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Abstract

Tensorial maps of misfit dislocations at the strained GaAs/ZnTe/CdTe interfacial zone are reconstructed

by use of digital processing of High Resolution Transmission Electron Microscopy (HRTEM) micrographs.

Large distortions of the crystal lattice around Lomer dislocations are measured using the geometric phase

technique. The integration of the dislocation distribution tensor field over a dislocation core region gives

the in-plane components of their Burgers vectors. The accuracy of the method for the dislocation map

reconstruction is tested by comparing the theoretical values of the so-called true Burgers vectors with

those obtained from the integration of tensorial maps.
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1 Introduction

In recent years, several papers have been devoted to the measurement of lattice distortions from the HRTEM

micrographs – particularly in the case of semiconductor pseudomorphic layers or coherent islands. (Bayle

et al. 1993; Bierwolf et al. 1993; Robertson et al. 1995; Kret et al. 1998; Hÿtch et al. 1998; Snoeck et al. 1998).

It was based on the assumption of a direct relationship between the intensity maxima in HRTEM images

and the atomic columns position in the observed samples. The maxima positions were precisely determined

by use of the respective image processing routines. The positions in experimental lattice were compared with

those calculated on the basis of the distances measured in a perfect crystal near the analysed area. Next

the displacement fields were determined as displacement vector between corresponding nodes of deformed

and reference lattices. Another technique called the geometric phase method has been developed by Hÿtch

et al. (1998). This technique is more convenient than the method mentioned above for the measurement of

lattice distortions in faulted regions, e.g. around dislocations because, in contrary to peak finding procedure,

the numbering of the lattice points in reference and actual configuration are not necessary. This approach

has been used by Snoeck et al. (1998) to measure the lattice distortion in vicinity of misfit dislocations

situated at the interface in heteroepitaxial GaAs/GaSb. Mbus and Wagner (1999) have used the geometric

phase maps to study influence of the delocalisation effect of different types microscopes (field emission, high

voltage, Cs corrected) on the measured distortion field near dislocation at Cd/Ni interfaces.

These two methods are not suitable for the determination of atomic structure of dislocation. The more

general approaches based on a quantitative comparison between the simulated and experimental images

are needed. Mobus (1996) has proposed a method based on an iterative structure retrieval which was

successfully applied to analyse the atomic configuration of edge dislocations in niobium. The incoherent

imaging technique as Z-contrast was successfully applied to find the atomic structure of misfit dislocations

in CdTe/GaAs(100) by Mc Gibbon et al. (1995).

In the following, an approach based on the continuum field theory is employed to digital image processing

and the distribution of dislocation cores are extracted from HRTEM micrographs.

Due to strong lattice distortions near the defects cores, we used the mathematical theory of disloca-

tions based on so-called large deformation approach in which the differences between the reference lattice
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(undeformed) and the actual configuration of the crystal lattice are considered. In particular, our method

relates to the idea of the description of the dislocated crystal lattice in terms of the nonlinear theory of large

elastic-plastic deformations (cf. Teodosiu 1970; Kröner 1981; D lużewski 1996).

2 Experimental details

HRTEM images of GaAs/ZnTe/CdTe heterointerface along the [110] zone axis are used to demonstrate the

dislocation core measurement (Fig.1).

[Insert figure 1 here]

A thick CdTe film was grown by molecular beam epitaxy (MBE) on GaAs (100) 2◦ misoriented substrate.

Before growth, the surface oxide was removed by flash heating of the substrate in an ultra-high vacuum

chamber in a Te flux. A thin, 20-60nm thick, ZnTe intermediate layer seems to be the best way for obtaining

high quality CdTe {100} layers (Tatarenko et al. 1989), but in our case, the growth was started by deposing

2 monolayers of ZnTe on GaAs substrate followed by CdTe to obtain a buffer layer used to grow quantum

structures. The growth process was performed at 350◦C at a 1µ/h growth rate. The {110} cross-sectional

specimens were prepared using the conventional grinding and ion beam thinning with liquid nitrogen cooling.

