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Abstract. By digital image processing based on the geometric phase method a lattice distor-
tion field of GaAs/ZnTe/CdTe epilayer is reconstructed from HRTEM micrograph. The field is
used next as input data to finite element code. A nonlinear elastic-plastic finite element algo-
rithm is developed to predict the residual stress distribution induced by misfit dislocations in
semiconductor heteroepitaxial layers. In the approach developed the important role takes elas-
tic nonlinearity. The third-order elastic constants, usually determined experimentally in relation
to the Green strain, are recalculated here to the logarithmic strain. Attention is also given to
the modelling of elastic properties of dislocations. Paper shows numerical results obtained by
means of the nonlinear finite element method.
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1 Introduction

Recently, computer methods used to digital image processing of images obtained from the high-
resolution transmission electron microscopy (HRTEM) allows a quantitative measurement of
lattice distortions in the atomic scale, [3, 4]. One of them we use to determine the lattice distor-
tions in the CdTe/ZnTe/GaAs heterostructure. The stress distribution in heterostructure depends
not only on lattice distortion, but also on the local chemical composition. The elastic strains can
reach only a few percents, while the chemical strains induced by the chemical composition can
take a several percents, e.g. in CdTe/ZnTe/GaAs layers discussed below the chemical strain of
lattice between GaAs base and CdTe layer overcome 14%. On the other hand in the linear the-
ory of elasticity the strains corresponding to stress ranged 1 GPa does not exceed a few percent.
Therefore, to accommodate the chemical distortion changes from layer to layer the strongly
dislocated interfacial regions come into existence between layers.

The finite element (FE) method is rarely employed to predict the residual stress distribution in-
duced by dislocations. The reason of that yields from difficulties in finding the suitable numeri-
cal algorithms based upon the displacement field method being the foundation of the most of FE
codes (the dislocation distribution tensor field is not integrable). The semi-numerical methods
based upon analytical solutions obtained from the linear theory of elasticity is one of possible
solution of this problem, see e.g. the strain distribution in the finite element technique used by
Stigh [5]. In the present paper we propose another, purely numerical method. Anisotropic hy-
perelastic materials compose a narrow group among numerous constitutive models describing
elastic behaviour of solids. It is worth emphasizing that the most knownanisotropichyperelastic
models like the St-Venant–Kirchhoff model change strongly their (instantaneous) stiffness un-
der large strains. Moreover, this stiffness evolution differs significantly for compression region
(increases) and tension region (decreases) this phenomenon manifests by

• the bending of epitaxial layers induced by misfit dislocations [1],

• the dependence of elastic stiffness on hydrostatic pressure,

• negative values of third-order elastic constants measured for many crystal structures [2].

Therefore, the analysis of nonlinear elastic properties takes fundamental role in the estimation
of stress distribution in epitaxial layers, as well as, in many other problems, e.g. in prediction
of the elastic-plastic instability where the correct estimation of the instantaneous stiffness of
extremely deformed materials takes the important role. The use of new elastic and elastic-plastic
constitutive models which behaviour could be more adapted to the nonlinear behaviour of real
crystal structures is to be desired.

2 The lattice distortions

A typical high quality image of GaAs/ZnTe/CdTe interface in the [110] projection is shown
in Fig. 1. Contrast in GaAs and CdTe is homogeneous – bright dots on dark background. The

2



ECCM-2001, Cracow, Poland

Figure 1: HRTEM image of the considered heterostructure.

interface (substrate surface) is tilted of about 2◦ relatively to crystallographic directions. So, 4
mono-atomic steps appears between the left and right border of image. Their hypothetical po-
sitions have been marked by horizontal segment lines in Fig. 1. CdTe and GaAs layers take the
same sphalerite structure with lattice mismatch 14.6%. Nine per ten misfit dislocations visible
on the interface are the edge Lomer dislocations. Their Burgers vectors take components1

2
[11̄0].

