)}{8,31441 \cdot 2392T} = 101325 \exp(11,367 - 27190/T)$
Рений	$p = 101325 \exp \frac{\overline{712077(T-5915)}}{8,31441 \cdot 5915T} = 101325 \exp(14,479-85644/T)$
Палладий	$p = 101325 \exp \frac{373000(T - 3385)}{8,31441 \cdot 3385T} = 101325 \exp(13,253 - 44862/T)$

	<i>f</i> -металлы
Тербий	$p = 101325 \exp \frac{330888(T - 3496)}{8,31441 \cdot 3496T} = 101325 \exp(11,384 - 39797/T)$
Тулий	$p = 101325 \exp \frac{190673(T - 2220)}{8,31441 \cdot 2220T} = 101325 \exp(10,33 - 22933/T)$
Иттербий	$p = 101325 \exp \frac{128867(T - 1484)}{8,31441 \cdot 1484T} = 101325 \exp(9,8854 - 15499/T)$
Лютеций	$p = 101325 \exp \frac{355912(T - 3669)}{8,31441 \cdot 3669T} = 101325 \exp(11,667 - 42807 / T)$

Энтропия смешения хаотизированных частиц

$$S = -R\sum_{i=1}^{m} p_i \ln p_i \tag{1}$$

$$S_{ni} = -R\{P_{crm} \ln P_{crm} + P_{lqm} \ln P_{lqm} + P_{vm} \ln P_{vm}\} = = -R\{[1 - \exp(-T_m/T)]\ln[1 - \exp(-T_m/T)] + + [\exp(-T_m/T) - \exp(-T_b/T)]\ln[\exp(-T_m/T) - \exp(-T_b/T)] + + (-T_b/T)\exp(-T_b/T)\}. S_{cns} Jaw/(моль-К) 10 8 6 4 2 0 0 1000 2000 3000 T, K 4000 Зависимость энтропии смешения хаотизированных частиц от температуры для бария$$

$$T_{\text{Smax}} = 0,99469T_b \approx T_b \tag{1}$$

$$S_{\max} = 8,95 \ \text{Дж/(моль-K)} \approx \overline{S} \max \approx R = 8,31441 \ \text{Дж/(моль-K)}$$

Точки – расчет по экспериментальным данным, прямая – по зависимости (1)

Зависимость температуры максимума энтропии смешения хаотизированных частиц от температуры кипения простых веществ

Виртуальность газообразного состояния
При
$$T_b$$
 $P_{vm} \approx P_{lqm} \approx P_{crm}$ $S_{mix} \approx S_{max} \approx R$
При $T > T_b$ $P_{vm} > P_{lqm} > P_{crm}$ $\eta = f(P_{vm})$
При $T \to \infty$ $P_{vm} \to 1, P_{lqm} \to 0, P_{crm} \to 0$ $S \to kN_A \sum_{i=1}^{N_A} \ln \frac{1}{N_A} = kN_A \ln N_A = R \ln N_A$
 $P_i \to 1/N_A$ $S_{max} = 455,255$ Дж/(моль · К)

Информационное вырождение термодинамической системы

$$S = S_{\infty} \exp\left[-\left(\frac{5030,31}{M^{3/5}T} p^{2/5}\right)^{\frac{5}{2}R\frac{e}{S_{\infty}}}\right]$$

Температурные зависимости энтропии газообразного бария (*S*, Дж·моль⁻¹·К⁻¹) по предлагаемой экспоненциальной модели, *S*₍₁₎; по Сакура-Тетроде, *S*₍₂₎; возбужденного состояния, *S*_в; суммы по скорректированной модели и возбужденного состояния, *S*; и справочным данным [спр], *S*[спр] (при давлении 1 атм)

