NONWOVENS: MELT- AND SOLUTION BLOWING

A.L. Yarin

Department of Mechanical Eng. UIC, Chicago

Acknowledgement

• The Nonwovens Cooperative Research Center (NCRC), USA

Collaboration with: PhD student S. Sinha-Ray NC State: Prof. B. Pourdeyhimi

Outline

- 1. Meltblowing
- 2. Experimental: Solid flexible threadline in parallel high speed gas flow
- 3. Turbulence, bending perturbations, their propagation and flapping
- 4. Theoretical: Solid flexible threadline in parallel high speed gas flow
- 5. Comparison between theory and experiment
- 6. Theoretical: Polymer viscoelastic liquid jets in parallel high speed gas flow
- 7. Fiber-size distribution
- 8. Fiber orientation distribution in laydown
- 9. Spatial mass distribution in laydown
- 10. Experiments with solution blowing and co-blowing of core-shell and hollow fibers

My book published in 1993 by Longman (U.K.) and Wiley&Sons (New York) encompasses all relevant equations and a number of relevant solutions for free liquid jets moving in air

> Interaction of Mechanics and Mathematics Series **Free liquid jets and films: hydrodynamics and rheology**

> > **Alexander L Yarin**

Technion – Israel Institute of Technology

General quasi-one-dimensional equations of dynamics of free liquid jets moving in air

1. Continuity-Mass Balance- Equation

$$\frac{\partial \lambda f}{\partial t} + \frac{\partial f W}{\partial s} = 0$$

All terms in Eq. (1) are of the order of a^2

2. Momentum Balance Equation

$$\frac{\partial \lambda f \mathbf{V}}{\partial t} + \frac{\partial f W \mathbf{V}}{\partial s} = \frac{1}{\rho} \frac{\partial (P \tau + \mathbf{Q})}{\partial s} + \lambda f \mathbf{g} + \frac{\lambda}{\rho} \mathbf{q}_{\text{total}}$$

All terms in Eq. (2) except the shearing force \mathbf{Q} are of the order of \mathbf{a}^2 ; \mathbf{Q} is of the order of \mathbf{a}^4

General quasi-one-dimensional equations of dynamics of free liquid jets moving in air

3. The Moment-of-Momentum Balance- Equation

$$\frac{\partial \lambda \mathbf{K}}{\partial t} + \lambda \Big[\mathbf{U} \times \mathbf{j}_1 + \tau \times \big(\mathbf{U} \mathbf{j}_{1\tau} + \mathbf{j}_2 + W \mathbf{j}_1 \big) - k \mathbf{U} \times \big(\mathbf{\Omega} \times \mathbf{j}_3 + \delta \mathbf{j}_3 \big) \Big]$$
$$+ \frac{\partial \big(W \mathbf{K}_1 + \mathbf{j}_4 \times \mathbf{V} \big)}{\partial s} = \frac{1}{\rho} \frac{\partial \mathbf{M}}{\partial s} + \frac{1}{\rho} \lambda \tau \times \mathbf{Q} - \lambda k \mathbf{j}_3 \times \mathbf{g} + \frac{\lambda}{\rho} \mathbf{m}$$

All terms in Eq. (3) are of the order of a⁴ Equations (1)-(3) are supplemented with the geometric, kinematic, and material relations. The material relations for P and M follow from the rheological constitutive equation projected on the quasi-1D kinematics

Main results for highly viscous and viscoelastic jets rapidly moving in air: flame throwers

The linear stability analysis: small 3D perturbations grow with the rate:

$$\gamma^{2} + \frac{3}{4} \frac{\mu \chi^{4}}{\rho a_{0}^{2}} \gamma + \left(\frac{\sigma}{\rho a_{0}^{3}} - \frac{\rho_{a} U_{0}^{2}}{\rho a_{0}^{2}} \right) \chi^{2} = 0$$

where the dimensionless wavenumber $\chi = 2\pi a_0 / \ell$

The bending instability sets in when:

$$U_0 > U_0^* = \sqrt{\sigma / (\rho_a a_0)}$$

Main results for highly viscous and viscoelastic jets rapidly moving in air: flame throwers

The bending perturbations grow much faster than the capillary perturbations for highly viscous liquids when:

Linear spectrum:

Nonlinear-numerical-results for 2D bending

Nonlinear-numerical-results for 2D bending

Newtonian jet

Viscoelastic jet

Meltblowing

Experimental: threadline blowing setup to probe turbulence

S. Sinha-Ray, A.L. Yarin, B. Pourdeyhimi. J. Appl. Phys. 108, 034912 (2010)

Air velocity at the nozzle exit

Chocking at pressure ratio of 47.91

Experimental: threadline configurations at different time moments

ARROWS DENOTE THE FLAPPING LENGTH

Threadline envelope: 2nd method to define flapping length

Measured threadline oscillations

Fourier reconstruction of the threadline oscillations with high frequency truncation above 167 Hz

Autocorrelation function: chaotic nature of threadline oscillations

Turbulence, bending perturbations, their propagation and flapping

Large eddy frequency : $U_0 / L = 10^3 \text{ Hz}$ Taylor microscale : $\lambda = 1.23 \text{ Re}_d^{-1/2} \text{ x} \Rightarrow$ $\lambda = 0.014 - 0.14 \text{ cm}$ Microscale frequency : $U_0 / \lambda = 10^5 - 10^6 \text{ Hz}$ Threadline oscillation frequency : $10 - 10^2 \text{ Hz}$ Multiple impacts of large eddies : $< A >= [2 < v'^2 > \tau t]^{1/2}$ $v' \approx u' \Rightarrow < v'^2 >= < u'v' >$ $\tau \approx (\partial u / \partial y)^{-1} \Rightarrow$ $< v'^2 > \tau = v_1$ turbulent eddy viscosity!

Turbulence, bending perturbations, their propagation and flapping

Therefore,

 $< A >= (2v_t t)^{1/2}$

In axisymmetric turbulent gas jets:

 $v_t = 0.015U_0d_0 = const$

Time t is restricted by bending perturbation propagation over the threadline :

 $t \approx L / \sqrt{P / (S\rho_{threadline})}$ Threadline tension : $P = q_{\tau}L$,

which is imposed by air drag:

$$q_{\tau} = 0.65\pi a_{0}\rho_{g}U_{0}^{2} \left(\frac{2U_{0}a_{0}}{\nu_{g}}\right)^{-0.8}$$

Turbulence, bending perturbations, their propagation and flapping

For U₀ = 230 m/s, d₀ = 0.05 cm in air : $v_t = 17.25$ cm²/s, t = 0.0256 s Therefore, t⁻¹ = 39Hz – a remarkable agreement with the data! $< A >= (2v_t t)^{1/2} = 0.94$ cm – a reasonable agreement with the data!

Turbulence, bending perturbations, their propagation and flapping

The shape of the threadline envelope in the case of distributed impacts of turbulent pulsations without distributed lift force is predicted as :

$$< A(x) >= 0.16 \left(\frac{\rho}{\rho_g}\right)^{1/4} \left(\frac{U_0 d_0}{v_g}\right)^{0.2025} \left(\frac{d_0}{L}\right)^{1/4} \frac{\sqrt{d_0 L}}{(1-x)^{1/4}}$$

i.e.

$$< A(x) > \approx \frac{1}{(1-x)^{1/4}}$$

Turbulence vs. distributed aerodynamic lift force

Distributed drag, lift and random forces

Straight unperturbed sewing threadline in high speed air flow

The unperturbed momentum balance $\frac{dP}{dx} + q_{\tau} = 0, \quad P = \sigma_{xx} \pi a_0^2$ The longitudinal aerodynamic drag force

$$q_{\tau} = 0.65\pi a_{0}\rho_{g}U_{0}^{2} \left(\frac{2U_{0}a_{0}}{v_{g}}\right)^{-0.81}$$

Integrating the momentum balance, we obtain

$$\sigma_{xx} = \frac{q_{\tau}(L-x)}{\pi a_0^2}$$

Perturbed threadline in high speed air flow

The lateral bending force

$$q_{n} = -\rho_{g}U_{0}^{2}\pi a_{0}^{2}\frac{\partial^{2}H}{\partial x^{2}}$$

The linearized lateral momentum balance

$$\rho \pi a_0^2 \frac{\partial V_n}{\partial t} = kP + q_n$$

The lateral velocity and thread curvature read

$$V_n = \frac{\partial H}{\partial t}, \quad k = \frac{\partial^2 H}{\partial x^2}$$