The high resolution electron microscopy was performed by using a Philips CM 20 UT microscope operating

at 200 kV with a point resolution of 0.19 nm. For HRTEM observation an aperture of 11 nm−1 (including

9 beams: 000, 4 × 111, 2 × 220, 2 × 200) was used for image formation. The thickness of the foil for which

the images were analysed was uniform and estimated to be below 15 nm. Simulated images of GaAs and

CdTe crystals along the [110] zone axis show that close to Scherzer defocus and foil thicknesses between 5

and 15 nm the bi-atomic column positions are represented by white dots. In practice, the defocus value was

slightly tuned to keep homogeneous contrast (with bright dots on a dark background) for GaAs and CdTe

crystal in the whole-observed area. The images were recorded on photographic plates and digitized with a

resolution of 3 pixels/Å and 8 bits dynamic. A typical high quality image of GaAs/CdTe interface along the

[110] projection is shown in Fig. 1. The interface (substrate surface) was tilted about 2◦ relatively to [100]

crystallographic direction, so 4 mono-atomic steps appear between the left and right borders of the image.
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Their probable positions have been marked by horizontal line segments in fig. 1. A network of dislocations

at the interface accommodates most of the 14.6

The tilt of the CdTe lattice relatively to the substrate is less than 1◦ in the analyzed area, which is small

compared with the 6◦ reported by Cheng et al. (1995), for growth of CdTe directly on GaAs substrate. Nine

of the ten misfit dislocations visible on the interface are edge Lomer dislocations. Their Burgers vectors

have components 1
2 [11̄0]. The dislocation lines are parallel to the interfacial plane and to the electron beam.

Only one 60◦ dislocation is visible at the interface (see dislocation no. 10). The second 60◦ dislocation is

situated at 8 nm from the interface (dislocation no 11). Other dislocations (not shown in Fig 1) were found

far away from the interface at 20-25nm. Burgers vector of this kinds of dislocation has components 1
2 [01̄1̄]

or 1
2 [101̄] and is deviated by 60◦ from the dislocation line being parallel to the electron beam and is laying

in (11̄1) plane. The image pattern of all dislocations visible in Fig. 1 are different from one to the next.

We will demonstrate that by using a self-consistent digital processing of HRTEM images in properly

chosen conditions, the lattice distortion field and the dislocation core distribution can be correctly extracted

from HRTEM images. In the next section, we briefly summarised the theoretical foundations of the nonlinear

continuum mechanics which have been employed in this work.

3 Relations between the deformation and displacement fields

By a continuum we mean an open set in the three dimensional oriented Euclidean space E3. Let X denote the

reference position of a material element which after deformation takes a new position x, see Fig.2. Limiting

our considerations to orthonormal coordinate systems in E3, the coordinates xk and XK of the material

element occupying the initial and current positions x and X can be treated as components of the respective

vectors. In such a case the displacement vector is determined as the following difference :

u = x−X (1)

The gradient of the displacement vector field u(x) is defined as:

∇u
df
=
∂u
∂x

=
∂u
∂X

∂X
∂x

(2)
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Alternatively, the deformation of the body can be described by the mapping x = x(X). A deformation

gradient F is defined as a generally nonsymmetric tensor :

F
df
=

∂x
∂X

(3)

The description based on the mapping x(X) is found to be more general than the approach based upon

the displacement field u(x). This concerns mainly non-Euclidean spaces where, with respect to the space

curvature, the displacement vector fields can not be used to determine the lattice displacements. In the

next section it will be shown how the lattice displacements in E3 can be described by using the piecewise

continuous displacement fields where the segments are separated by discontinuity lines. Substituting (1) and

(3) into (2) we find a reversible relation between ∇u and F

∇u = 1− F−1 and F = (1−∇u)−1 (4)

[Insert figure 2 about here]

3.1 Dislocated crystal lattice

We present here the fundamental relations of the continuum theory of dislocations , see Kröner (1958);

Kröner (1981); Teodosiu (1970, 1982); Gairola (1979); D lużewski (1996). To take into account the difference

between the total and lattice deformations it is convenient to decompose the total deformation gradient F

into the lattice deformation tensor Flt and a remnant Fpl induced by the process of rebuilding of the crystal

lattice during plastic deformation).

F = FltFpl (5)

Apart from the displacement field u(x) describing the displacements of mass , cf. (2), we can determine

a second field corresponding to local displacements of lattice points û(x) the current to the lattice reference

configuration identified with an arbitrarily chosen region in a perfect lattice structure, see fig. 2.

