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Institute of Fundamental Technological Research, Polish Academy of Sciences,Świȩtokrzyska 21,
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Abstract. This paper presents stress-strain constitutive equations for anisotropic elastic materials.
A special attention is given to the logarithmic strain. Assuming a constitutive equation for the spe-
cific internal energy the equation governing the Cauchy stress is derived. Mathematical relations
presented take a relatively simple form and concern a very wide class of elastic materials. The
dependence of third-order elastic constants on the choice of strain measure is shown. The third-
order elastic constants measured experimentally in relation to the Green strain are recalculated here
for the logarithmic strain.
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1. Introduction

Anisotropic hyperelastic materials compose a narrow group among numerous con-
stitutive models describing elastic behaviour. It is worth emphasizing that the most
knownanisotropichyperelastic models like the Biot and St-Venant–Kirchhoff mod-
els change strongly their (instantaneous) stiffness under large strains. Moreover,
this stiffness evolution is far away from the behaviour of real materials [2, 1].
Neglecting an anomalous behaviour, we can expect that with respect to molecular
effects the instantaneous stiffness of crystalline solids increases under compression
and decreases under extension [21], cf. the hydrostatic and temperature effects
[24, 25, 8], as well as the form of interatomic potentials (e.g. Stillinger-Weber,
Lennard-Jones) used in molecular dynamics [16]. So, the application of the men-
tioned constitutive models (St.-Venant–Kirchhoff, Biot) behaving just conversely
can be of the reason of many undesirable effects like the wrong estimation of stress
distribution in epitaxial layers, improper proportions in sizes of the extension and
compression regions about edge dislocations in crystals, an erroneous calculation
of elastic-plastic instability where the correct estimation of the instantaneous stiff-
ness of material takes the fundamental role. Therefore, the use of new hyperelastic
models whose behaviour could be more adapted to the behaviour of real materials
is to be desired.



120 PAWEŁ DŁUŻEWSKI

Since many years a special attention is focused on the logarithmic strain mea-
sure called also the Hencky strain. The constitutive models based on the logarith-
mic strain measure were considered in many papers, cf. Anand [1], Hill [10, 11],
Hoger [12], Lehman et al. [13], Raniecki and Nguyen [17], Xiao et al. [27]. Never-
theless, from the viewpoint of nonlinear elasticity these papers fall mainly into two
categories

1. isotropic hyperelasticity,
2. isotropic as well as a generally anisotropichypoelasticity.

It is worth emphasizing here that contrary to hyperelastic materials the hypoe-
lastic ones ignore? a potential character of energy. Therefore,hypoelastic mod-
els often describe nothing more as a perpetual motion producing or annihilat-
ing energy (work) in closed deformation loops – dependently on the loop direc-
tion. To ascertain whether the given constitutive model describes the hyperelastic
(Green) or at least the Cauchy elastic material the additional theorems are studied
in hypoelasticity, cf. Xiao et al. [27]. Note, that ignoring a potential character of
energy, many of the Cauchy elastic materials describe a perpetual motion (although
they do determine the Cauchy stress in subsequent configurations uniquely).

The problem of the logarithmichyperelastic models formulated not only in
incremental form but also in terms of total strain measures was considered for
example by Ogden [15]. The author focused attention mainly onisotropic loga-
rithmic hyperelasticity. Concerninganisotropythe problem is more complicated
and, therefore, respective considerations are often limited only to remarks stating
that the stress conjugate to logarithmic strain is then not coaxial to the stretch tensor
what implies a complex relation between the Cauchy stress and the conjugate stress
to logarithmic strain. So, in spite of many publications concerning the logarith-
mic elasticity, if we limited our needs to thestress-strain constitutive modelfor a
material which is simultaneously:

1. anisotropic,
2. satisfies the energy balance (hyperelastic),
3. is based on a logarithmic strain measure,

then, according to the knowledge of the present author, it appears thatthe explicit
form of constitutive equation for the Cauchy stress has not been given as yet.
Therefore, in the present paper the wanted form is given.

2. Hyperelasticity

According to the polar decomposition theorem the deformation gradientF can be
decomposed into the rotation tensorR and the right and left stretch tensorsU andV,
respectively,F = RU = VR.