Perturbed threadline in high speed air flow

Then, the thread configuration is governed by

$$\begin{split} &\frac{\partial^2 H}{\partial t^2} + \frac{\left[\rho_g U_0^2 - \sigma_{xx}(x)\right]}{\rho} \frac{\partial^2 H}{\partial x^2} = 0 \quad (1) \\ &\text{If } \sigma_{xx0} = q_\tau L/(\pi a_0^2) > \rho_g U_0^2, \text{ then Eq.(1) is} \\ &\text{hyperbolic at } 0 \le x \le x_*, \text{ and elliptic at } x_* \le x \le L. \\ &\text{The transition cross - section is found from} \\ &\rho_g U_0^2 - \frac{q_\tau (L - x)}{\pi a_0^2} = 0 \quad @x = x_* \\ &\text{The threadline is clamped and perturbed at } x = 0 \\ &H|_{x=0} = H_{0\omega} \exp(i\omega t), \ \partial H/\partial x|_{x=0} = 0 \end{split}$$

Perturbed threadline in high speed air flow

Solution in the hyperbolic part is $H(x,t) = H_{0\omega} \exp(i\omega t) \cos[\omega I(x)]$ where

$$I(x) = \frac{2\rho\pi a_0^2}{q_{\tau}} \begin{cases} \left[\left(\frac{q_{\tau}L}{\pi a_0^2} - \rho_g U_0^2 \right) / \rho \right]^{1/2} \\ - \left[\left(\frac{q_{\tau}(L-x)}{\pi a_0^2} - \rho_g U_0^2 \right) / \rho \right]^{1/2} \end{cases}$$

Solution in the elliptic part is

$$H(x,t) = H_{\omega} \exp(i\omega t) \begin{cases} \cosh[\omega J(x)] \cos[\omega I(x_*)] \\ +i \sinh[\omega J(x)] \sin[\omega I(x_*)] \end{cases}$$

where

$$J(x) = \frac{2\rho\pi a_0^2}{q_{\tau}} \left[\frac{q_{\tau}x}{\rho\pi a_0^2} - \frac{q_{\tau}L/(\pi a_0^2) - \rho_g U_0^2}{\rho} \right]^{1/2}$$

Flapping of solid flexible threadline

Theory vs. experiments for threadline

Theory vs. experiments for threadline

Polymeric liquid jet in high speed air flow

The quasi – one – dimensional continuity and momentum balance equations for a straight jet $\frac{dfV_{\tau}}{dx} = 0, \quad f = \pi a^2 \Rightarrow \pi a^2 V_{\tau} = \pi a_0^2 V_{\tau 0}$ $\rho \frac{dfV_{\tau}^2}{dx} = \frac{d\sigma_{xx}f}{dx} + q_{\tau}$ where

$$q_{\tau} = 0.65\pi a \rho_{g} (U_{g} - V_{\tau})^{2} \left[\frac{2(U_{g} - V_{\tau})a}{v_{g}} \right]^{-0.8}$$

and the stress $\sigma_{_{xx}}=\tau_{_{xx}}-\tau_{_{yy}}$ is found from

Polymeric liquid jet in high speed air flow

The upper – convected Maxwell

model of viscoelasticity

\mathbf{V}	$d\tau_{xx}$	$-2\frac{dV_{\tau}}{dV_{\tau}}$	$\frac{2\mu}{2\mu} \frac{dV_{\tau}}{dV_{\tau}}$	τ_{xx}
• τ	dx	dx dx	θ dx	θ
\mathbf{V}	$d\tau_{yy}$	$-\frac{dV_{\tau}}{\tau}$	$\mu \frac{dV_{\tau}}{dV_{\tau}}$	τ_{yy}
ν _τ	dx	$-\frac{1}{dx} dx$	θdx	θ

which are solved numerically simultaneously with the transformed momentum balance. The following dimensonless groups are used

$$R = \frac{\rho_g}{\rho}, \quad \ell = \frac{L}{a_0}, \quad Re = \frac{2V_{\tau}^0 a_0}{v_g}, \quad De = \frac{\theta V_{\tau 0}}{L}$$
$$E = \frac{2R}{De\ell ReM}, \quad M = \frac{\mu_g}{\mu}$$

