FROM ELECTROSPINNING TO THERMAL MANAGEMENT IN MICROELECTRONICS, FROM CO-ELECTROSPINNING TO NANOFLUIDICS

Center of Smart Interfaces

TECHNISCHE UNIVERSITÄT DARMSTADT

A.L. Yarin

University of Illinois at Chicago, U.S.A., and TU Darmstadt, Germany

Supported in part in 2006-2011 by:

NSF: NIRT CBET-0609062, NSF: NER-CBET 0708711, NSF: CBET-0966764, NASA: NNX10AR99G The Volkswagen Foundation

 Acknowledgements:

 PhD Students:
 Suman Sinha Ray (UIC)

 Raman Srikar (UIC)
 Yiyun Zhang (UIC)

 Yiyun Zhang (UIC)
 Andreas Lembach (TUD)

 Collaborators:
 Dr. A.V. Bazilevsky (UIC)

 Dr. I.V. Roisman (TUD)
 Dr. T. Gambaryan-Roisman (TUD)

 Dr. C. Tropea (TUD)
 Dr. P. Stephan (TUD)

 Mechanical & Industrial
 Dr. J. Yagoobi (UIC)

Outline

- 1. Electrospinning of nanofiber mats
- 2. Drops on nanofiber mats: static superhydrophobicity
- 3. Drop impact on nanofiber mats: dynamic wettability
- 4. Cooling of micro- and opto-electronics, and radiological devices; UAVs, UGVs and server racks
- 5. Carbon nanotubes via co-electrospinning
- 6. Carbon nanotubes from a single nozzle
- 7. Pressure-driven nanofluidics in macroscopically long carbon nanotubes
- 8. Template approach: nanotube strips
- 9. Beyond Poiseuille

Electrospinning Setup

Process Initiation: Taylor Cone

Yarin A L, Reneker D H, Kombhongse S, J. App. Phys. 90, 2001

Electrospinning of Polymer Solutions

Reneker D H, Yarin A L, Fong H, Koombhongse S, J. App. Phys. 87, 2000

Yarin A L, Koombhongse S, Reneker D H, J. App. Phys. 89, 2001

Electrospinning of Polymer Solutions

Reneker, Yarin, Fong, Koombhogse

Electrospinning of Polymer Solutions

Reneker, Yarin, Fong, Koombhongse

Reneker D H, Yarin A L, Fong H, Koombhongse S, J. App. Phys. 87, 2000

Drop Impact: Experimental Setups

a- Syringe drop generator for direct impact of 2-3 mm or 100 micron drops at velocities of about 2 m/s.
b- Syringe drop generator produces primary drop, which impact on liquid film and produce corona splash to generate 0.4-1.4 mm drops for oblique impact.

Electrospun Nanofiber Mat and a Droplet Softly Deposited on it

Static superhydrophobicity: Cassie-Baxter state due to 90-95% of air in the mat

A.Lembach, H.B. Tan, I.V. Roisman, T. Gambaryan-Roisman, Y. Zhang, C. Tropea, A.L. Yarin. Langmuir 26(12) 9516-9523 (2010).

Drop Impact on a Dry Solid Wall

Rioboo R, Tropea C, Marengo M. 2001. Outcomes from a drop impact on solid surfaces. *At. Sprays* 11:155–65

Drop Impact on a Dry Nanofiber Mat

Contact line is pinned: no receding, no bouncing; Dynamically imposed Wenzel state

Drop Impact on Prewetted Nanofiber Mat: Back to Corona Splash

Pressure impulse and potential

$$\Pi = \lim_{\substack{\tau \to 0 \\ p \to \infty}} \int_{0}^{\tau} \Delta p dt; \quad \varphi = -\Pi / \rho$$

Potential $\boldsymbol{\phi}$ is a harmonic function

Evaluating pressure impulse

Compressible impact :

The convective part of the force:

 $F_c = \rho V_0 c D^2$

The "water hammer"– like part of the force :

$$F_{wh} = -\rho D^{3} A = -\rho D^{3} (-V_{0} c / D) = \rho V_{0} c D^{2}.$$

Therefore,

$$\Delta p = F / D^2 = \rho V_0 c; \quad \tau = D / c, \text{ and}$$

 $\Pi = \rho V_0 D; \varphi_0 = -V_0 D$

Evaluating pressure impulse

Incompressible impact :

The convective part of the force :