<i>Т</i> , К	$S_{(1)}$	$S_{(2)}$	$S_{\scriptscriptstyle m B}$	S	<i>S</i> [спр]
0	0	$-\infty$			
1	61,843	51,705			
10	101,576	99,566			
50	133,274	133,020			
100	147,476	147,428	0,005	147,482	147,433
298,15	170,134	170,135	0,006	170,140	170,141
500	180,866	180,882	- 0,005	180,862	180,877
1000	195,166	195,289	0,009	195,174	195,298
3000	217,415	218,125	8,418	225,833	226,543
5000	227,513	228,743	24,485	251,998	253,228
7000	234,060	235,737	33,138	267,198	268,875
9000	238,891	240,961	38,372	277,263	279,333
10000	240,901	243,151	40,221	281,122	283,372
10^{30}	455,079	1487,551			
10^{60}	455,251	$\rightarrow \infty$			
00	455,251	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			

ИНФОРМАЦИОННАЯ ЭНТРОПИЯ ШЕННОНА И СОБСТВЕННАЯ ИНФОРМАЦИЯ ЭЛЕМЕНТОВ ТЕХНОЛОГИЧЕСКИХ СИСТЕМ

Теорема 1 Пусть собственная информация элементов технологической системы, равна $I(N) = -\log p_N(N)$

Тогда информационная энтропия данного множества определяется равенством:

$$H = -\sum_{i=1}^{N} p_i \log p_i$$

Теорема 2 Если множество дискретных вербятностных распределений имеет элементов, то информационная энтропия конечного дискретного вероятностного распределения удовлетворяет условию:

Теорема 3 Если , — – относи тельные значения информации, энтропии и на основании законы состования суммы энтропии и информации выполнено условие:

то есть решение уравнения $\overline{I(d)} + \overline{I(h)} = 1$

 $\overline{I(d)}^n + \overline{I(d)} - 1 = 0$

ИНФОРМАЦИОННАЯ ЭНТРОПИЯ КАК МЕРА СТРУКТУРИРОВАННОСТИ СЛОЖНЫХ ТЕХНОЛОГИЧЕСКИХ СИСТЕМ

Для конкретного численного выражения степени детерминации и стохастичности рассмотрена формула Р.Хартли:

$$H_{n(\max)} = k^n \log N_0$$

Рассмотрена технологическая схема с длиной кода k = 2. Тогда уравнение Хартли примет вид:

$$H_{n(\max)} = 2^n \log N_0 = 2^n \log_2 2 = 2^n$$

Следовательно, на основании свойства аддитивности энтропии:

$$H_{\sum_{n(\max)}} = \sum_{i=0}^{n} H_{i} = \sum_{i=0}^{n} 2^{i}$$

Формулы для определения уровневой и системной детерминированных составляющих и степеней детерминации и неустранимой стохастичности:

$$I_n(d) = 2^n \left[1 - \frac{1}{(n+1)!} d_n \right] = \frac{I_n(d)}{H_{n(\max)}} = 1 - \frac{1}{(n+1)!}, \quad h_n = \frac{I_n(h)}{H_{n(\max)}} = 1 - d_n = \frac{1}{(n+1)!},$$

$$I_{\sum n}(d) = \sum_{i=0}^n 2^i \left[1 - \frac{1}{(i+1)!} d_{\sum n} \right] \quad d_{\sum n} = \frac{\sum_{i=0}^n 2^i \left[1 - \frac{1}{(i+1)!} d_{\sum n} \right]}{\sum_{i=0}^n 2^i}, \quad h_{\sum n} = 1 - \frac{\sum_{i=0}^n 2^i \left[1 - \frac{1}{(i+1)!} d_{\sum n} d_{\sum n} \right]}{\sum_{i=0}^n 2^i}.$$