Polymeric liquid jet in high speed air flow

The dimensionless equations for a straight polymeric jet solved numerically $\frac{dV_{\tau}}{dx} = \frac{\left[-E(\tau_{xx} - \tau_{yy})/(DeV_{\tau}^{2}) + q_{\tau}\right]}{\left[1 - E(\tau_{xx} + 2\tau_{yy} + 3)/V_{\tau}^{2}\right]}$ $\frac{d\tau_{xx}}{dx} = \frac{1}{V_{\tau}} \left(2\frac{dV_{\tau}}{dx}\tau_{xx} + 2\frac{dV_{\tau}}{dx} - \frac{\tau_{xx}}{De}\right)$ $\frac{d\tau_{yy}}{dx} = \frac{1}{V_{\tau}} \left(-\frac{dV_{\tau}}{dx}\tau_{yy} - \frac{dV_{\tau}}{dx} - \frac{\tau_{yy}}{De}\right)$ The boundary conditions are

$$x = 0$$
: $V_{\tau} = 1$, $\tau_{xx} = \tau_{xx0}$, $\tau_{yy} = 0$

Unperturbed polymer jet in melt blowing: velocity and

radius distributions

Unperturbed polymer jet in melt blowing: longitudinal

deviatoric stress distribution

Unperturbed polymer jet in melt blowing: lateral

deviatoric stress distribution

Unperturbed polymer jet in melt blowing: K(x) distribution

Bending perturbations of polymeric liquid jet in high speed air flow

The linearized lateral momentum balance reads (dimensional):

$$\frac{\partial^{2} H}{\partial t^{2}} + 2V_{\tau} \frac{\partial^{2} H}{\partial x \partial t} + \left[V_{\tau}^{2} + \frac{\rho_{g} (U_{g} - V_{\tau})^{2} - \sigma_{xx}}{\rho}\right] \frac{\partial^{2} H}{\partial x^{2}} = 0$$

and normalized :

$$\frac{\partial^{2}H}{\partial t^{2}} + 2V_{\tau}\frac{\partial^{2}H}{\partial x\partial t} + \left[V_{\tau}^{2} + R(U_{g} - V_{\tau})^{2} - E\sigma_{xx}\right]\frac{\partial^{2}H}{\partial x^{2}} = 0$$

All coefficients depend only on the unperturbed

solution!!!

Bending perturbations of polymeric liquid jet in high speed air flow

Solution in the hyperbolic part :

$$H(x,t) = \frac{H_{0\omega}}{1-\delta} \exp(i\omega t) \begin{cases} -\delta \exp[-i\omega I_1(x)] \\ +\exp[-i\omega I_2(x)] \end{cases}$$

where

$$I_{1}(x) = \int_{0}^{x} \frac{dx}{V_{\tau}(x) + \sqrt{E\sigma_{xx}(x) - R[U_{g}(x) - V_{\tau}(x)]^{2}}}$$
$$I_{2}(x) = \int_{0}^{x} \frac{dx}{V_{\tau}(x) - \sqrt{E\sigma_{xx}(x) - R[U_{g}(x) - V_{\tau}(x)]^{2}}}$$
$$\delta = \frac{dI_{2}/dx}{dI_{1}/dx}\Big|_{x=0}$$

Bending perturbations of polymeric liquid jet in high speed air flow

Solution in the elliptic part :

$$H(x,t) = \frac{H_{0\omega}}{1-\delta} \exp\{i\omega[t - J_1(x)]\}$$
$$\times \begin{cases} -\delta \exp[-i\omega I_1(x_*)] \exp[-\omega J_2(x)] \\ +\exp[-i\omega I_2(x_*)] \exp[\omega J_2(x)] \end{cases}$$

where

$$J_{1}(x) = \int_{x_{*}}^{x} \frac{V_{\tau}(x)}{V_{\tau}^{2}(x) + R[U_{g}(x) - V_{\tau}(x)]^{2} - E\sigma_{xx}(x)} dx$$

$$J_{2}(x) = \int_{x_{*}}^{x} \frac{\sqrt{R[U_{g}(x) - V_{\tau}(x)]^{2} - E\sigma_{xx}(x)}}{V_{\tau}^{2}(x) + R[U_{g}(x) - V_{\tau}(x)]^{2} - E\sigma_{xx}(x)} dx$$

The velocity distribution in turbulent gas jet is
$$U_{g}(x) = U_{g}(0) \frac{2.4d_{0}}{x + 2.4d_{0}}$$

Bending perturbations of polymeric liquid jet in melt blowing

Meltblowing: Nonlinear theory

Nonlinear model for predicting large perturbations on polymeric viscoelastic jets.

□Isothermal polymer and gas jets-2D bending of 1 jet

Basic vectorial equations

Scalar projections of the momentum balance equation in 2D
 Numerical results

□Non-isothermal polymer and gas jets-2D bending of 1 jet

- ➢Basic vectorial equations
- Scalar projections of the momentum balance equation in 2D
- Numerical results

3D results: single and multiple jets

A.L. Yarin, S. Sinha-Ray, B. Pourdeyhimi. J. Appl. Phys. 108, 034913 (2010).