The dislocation lines are parallel to the interfacial plane and perpendicular to the electron beam.
Only one 60◦ dislocation is visible on interface, see dislocation J. Its Burgers vector takes com-
ponents1

2
[01̄1̄] or 1

2
[101̄] and is deviated at 60◦ from its dislocation line being parallel to electron

beam and laying in(11̄1) plane. The second 60◦ dislocation is situated 8 nm upper interface,
see dislocation K. The next dislocations (invisible in Fig. 1) was found far away from the inter-
face (20-25nm). The visible Lomer dislocations can be interpreted as two clearly separated 60◦

elemental dislocations. By means of a geometric phase method the distribution of lattice distor-
tions can be reconstructed from HRTEM image. This method is based upon centering a small
aperture around a strong reflection in the Fourier transform of image, see details in [3, 4]. The
phase component of the resulting complex image gives information about local displacements
of atomic planes. Applying two non-collinear Fourier components a two-dimensional piecewise
continuous displacement field̂u(x) has been determined. Differentiating the displacement field
a continuous field of lattice distortionsβ(x) is reconstructed. Obviously, in the heterostructure
like GaAs/ZnTe/CdTe the lattice distortions results not only from the elastic but also from the
chemical distortions induced by changes in composition of crystal lattice. Therefore, in our
case, the lattice distortions have been determined in relation to a fixed local reference configu-
ration assumed for the whole heterostructure and corresponding to a perfect GaAs lattice. More
details on determination of this distortion field are given by Kretet al. [6].
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3 Deformation description

In this paper a motion of crystal lattice in the three-dimensional positively oriented Euclidean
spaceE3 is described in terms of the nonlinear continuum mechanics. Traditionally, the cur-
rent position of given particles is described by three co-ordinatesx1, x2, x3 determined in an
immobile curvilinear coordination set{xk}, while the reference positionX is represented by
three other coordinatesX1, X2, X3 determined in other immobile coordinate set{XK}. Then
the components of deformation gradient are determined as

F k
K =

∂xk

∂XK
. (1)

In terms of the absolute notation the deformation gradient is determined as

F =
∂x

∂X
. (2)

It is convenient to distinguish the lattice deformation from the total deformation gradient. So,
let us assume a multiplicative decomposition

F = FltFpl, (3)

whereF denotes the so-called total deformation gradient,Flt is the lattice deformation gradient
while Fpl denotes a remnant resulting from the (permanent) rearrangement of atoms composing
the crystal lattice. The above deformation tensors can be considered in terms of displacement
deformation gradients

F =
∂x

∂X
= 1− ∂u

∂X
, (4)

Flt =
∂x

∂x̂
= 1− ∂û

∂x̂
, (5)

Fpl =
∂x̂

∂X
= 1− ∂(u− û)

∂X
, (6)

wherex̂ denotes the reference position in the lattice reference configuration whilex andX

denote the position in the actual and material reference configuration, respectively.

The spatial gradient of the lattice displacement fieldû(x) can be rewritten in relation to the
gradient referred to lattice reference configuration according to local differential relation e.g.

∂û

∂x̂
=

(
1− ∂û

∂x

)−1

− 1. (7)

Substituting (7) into (5) we note that

Flt = (1− ββββββββ )−1. (8)
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3.1 Continuum description of dislocation distribution

The dislocation distribution measures are dependent on the lattice distortion gradient. The ge-
ometric meaning of dislocation distribution tensors can be formulated drawing the respective
Burgers circuit in the current or in the lattice reference configuration, cf. the FS/RH and SF/RH
methods described by Hirth [7]. The first of them consists in drawing a closed circle in the ac-
tual configuration and finding the Burgers vector in the reference one. In the continuum theory
of dislocations according to the SF/RH method we find the following relation

b̂ =

∫
C

F−1
lt dx =

∫
SC

curl F−1
lt ds =

∫
SC

α̃αααααααds, (9)

where the distribution of the true Burgers vector in the current configuration is described by the
following tensor

α̃ααααααα
df
= curl F−1

lt . (10)

The true Burgers vector specifies the crystallographic components of dislocations referred to
undeformed crystal lattice. The area elements and differential forms of Burgers vectors satisfy
the well-known transformation rules

db = Flt db̂, (11)

ds = F−Tlt dŝ det Flt. (12)

Substitution them into the differential form of (9) gives the following differential relations

db = ααααααααds and db̂ = α̂αααααααdŝ, (13)

where

αααααααα
df
= Fltcurl F−1

lt and α̂ααααααα
df
= curl Flt

−1F−Tlt det Flt, (14)

cf. (10);αααααααα represents the distribution of spatial Burgers vector whileα̂ααααααα specifies the distribution
of the true Burgers vector referred to the lattice reference configuration. With respect to com-
patibility condition, which have to be satisfied between the plastic and lattice distortion tensors,
it can be proved that the above tensorial measures of dislocations can be rewritten using many
mutually different derivatives.

