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THE EFFECT OF SLIPS ON THE ANISOTROPIC
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A transition from the field of micro-heterogeneous strains through the crystal strain orientation
distribution function to the averaging scheme used in slip theory is presented. The conjugate measures
of stress and strain have been derived for slip theory.

The theory is utilized here to the modelling of the strongly anisotropic, thermally activated, flow
process observed for untextured aluminium in the plastic strain range from 1%107° to 0.5%. The
subsequent yield surfaces are obtained by numerical simulation in time, the whole process
corresponding to the definition of yielding used by Phillips and Tang (1972). It is shown that the
observed athermal stress is closely related to residual stresses and depends strongly on the plastic
strain offset applied. In the present considerations a role of orientation distribution of mobile
dislocation densities in the anisotropic flow of polycrystalline metals is discussed.

KEY WORDS Orientation spaces, contravariant angular coordinates, Euler angles, slip theory, yield
surface, athermal stress, dislocation density.

1. INTRODUCTION

Recently, many constitutive models based on the concept of orientation distribu-
tions of crystals and slips are developed to describe the plastic anisotropy of
polycrystals. In spite of that, the majority of known experimental results for
combined loading path have never been quantitatively modeled by any
micromechanical theory taking into account time of experiment, temperature
changes and combined preloading path. A typical instance of this are the results
of Phillips and Tang (1972) concerning the dependence of the small offset yield
surfaces on the initial strain and temperature, cf. Ikegami (1982).

The idea of describing the plastic flow of metals as an effect of thermally
activated dislocation glides was proposed by Seeger (1954). Next, this concept
has been developed in many more complicated models, e.g. Seeger (1955),
Weertman (1957), Conrad (1961), Kocks, Argon and Ashby (1975), among many
others. On the other hand, verifications of the stress—strain behaviour of the
models were made mainly in relation to the axial loading tests. At the same time
a modelling of the anisotropic behaviour of polycrystal was developed on the base
of the balance equations for slips, see e.g. Lin and Ito (1966), Tokuda, Kratochvil
and Ohno (1985). Using such models it was shown that yield surfaces
corresponded approximately to envelopes of elementary yield conditions for
microslips, see e.g. Kiryk and Dluzewski (1989).
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In the next section the dependence of the back stress on the residual stress,
temperature and mobile dislocation density is discussed. Coming back to the
concept of thermal activation process a simple interpretation of the dependence is
suggested. In the third section a constant curvature Riemannian space of crystal
orientations is used to obtain some averaging schemes for strain tensor field on
the polycrystalline aggregate region. Section four is devoted to slip theory in
which the constitutive relations are postulated between the conjugate strain and
stress averages derived in the third section. In the framework of the theory a
model to predict the rate-dependent stress—strain behaviour of aluminium is
proposed. A verification of the model is made on the base of the experimental
results obtained by Phillips and Tang (1972).

2. EFFECT OF TEMPERATURE ON THE FLOW STRESS

An approximately linear dependence of the flow stress on temperature is
observed for many metals. In many cases to predict the flow process of crystals or
polycrystals the models of thermally activated flow have been proposed. Our
attention is focused on the relatively simple model, in which the plastic strain rate
y induced by shear stress 7 is described by

- -U +v(r - 1,) —v(t — ‘L’u)}
Y - pmb U() exp {exp kT exp kT ’ (1)

kT

where p,, is the mobile dislocation density, b the Burgers vector, v, the
dislocation velocity coefficient, 7, denotes residual stress around mobile disloca-
tions, cf. Figure 1. In many cases, with respect to weak dependence on
temperature the stress 7, is identified with athermal stress due to the interactions
of mobile dislocations with athermal obstacles. U denotes the activation energy,
while v is called the activation volume and % is the Boltzmann constant, see e.g.
Conrad (1961), Kroner and Teodosiu (1974). In our paper particular attention is
given to the effect of dislocation density on the flow stress.