Nonlinear Model for

Isothermal Polymer and Gas Jets

Basic equations: Momentless theory

$$\frac{\partial \widehat{\partial t} f}{\partial t} + \frac{\partial f \widehat{W}}{\partial S} = 0$$
Continuity Equation
$$\frac{\partial \lambda f \widehat{V}}{\partial t} + \frac{\partial \widehat{f} \widehat{W} V}{\partial S} = \frac{1}{\rho} \frac{\partial \widehat{P} t}{\partial S} + \lambda f \widehat{g} + \frac{\lambda}{\rho} \widehat{q}_{\text{total}} \quad \text{Momentum Equation}$$
Taking s to be a Lagrangian parameter of liquid elements in the jet,
$$W=0, \text{ which gives } \lambda a^2 = \lambda_0 a_0^2 \quad \text{The integral of the continuity equation}$$

 \mathbf{D}

Relation of the coordinate system associated with the jet axis and the laboratory coordinate system in 2D cases

Scalar projections of the momentum balance equation in 2D

The rheological constitutive viscoelastic model. The mean flow field in the turbulent gas jet

Rheological Constitutive Equation :Upper Convected Maxwell <u>Model</u>

$$\frac{\partial \tau_{\tau\tau}}{\partial t} = 2\tau_{\tau\tau} \frac{1}{\lambda} \frac{\partial \lambda}{\partial t} + 2\frac{\mu}{\theta} \frac{1}{\lambda} \frac{\partial \lambda}{\partial t} - \frac{\tau_{\tau\tau}}{\theta}$$

The mean flow field in the turbulent gas jet

$$U_{g}(\xi, H) = U_{g0}\phi(\xi, H)$$

$$\phi(\xi, H) = \frac{4.8 / \ell}{(\xi + 4.8 / \ell)} \frac{1}{(1 + \varsigma^{2} / 8)^{2}}, \quad \varsigma = \varsigma(\xi, H) = \frac{H}{0.05(\xi + 4.8 / \ell)}$$

$$L/a_{0}, \text{ where } a_{0} \text{ is the nozzle radius and } L \text{ is the distance between the nozzle and deposition screen}$$

Dimensionless groups

Dimensionless equations for numerical implementation

(1)

$$\frac{\partial^2 \xi}{\partial t^2} = \frac{2}{\text{Re}} \Phi \frac{\partial^2 \xi}{\partial s^2} + \frac{1}{\text{Fr}^2} \tau_{\xi} + J\ell \frac{q_{\text{total},\tau}}{f}$$

$$\frac{\partial^{2} H}{\partial t^{2}} = \left[\frac{\tau_{\tau\tau}}{Re} - J\phi^{2}(\xi, H)\right] \frac{1}{\lambda^{2}} \frac{\partial^{2} H}{\partial s^{2}} + \frac{n_{\xi}}{Fr^{2}} - J\ell \frac{\phi^{2}(\xi, H)}{\pi a} \frac{\left(H_{,s}/\xi_{,s}\right)^{2} \operatorname{sign}\left(H_{,s}/\xi_{,s}\right)}{1 + \left(H_{,s}/\xi_{,s}\right)^{2}}$$
(2)

where $\Phi = (\tau_{\tau\tau} + 1/\text{De})\lambda^{-2}$, and Φ is found from: $\frac{\partial \Phi}{\partial t} = -\frac{\tau_{\tau\tau}}{\text{De}\lambda^2}$ (3)

and
$$q_{\text{total},\tau} = \pi a \left[\tau_{\xi} \varphi(\xi, \mathbf{H}) - V_{\tau} \right]^2 0.65 \left\{ \text{Re}_a a \left[\tau_{\xi} \varphi(\xi, \mathbf{H}) - V_{\tau} \right] \right\}^{-0.8}$$

Nature of the equations

$$\frac{\partial^{2}\xi}{\partial t^{2}} = \frac{2}{Re} \Phi \frac{\partial^{2}\xi}{\partial s^{2}} + \frac{1}{Fr^{2}} \tau_{\xi} + J\ell \frac{q_{\text{total},\tau}}{f}$$
(1)
$$\frac{\partial^{2}H}{\partial t^{2}} = \left[\frac{\tau_{\tau\tau}}{Re} - J\phi^{2}(\xi, H)\right] \frac{1}{\lambda^{2}} \frac{\partial^{2}H}{\partial s^{2}} + \frac{n_{\xi}}{Fr^{2}} - J\ell \frac{\phi^{2}(\xi, H)}{\pi a} \frac{\left(H_{,s}/\xi_{,s}\right)^{2} \operatorname{sign}\left(H_{,s}/\xi_{,s}\right)}{1 + \left(H_{,s}/\xi_{,s}\right)^{2}}$$
(2)

Both the equations are basically wave equations. While (1) is –for the elastic sound (compression/stretching) wave propagation, (2) is nothing but bending wave propagation.

