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Department of Computational Science, Institute of Fundamental Technological Research, Polish
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A proper reconstruction of discrete crystal structure with defects is an important problem in dislocation theory. Cur-
rently, procedures for dislocation core reconstruction presented in the literature usually neglect configuration changes.
The present paper discusses a new approach, which uses an iterative algorithm to determine an atomistic configura-
tion of the dislocation core. The mathematical background is based on finite deformation theory, in which an iterative
algorithm searches for the new atomic configuration corresponding to the actual atomic configuration of the deformed
crystal. Its application to the reconstruction of 4H-SiC crystal affected by the system of four threading dislocations is
presented as an example. Molecular statics calculations suggest a lower potential energy, as well as dislocation core
energy, per-atom energy, and per-atom stresses for the structure reconstructed by use of the iterative algorithm against
the classical solution based on the Love’s equations.
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1. INTRODUCTION

Dislocations and their long-range elastic deformation field play an important role in the prediction of various physical
properties of crystal structures. For example, the mechanism of plastic deformation is closely related to the behaviour
of crystallographic defects (Hirth and Lothe, 1982). This concerns as well semiconductor crystals (e.g., silicon carbide
and III-V nitrides – very promising semiconducting materials for electronic industry) where threading dislocations
(TDs) compose nonradiative recombination centers (Wright and Grossner, 1998). Also, an emission spectrum which
is a very important parameter for the optoelectronic device depends on the formation energy related to the atomic
configuration of the dislocation core (Belabbas et al., 2011; Béŕe et al., 2002; Blumenau et al., 2003). Despite the
very promising electronic properties of these semiconductors, the nonradiative recombination as well as residual
stresses around defect formations which arise during the growth process, compose a technological barrier for the
application of such materials in electronic and optoelectronic devices. Experimental measurement in that domain,
mainly by transmission electron microscopy (TEM) (Dasilva et al., 2010; Liu et al., 2002; Persson et al., 2002) are
very tricky, therefore atomistic simulations have become a common method for investigating dislocation phenomena
in dislocation theory. Despite real crystals demonstrate an anisotropic behavior, currently the most popular analytical
approach based on the Love’s equations (Love, 1927) and its various modifications (de Wit, 1973; Hirth and Lothe,
1982; Read Jr., 1953) covers the isotropic continuum. The main reason for that situation is a relatively small difference
between isotropic and fully the anisotropic solution, which by itself does not justify investigating the more complex
problem (Steeds, 1973). Nevertheless, an inaccurate atomistic configuration in the modeling of the dislocation core
makes interpretation of results more difficult. Here, a relatively simple iterative procedure within the framework of
finite deformation theory is proposed. This approach, which has a classical solution to Love’s equations as a starting
configuration, improves on the accuracy of the reconstruction of the dislocation core.
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This article is organized as follows. Sections 2–4 describe the theoretical background and mathematical founda-
tions of the iterative algorithm for the atomistic reconstruction of dislocation structure. The next sections describe an
application of the methodology on the basis of TDs in 4H-SiC crystal. In particular, Section 5 deals with molecular
simulations of crystal sample, and Section 6 presents an analysis of numerical results. In Section 7 a short discussion
of the results is given.

2. INTRODUCTION TO THE CONTINUUM THEORY OF DISLOCATIONS

To take into account the initial incompatibilities, after Kröner (1981); Teodosiu (1970), an additional intermediate
(local lattice reference) configuration has been introduced. For crystal heterostructure, the total deformation gradient
Ftot can be therefore decomposed multiplicatively into the lattice and plastic deformation tensors as follows:

Ftot = FFpl . (2.1)

The lattice deformationF corresponds to an elastic relaxation of chemically nonhomogeneous heterostructure, while
Fpl denotes the permanent rearrangement of the crystal structure caused by lattice incompatibilities, e.g., dislocations
(Dłużewski et al., 2004, 2010). In this paper, chemically homogeneous crystals are dealt with, and therefore chemical
deformation can be neglected. Hence, elastic and plastic deformations appear only. Generally, after applying initial
incompatibilities prescribed by the plastic deformation tensor, the initial configuration is somewhat difficult to use.
Therefore, the intermediate configuration will be used as a local reference configuration for the elastic deformation
tensor. In that convention, the so-called true Burgers vectorb̂, which represents the magnitude and direction of the
lattice distortion, in local reference configuration can be written as