ЭНТРОПИЙНО-ИНФОРМАЦИОННЫЕ ХАРАКТЕРИСТИКИ ИДЕАЛЬНОЙ САМООРГАНИЗУЮЩЕЙСЯ СИСТЕМЫ

Таблица 1 – Расчетные оптимальные энтропийно-информационные характеристики

n	$I_n(d)$	$H_{n(\max)}$	$d_n \!=\! \frac{I_n(d)}{H_{\!$	$I_{\sum_{n}}(d)$	$H_{\sum_{n(\max)}}$	$d_{\sum_{\mathbf{z}}} = \frac{I_{\sum_{\mathbf{z}}}(d)}{H_{\sum_{\mathbf{z}}}}$
	$2^n \left[1 - \frac{1}{(n+1)!} \right]$	2 ⁿ	$\left[1 - \frac{1}{(n+1)!}\right]$	$\sum_{i=0}^{n} 2^{i} \left[1 - \frac{1}{(i+1)!} \right]$	$\sum_{i=0}^{n} 2^{i}$	$\frac{\sum_{i=0}^{n} 2^{i} \left[1 - \frac{1}{(i+1)!} \right]}{\sum_{i=0}^{n} 2^{i}}$
0	0	1,0	0	0	1,0	0
1	1,0000	2,0	0,5000	1,0000	3,0	0,3333
2	3,3333	4,0	0,8333	4,3333	7,0	0,6190
3	7,6667	8,0	0,9583	12,0000	15,0	0,8000
4	15,8667	16,0	0,9917	27,8667	31,0	0,8989
5	31,9556	32,0	0,9986	59,8222	63,0	0,9496
6	63,9873	64,0	0,9998	123,8095	127,0	0,9749
7	127,9968	128,0	1,0	251,8063	255,0	0,9875
8	255,9993	256,0	1,0	507,8056	511,0	0,9937
9	511,9999	512,0	1,0	1019,8055	1023,0	0,9969
10	1024,0000	1024,0	1,0	2043,8055	2047,0	0,9984
11	2048,0000	2048,0	1,0	4091,8055	4095,0	0,9992
12	4096,0000	4096,0	1,0	8187,8055	8191,0	0,9996
13	8192,0000	8192,0	1,0	16379,8055	16383,0	0,9998
14	16384,0000	16384,0	1,0	32763,8055	32767,0	0,9999
15	32768,0000	32768,0	1,0	65531,8055	65535,0	1,0

ГРАФИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ЭНТРОПИЙНО-ИНФОРМАЦИОННОГО АНАЛИЗА ПРИМЕНИТЕЛЬНО К ТЕХНОЛОГИЧЕСКИМ СИСТЕМАМ

НОВЫЕ АСПЕКТЫ ЭНТРОПИЙНО-ИНФОРМАЦИОННОГО АНАЛИЗА ПРИМЕНИТЕЛЬНО К ТЕХНОЛОГИЧЕСКИМ СИСТЕМАМ

Неопределенность поведения только одного элемента технологической системы:

$$H_p = \log_2 \frac{1}{p} = -\log_2 p = -\frac{\ln p}{\ln 2}$$

Технологическая неопределенность различных операций в пределах единой схемы:

$$H_k = \sum_{i=1}^n H_i$$

Показатель комплексной определенности технологической схемы:

$$p_k = \exp\left(-H_k \ln 2\right) = 2^{-H_k}$$

$$p_{\alpha\beta,k} = \exp\left(-\ln 2\sum_{i=0}^{n} H_{p,i}\right) = \exp\left(\ln 2\sum_{i=0}^{n} \frac{\ln p_{\alpha\beta,i}}{\ln 2}\right) = \exp\left(\sum_{i=0}^{n} \ln p_{\alpha\beta,i}\right) =$$

$$=\prod_{i=0}^{n} p_{\alpha\beta,i} = p_{\alpha\beta,0} \cdot p_{\alpha\beta,1} \cdot p_{\alpha\beta,2} \cdot p_{\alpha\beta,3} \dots p_{\alpha\beta,n}.$$

Научная новизна полученных результатов состоит в том, что впервые теоретическое обоснование известных характеристик веществ в дополнение к известным теориям осуществляется с анализом влияния *хаотизированной* составляющей вещества, т.е. воздействием теплового состояния частиц по их кинетической энергии и обменным соударениям.

Конкурентоспособность проводимых исследований в сравнении с аналогичными зарубежными разработками. Работы по предлагаемому проекту являются полностью оригинальными. В данном направлении в Казахстане (кроме ХМИ), ближнем и дальнем зарубежье работы не проводятся, и конкурентоспособность определяется использованием в качестве теоретической основы для выражения температурной зависимости вязкости более общей закономерности, объединяющей твердое, жидкое и газообразное состояния по их хаотизированной составляющей.

Dziękujemy! Благодарю за внимание!