On this base we find the following formulas equivalent to definitions (14), see [8, 9],

αααααααα = grad Flt
.
× F−1

lt (15)

= FltFpl grad F−1
pl

.
× F−1

lt (16)

= −Flt grad Fpl
.
× (FltFpl)

−1, (17)

α̂ααααααα = −Grad Flt
−1 .
× Flt (18)

= −F−1
lt Curl Flt (19)

= −Fpl Curl F−1
p (20)

= −Grad Fpl
.
× F−1

pl (21)

= CURL Fpl FT
pl det F−1

pl . (22)
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In the numerical code presented in Section 5 the fundamental role takes relation (22).

Summing up our considerations on heterostructural deformations we assume the following de-
composition of the total deformation gradient

F =

Flt′︷︸︸︷
RU Fch︸ ︷︷ ︸

Flt

Fpl, (23)

whereR andU denotes the rotation and stretch of the actual crystal structure determined in
relation to its stress-free configurations, whileFch denotes the chemical deformation between
two stress-free configurations differing the chemical composition, namely, between the actual
(e.g. CdTe) and the reference chemical compositions (GaAs).

4 Nonlinear elasticity

According to the polar decomposition theorem the deformation gradientF can be decom-
posed into the rotation tensorR and into the left or right stretch tensor,U or V, respectively,
F = RU = VR. It can be proved, see [10, 11] that to balance energy for arbitrarily chosen
deformation process the Cauchy stress has to be governed by the following equation

σσσσσσσσ = R(ÂAAAAAAA : ρ̂
∂ψ
∂ε̂εεεεεεε )RT det F−1. (24)

where the fourth-order tensor̂AAAAAAAA decomposed in the right stretch eigenvector basis{uK} is
represented by the following non-vanishing components

ÂIJIJ = ÂIJJI =

{
δIJ uIf

′(uI) for uI = uJ,
2uIuJ[f(uI)−f(uJ)]

u2
I −u

2
J

for uI 6= uJ,
(25)

whereρ̂ = ρ det F, f ′(uI) = df(u)
du

∣∣
u=uI

. Let us consider the hyperelastic material governed by
the following constitutive equation stated for the specific internal energy

ψ = ψ(ε̂εεεεεεε, α̂ααααααα)|x1,... ,xn,T=const, (26)

where

ε̂εεεεεεε = ε̂εεεεεεε(Flt′), α̂ααααααα = α̂ααααααα(Flt′ , grad Flt′) and Flt′ = FltF
−1
ch . (27)

Third-order elastic constants are determinable by measurement of small changes of ultrasonic
wave velocities in stressed crystals. Usually, they are determined for the constitutive relation
between the second Piola-Kirchhoff stress and the Green strain called also the Lagrangian strain,
see [13, 14, 15] among many others. So, let us assume here that a hyperelastic material satisfies
the following specific strain energy function

ψ(ε̂εεεεεεε) =
1

ρ̂

[
1

2!
ĉijklε̂ij ε̂kl +

1

3!
Ĉijklmnε̂ij ε̂klε̂mn

]
, (28)
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wherêc andĈ are tensors of the second- and third-order elastic constants determined in relation
to a given strain measure, for example letm = 2, what correspondŝεεεεεεεε = 1

2
(U2−1). By using the

third-order elastic constants determined experimentally with respect to the Green strain (m = 2)
by [15, 16] we find the third-order elastic constants related to the logarithmic strain (m = 0),
see [10].