−b̂ =

∮
C

dX =

∮
o

F−1dx =

∮
o

(1−βββ) dx . (2.2)

The integration of lattice distortions can be performed over closed (C) or open circuit (o) in the local reference (relaxed
– dX) or actual (deformed –dx) configuration. The lattice distortion tensorβ is related to the lattice spacings in the
actual configuration (∂u/∂x) and can be transformed to the local reference configuration according to the following
transformation rule:

β̂ββ = (1−βββ)−1 − 1. (2.3)

The lattice deformation and distortion tensors satisfy the following mutually reversible relations:

F =
∂(X+ u)

∂X
= 1+ β̂ and F−1 =

∂(x− u)

∂x
=

(
1− β

)−1
. (2.4)

3. ANALYTICAL EQUATIONS OF A STRAIGHT-LINE DISLOCATION

The elastic displacement field around dislocation, in the case of straight-line dislocation with mixed type of the
Burgers vector [after Love (1927)] and its further modifications (de Wit, 1973; Hirth and Lothe, 1982; Read Jr., 1953)
for isotropic material, can be written in the following form

u1 =
b1
2π

[
atan2

x2

x1
+

x1x2

2(1− ν)(x2
1 + x2

2)

]
,

u2 = − b1
2π

[
1− 2ν

4(1− ν)
ln

x2
1 + x2

2

r2◦
+

x2
1 − x2

2

4(1− ν)(x2
1 + x2

2)

]
, (3.1)

u3 =
b3
2π

atan2
x2

x1
,

whereb1, b3, andν denote, respectively, edge, screw components of the Burgers vector, and the Poisson ratio. Com-
ponents of the Burgers vector are coaxial with axesx1 andx3 of the coordinate system (b2 = 0). The radiusr◦ is
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used here to normalize the vertical shift in the dislocation core. The formulas presented above allow us to introduce
perfect or partial dislocation in a slip, climb, or mixed way. Theatan2 function is defined according to the following
convention:

atan2
x2

x1
=



arctan
x2

x1
for x1 > 0,

arctan
x2

x1
+ π for x2 ≥ 0, x1 < 0,

arctan
x2

x1
− π for x2 < 0, x1 < 0,

0 for x1 = 0.

Differentiation of Eqs. (3.1) give the following formulas for lattice distortions (β = ∂u/∂x):

β11 =
−b1
2π

(3− 2ν) x2
1x2 + (1− 2ν) x3

2

2(1− ν)(x2
1 + x2

2)
2

, β12 =
b1
2π

(3− 2ν) x3
1 + (1− 2ν) x1x

2
2

2(1− ν)(x2
1 + x2

2)
2

,

β21 =
−b1
2π

(1− 2ν) x3
1 + (3− 2ν) x1x

2
2

2(1− ν)(x2
1 + x2

2)
2

, β22 =
b1
2π

(1 + 2ν) x2
1x2 − (1− 2ν) x3

2

2(1− ν)(x2
1 + x2

2)
2

, (3.2)

β31 =
−b3
2π

x2

x2
1 + x2

2

, β32 =
b3
2π

x1

x2
1 + x2

2

.

This approach uses small deformation theory and neglects the differences between the initial, actual, and lattice ref-
erence configurations. Regardless of such limitations, many useful results and analytical formulas have been obtained
on that basis.