 $F_{c} = \rho V_0^2 D^2$

The "water hammer"– like part of the force :

$$F_{wh} = -\rho D^{3} A = -\rho D^{3} (-V_{0} V_{0} / D) = \rho V_{0}^{2} D^{2}.$$

Therefore,

 $\Delta p = F / D^2 = \rho V_0^2; \quad \tau = D / V_0, \text{ and}$ $\Pi = \rho V_0 D; \phi_0 = -V_0 D \quad - \text{ as in the compressible case}$

The boundary condition for the harmonic potential: Planar case

Over $-\infty \le X \le -a$, y = 0; and over $a \le X \le \infty$, y = 0 (2D wall): $\phi(X) = \phi_0 = -V_0 D$ Over -a < X < a, y = 0 (2D pore): $\phi(X) = 0$.

The harmonic potential in the liquid drop in the upper half-plane is given by the Cauchy formula, which reduces to Poisson's integral formula for the upper half-plane

$$\varphi(x,y) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\varphi(X,0) y}{(x-X) + y^2} dX = -\frac{\varphi_0}{\pi} \arctan\left(\frac{2ay}{x^2 + y^2 - a^2}\right)$$

Therefore,

$$\begin{aligned} \mathbf{v}_{\text{opening}}(\mathbf{x}) = \frac{\partial \varphi}{\partial \mathbf{y}} \bigg|_{\mathbf{y}=0} = \frac{\mathbf{V}_0 \mathbf{D}}{\pi} \frac{2\mathbf{a}}{\mathbf{x}^2 - \mathbf{a}^2}; \\ \left| \mathbf{v}_{\text{opening}}(\mathbf{0}) \right| = \mathbf{V}_0 \frac{2}{\pi} \frac{\mathbf{D}}{\mathbf{a}}; \quad \mathbf{a} = \mathbf{d}/2 \end{aligned}$$

The Reasons of Filling Non-wettable Nanofiber Mats

Predicted penetration speed: accumulation and channeling of kinetic energy (a la shaped-charge jets!) $U = \frac{4}{\pi} \frac{D}{d} V_0$ Impregnation: Lucas-Washburn speed $U_{LW} = \frac{\sigma d \cos \theta}{8 \mu H}$ $\frac{D}{d} >> 1, \quad U >> U_{LW}$

Wettability plays practically no role: it is possible to fill nonwettable pores!!!

The boundary condition for the harmonic potential: Cylindrical case-Solved by the Fourier method as a problem with a continuous spectrum

Over $a \le r \le \infty$, z = 0 (2D wall): $\phi(X) = \phi_0 = -V_0 D$ Over $0 \le t < a, y = 0$ (2D pore): $\phi(X) = 0$.

C. M. Weickgenannt, Y. Zhang, A. N. Lembach, I.V. Roisman, T. Gambaryan, A.L. Yarin, C.Tropea, Phus. Rev. E. (2011).

The harmonic potential in the liquid drop in the upper semi-space: Cylindrical case-solution as the Fourier-Bessel integral

$$\varphi(\mathbf{r}, \mathbf{z}) = \mathbf{V}_0 \operatorname{Da} \int_0^{\infty} \mathbf{J}_0(\mathbf{v} \mathbf{r}) \mathbf{J}_1(\mathbf{v} \mathbf{a}) \exp(-\mathbf{v} \mathbf{z}) d\mathbf{v}$$

Therefore,

$$\begin{aligned} \mathbf{v}_{z}(\mathbf{r})\Big|_{z=0} &= \frac{\partial \varphi}{\partial z}\Big|_{z=0} = -\frac{V_{0}D}{a} \int_{0}^{\infty} \xi J_{0}\left(\frac{\mathbf{r}}{a}\xi\right) J_{1}(\xi) d\xi; \\ \left|\mathbf{v}_{z}\left(\mathbf{r}=0\right)\right|_{z=0}\Big| &= V_{0}\frac{2D}{d}; \quad a=d/2 \end{aligned}$$

The Reasons of Filling Non-wettable Nanofiber Mats

Predicted penetration speed: Predicted in the cylindrical case

$$U = \frac{2D}{d} V_0$$

Even higher than in the planar case!

Wettability plays practically no role: it is possible to fill nonwettable pores!!!