The first field corresponds to the total deformation induced both by plastic (rebuilding) and elastic

deformations, while the second one corresponds only to a local elastic unloading to the nearest atomic position
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in a perfect lattice. In result, the first one is continuous and satisfies so-called compatibility conditions while

the second gives discontinuity lines departing from dislocation cores.

û = x− x̂ (6)

such that

ββββββββ =
∂û
∂x

and Flt =
∂x
∂x̂

(7)

Similarly as in the case of distortions ∇u in a perfect lattice, we find, cf. (4),

ββββββββ = 1− F−1
lt and Flt = (1− ββββββββ )−1 (8)

The fundamental difference in relation to the total distortion measures discussed previously lies in the

so-called compatibility conditions. For a dislocated crystal lattice we are not able to determine a continuous

lattice displacement field without lattice rebuilding which could relax the lattice, as a whole, back to the

perfect lattice. From the mathematical point of view, the necessary condition to find such a continuous

displacement field û(x) relating of the deformed lattice to the perfect one takes the form

∧
x∈Vcr

curlββββββββ = 0 (9)

where
∧

x∈Vcr
reads for all x in the whole crystal volume region. In the index notation the operator curlββββββββ

reads ∂βij
∂zk

ejkl = 0, where ejkl is the permutation symbol, cf. (18). In other words, if the above condi-

tion is satisfied, then for a given four-component field ββββββββ (x) there will exist a two-component vector field

u(x) such that ββββββββ (x) = ∇u. Obviously, in a general case, for an arbitrary chosen four-component field

β11(x), β12(x), β21(x), β22(x) we are not able to find only two-component field u1(x), u2(x) which could gen-

erate four mutually different component fields of distortions. The necessary condition for integrability of

ββββββββ (x) to obtain a continuous u(x) takes the form (9).

3.2 Distribution of the true Burgers vectors

Two Burgers vectors are associated with a given dislocation (Hirth and Lothe (1982)). The so-called true

Burgers vector refers to the interatomic distances in a perfect crystal lattice, while the local Burgers vector
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is measured in relation to the lattice spacing in the studied area in which the dislocation is observed. These

two vectors are different. Analogously, in the continuum theory of dislocations a few mutually different

tensorial measurements of dislocation distribution are introduced, cf. (10) and (21). The distribution of the

true Burgers vector is described by the following dislocation distribution tensor

α̃ααααααα
df
= curl F−1

lt = − curlββββββββ (10)

In the subscript notation this means that

α̃ik = −∂βim
∂xn

emnk (11)

Let the Burgers circcuit be drawn around the dislocation core in the studied configuration. Making a local

mapping to any chosen reference configuration of the perfect lattice we find the respective unclosed circuit ĉ

in the reference configuration, see figure 2. The vector b̂ needed to close the circuit is called the true Burgers

vector. Using the Stokes theorem this local mapping takes the following mathematical representation in the

continuum theory of dislocations

b̂ =
∮
c

∂x̂
∂x

dx =
∮
c

F−1
lt dx =

∫
sc

α̃αααααααds (12)

where sc is the region occupied by dislocation core in the actual configuration. The differential ds is under-

stood here as a product ds = n ds where n is the unit vector perpendicular to the cross-section, while ds

is a scalar area element of dislocation core. The geometric meaning of the tensorial measure α̃ααααααα can be also

expressed in a differential form :

db̂ = α̃ααααααα ds (13)

relating the respective increase of the Burgers vector db̂ to the area element ds of dislocation core region.

The dislocation core distribution α̃ααααααα (x) is particularly interesting in the case of the dislocation which can

be dissociated. For example, for Lomer dislocation the splitting of elemental 60 dislocations will be clearly

visible in distribution of α̃ααααααα (x)
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4 Practical image processing and results

Our procedure for measuring dislocation distribution starts with the reconstruction of distortion fields from

HRTEM micrograph. The geometric phase method is suitable to analyse distortions in a strongly dislocated

materials. In our case, 1024x1024 pixels HRTEM images have been recorded (Fig.1). The unit vectors

e1, e2, e3 composing the vector basis in the orthonormal coordinate system {xk} has been chosen as follows

e1 = 1√
2
[11̄0] – horizontal direction

e2 = [001̄] – vertical direction

e3 = 1√
2
[110] – electron beam dir.