4. ATOMISTIC RECONSTRUCTION OF DISLOCATION CORES

To hold the symmetry of atomic positions in dislocation core, the lattice distortion has to be related to the actual
configuration. However, it is not possible to start the process of dislocation reconstruction from the actual (wanted)
configuration; it always starts from the initial one. In other words, because the actual configuration is unknown, instead
of the “pull back” displacement fieldu = f(x), the “push forward” analytical formula is applied, which corresponds
to

u = f(X) . (4.1)

In effect, a broken symmetry for the actual configuration of the lattice distortion field appears. Of course, the devia-
tion from the correct (symmetric) distortion field for a single dislocation is hardly visible. In the case of dislocation
networks, deviation accumulates step-by-step during sequential dislocation introduction and meaningful error arises,
e.g., for lattice mismatch dislocations. To avoid this error, another displacement function, consistent with Eqs. (3.1)
must be used. From a mathematical perspective, the wanted analytical functionf , which introduces a proper distortion
field directly from the perfect lattice, should satisfy the following condition:

u = f(X) = f
(
X+ u

)
, (4.2)

wheref(·) is the same as in Eq. (4.1). An analytical solution for the above implicit equation set, with respect tof(·),
for a givenf(·) is not a trivial mathematical problem. For now, to the authors’ best knowledge, no analytical formulas
for the functionf(·) exist. Despite arising difficulties, Eq. (4.2) can be estimated numerically by means of iterative
methods. To do this, let us consider the displacement vector of an atom at initial positionX. The displacement vector
corresponding to its position can be determined by use of the following iterative formula:

ui+1 = ui +∆ui+1 , (4.3)

wherei means iteration step. The Newton–Raphson algorithm, assumes the correction∆u equal to

∆ui+1 = −
[
∂Ψ(X,u)

∂u

]−1

u=ui

Ψ(ui) , (4.4)
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where the correction factorΨ is
Ψ(X,u) = u− f(X+ u) . (4.5)

Differentiation of the correction factor over the displacement field [we may writedu = d(X+u)] leads to a formula
for the tangent matrix

∂Ψ(X,u)

∂u
= 1− β(x). (4.6)

Finally, correction for the displacement vector at the(i+1)-th step of the iterative scheme is as follows:

∆ui+1 = −
[
1− β(X+ ui)

]−1[
ui − f(X+ ui)

]
, (4.7)

where displacementsf(·) and distortionsβ(·) are calculated on the basis of classical equations [Eqs. (3.1) and (3.2)] in
the updated configuration(X+u). Nonlinear equation set (4.2) was solved by use of modified Powell’s hybrid method
(Galassi et al., 2002). At each iteration step, the standard Newton iteration is performed first. If the solution leaves
a so-called “trusted region” of the values, then linear combinations of the Newton iteration and conjugate gradient
method are employed. Due to the specifics of the proposed methodology, and mainly due to the given form of the
Love’s equations (3.1), the iterative procedure measurably improves the accuracy of the dislocation configuration in
the case of edge or mixed dislocation. Screw dislocation configuration is not affected by iterative procedure at all.
The reason for this is that theu3 component of the displacement field does not depend onx3 position, nor does theb3
component of the Burgers vector affectsu1, u2 displacements.

5. MOLECULAR SIMULATIONS

To verify the methodology proposed in Section 4, molecular calculations were performed for a 4H-SiC crystal affected
by four threading dislocations, see Fig. 1. The sample is assumed to be rhombic in shape, one lattice parameter thick,
and consist of 79,524 elementary cells (282× 282). The quite large size of the sample reduces the mutual influence
of neighboring dislocations. Dislocation lines impinge the sample’s plane and coincide with the orientation of the
crystalc axis. The dislocation core is assumed arbitrary in the center of 4H-SiC elementary cell, see Fig. 1(b). A set
of four dislocations, consecutively edge, mixed, and screw type, were inserted into the sample by use of the classical
(linear) method and the iterative one. In the case of 4H-SiC crystal the Burgers vector of a perfect dislocation is equal
to 3.073Å or 10.053Å, respectively, for the edge and screw type. The mixed dislocation used here is geometrical
superposition of the perfect edge and screw dislocations. The inserted dislocations are of the same type but their
Burgers vectors are, by pairs, mutually opposite. Finally, periodic boundary conditions for the surfaces have been

1

4
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3

4
l0 l

1

4
l

3

4
l

(a) (b) (c)

FIG. 1: Ball and stick model of a 4H-SiC elementary cell (beige – Si, gray – C) in(a) [1̄21̄0], (b) [0001] projection,
and(c) plain view of the sample with dislocation positions (where the dashed lines intersect)