FC-7500: Millipede

Observations of Water Spreading inside Nanofiber Mats

Setup for obervations of nanomat impregnation

Water Spreading inside Nanofiber Mat: Experimental Results

Matching of refractive indexes of wet nanofibers and water makes the copper substrate visible

Water Spreading inside Nanofiber Mat: 1D Axisymmetric Theory

The moisture transport equation :

$$\frac{\partial u}{\partial t} = a_m \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right)$$

The initial and boundary conditions :

t = 0: $u = \chi(r)$; $t \ge 0$: $u < \infty$, r = 0 and u = 0, $r = \infty$ The solution :

$$u(\mathbf{r},\mathbf{t}) = \frac{1}{2a_{\mathrm{m}}t} \exp\left(-\frac{r^2}{4a_{\mathrm{m}}t}\right) \int_{0}^{D/2} \exp\left(-\frac{\xi^2}{4a_{\mathrm{m}}t}\right) \mathbf{I}_0\left(\frac{r\xi}{2a_{\mathrm{m}}t}\right) \xi \,\mathrm{d}\xi$$

Water Spreading inside Nanofiber Mat: 1D Axisymmetric Theory

Water Spreading inside Nanofiber Mat: Experiments vs. Theory

Microelectronics Miniaturization: UAV-Unmanned Aerial Vehicles

The images were downloaded from internet

N

E

Microelectronics Miniaturization: UGV-Unmanned Ground Vehicles Searching for Hazardous Chemicals

no. 5, pp. 443-450, 2004.

N

Drop/Spray Cooling through Nanofiber Mats: Thermal Stability? PCL Easily Shrinks

R. Srikar, T. Gambaryan-Roisman, C. Steffes, P. Stephan, C. Tropea, A.L. Yarin. Int. J. Heat and Mass Transfer v. 52, 5814-5826 (2009).

Drop/Spray Cooling through Nanofiber Mats: PAN Does Not Shrink Even at 250 C

Temperature Field

Drop/Spray Cooling through Nanofiber Mats

An attractive way for cooling high-heat flux components in microelectronics (e.g. on board of UAVs), as well as server rooms

Bare Surface: The Leidenfrost Effect

t = 0.2 ms

t = 0.2 ms

t = 0.2 ms

1.5 ms

5 ms

30 ms

30 ms

250 s

5 mm

(c)

(a) 60°C, (b) 220°C, and (c) 300°C

Nano-Textured Surface: The Anti-Leidenfrost Effect

30 ms

30 ms

3000 ms

t = 0.2 ms

1.6 ms

1.5 ms

5 ms

5 ms

900 ms

1.5 ms

5 ms 30 ms

300 ms

(a) 60°C, (b) 220°C, and (c) 300°C

Australian Thorny Devil Lizard

Thorny Devil Copper Nanofibers

Thorny Devil Nanofibers: Fractal Surfaces?

Silver Nanofibers: Dendrite-Like

Nickel Nanofibers: Rough and Smooth Domains

Gold Nanofibers: Rather Smooth

Experimental Setup

Drop Impact from Height of 3.55 cm at Copper Thorny Devil Nanofibers at 150 C

The Anti-Leidenfrost Effect on Copper Thorny Devil Nanofibers at 172.2 C

Drop Impact at Thorny Devil Nanofibers at 125 C

Thermal diffusivities: Cu-1.12; Ag-1.66; Ni-0.155; Au-1.27 (sq.cm/s); Water evaporation on copper and silver fibers is the fastests but on gold-the slowest! Thorny devils win!

Drop Impact at Thorny Devil Nanofibers at 150 C

Drop Impact at Thorny Devil Nanofibers at 200 C

Mass Losses due to "Atomization" during **Evaporative Cooling Through Copper Nanofibers**

a-125 C, b-150 C, c-200 C

Mass Losses due to "Atomization" during Evaporative Cooling on Bare Copper

Mass Losses due to "Atomization" during Evaporative Cooling on Silver Nanofibers

Mass Losses due to "Atomization" during Evaporative Cooling on Nickel Nanofibers

Silver fibers: a- 125 C b- 150 C c- 200 C

The Resulting Spreading Factor and Cooling Rate for Copper Nanofibers at Different Impact Speeds

h	V	Δt	ػ	р	J-evap.
(cm)	(cm/s)	(ms)			(kW/cm ²)
3.55	83.46	70	2.6	0	0.607
6.15	109.85	58	2.85	0	0.575
8.75	131.02	53.5	3.02	0	0.555
11.15	147.91	52.5	3.15	0	0.521
13.75	164.25	47	3.41	0	0.543

The Resulting Spreading Factor and Cooling Rate for Metal-Plated Nanofibers at Different Impact Speeds and the the Non-Zero "Atomization" Ratio p