? Otherwise, they are simply the hyperelastic models rewritten in the incremental form.
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DEFINITION. By general Lagrangian and Eulerian strain tensors we mean two
tensor functions

ε̂
df= f (ui) ui ⊗ ui and ε

df= f (vi) vi ⊗ vi, (1)

whereui,ui, vi, vi denote respectively thei-th eigenvalue and unit eigenvector of
the right and left stretch tensors, whilef (·) denotes an arbitrarily chosenC1 mono-
tonically increasing functionf (x): R+ 3 x → f ∈ R which satisfies the condi-
tionsf (x)|x=1 = 0 anddf (x)

dx |x=1 = 1.

This definition includes the well-known family of strain measures [20, 10]

ε̂ = 1

m
(Um − 1) and ε = 1

m
(Vm − 1), (2)

wherem is a real number, and also many others, e.g.ε̂ = 1
4U2+ 1

2U− 3
41.

In the case of isothermal quasistatic deformation of elastic bodies, the local
form of the energy conservation can be reduced to

−ρψ̇ + σ : d = 0, (3)

whereρ, ψ̇, σ andd denote respectively the mass density, material derivative of
internal energy density per unit mass, Cauchy stress tensor, and the symmetric part
of the velocity gradient, i.e.

d df= 1

2
(∇v+∇Tv) = 1

2
R(U̇U−1+ U−1U̇)RT, (4)

wherev denotes the velocity vector. Suppose that the specific internal energy de-
pends on the Lagrangian strain tensor

ψ = ψ(ε̂). (5)

Before we substitute (5) into (3) let us first recall the mathematical relations for the
material derivative of the general Lagrangian strain tensor (1a)

˙̂ε = Â : (RTdR), (6)

where the fourth-order tensor̂A decomposed in the eigenvector basis{uK} is rep-
resented by the following non-vanishing components

ÂIJIJ = ÂIJJI =

δIJ uIf

′(uI) for uI = uJ,
uIuJ[f (uI)− f (uJ)]

u2
I − u2

J

for uI 6= uJ,
(7)

wheref ′(uI) = df (u)
du

∣∣
u=uI

, cf. (2.3.73) in Ogden [15]. A rigorous proof of (7)
has been given by Scheidler [19]. Relation (6) was noted by Hill [10] and re-
derived by many authors. Nevertheless, in the further papers the thermodynamical
consequences of this relation for the stress in anisotropic materials were ignored
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because themultiplicativedecomposition (6) was immediately replaced by anad-
ditive one. For example, instead of (6) and (18) the following decomposition was
used d

dt ln U = RTdR+O(E2) whereO(E2) was neglected as a second order term,
cf. Rice [18], Hill [11].

Substituting (5) and (6) into (3) we find

−ρ
ρ̂

(
ρ̂
∂ψ

∂ ε̂

)
: Â : (RTd R)+ σ : d = 0, (8)

whereρ̂ = ρ detF. To balance energy for arbitrarily chosend, the Cauchy stress
has to be governed by the following constitutive equation

σ = R
(
Â : ρ̂ ∂ψ

∂ ε̂

)
RT detF−1. (9)

The above equation can be rewritten in the form of the following transformation
rule

σ = R(Â : σ̂ )RT detF−1, (10)

whereσ̂ denotes the stress measure conjugate to the Lagrangian strain tensorε̂ by

means of the following formulâσ
df= ρ̂ ∂ψ/∂ ε̂.

2.1. SECOND-ORDER ELASTIC CONSTANTS

Let us consider the hyperelastic material governed by the following constitutive
equation for the specific internal energy

ψ = 1

2ρ̂
ε̂ : ĉ : ε̂, (11)

whereĉ is the fourth-order elastic stiffness tensor. Substitution into (9) leads to

σ = R(Â : ĉ : ε̂)RT detF−1. (12)

The above equation can be rewritten in terms of tensorial measures referred to the
current configuration then we find

τ =A : c : ε, (13)

whereτ denotes the Kirchhoff stress and

τ = σ detF, cklmn= RkKRlLRmMRnN ĉKLMN, (14)

ε = Rε̂RT, Aijij =

δijvif

′(vi) for vi = vj,
vivj[f (vi)− f (vj)]

v2
i − v2

j

for vi 6= vj,
(15)
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the componentsAijij are referred to the vector basis composed of eigenvectorsvi

of V, cf. (7). Equation (13) can be rewritten in the following incremental form, see
Appendix A,

∇
τ= A : c : ∇ε +

(
∂A

∂ε
: ∇ε
)
: c : ε, (16)

where∇ denotes the Zaremba–Jaumann derivative corresponding to the rigid rota-

tion ratew = ṘRT, i.e.
∇
τ= τ̇ −wτ + τw. This form is very simple in comparison

to other incremental descriptions adapted to hyperelasticity, cf. Xiao et al. [27].