Let 7, and 7, denote the yield stresses for two mutually opposite directions of
simple shearing. The yield stress 7., is often called the back stress. According to
(1) the yield stresses are determined by

U—-kT1 buy/7
T[fl = Tu * [% Ar,u (AYPI) + 1 (pm UO/YPI)]’

v

@

where 7, denotes the plastic strain rate resolved at the moment of reaching the
yield stress, Az,(Ay,) denotes the change of the residual stress induced by the
strain offset. For the method using a very small inelastic strain offset e.g. 5x 107°
the Bauschinger effect is detected before full unloading of the specimen, compare
Figure la. with Figure 2.

Let Az, denote the difference between 7, and ©

U - kT ln (pmbvo/?pl) +
v

o5 then

At (Ayy). 3)

Atp] = 2

The dependence of A7y, on temperature is illustrated in Figure 2b.
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Figure 1 The subsequent yield surfaces at elevated temperature by Phillips and Tang (1972) for

initially deformed aluminium specimen: (a) stress-temperature sections of the yield surfaces, (b) and
(c) the yield surfaces.
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Figure 1 The subsequent yield surfaces at elevated temperature by Phillips and Tang (1972) for
initially deformed aluminium specimen: (a) stress-temperature sections of the yield surfaces, (b) and

(c) the yield surfaces.
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Figure 2 Schematic drawings for plastic fiow governed by thermally activated dislocation glides: (a)
stress-plastic strain curve for temperaturc 7;, (b) dependence of the flow stress 7% corresponding to

small strain offsets on the temperature.
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3. AVERAGING SCHEMES

Let us assume that the macro-strain of the polycrystal is mainly due to micro-slips
in its grains. We limit our considerations to the infinitesimal strain approach for
single-phase polycrystal.

The overall strain € can be defined as a result of averaging the micro-strains &
over the representative volume region V; of the polycrsytal,

1
=), gwav 4)
where |Vy| = fy, dV, and
= 2 70 1'(¢a(x) )

In the last equatlon N denotes the number of all crystallographic slip systems of
the crystal occupying the point x, »n' determines the tensor of zshp system
orientation dependent on the crystal orientation ¢... The crystal orientation can
be described by angular coordinates on the constant curvature Riemannian space
of all orientations of the crystal. Then, the orientation is described by
contravariant angular coordinates (¢.,, 4)“, ¢c,) which may be identified respec-
tively with the Euler angles 3, n, ¢ shown in Figure 3.

Usually, Euler angles determine the crystal orientation with respect to crystal
axes. In our case we will use a slightly different relation, let m= (111) and
s=(110) then the region of all possible orientations of the f.c.c. crystal can be

x31

Figure 3 The Euler angles 8, n, ¢
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expressed by

0=<¢l<im 0= ¢l <in
Q,=90=¢l<imp+{r=9¢i<in (6)
0=¢d <in 0=¢3 <in

Considering the rotation of crystal as a geodesic line in Riemannian space it can
be shown that the angle between two different orientations of the crystal is simply
the Riemannian distance in the orientation space see Dluzewski (1991).

In (5) we take into account not only active but all crystallographic slip systems.
Therefore this equation is independent of the number of active slip systems,
however we can expect that at the point x most of the components in (5) are
equal zero and correspond to non-active slip systems. For each orientation ¢, we
may determine the strain average

£CI'( ¢Cl’) = lim

1
- f B(x') dV’ 7
200 | Vol Iy, (ot ron

where V., denotes the part of the polycrystal region which is occupied by similarly
oriented grains, with accuracy £A¢,,, what can be also expressed by

(xeVa@ut 800 N (G200 =0L0< (@it Ag)]
Using (5) and (7) we obtain

e Per) = 2 Vel Oce) 0 (Dcr) )

where

. . 1
Yed(@er) = lim

P(x')dv’ (10)
a0a—=0 Vol Iy (0t 200

On the base of (7) the equation (4) may be rewritten as

1

o | ety av an
[Vol W

The volume fraction of all equally oriented crystals is described by the crystal
orientation distribution function F, see Bunge (1969). This function is defined
here as a normalized function