(14)

The phase images Pg1̄1̄1
(x1, x2) and Pg11̄1

(x1, x2), shown in fig. 3, were obtained by applying circular masks

around [11̄1̄] and [11̄1] Bragg peaks, cf. Fig. 1. The dislocations free GaAs substrate structure was chosen

as a reference configuration, see geometric phase method Hÿtch et al. (1998). The image processing was

performed with the program written using OPTIMAS Analytical Language for Images (Media Cybernettics

1999).

Figure 3 shows a abrupt change of the geometric phase from 0 to 2π in the CdTe crystal area and the

discontinuity lines point out the position of missing CdTe (111) planes. In GaAs substrate area the small

phase variation from 0 to 0.5π is observed in the e1 direction. This variation is due to a slight variation of

imaging conditions from right to left of the image. This long range geometric phase gradient is negligible in

CdTe layer where the phases changes from 0 to 2π on the distance between dislocations.

[Insert figure 3 here]

The lattice displacement û(x) ,where x = x1e1 + x2e2, has been calculated using the following formula,

see Hÿtch et al. (1998):

Pgi(x) = −2πgi · û(x) (15)

which can be rewritten for vectors g1 and g2 as follows :

Pg1(x) = −2πg1 · û(x) = −2π (g11 û1(x) + g12 û2(x))

Pg2(x) = −2πg2 · û(x) = −2π (g21 û1(x) + g22 û2(x))

(16)
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The two-dimensional distortion field ββββββββ (x) shown in Fig. 4 is obtained by differentiation of the displace-

ment field û(x) according to (7). The distortions have been determined using the following equation :

[ββββββββ ] =

 β11 β12

β21 β11

 =

 ∂û1
∂x1

∂û1
∂x2

∂û2
∂x1

∂û2
∂x2

 (17)

The displacement discontinuity cause to undetermined distortion lines on a continuous distortion field. From

the numerical point of view, the undetermined regions were occupied by 1-2 sequential pixels only. Due to

the continuous character of the distortion field, the undetermined values on the discontinuity lines were easy

retrieved by interpolation. In the dislocation centres we obtained always a few neighbours pixels with very

high negative and positive values up to βij = ±105, but in the mentioned region the components of ββββββββ (x)

change the sign in a continuous way. Therefore, all pixels with ”artificial” values of ββββββββ (x) were removed by

applying the symmetric cut off to ββββββββ (x) = ±0.75 and all missing pixels was restored using a bi-quadratic

interpolation function. The performed test shows that the threshold value and interpolation function ap-

plied are not critical for calculated Burgers vector, which can be obtained with high precision practically

independently of this parameters.

[Insert figure 4 about here]

The field ββββββββ (x) determined in relation to the GaAs reference substrate is shown in Fig 3. In the case of

dislocations 1, 4, 7, 8, the dissociation of dislocation cores into elemental 60◦ dislocations is clearly visible.

Due to over two times larger stiffness of GaAs than CdTe the elastic field disturbance induced by interfacial

dislocations is weaker in GaAs. It is clearly visible on the maps of β11 and β22.

The components of dislocation distribution tensor, α12 and α23, have been determined by means of (11)

using the field ββββββββ (x) . All non-vanishing components of the alternating tensor eijk were limited to e123 = +1

and e213 = −1, which leads to the following index relations :

α̃13 = −β1i,j eij3 = −β12,1 + β11,2 = −∂β12

∂x1
+
∂β11

∂x2

α̃23 = −β2i,j eij3 = −β22,1 + β21,2 = −∂β22

∂x1
+
∂β21

∂x2

(18)

Such determined plane components of tensorial field of dislocation distribution take zero value in the whole

analysed region excepting the dislocation cores where they form the characteristic local peaks, see Fig. 5.
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The size and shape of peaks depend on the interpolation procedure applied (bi-quadratic interpolation).