Logarithmic Hyperelasticity

Constitutive equations discussed above concern many constitutive models. Loga-
rithmic strain tensors are defined to be as follows

ε̂
df= ln U and ε

df= ln V. (17)

Assuming the internal energy function in the form (11) the stress–strain constitutive
equation for anisotropic hyperelastic model takes the form of (12) and (13). Then,
for a generally anisotropic logarithmic hyperelastic model the representation of the
fourth-order tensorŝA in the eigenvector basis{uI} takes the form

ÂIJIJ =

δIJ for ε̂I = ε̂J,
(ε̂I − ε̂J)

eε̂I−ε̂J − eε̂J−ε̂I
for ε̂I 6= ε̂J.

(18)

Sinceεi = ε̂I we findAijij = ÂIJIJ.

Isotropy

Let us compare our result with the well-known constitutive equations often de-
rived for isotropy. To this end, assume that the stiffness tensor has the following
components in any vector basis

ĉijkl = λgijgkl + µ(gikgjl + gilgjk), (19)

wheregij is the respective component of the metric tensor. Substitution into (11)
gives

ψ = 1

ρ̂

[
λ

2
(ε2

1 + ε2
2 + ε3

3 + 2ε1ε2 + 2ε2ε3 + 2ε3ε1)+ µ(ε2
1 + ε2

2 + ε2
3)

]
, (20)

whereλ,µ, denote the Lame constants. Using the partition of strain tensor into
eigenstates it can be proved that for theisotropichyperelastic models the effect of
mixed componentsAijij on the Cauchy stress vanishes because the productc : ε is
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then coaxial to the stretch tensorV. Thus, for total measures the stress–strain rela-
tion for the logarithmic strain takes the classical, coaxial form, cf. (13) and (17b),

τkl = [λgkl(ε1 + ε2 + ε3)+ 2µεkl]. (21)

Nevertheless, considering a variation of logarithmic strain the respective variation
of the Kirchhoff stress does not correspond toδτ = c : δε but an additional term
∂A/∂ε should be taken into account, see (16).

Instantaneous Stiffness in Uniaxial Strain Test

In order to compare behaviour of a few hyperelastic models let us assume that
they are isotropic and satisfy the same constitutive equations (11)–(15) but differ
each other in the strain parameter assumed in (2). In the uniaxial strain test by an
instantaneous stiffness we mean a factor of proportionality between the Cauchy
stress increase dσ and the relative specimen length increase dl/ l, i.e.

dσ = cdl

l
. (22)

The considered test can be identified with compression of an infinite plate. The
differential form dl/ l determines just the logarithmic strain increase according to

dl

l
= d(ln l) = d

(
ln
l

l0

)
= d(ln εln), (23)

wherel0 denotes the initial plate thickness. Contrary to other strain measures the
logarithmic strain increase is invariant with respect to the choice of the initial
thickness. Using this measure let us rewrite the constitutive equation (12) in the
form

σ =
{

emεlnc0
1
m
(emεln − 1)e−εln for m 6= 0,

c0εlne−εln for m = 0,
(24)

where for isotropic hyperelastic materials the instantaneous stiffness isc0 = λ +
2µ. Thus, by a normalized instantaneous stiffness we mean a factorc

c0
= 1

λ+2µ
dσ
dεln

,
cf. [1]. In Table I the normalized instantaneous stiffness of a few hyperelastic mod-
els has been compared each other for the same deformation states corresponding to
εln = ±0.2. For the logarithmic, Biot and Green strain measures the strain parame-
ter takes valuesm = 0,1,2, respectively. The hyperelastic models corresponding
to these strains are called the logarithmic, Biot and Saint-Venant–Kirchhoff (StVK)
models, respectively. Note that the isotropic hyperelastic model based upon loga-
rithmic strain does not demonstrate a constant instanenous stiffness in the uniaxial
strain test. It makes compression harder than extension. From a thermodynamical
point of view this is because the spatial internal energy densityρψ changes signifi-
cantly together with the material volume change. Therefore, while the productc0 :ε
holds the stress increase proportional to the logarithmic strain, due to the material
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Table I. Normalized instantaneous stiffness of a few hyperelastic
models.