Journal for Multiscale Computational Engineering



Dislocation Core Reconstruction 415

applied and an analogical, molecular calculation was performed for each dislocation type. Energy of the sample has
been determined and hence the energy of the dislocation core by use of a perfect crystal sample as a reference system.
The following cases were studied:

i. system of four edge dislocations (Fig. 2)

ii. system of four mixed dislocations

iii. system of four screw dislocations (Fig. 3)

Though iterative methodology does not affect the pure screw dislocations, it is presented here (shared configuration
with linear approach) just to gather all types of dislocations. Since we are interested in the quasi-static behavior
of the crystal, a molecular statics (MS) approach (Maździarz et al., 2010, 2011; Tadmor and Miller, 2011) rather
than molecular dynamics (MD) was used. MS is more adequate here to deal with dislocation core configurations.
All molecular calculations were performed by making use of the large-scale atomic/molecular massively parallel
simulator (LAMMPS) (Plimpton, 1995) and visualized in the Open Visualization Tool (OVITO) (Stukowski, 2010).
Energy minimization with periodic boundary condition applied to all facets of the sample was performed with the
Polak–Ribiere version of the conjugate gradient algorithm. Convergence is achieved when the relative change in the
energy and forces between two consecutive iterations is less than10−13. After the energy minimization process an
external pressure was applied to the simulation box to examine the effect of the volume change. This allows the
simulation box volume and shape to vary during the iterations of the minimizer (Plimpton, 1995). The effect of
the volume change seems to be constant for all calculated samples (perfect as well as defected) and it is∼300 eV
(against 4,032,645 eV of the total energy for the perfect sample). Therefore, we attribute that negligible effect to the
deficiency of the used potential, and follow-up we do not take into account. To model 4H-SiC crystal an empirical
Tersoff potential, parametrized by Erhart (Erhart and Albe, 2005) was used, which reproduces stiffness coefficients
with reasonable accuracy:C11 = 485 GPa,C12 = 123 GPa,C13 = 64 GPa,C33 = 544 GPa, andC44 = 160 GPa. The
total potential energy for the whole sample is not a very informative parameter, especially in terms of dislocation core
energy. Therefore, to acquire more information about the dislocation energy local atom values were used, i.e., the
so-called per-atom potential energy and per-atom stress tensor concepts adopted from LAMMPS.

On the basis of the continuum theory of dislocations (Hirth and Lothe, 1982), the total energy of the crystal with
a TD (energy density per dislocation length) can be additively decomposed into an elastic part and inelastic energy
stored in the coreEc

E =

 Ec, R < Rc ,

Ec +A · ln
(

R

Rc

)
, R ≥ Rc ,

(5.1)

where the prelogarithmic coefficientA depends on the length of the Burgers vector and the crystal stiffness (Hirth
and Lothe, 1982; Schoeck, 1995). The elastic part of the energy comes from the deformation of bonds outside the
dislocation core defined by a cylinder of radiusRc. The core energy is the effect of permanent rearrangement of the
atomic bonds. The energy of the dislocation can be calculated as a difference between the energy of the structure with
defectsED and the reference crystalEP . Hence, the total energy per unit lengthl, stored in the cylinderVR can be
expressed as

E =
1

l

∑
i∈VR

(ED
i − EP

i ) , (5.2)

wherei means summation over atoms. Some authors (Belabbas et al., 2011) use an approximated, graphical analysis
of the total energy graphs to determine the core radiusRc. Due to the high level of discretion during that analysis,
here the core radiusRc is assumed to be equal to the Burgers vector.

6. RESULTS AND DISCUSSION

For a given potential (Erhart and Albe, 2005) the total energy of the perfect crystalEP is equal to−4,032,645 eV.
Our sample consists of 636,192 atoms, which leads to the reference per-atom energyEi

P = −6.34 eV, see Figs. 2–
3. Increase of the energy caused by dislocations varies greatly on the dislocation type. Calculated energies of the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 2: Ball and stick model of the local vicinity (12̊A × 12Å) of the edge TD inserted into the 4H-SiC crystal by use
of the linear method(a)–(d) and iterative one(e)–(h). Per-atom energy (eV) is visualized in the initial configuration
(a),(e) and relaxed one (b),(f). Per-atom stresses [106 MPaÅ3, see Plimpton (1995) for units description] are given in
the initial configuration (c),(g) and relaxed one (d),(h).
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(a) (b)