The peaks are surrounded by zero value field with the accuracy 10−6 of the densities values reached at the

peaks even at the retrieved pixels on the discontinuity lines, which confirms the validity of the interpolation

methods used to recover missing pixels. The dislocation density tensor determines uniquely the Burgers

vector. Integrating the components α̃ααααααα over the whole dislocation core region, we can find the components of

the so-called true Burgers vectors. According to (12) we find

b̂1 =
∫
Sc

α̃13n3ds ≈
k∑
i=1

α̃13∆Spxli

b̂2 =
∫
Sc

α̃23n3ds ≈
k∑
i=1

α̃23∆Spxli

(19)

where Spxli denotes the area occupied by i-th pixel. In digital image processing the whole dislocation core has

been divided into element area corresponding to pixels, i.e. Spcli =
∑k
i=1 ∆Spxli . In our case, the dislocation

distribution tensor has been rescaled to : f(x) = α̃ααααααα (x)∆Spxl. The plane components of the Burgers vector of

the analysed dislocation can be simply calculated in a rectangle surrounding a given dislocation core. From

practical point of view, in this frame the resulting values were nothing else that the sum of the values reached

by f(x) in the marked area, cf. green rectangles marked in figure 5, and the resulting values of components

of the Burgers vectors, ie. b̂ =
∑
i f(xi).

The results of integration as well as the dislocation core distribution field obtained here are shown in

figure 5.

We tested different interpolation functions as well as different cutting levels for discontinuity removing

and the final values of Burgers vectors was always the same as shown in Tab. 1 (precision 0.01 [Å]). So, the

calculated Burgers vectors do not depend of the interpolation procedure applied. Since, as in the Burgers

method, the exact values of the Burgers vector compounds are determined uniquely by the environment of

the defect, where the Burgers circuit is drawn.

The upper row of pictures in Fig.5 presents the enlarged fragments of image shown in Fig. 1. The following

rows of pictures show the contour plots of dislocation core density components α̃13 and α̃23 for marked square

frames shown on upper images. It is clearly visible that the dislocation core density tensor takes non zero

values only near a dislocation center in a radius of about 0.5 nm.

Note, that for the considered heterostructure, we can assume many different reference lattices. For
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example, instead of a perfect lattice shown in the lower image in figure 1-20 on page 22 in Hirth and

Lothe (1982) we could assume here a perfect CdTe structure as the reference one, then the different true

Burgers vectors could be determined. Obviously, the most convenient reference structure seems to be the

one based upon the real chemical composition of given crystal zone. However, the problem is that in the

transient interfacial zone the real composition is often difficult to determine, especially in the vicinity of

dislocation cores. Moreover, to compare the tensorial fields obtained for different dislocations situated in

one heterostructure, it is convenient to take a common reference lattice. In our particular case we have

referred the Burgers vectors of all dislocations to the perfect GaAs lattice according to the FS/RH method.

Therefore, even for dislocation no 11 situated in the CdTe lattice we have obtained the true Burgers vector

whose components reach values proper to the perfect lattice assumed as the reference one (GaAs).

Dislocations 4 and 5 have the same true Burgers vector but their tensorial maps are quite different.

Dislocations 3, 4 and 7 have clearly visible double peaks of α̃13 with maximum value 0.022 [Å]/pix but the

field α̃23 is split to maximum and minimum. Integrating separately the two partial dislocations, we obtain

two Burgers vectors corresponding to in-plane components of two opposite 60◦ dislocations . However it

is also possible that this peak separation results from an the symmetry breaking of the distortion fields ββββββββ

around core. For a perfect dislocation with a dislocation line parallel to the e-beam the shape of the ”wings”

of ββββββββ distribution must have regular, symmetric character. After calculation, this gives a single peak α .

If the dislocation is dissociated, the measured distortion field consists of two superimposed distortion fields

generated by two elementary dislocations. But splitting can also occur if the dislocation line is not parallel

to the zone axis, for example due to local foil skewing or presence of steps on the GaAs substrate invisible

due to projection (dislocation line can change position through the foil thickness).

Other possible explanation can arise from the variation of imaging parameters like thickness and defocus,

but in our case, the dislocations are very close to each other and it is difficult to expect large variation of

the imaging parameters on these short distances. However, the influence of experimental condition must be

better understood and the appropriate simulations are scheduled in future works. The possible origin of the

α peaks splitting is the instability of the core structure in this complex material system. As an example, an

unexpected atomic configuration of dislocation cores was found in the GaAs/CdTe interface by Z contrast
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investigation by McGibbon et al.1996. However, future analyses will be necessary to correlate the observed

origin of the α distribution variation versus the atomic structure of cores.