Additionally, in order to reduce the elastic stress carried out by dislocation cores we assume a
constitutive equation which predicts the stiffness reduction in lattice disordered regions accord-
ing to the following constitutive equation

σσσσσσσσ = R
[
ÂAAAAAAA : (ĉα : ε̂εεεεεεε +

1

2
ε̂εεεεεεε : Ĉα : ε̂εεεεεεε)

]
RT det F−1, (29)

whereε̂εεεεεεε is the logarithmic strain, and

ĉα = e−rα ĉ (30)

Ĉα = e−2rα Ĉ, (31)

r is a dislocation core factor reducing the elastic stiffness in lattice disordered regions,α is
assumed to be an invariant of the true dislocation distribution tensor allowing the computer
recognition of dislocation core region in computational process.

In our 2D boundary-value plane problem discussed bellow the lattice disordered regions are
recognized by using the following plain invariant of the dislocation distribution tensor

α =
√
α̂2

xz + α̂2
yz. (32)

Using the continuized lattice distortion field the mentioned regions give strongly localized peaks
on dislocation distribution tensor field. Outside the peaks the fieldα̂ααααααα(x) takes a value zero. The
parameterr influences on the stiffness reduction in dislocation core regions.

5 Finite element analysis

We assume that the CdTe/ZnTe/GaAs lattice configuration visible in the HRTEM image in Fig. 2
is thematerial referenceconfiguration of crystal lattice in relation to which the movement of
material will be described. On the other hand, by alattice referenceconfiguration we mean a
perfect GaAs lattice structure. Using the geometric phase method the dislocation distribution
tensor field has been reconstructed from the image, see Fig. 2.

The following decomposition of the total deformation gradient is assumed

F = Flt′FchFpl, (33)

whereFpl is the initial deformation tensor rebuilding (transforming) the lattice reference GaAs
perfect structure to the dislocated heterostructure visible in HRTEM image. The perfect GaAs
structure is identified here with a regular lattice visible considerably below the interface visible
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on HRTEM image in Fig. 2.Flt′ = RU describes the lattice rotation and stretch measured in
relation to a stress free configuration with the actual chemical composition. The chemical defor-
mation tensorFch describes the difference between two stress free configurations, namely with
the actual chemical composition (e.g. CdTe) and with the reference chemical decomposition
(GaAs). In our caseFch(x) = â(x)

âGaAs
, whereâ andâGaAs denote the lattice cell parameter taken

in two stress-free configurations mentioned above.

The initial and total deformation gradients are related to the source lattice distortionββββββββ HRTEM and
to the material displacement vectoru by the following relations

F−1 = 1−∇u =
∂(x− u)

∂x
=
∂xHRTEM

∂x
, (34)

Fpl = 1 + ββββββββ HRTEM =
∂(x̂ + û)

∂x̂
=
∂xHRTEM

∂x̂
, (35)

where

x = xHRTEM + u, xHRTEM = x̂ + û and ββββββββ HRTEM =
∂û

∂xHRTEM

, (36)

So, the positionx and lattice distortionββββββββ iterated in FEM are determined by the following
relations

x = u + XHRTEM, (37)

ββββββββ = 1− (1− ββββββββ HRTEM)−1(1−∇u). (38)

So, we find

F−1
lt′ = FchFpl(1−∇u). (39)

The equilibrium configuration iterated in FEM differs from the HRTEM image configuration.
Among others this is because of in our numerical algorithm both the boundary condition, stress-
strain behaviour, as well as chemical composition slightly differ from those corresponding to
the HRTEM investigations. Therefore taking into account the geometry of dislocated structure
from HRTEM image we assume: a fictitious stress-free boundary, a hypothetical chemical com-
position having a conviction that it is very close to the real composition as well as we assume
a hypothetical stress-strain constitutive equation which should describe as close as possible for
us the behaviour of the observed structure. For instance we assume a stress free boundary con-
ditions to determine the residual stress stored in the analysed region of heterostructure. Our
algorithm is based on a FE integration of the equilibrium equation in thecurrentconfiguration,
[17, 18], i.e.

div σσσσσσσσ = 0 (40)

where, according to the previously discussed constitutive equations, the Cauchy stress tensor is a
nonlinear function ofu,∇u, ββββββββ HRTEM. Applying the virtual work principle we find the following
nonlinear matrix equation