Deformation measures Stiffness1
λ+2µ

dσ
dεln

Strain measures of constitutive models

Stretch Log. Biot Green Log. Biot StVK

0.82 −20% −18% −16% 1.47 0.82 0.41

1.22 +20% +22% +25% 0.65 1.22 2.12

volume change the resultant instanenous stiffness decreases with extension and
increases with compression. Note that our analysis is concentrated on the behaviour
of elastic models in the current configuration. It is worth emphasizing that from the
viewpoint of other configurations the instantaneous stiffness evolution may look
quite different. This arises from a fictitious rescaling of the current configuration
to the fixed reference one which does not change in deformation process.

2.2. THIRD-ORDER ELASTIC CONSTANTS

Third-order elastic constants are determinable by measurement of small changes
of ultrasonic wave velocities in stressed crystals. Usually, they are determined
for the constitutive relation between the second Piola–Kirchhoff stress and the
Green strain called often the Lagrangian strain, see Brugger [3], Thurston and
Brugger [23], Hiki and Granato [9], Walker et al. [26] among many others. So,
let us assume here that a hyperelastic material has the following specific energy
function

ψ(ε̂) = 1

ρ̂

[
1

2! ĉ
ijkl ε̂ij ε̂kl + 1

3! Ĉ
ijklmnε̂ij ε̂klε̂mn

]
, (25)

where ĉ and Ĉ are tensors of the second- and third-order elastic constants de-
termined in relation to a strain measures (2), for example letm = 2, so that
ε̂ = 1

2(U
2 − 1). Obviously, we can rewrite (25) by using another strain measure,

say

ε̂′ = 1

m′
(Um′ − 1). (26)

On solving (26) with respect toU and substituting into (2a) we find the following
isotropic tensor function

ε̂(ε̂′) = 1

m

[
(m′ε̂′i + 1)m/m

′ − 1
]
ui ⊗ ui, (27)

whereε̂′i is thei-th eigenvalue of̂ε′ while ui is the eigenvector both of̂ε′, ε̂ andU.
Let us decompose the specific internal energy function into a power series

ψ(ε̂(ε̂′)) = 1

ρ̂

[
1

2! ĉ
′ ijkl ε̂′ij ε̂

′
kl +

1

3! Ĉ
′ ijklmnε̂′ij ε̂

′
klε̂
′
mn+ · · ·

]
, (28)
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where

c′ = 1

ρ̂ 2!
∂2ψ(ε̂(ε̂′))
∂ ε̂′∂ ε̂′

∣∣∣∣
ε̂′=0

, C′ = 1

ρ̂ 3!
∂3ψ(ε̂(ε′))
∂ ε̂′∂ ε̂′∂ ε̂′

∣∣∣∣
ε̂′=0

, · · · . (29)

Substitution of (28) and (27) into (29) followed by use of the known formula
for derivatives of an isotropic proper-symmetric fourth-order tensor function of
a symmetric second-order tensor gives

ĉ′ijkl = ĉijkl , (30)

Ĉ ′ijklmn = Ĉ ijklmn+ (m−m′)[Jijkl
ab ĉ

abmn+ Jklmn
ab ĉ

abij + Jmnij
ab ĉ

abkl
]
, (31)

where the representation ofJ, written in any chosen orthonormal coordinate basis
takes the form

Jijklmn = 1

8
(δikδjmδln + δikδjnδlm + δilδjmδkn + δilδjnδkm

+ δimδjkδln + δimδjlδkn + δinδjkδlm + δinδjlδkm), (32)

cf. equations (3.5.27–34) in Ogden [15]. Since the strain and stress are symmetric,
only six among nine components are independent therefore it is convenient to use
the Voight notation, reducing the number of subscripts 11→ 1, 22→ 2, 33→ 3,
23 → 4, 13→ 5, 12→ 6. In such a case, for cubic symmetry, equation (31)
gives the following relations between the third-order elastic constants determined
for two different strain measures (2) and (26),