Summarising, on the basis of the α distribution extracted from fig 1, we can distinguish a perfect Lomer

dislocation (5) and a highly dissociated Lomer dislocation (1,7,8). The splitting of the α peaks for the

remaining dislocations (2,3,4,5,6,9), which are interpreted as the Lomer dislocations, can also results from

the reason discussed above.

The proposed procedure gave the Burgers vectors related to the lattice constant in the reference material

independently of the variety of shapes of α field.

[Insert figure 5 about here]

5 Local Burgers vectors

In section 3.2, using the geometric phase technique on HRTEM images , the true Burgers vectors of disloca-

tions have been determined. Starting from local mappings of a heterostructure GaAs/ZnTe/CdTe into the

GaAs reference structure we determined step by step:

1. a piecewise continuous lattice displacement field û,

2. continuous lattice distortion fields ββββββββ and Flt, cf. (8) and (7),

3. continuous dislocation distribution field α̃ααααααα , cf. (10b).

For example, integrating of α̃ααααααα over the core region of dislocation no 11 situated in CdTe we have found

the true Burgers vector, 1/2<110>. However, the measured components do not correspond to a strongly

deformed CdTe structure but are 14% smaller, and correspond to the reference GaAs structure, for which the

distortion Flt and ββββββββ have been determined previously. So, calculated in this way Burgers vectors have a value

corresponding to the undeformed lattice
√

2
2 aGaAs instead of

√
2

2 aCdTe, — in spite of the integration being

carried out over the cross-section in CdTe (cf. the result of integration shown in Fig. 5 for dislocation no 11).

To avoid such discrepancies, in the dislocation theory, two Burgers vectors are assigned for every dislocation

(see SF/RH Burgers circuit shown in figure 1-21 by Hirth and Lothe (1982). Note, that the difference between
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the values of the true and local Burgers vectors is usually negligible because the elastic deformation of given

crystal lattice is very small. But in heterostructures composed of quite different materials the difference

takes a significant level due to different equilibrium lattice constants (chemical distortion). For example, in

our case for dislocation 11 the difference exceeds 14%.

In the dislocation theory, the local Burgers vectors can be found by using the transformation rule for

differentials of the Burgers vector from the reference to the actual configuration, db = Fltdb̂, we find

db = Fltα̃αααααααds = ααααααααds (20)

cf. (13), where the spatial distribution of the local Burgers vector is defined as

αααααααα
df
= Flt curl F−1

lt = −(1− ββββββββ )−1 curlββββββββ (21)

In the index notation the last equation reads αik = −(1− β)−1
ij

∂βjm
∂xn

emnk.

The definition of αααααααα means that integrating αααααααα over the cross-section of dislocation core in the actual

configuration we can obtain the local Burgers vector b from the same configuration, cf. (12),

b =
∫
sc

ααααααααds (22)

Both of the Burgers vectors b and b̂ are widely used in dislocation theory. In heterostructures where the

lattice deformation is often very large due to a change in chemistry, the difference between the actual and

lattice reference configurations becomes considerable. Calculating components of α13 and α23 from (21), we

find

α13 =
[
(1− ββββββββ )−1

]
11
α̃13 +

[
(1− ββββββββ )−1

]
12
α̃23

α23 =
[
(1− ββββββββ )−1

]
21
α̃13 +

[
(1− ββββββββ )−1

]
22
α̃23

(23)

where for two-dimensional tensorial fields rewritten in orthogonal coordinates, the components of the tensor

inverse to 1− ββββββββ is given by:

(1− ββββββββ )−1 =

 1−β22

det (1−ββββββββ )

−β12

det (1−ββββββββ )

−β21

det (1−ββββββββ )

1−β22

det (1−ββββββββ )

 (24)

The obtained distribution of α13 and α23 components are very similar to the previously obtained ones shown

in figure 5 for α̃13 and α̃23. The in-plane components of the local and true Burgers vectors referring to the
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actual and reference configuration are given in Table 1 for all dislocations visible in Fig 1).