_|Qulav 1)
Vol dQ°

where Q.| = [o_dQ. The expression dV/dQ denotes the Jacobian determinant
of the transition from the integration over the spatial coordinates (x', x%, x*) to
the integration over angular coordinates and can be understood as

av I Vol @ + AQc) (13)

——= lim —=— ,

dQ Ade—0 Vo Ad)érAd)grA(pgr
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where Va,, denotes the determinant of the angular metric tensor in the space of
crystal orientations. The function F allows a transition from the integration over
the volume region of material in (11) to the integration over crystal orientations,
where

1
E=—— 8cr(q)cr) F(¢cr) dgcr' (14)
Ichl Q.
According to Riemannian geometry dQ.. = Va, do! d¢p? d¢. In the case of
Euler angles used as contravariant angular coordinates the expression Va,, is
equal to |sin ¢2Z].
On the base of (14) and (9) we can also obtain the following averaging scheme

1
e=g7 | ve)n@) g, 1s)

where the strain y is induced by all equally oriented slips in the polycrystal, see
Appendix A. ¢, and Q; denote the slip orientation and the region of all
orientations of slip system, respectively. Using Euler angles, Figure 3, where the
unit vector m is perpendicular to the slip plane and s is parallel to the slip
direction this region can be specified as

0=¢l<2x
Q,={0=¢?<lx (16)
O=s¢li<nm

On the base of the transition from (14) to (15), see Appendix A, we obtain the
following relationship for aluminium polycrystal

12|
Q|
The indices A and B denote two different crystal orientations corresponding to
the fixed orientation of slips, see Figure 4. A similar averaging scheme can be

applied to stress distribution. Then the strain average y has a conjugate shear
stress.

Y(@9:) =57 [Va(0)F(9,) + va(9.)F (9,)] a7

Q B
100 = 1 TR0 + 1E0)F(0))] 8)
where
1
TA(9) = lim —— 5(x') dV”
=) reeo [V Va(0rae,) oy )

The analogous relation is obtained for the crystal orientation denoted by B. For
many models, see e.g. Hill (1972), it can be shown that for macroscopically
uniform boundary conditions on the volume region V,, = Vi + V2 the principle
of virtual work gives

1
@.7(¢,)v(¢,) = lim

| #(x)9(x) dV (20)
a0—0 | Vo] Jy (o, £20,)
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direction

Figure 4 Two different f.c.c. crystal orientations containing the same orientation of the easy glide
system.

The results discussed in this section concern many constitutive models applied.
Thus, the averaging schemes (4), (14) and (15) we may use to divide constitutive
models based on the concept of slip into three groups. The first of them, more
general, concerns a modelling of polycrystalline aggregate as a boundary value
problem for arbitrary arrangement of grains. Some prototype of such approach
has been developed e.g. by Lin and Ito (1966). The second very important group
makes the models based indirectly on the scheme (14). According to our results
we can say that these models describe only the strain average for all equally
oriented grains. The third group discussed below is composed of constitutive
models based on the scheme (15).

4. SLIP THEORY

In slip theory the stress-strain constitutive relations between the conjugate
averages y and t or their derivatives are postulated. Slip theory has been used by
Batdorf and Budiansky (1949), Como and D’Agostino (1969), Pan and Rice
(1983) Dluzewski (1984) among many others. Usually, the averaging scheme (15)
has been assumed a priori. Whereas here, the presented transition from (4) to
(15) gives the precise relationship between the micro-strains $(x), crystal strain
average v, and the slip strain average y. The result of the micro-macro
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transition depends on the crystal symmetry as well as on the crystal orientation
distribution.

It is worth to emphasis that in the case of axial loading, slip theory gives the
following, very simple relationship for axial strain

1 0.5
€=ﬁf yufdp, (21)

0

where u is the Schmid factor, f denotes the orientation distribution function of
slip systems. The function f(u) for untextured polycrystals has been calculated in
Appendix C.