(c) (d)

FIG. 3: Ball and stick model of the local vicinity of the screw TD. Per-atom energy (eV) is visualized in the initial
configuration(a) and relaxed one(b). Per-atom stresses (106 MPa Å3) are given in the initial configuration(c) and
relaxed one(d).

sample with dislocations, energy differences and number of iterations to reach convergence are presented in Table 1.
By plotting energy density charts (Fig. 4) and fitting energy formula (5.1), we have determined core energiesEc and
prelogarithmic factorsA, see Table 2. Theoretical predictions for factorAth are also given here. General comparison
of the total energy, per-atom energy, and per-atom stresses is difficult; therefore, we focus on the effect of the insertion
procedure. Let us here encapsulate results, in order for edge, mixed, and screw dislocations.

TABLE 1: Total potential energy calculated for the sample with different type of dislocations and different way of
reconstruction.E0 means value at initial configuration (just after reconstruction),Ef – after relaxation. Differences
in energy against the perfect structure (EP ) and number of iteration to reach the tolerance are also given

Dislocation type Insertion E0 (eV) Ef (eV) E0 − EP (eV) Ef − EP (eV) Iterations

Edge
Linear −4,031,618 −4,032,328 1027.4 317.5 2970

Iterative −4,031,640 −4,032,332 1005.4 313.1 2934

Mixed
Linear −4,024,478 −4,030,574 8167 2070.6 3114

Iterative −4,024,565 −4,030,598 8079.6 2047.2 3055

Screw −4,025,689 −4,030,746 6956 1899 2866
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418 Cholewínski et al.

 ! " # $ % & ' ( ) !  

 

"%

% 

'%

!  

!"%

!% 

*

+,-. ./.-01.2 1/

-.345.6 +,/7108-491,/

+,-. ./.-01.2 1/

1/19143 +,/7108-491,/

:46182 ;<=

>
?
@
AB
C
D@
E
F

31/.4- 430,-19GH

19.-491I. 430,-19GH

 ! " # $ % & ' ( ) !  

 

!  

"  

#  

$  

%  

&  

'  

(  

)  

*

+,-. ./.-01.2 1/

-.345.6 +,/7108-491,/

+,-. ./.-01.2 1/

1/19143 +,/7108-491,/

:
;
<
=>
?
@<
A
B

C46182 DEF

31/.4- 430,-19GH

19.-491I. 430,-19GH

 ! " # $ % & ' ( ) !  

 

!  

"  

#  

$  

%  

&  

*

+,-. ./.-01 2/

2/23245 +,/6207-432,/

+,-. ./.-01 2/

-.548.9 +,/6207-432,/

52/.4- 450,-23:;

<
=
>
?@
A
B>
C
D

E4927F GHI

 ! " # $ % & ' ( ) !  

 

"%

% 

'%

!  

!"%

!% 

*

+,-. ./.-01.2 1/

-.345.6 +,/7108-491,/

+,-. ./.-01.2 1/

1/19143 +,/7108-491,/

:46182 ;<=

>
?
@
AB
C
D@
E
F

31/.4- 430,-19GH

19.-491I. 430,-19GH

 ! " # $ % & ' ( ) !  

 

!  

"  

#  

$  

%  

&  

'  

(  

)  

*

+,-. ./.-01.2 1/

-.345.6 +,/7108-491,/

+,-. ./.-01.2 1/

1/19143 +,/7108-491,/

:
;
<
=>
?
@<
A
B

C46182 DEF

31/.4- 430,-19GH

19.-491I. 430,-19GH

 ! " # $ % & ' ( ) !  

 

!  

"  

#  

$  

%  

&  

*

+,-. ./.-01 2/

2/23245 +,/6207-432,/

+,-. ./.-01 2/

-.548.9 +,/6207-432,/

52/.4- 450,-23:;

<
=
>
?@
A
B>
C
D

E4927F GHI

(a) (b)

 ! " # $ % & ' ( ) !  

 

"%

% 

'%

!  