[Insert table 1 about here]

The analysis of Table 1 shows that for all dislocations, their Burgers vectors recovered from integration

of αααααααα in the actual configuration are slightly smaller than the corresponding ones in the perfect CdTe lattice.

This may be explained by the misfit stress as well as by a redistribution of Zn atoms leading to CdxZn1−xTe

compound around dislocation cores.

6 Summary

The continuous tensorial field of defects distribution is convenient for computer aided recognition of the

geometric parameters of lattice defects on the basis of HRTEM micrographs. As seen above, the dislocation

fields α̂ααααααα (x) and αααααααα (x) have been scaled in such a way that marking a respective frame surrounding one or

more dislocation cores, the in plane components of resulting total Burgers vector were displayed immediately

on computer screen . From a practical point of view, the proposed technique allows on-line computer aided

recognition of the in plane components of Burgers vectors during HRTEM observations.

The applied method gives a very good accuracy for the determination of Burgers vectors. It is worth

emphasizing that outside the dislocation cores, within one Burgers vector length the components of the

tensors αααααααα and α̃ααααααα reach values 10−6 of values in core regions. Moreover, the true Burgers vectors of all

dislocations ,determined by the integration of dislocation distribution peaks of α̃ααααααα are identical within 0.01

[Å], (cf. the column for reference configuration in table 1). So good accuracy is obtained for Burgers vectors;

and moreover, zero values taken by curlββββββββ outside dislocation cores give a proof of the high reliability to the

determined lattice distortion field ββββββββ (x).
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Solid Films, 319, 157.

Sutton, A.P. and Balluffi R.W. (1995). Interfaces in Crystalline Materials. Monographs on the Physics and

Chemistry of Materials 51. Oxford University Press.

Tatarenko, S., Cibert, J., Gobil, Y., Feuillet, G., Saminadayar, K., Chami, A. C. and Ligeon, E., 1989,

Applied Surface Science, 41-42, 470.

Teodosiu, C., 1970, Fundamental Aspects of Dislocation Theory, Nat. Bur. Stand. Spec. Publ., Vol. 317 (2),

edited by Simmonds, A. et al., pp. 837–876.

Teodosiu, C., 1982, Elastic Models of Crystal Defects. Springer-Verlag and Editura Academiei, Berlin and

Bucureşti.
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Disl.

No

In a perfect

GaAs

Lattice

reference

config.

Actual

config.

In a perfect

CdTe

b̂1 b̂2 b̂1 b̂2 b1 b2 b1 b2

1 -3.997 0.0 -4.01 -0.02 -4.54 0.11 -4.583 0.0

2 -3.997 0.0 -4.01 -0.02 -4.51 0.23 -4.583 0.0

3 -3.997 0.0 -4.00 -0.02 -4.43 0.09 -4.583 0.0

4 -3.997 0.0 -4.01 -0.02 -4.21 -0.05 -4.583 0.0

5 -3.997 0.0 -4.01 -0.02 -4.42 -0.04 -4.583 0.0

6 -3.997 0.0 -4.01 -0.02 -4.44 0.28 -4.583 0.0

7 -3.997 0.0 -4.01 -0.02 -4.42 0.00 -4.583 0.0

8 -3.997 0.0 -4.01 -0.02 -4.21 0.07 -4.583 0.0

9 -3.997 0.0 -4.01 -0.02 -4.51 -0.02 -4.583 0.0

10 -1.999 2.818 -2.01 2.83 -2.33 3.13 -2.291 3.241

11 -1.999 -2.818 -2.00 -2.85 -2.54 -3.33 -2.291 -3.241

Table 1: Burgers vector components [Å] measured in relation to different configurations of crystal lattice.

19



Figure 1: High resolution image of GaAs/ZnTe/CdTe interface observed along the [110] zone axis with its

FFT inset.
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Figure 2: Schematic drawing of configurations considered.

Figure 3: Phase images obtained for reciprocal vectors g11̄1̄ and g11̄1 with masks shown in figure 1.
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Figure 4: Distribution of lattice distortion tensor ββββββββ .
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Figure 5: Tensorial distribution of dislocation cores determined from HRTEM micrograph, cf. figure 1.
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