Boundary and initial conditions

Boundary Conditions:

1) $\xi|_{s=s_{origin}} = 0$, $H|_{s=s_{origin}} = H_{0\Omega} \exp(i\Omega t)$ where $H_{0\Omega} = (0.06 / \ell)^{1/2} \operatorname{Re}^{1/2} / \tau_{\tau\tau0}^{1/4}$ $\Omega = \frac{\omega L}{U_{g0}}$ 2) $\xi_{,s}|_{s_{free end}} = 1$, $H_{,s}|_{s_{free end}} = 0$

<u>The initial condition for the longitudinal stress in the polymer</u> jet:

$$\Phi \Big|_{t=t_{\text{birth}}} = \left(\tau_{\tau\tau 0} + 1/\text{De} \right) / \lambda_0^2$$

Numerical results for 2D: the isothermal

case

Velocity flow field in gas jet

Snapshots of configurations of polymer jet axis

Numerical results in 2D: the isothermal case (continued)

Self-entanglement: Can lead to "roping" and "fly"

Mechanical & Industrial E n g i n e e r i n g

The evolution points at possible self-intersection in meltblowing, even in the case of a single jet considered here SEM image of solution blown PAN fiber mat obtained from single jet showing existence of "roping"

Nonlinear Model for

Non-isothermal Polymer and Gas Jets

Thermal variation of the rheological parameters

$$\mu = \mu_0 \exp\left[\frac{U}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right], \quad \theta = \theta_0 \frac{T_0}{T} \exp\left[\frac{U}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right]$$

where T_0 is the melt and gas jet temperature at the origin, μ_0 and θ_0 are the corresponding values of the viscosity and relaxation time, U is the activation energy of viscous flow and R is the absolute gas constant.

The additional and changed dimensionless equations; 2D, non-isothermal case

$$\Phi = (\tau_{\tau\tau} + T/De_0)/\lambda^2, \quad De_0 = \frac{\Theta_0 U_{go}}{L}, \quad U_A = \frac{U}{RT_0}, \quad Nu = 0.495 \, Re_a^{1/3} \, Pr_g^{1/3}$$

Numerical results for the 2D nonisothermal case

Snapshots of the axis configurations of polymer jet for the nonisothermal case

The mean temperature field in the gas

jet

Numerical results for the 2D nonisothermal case

Mechanical & Industrial E n g i n e e r i n g case

Numerical results (continued)

Following material elements in the polymer jet in the isothermal case

ξ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 0 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 H(ξ) Σ at t= 50 -0.1 -0.1 at t=35 at t=15 -0.2 -0.2 -0.3 -0.3 -0.4 -0.4 0.5 Ω Х

<u>Following material elements</u> <u>in the polymer jet in the non-</u> <u>isothermal case</u>

The initial section of the jet-no bending

3D isothermal results: single jet

Three snapshots of the polymer jet axis in the isothermal three-dimensional blowing at the dimensional time moments t=15, 30 and 45

9 jets meltblown onto a moving screen-the beginning of deposition

62 jets meltblown onto a moving screen

62 jets meltblown onto a moving screen

62 jets meltblown onto a moving screen: a higher screen velocity

62 jets meltblown onto a moving screen: a higher screen velocity

62 jets meltblown onto a moving screen: comparison with experiment

62 jets meltblown onto a moving screen: comparison with experiment

62 jets meltblown onto a moving screen

Experimental: solution blowing and coblowing setups

Solution-blown polymer jet: Vigorous bending and flapping

Solution-blown and co-blown nanofibers and nanotubes

Monolithic PAN nanofibers

Solution-blown and co-blown nanofibers and nanotubes

Optical image of PMMA-PAN core-shell co-blown fibers

PMMA-PAN carbonized: Hollow carbon nanotubes

Solution-blown monolithic nanofibers

Solution-blown core-shell nanofibers

Close Relatives

Sea snakes, electrospun and meltblown jets, and flame thrower napalm jets extract energy from the surrounding medium via bending