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Ganan-Calvo et al. 2007 
Nature Phys. 3, 737-742

Gañán-Calvo 1997, W9700034ES

We may wish to control these structures & make them as small as possible
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We seek for the geometrical and operational conditionsg p
where the smallest possible, monodisperse droplets are generated

at a productivity of practical use
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Parameter ranges in experiments (G-C et al.): 
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The small yield per orifice has led to the design of multi-orifice devices:
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3D (axisymmetric) Flow focusing in silicon





Ranges of pressure 

FF FB

drop and flow rate:

FF FB

ΔP, bar 0.05 – 30 0.7 – 7.0

Q, uL/min 10 - 5800 10 - 14000
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Based on previous characteristic dimension, four main
parameters inform on the role played by surface tension, 

viscosity and geometry (orifice size and tube-orifice distance)
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• Why some liquids (water) exhibit larger sizes than predicted, in some (most) conditions?
• Why some conditions exhibit extremely good monodispersity (without external excitation)?• Why some conditions exhibit extremely good monodispersity (without external excitation)?
• What exactly sets the minimum flow rate: C/A instability of the jet? Cone-jet flow transition?
• Is the dripping mode so bad?



Some recents FF numerical simulations:
• Liquid-liquid configuration for the production of microemulsions: 
Michael M Dupin et al Physical Review E 73 2006Michael M. Dupin et al. Physical Review E,73, 2006.
• Microbubbling: M. J. Jensen et al. Physics of Fluids, 18, 2006.



Geometrical configuration 
is fixed:
• R /R = 0 75Q • R1/R = 0.75,
• R2/R = 1.75,
• R3/R = 3.5, 
• L/R = 0 75

Qg

• L/R = 0.75.

• H/R = 1

Ql

Characteristic magnitudes:g
* R
* V=Qg/(π R2)
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In these cases, we  have studied the effect of 
changing Q in:

ratio rates Flow  ,*
g

l

Q
QQ =

changing Q in:
1. Meniscus-jet shape. 
2. Minimum flow rate Q* for stable jet.
3 Flow structure inside the meniscus3. Flow structure inside the meniscus.
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-VOF scheme:

a) Explicit time advance
b) CICSAM reconstruction

*Commercial code used: FLUENT 6.3Co e c a code used U 6 3

Basic mesh:     Δz = Δr = 0.02
Refined mesh: Δ Δ 0 01Refined mesh:  Δz = Δr = 0.01
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Case 1

Q=0.004Q

θ

din dout
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Case 1 Case 2

Q* (minimum) Q* (minimum)
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Case 1 Case 2

Diameters

“Contact angles”
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Case 1 Case 2

Q = 0 00004Q = 0.00024 Q = 0.00004Q 0.000



Case 1

Q = 0.00024Q  0.00024

Case 2

Q=0.00004Q

High periodicity near the exit orifice (but not necessarily outside)



water (from syringe pump)
(Cole-Palmer 74900 Series) with a 20 ml syringe

jetting dripping

Air (pressure gauge)

370 mm OD, 150 mm ID 
stainless steel capillary

Aluminium box

Two cameras to verify alignment

Air (pressure gauge)

PMMA window

4 mm stainless steel disk
75 μm thick
200 μm orifice

Variable distance H
PMMA window

μ
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Case 1 Case 2

Experimental observations

• Co-flowing systems: 
• S. L. Anna and H. C. Mayer, Phys. Fluids, 18, 121512 (2006).
• R. Suryo, O. A. Basaran, Phys. Fluids, 18, 082102 (2006)Experimental observations

of recirculation cells: • Taylor cones: Barrero et al.  Phys. Rev. E, 58, 7309-7314 (1998)   



Saddle (max. pressure)Saddle (max. pressure)
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Articles per year
Subject: Flow FocusingSubject: Flow Focusing

(Source: Scopus)
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“Gañán-Calvo [21] pioneered the use of a technique now called flow-focusing where he used a co-flowing
accelerating gas stream to reduce the radius of a liquid jet issuing out of a nozzle.[32] He showed that a nearly
monodisperse spray is produced when the Weber number which characterizes the relative importance of inertial force in themonodisperse spray is produced when the Weber number, which characterizes the relative importance of inertial force in the
gas phase to the surface tension force, lies below a critical value.”

Suryo, R. & Basaran O. A. (2006) Phys. Fluids 18, 082102
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Most work (experimental) has been devoted toMost work (experimental) has been devoted to
liquid-liquid FF in microfluidics

A S L B N S H A (2003) A l Ph L 8 364 ( i d b 199)

(“planar” FF)

or gas in liquid FF (microbubbles) in microfluidics

• Anna, S.L., Bontoux, N., Stone, H.A. (2003), Appl. Phys. Lett. 85, 364 (cited by 199)

…or gas in liquid FF (microbubbles) in microfluidics
• Ganan-Calvo, A.M., Gordillo, J.M., (2001), Phys. Rev. Lett. 87, 274501 (cited by 89)

• Garstecki, P., Gitlin, I., Diluzio, W., Whitesides, G.M., Kumacheva, E., Stone, H.A.

(2004), Appl. Phys. Lett. 85, 2649 (cited by 66)
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… however, the original liquid-in-gas configuration has 
been subject of smaller attention:

• Ganan-Calvo, A.M. (1998), Phys. Rev. Lett. 80, 285 (cited by 69)

• Almagro, B., Gañán-Calvo, A.M., Canals, A. (2004), J. Anal. Atom. Spectrom., 19, 1346 (cited by 5)

• Arumuganathar, S., Irvine, S., McEwan, J.R., Jayasinghe, S.N. (2008), J. Appl. Polymer Sci. 107, 1215 
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