Recently, many theories based on the concept of slip are used to predict the
deformation behaviour of polycrystal. In generally used models based on the
averaging scheme (14) the main attention is often focused on homogeneous
deformation of the grains. In slip theory the constitutive equations are postulated
for slip systems. Thus, the residual stresses counteracting the slip process will not
be modelled here as an effect of interaction of the homogenous grain with its
matrix, but it will be simulated as a result of interaction of the relatively large,
strongly local slips with approximately rigid walls. In other words we will assume
that the elastic accommodation of walls is negligibly small in relation to the strain
resolved within slip bands.

4.1. Constitutive Model

In our computer simulations the model in which the flow of polycrystalline
aluminium was described by the equations (1) and (15) has been applied. It is
assumed that below a certain threshold stress 7,, due to grain boundaries and
other obstacles, the evolution of the residual stress 7, is governed by elastic
interactions between mobile dislocations and obstacles according to

t,=h-y, for |t,|=1,. (22)

if the residual stress reached the threshold stress then further deformation is
associated with the increase of the dislocation density p for this system according
to the well known relation

p=c,l|7l, for |t,|= 1. (23)

The values of the factor ¢, for various mono- and polycrystals have been
measured by many investigators, see Table 6.1 in Gilman (1969).

Many authors discuss residual stresses as an effect of interactions of glide
dislocations with grain boundaries, coplanar dislocations, and with forest disloca-
tions. Here we assume that the increase of the threshold stress is controlled by
the change of dislocation densities, where

Tuo = To+ h1(0)"2 + ha(Pro) > (24)

The second component of the sum predicts the self-hardening effect, while the
third is an attempt to estimate the latent-hardening effect. According to the
averaging scheme presented above the total dislocation density p., in the
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Table 1 Material constants assumed for aluminium

polycrystal
Symbol  Value Constant, (Eq.)
U 0.375eV Activation energy, (1)
v 5.0%10"% em? Activation volume, (1)
C, 1#107" cm ™2 Dislocation multiplication
coefficient, (23)
b- v, 32%10 " cm?s ' Burgers vector/
velocity coefficient, (1)
fo 1 Mobile dislocation
@ 1%107 " em? factor, (26)
B 3%10° cm®
h 2.4+ 10* MPa Hardening
T, 14.5 MPa coefficients, (22), (24)
h, 7.9410% cm
h, 2.7%10°cm
polycrystal is determined by
1
pu=iy | pde. (25)
IQY| Q

It is assumed here after Gilman (1969), that the mobile dislocations Pn
compose a fraction of all dislocations for the slip system,

P = ful0 (26)

where f,, denotes the fraction factor. In our approach the factor is predicted by

the following rule f,, = f, - exp (—ap) - exp (— Bor)- According to the averaging
scheme derived in the previous section the total density of mobile dislocations in
the polycrystal is determined by

1
1€2,|

pmmt = f pm dQS‘ (27)
2,

4.2. Computer procedure

The values of the constants assumed for the calculations are presented in Table 1.
A rheological character of the thermal activation of slips (1) forced us to
simulate the whole flow process observed by investigators. Therefore the process
has been numerically simulated step by step in time according to the data on the
experimental procedure.

The numerical calculations were carried out for various discretizations of the
slip system space Q,. The most general discretization was composed with the slip
systems variously oriented in space, Dluzewski (1984). A simple discretization of
the slip space obtained for two-dimensional loadings ¢ — T is shown in Appendix

5. RESULTS

The investigation of the yield surfaces has been numerically simulated taking into
account the rate and direction of loading as well as the criteria of yielding similar
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to those which have been used by Phillips and Tang (1972) in their experimental
test. In our computer simulations the injection of the yield surface started in the
direction of preloading and was continued subsequently in reversed directions
until the orthogonal direction to the preloading has been reached.