Ĉ ′111 = Ĉ111+ (m−m′)3ĉ11, Ĉ ′144= Ĉ144+ (m−m′)1
2
ĉ12, (33)

Ĉ ′112 = Ĉ112+ (m−m′)ĉ12,

Ĉ ′155 = Ĉ155+ (m−m′)[ĉ44+ 1

4
ĉ12+ 1

4
ĉ11], (34)

Ĉ ′123 = Ĉ123, Ĉ ′456= Ĉ456+ (m−m′)34ĉ44. (35)

In Table II the third- and second-order elastic constants determined experimentally
for the Green strain [26, 6, 14, 22, 9] have been recalculated to represent elastic
constants corresponding to the logarithmic strain measure (m = 0) and to another
strain which has been so chosen that the elastic constantC111 vanishes.

In the present paper we have not reconsidered all details of the experimental
measurement of elastic constants. Nevertheless, the rough recalculation of elastic
constants, as they are given, shows that with respect to a particular choice of strain
measure the third-order elastic constants obtained experimentally take rather large
negative values. This is because the Green strain is not a convenient measure for
a quantitative evaluation of elastic stiffness changes. Note, that the expansion of a
second-degree function of logarithmic strain (11) into series for the Green strain
gives the third-order elastic constantĈ ′111 = −6ĉ11, cf. the experimentally deter-
mined Ĉ111 and ĉ11 for m = 2 in Table II. Taking into account these results we
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Table II. Dependence of elastic constants [GPa] on strain measures.

m C111 C112 C123 C144 C155 C456 c11 c12 c44 Exptl

CdTe 2 −213 −210 −42 14 −65 5 54 37 16 [26]

0 111 −136 −42 51 13 29 54 37 16

0.685 0 −161 −42 38 −14 −3 54 37 16

GaAs 2 −675 −402 −4 −70 −320 −69 119 54 60 [6]

0 39 −294 −4 −16 −113 21 119 54 60

0.109 0 −300 −4 −19 −125 −73 119 54 60

GaAs 2 −622 −387 −57 2 −267 −39 119 54 59 [14]

0 92 −279 −57 56 −62 50 119 54 59

0.258 0 −293 −57 49 −89 −50 119 54 59

Al 2 −1076 −315 36 −23 −340 −30 106 60 28 [22]

0 −440 −195 36 37 −201 12 106 60 28

−1.384 0 −112 36 79 −105 −1 106 60 28

Cu 2 −1271 −814 −50 −3 −780 −95 166 120 76 [9]

0 −275 −574 −50 117 −485 19 166 120 76

−0.552 0 −508 −50 150 −404 −64 166 120 76

can expect that the higher order elastic constants determined by using the Green
strain may reach considerably larger values than those for the logarithmic strain.
This corresponds well with experimental evidence. Namely, the fourth-order elas-
tic constants determined experimentally by using the Green strain reach several
hundred times as large as the values of second-order elastic constants [21, 4, 5, 7].

Appendix

Note that (12) can be rewritten as

RTτR = Â : ĉ : ε̂. (36)

Differentiation over time gives

RT ∇τ R = ˙̂A : ĉ: ε̂ + Â : ĉ : ˙̂ε =
(
∂Â

∂ ε̂
: ˙̂ε
)
: ĉ : ε̂ + Â : ĉ : ˙̂ε

=
(
∂Â

∂ ε̂
: (RT ∇ε R)

)
: ĉ : ε̂ + Â : ĉ : (RT ∇ε R). (37)

Both A and Â are determined by the same isotropic proper-symmetric fourth-
order tensor function of a symmetric second-order tensor, sayA = F (ε) and
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Â = F (ε̂). Therefore, the form of its derivative cannot depend on the orientation
of strain eigenvectors. This means that∂Aijkl/∂εmn = RiIR

j
JR

k
KR

l
LR

m
MR

n
N

∂ÂIJKL/∂ε̂MN. Substitution of this identity into (37) gives (16).
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