P(a) = f , (41)
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where

P =

[ ∫
v
∇TWσσσσσσσσdv

0

]
, a =

[
u

ββββββββ HRTEM

]
, f =

[ ∫
∂v

Wσσσσσσσσds

0

]
. (42)

W denotes the weighting function determined in relation to the current (iterated) configuration.
In the interior of finite elements the distribution of displacement field is governed by the relation

u(x) =
∑
i=1,9

Nu
i (x) ui (43)

ββββββββ HRTEM(x) =
∑
i=1,4

Nβ
i (x) ββββββββ HRTEM

i . (44)

We have applied the 9-node shape function for displacementsNu and 4-node function for initial
distortionsββββββββ HRTEM. Fixing deformation freedom degrees corresponding to the lower part of the
matrix equation (41)its upper part was solved only! Such a technique (with an undetermined
lower part and solvable upper part for fixed lower variableββββββββ HRTEM

i ) has been applied in order
to obtain continuous, differentiable and mutually compatible fieldsu(x), Flt(x) andα̂ααααααα(x). The
approach described above have been implemented as a user element to the FEAP program
v. 7.1f. The upper part of the nonsymmetric equation set (41) was solved by using the Newton-
Raphson method. In our case the tangent stiffness matrix takes the formK = ∂P

∂a
what gives

Kij =

∫
v

∇Ni
∂(σσσσσσσσ det F)

∂aj
det F−1dv. (45)

5.1 Numerical example

Below, a plane boundary-value problem of the residual stress distribution induced by disloca-
tions shown in Fig. 2 is described. This simplified (2D) problem is treated here as a numerical
test for the mathematical algorithm presented above. The whole HRTEM image was recorded
in the form of 1024×1024 bitmap. Due to some boundary errors obtained by image process-
ing in the Fourier space, a boundary zone has been excluded from the stress analysis. So, after
rejecting a 30 pixel wide zone per edge of the image its central region was taken into FE anal-
ysis, 964px×964px. This region was divided next into 100×100 = 10 000 ninth-node square
elements.

The nodal values of the source distortion fieldβHRTEM i was obtained by averaging the distortions
over all pixels situated near the node. Thus, each of elements occupied 9px×9px in the reference
(HRTEM) configuration what meant that each element occupied the region1

2
âGaAs × 2

3
âGaAs.

6 Conclusions

Solving the boundary-value problem discussed above we have obtained the stress distribution
shown in Fig. 2. The obtained stress distribution depends very strongly on the assumed lattice
parameters. It is visible that the relaxed configuration demonstrate a small volume expansion
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Figure 2: Dislocation and stress distribution obtained for considered CdTe/ZnTe/GaAs epilayer.
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in relation to the initial one. From the experimental point of view it is generally known that
a single dislocation induces a local volume expansion in crystal lattice. This expansion reach
often a value about1.0 b2 per unit length of dislocation in the bulk crystal. On the other hand,
from the viewpoint of the nonlinear theory of elasticity this effect can be observed only if the
elastic material becomes harden for compression and soften for tension. Then the more rigid
compressed part changes volume smaller than more flexible part expands caring out the most
of misfit deformation needed to hold the lattice continuity about dislocations. Because the most
of real crystals become harden for compression and soften for extension therefore the misfit
dislocations situated on interfaces induce locally a volume expansion at the same time all lattice
cells situated between dislocations are undergone a strong elastic compression. In result the
whole interlayer tends to surface expansion. This nonlinear elastic effect is often incorporated
to the linear elastic theory by assuming an additional surface tension.

Nonlinear equations of elasticity proposed here make the compression harden and extension
soften. Therefore in our numerical solution the dislocations demonstrate some volume expan-
sion. So, contrary to the linear theory we have not a reason to assume a surface tension addi-
tionally. Obviously, in our case, the crucial problem is how far the higher order elastic constants
used give possibility for fitting our constitutive model to the nonlinear elastic behaviour of real
crystal lattice. Nevertheless, one of the fundamental advantage of the presented method is the
use of experimentally measured lattice distortion field as a source field for calculation of stress
distribution in real semiconductors structure. Such a method allow us to solve important tech-
nical boundary value problems.
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