Figure 5 shows the results of computer simulation for aluminium observed
after subsequent axial preloadings shown in Figure 1. With respect to the
difficulties in a precise presentation of all the yield points for subsequent yield
surfaces, these points have been omitted in Figure 5b. An example of the yield
point distributions obtained for one yield surface will be shown in Figure 9.
Figure 6a shows the surfaces obtained experimentally for the combined loading
path starting with the torsion to point A. Figure 6b shows the surfaces obtained
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Figure 5 Numerically obtained subsequent yield surfaces: (a) stress-temperature sections of the yield
surfaces, (b) the yield surfaces.
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Tang (1972), (b) from numerical investigation of the behaviour of the constitutive model based on the
slip theory.

as a result of the response of the numerical model for the analogous preloading
path. Figure 7 shows the comparison of yield surfaces for another preloading
path.

The distance between reversely directed flow stresses on the yield surface
depends on the mobile dislocation density. To illustrate the dislocation density
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the ship theory.

evolution obtained in our calculations the process of pure shearing has been
computed for the rate of shear 1+107>MPa/s, Figure 8. In our case the
dislocation density for one orientation of slips is described by p and p,, while the
densities referred to the volume V,, are determined by

194
pcr - 2 |QS| p (28)
and
Q4]
pmcr - 2 |Qg| Pm (29)
Similarly,
|QCI'|
Ycr = V 30
EX 30)

where v, denotes the shear strain averaged over the total volume of all crystals A
and B in which such oriented easy glide system exists, see Appendix A.

6. CONCLUDING REMARKS

In the present approach the yield surface is obtained by simulation of the
deformation process corresponding to the applied definition of yielding. There-
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Figure 9 Numerically obtained yield surfaces for aluminium. After pre-shear-straining of 0.3% at
70°F to point A and partial unloading the yield surface was tested for the offset 5+ 107°. Next, using
0.1% offset the points 17 to 26 were obtained.

fore, the yield stress is not an inherent part of the used constitutive model, but
depends on the used definition of yielding. For example, assuming two different
strain offsets 5*107° and 0.1%, two different yield surfaces are obtained in one
deformation process, see Figure 9. These results are in general agreement with
experimental data, see Szczepinski (1963), Stout et al. (1985).

To determine the yield stress investigators are forced to induce in the
material a certain plastic strain offset, usually 0.2%. A significant reduction of the
offset below 1+107°, made by Phillips and Tang (1972), gives also a significant
reduction of the observed athermal stresses. This experimental evidence suggests
that the experimentally obtained athermal stress is due to residual stresses
induced by the applied plastic strain offset. The relatively small polycrystal strain,
e.g. 0.2% induces large internal stresses, cf. Figure 1a, and consequently leads to
a deviation from the linearity of the yield stress-temperature diagram.

APPENDIX A

Using (9) the Eq. (14) can be rewritten as
1 N
|ch| Q. i=

The number of all easy glide systems in aluminium crystal is determined here as
N =12. It is known that for a given crystal orientation ¢, we can uniquely

) Yfll'(¢cf) nir(q)cr) F(¢Cr) dQCl" (Al)
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determine the angular coordinates of the slip system i.e.

¢ = ¢s(Pcr, §) (A2)

In many cases the inverse relation with respect to ¢, does not exist, e.g. in the
case of the f.c.c. crystal for each orientation of a slip system we find two mutually
different crystal orientations in which such oriented easy glide system exists, see
Figure 4. However, in the neighbourhood of i-slip system orientation of the
crystal one of the following unique relations takes place

O = 05(0,, i) (A3)
or
P = 059, ©) (A4)

*| is determined for

5

It can be shown that the jacobian of the transformation
(A3) and (A4) as

dég| Vag
do, |~ Va, (A3)

where \/a_s and Va,, denote the roots of the determinant of the angular metric
tensors for the orientation spaces of slip and crystal orientations, respectively. In
the case of Euler angles used as angular coordinates we obtain Va, = [sin ¢2| and
dQ, = Va, dp! dp? dp?. Analogous relations are satisfied by Va,, and dQ,,. So
using the theorem of integration by substitution it follows