Material	Temperature (ºC)	∆t (ms)	р	J-evap. (kW/ cm²)
	125	264	0.32	0.256
Bare copper	150	N/A	N/A	N/A
	200	N/A	N/A	N/A
Copper nanofibers	125	172.5	0.09	0.136
	150	53	0.16	0.392
	200	52	0.13	0.408
Silver nanofibers	125	170	0.05	0.138
	150	128.5	0.056	0.181
	200	55.5	0.08	0.407
	125	355	0.124	0.061
Nickel nanofibers	150	600	0.25	0.031
	200	388	0.15	0.054
	125	495	0.05	0.047
Gold nanofiber	150	633.5	0.05	0.037
	200	468	0.05	0.049

Co-electrospinning: Compound Nanofibers and Nanotubes

Solution: PEO (1e6) 1% in ethanol/water

Inner solution contains 2% bromophenol Outer solution contains 0.2% bromophenol

Co-electrospinning

Core: PMMA Shell: PAN

Zussman E, Yarin A L, Bazilevsky A.V., R. Avrahami, M. Feldman, *Advanced Materials* 18, 2006

Self-assembly: Nanoropes and Crossbars. A Sharpened Wheel – Electrostatic Lens

Theron A, Zussman E, Yarin A L, Nanotechnology 12, 2001

Turbostratic Carbon Nanotubes

Core: PMMA Shell: PAN

Core-Shell Nanofibers from PMMA-PAN Emulsion

Optical appearance of a PMMA/PAN emulsion about 1 day after mixing of a homogeneous blend containing 6 wt% PMMA + 6% PAN in DMF A.V.Bazilevsky, A.L. Yarin, C.M. Megaridis Langmuir v.23, 2311-2314 (2007).

Experimental set-up and hollow carbon tubes

Pressure-driven Nanofluidics in Macroscopically Long Carbon Nanotubes

Bazilevsky AV, Yarin AL, Megaridis CM, *Lab on a Chip* v. 7 152-160 (2008).

Experimental Setup

Release Observation

Air Flow Rate

N-decane Flow Rate; Recovering the Flow-carrying Inner Tube Diameter Distribution

Amendment to Poiseuille's Law

Template Approach: Nanotube Strips

S.S. Ray, P. Chando, A.L. Yarin, Nanotechnology v. 20, 095711 (2009).

Entrapped Bubbles: Two-phase Flows

Modeling of Entrapped Air in n-Decane

Theoretical Model

$$\frac{d^{2}u_{i}}{dy^{2}} = \frac{1}{\mu_{i}} \frac{dp}{dx}, \quad i = 1, 2, \qquad \dots \dots \dots (1)$$

$$\frac{d^{2}u_{i}}{dy^{2}} = \frac{1}{\mu_{i}} \frac{dp}{dx}, \quad i = 1, 2, \qquad \dots \dots \dots (1)$$

$$\frac{d^{2}u_{i}}{dy^{2}} = \frac{1}{\mu_{i}} \frac{dp}{dx}, \quad y = 1, 2, \qquad \dots \dots \dots \dots (1)$$

$$y = 0 \quad u_{1} = 0; \quad y = H \quad u_{2} = 0, \qquad \dots \dots \dots \dots \dots (2)$$

$$y = h \quad u_{1} = u_{2}, \quad \mu_{1} \frac{du_{1}}{dy} = \mu_{2} \frac{du_{2}}{dy}, \qquad \dots \dots \dots \dots \dots \dots \dots \dots \dots (3)$$

where i=1 and 2 correspond to liquid and gas

The Outcome is Amazing!!! Beyond Poiseuille

Engineeringsinha Ray, P. Chando, A.L. Yarin; Nanotechnology 20 (2009) 095711

Experiments: Observations

(a) at 1.143 bar

(b) at 1.133 bar

Same nanotubes at the same pressure

Experiments: Measurements

Results

Conclusions

- (i) Electrospun nanofiber mats and their metallized or carbonized counterparts (monolithic and hollow) can be used for significant enhancement of heat removal in drop/spray high-heat-flux microelectronics. It is possible to reach heat removal rates of the order of 1 kW/sq.cm with water, which might result in breakthrough in further miniatutrization in microelectroncs devices and computers.
- (ii) Coelectrospun nanofluidics of layered gas/liquid flows demonstrated how significant benefits for reverse osmosis in water desalination can be achieved.