€T Té_"l o, ||§ S}| [y (@)F*(9:) + ¥" (@) F (.)] n(9,) 4. (A6)

For untextured aluminium we may assume that F* = F% = 1, Then

R S [oX
|Qs| Qslgcr‘

2y.ndQ. (A7)

where y,, denotes the strain average over the total volume occupied by the crystal
orientations A and B, so

Ycr(q)s) = lim

1 N
| rav =ias v (A8)
40,20 [Veel Jv, 0,20,

where V= V2 + VE,

APPENDIX B

Let us consider the biaxial loading 033, 03, = 0,3. Note that to calculate the shear
stress T for arbitrarily oriented slip system we need two coefficients n, and n,
where (B, n, ¢) = 033 - n,(B, 1, ®) + 033 - n.(B, n, $). On the base of (15) and
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Table B1 The scction of slip system space for states of loading 0 — ©

Slip system n, n, AQ Slip system n, n, AQ
no. no.
1 0.000 1.000  0.0073 14 0.379 0.386  0.0435
2 0.155 0.951  0.0076 15 0.420 0.133  0.0416
3 0.294 0.809  0.0088 16 0.420 —-0.133  0.0416
4 0.404 0.588  0.0120 17 0.379 —-0.386  0.0435
5 0.476 0.309 0.0217 18 0.301  —0.601 0.0415
6 0.500 0.000  0.0251 19 0.193  —=0.757  0.0254
7 0.476  —0.309 0.0217 20 0.067 —0.840 0.0233
8 0.404 —0.588  0.0120 21 0.085 0.523  0.0886
9 0.294  -0.809  0.0088 22 0.223 0.323  0.0769
10 0.155 —-0.951 0.0076 23 0.275 0.000  0.0570
11 0.067 0.840 0.0233 24 0.223 —-0.323 0.0769
12 0.193 0.757 0.0254 25 0.085 —{.523 0.0886
13 0.301 0.601  0.0415 26 0.000 0.000  0.1288

(25) we obtain

N
533 = 2 “ni AQ
=

N
< g”;%E 7'nL AQ, (B1)

ptm‘ Z p' ALY

i=1

where AQY L dQ.
lel AQ§

The volume of the slip system space €, has been divided between N =26
systems. The whole space was searched with the steps An, Af/sin (n — An/2),
A¢ =2° Each of the small cells with the dimensions AS, A7, A¢p was assigned
to the nearest system, using as a criterion the minimum of the metric m =
V(nh,—ns3)* +2(n%/2 — ny3)°. On this way the section of Q, into 26 subregions
has been obtained, see Table B1.

APPENDIX C

In the case of uniaxial loading the axial strain £;; induced by differently oriented
slips in the untextured polycrystal is determined by

/2
E33=—— f yhy; dQ= f f yusinndpdnde. (C1)
|€21 ¢=0

This integrand does not depend on the angle f, and the Schmid factor is
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determined by pu = 0.5 sin 27 sin ¢, so for a fixed 5

d
de = E—
(sin 27))2 o,
> U
Let us replace the integral variable ¢ by u, then
1 w2 1 /2 r(sin2n)/2 27 sin n dn d"‘
E33=2-— 2rsinndndep = —
Y I ¢:0y“ ndndg = heodio  TH sin2p\* )’
(5 -
(C2)

In the last integral, the Schmid factor u is independent of the variable 7 as the
second independent integral variable. Hence, according to slip theory the shear
stress 7 as well as the strain y are also independent of 7. So,

1 " U’”*"‘ 27 sinn ]
£33 - dn |du. C3
. 2'7[2 ©w=0 Y ‘u 11=0.5 arc sin 2u \/COSZ 77 Sln2 77 _EZ 7 # ( )

Denoting
7 —0.5 arc sin (2u) 2” Sin 1’

2 ) 2
0.5 arc sin (2u) \/COS nsmn—u

flp) = dn (C4)

we obtain (21).
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