!"%

!% 

*

+,-. ./.-01.2 1/

-.345.6 +,/7108-491,/

+,-. ./.-01.2 1/

1/19143 +,/7108-491,/

:46182 ;<=

>
?
@
AB
C
D@
E
F

31/.4- 430,-19GH

19.-491I. 430,-19GH

 ! " # $ % & ' ( ) !  

 

!  

"  

#  

$  

%  

&  

'  

(  

)  

*

+,-. ./.-01.2 1/

-.345.6 +,/7108-491,/

+,-. ./.-01.2 1/

1/19143 +,/7108-491,/

:
;
<
=>
?
@<
A
B

C46182 DEF

31/.4- 430,-19GH

19.-491I. 430,-19GH

 ! " # $ % & ' ( ) !  

 

!  

"  

#  

$  

%  

&  

*

+,-. ./.-01 2/

2/23245 +,/6207-432,/

+,-. ./.-01 2/

-.548.9 +,/6207-432,/

52/.4- 450,-23:;

<
=
>
?@
A
B>
C
D

E4927F GHI

(c)

FIG. 4: Total energy stored in a cylinder of radius R [and 10Åheight, see Eq. (5.2)] for(a) edge TD,(b) mixed TD,
and(c) screw TD. Core energy and core radius for each configuration is indicated by a horizontal line.

TABLE 2: Dislocation core energiesEc and prelogarithmic coefficientsA for different types of dislocations and
different way of reconstruction.Ec

0 andA0 mean values at initial configuration, whileEc
f , Af – after relaxation.

Ath denotes theoretical prediction (Hirth and Lothe, 1982)

Dislocation type Insertion Ec
0 (eV/Å) Ec

f (eV/Å) A0 (eV/Å) Af (eV/Å) Ath (eV/Å)

Edge
Linear 7.17 2.39 2.15 1.21

1.06
Iterative 6.88 2.28 2.17 1.22

Mixed
Linear 59.20 19.48 11.86 9.69

9.09
Iterative 51.65 18.53 11.90 9.74

Screw 35.69 19.46 9.74 8.46 8.04
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i. Sample with edge1/3 ⟨112̄0⟩ TDs, see Fig. 2. The iterative procedure reconstructs the atomic structure with
energy lower by 22 eV against the linear approach. After relaxation that difference is reduced to 3.6 eV. Dislo-
cation core energy in the initialEc

0 and relaxed configurationEc
f is lower in the case of the iterative approach.

Conversely, the prelogarithmic factorsA0 andAf are slightly lower for the linear method. Generally, the crys-
tal structures after relaxation are rather similar with small advantage for the results generated by the iterative
approach. Per-atom energy and per-atom stresses are lower for the iterative algorithm, both in the initial and the
relaxed configuration.

ii. Sample with mixed1/3 ⟨112̄3⟩ TDs. The iterative procedure reconstructs atomic structure with energy lower
by 87 eV against the linear approach. After relaxation the difference in energy is reduced to 24 eV. Dislocation
core energyEc is lower in the case of the iterative procedure, while the prelogarithmic factorA seems to be
slightly lower for the linear approach. Per-atom energy for the iterative algorithm reaches 4.21 eV in the initial
configuration and−3.20 eV after relaxation. The linear approach reconstructs crystal structure with energies,
respectively, 5.01 and−3.13 eV. Per-atom stresses in the case of iterative algorithm are equal to 44.3× 106 in
the initial configuration and 7.4× 106 MPaÅ3 after relaxation. Linear approach gives, respectively, 52.9× 106

and 9.1× 106 MPaÅ3.

iii. Sample with screw⟨0001⟩ TDs (shared configuration for both methods of dislocation insertion), see Fig. 3.
Increase of the energy caused by dislocations is equal to 1899 eV. Dislocation core energy in the initial configu-
ration is equal to 35.69 eV/Å and 19.46 eV/̊A after relaxation. The prelogarithmic factorA is equal to 9.74 eV/̊A
in the initial configuration and 8.46 eV/Å after relaxation. Per-atom energy reaches 4.66 and−3.39 eV, respec-
tively, for the initial configuration and relaxed one. Per-atom stresses are equal to, respectively, 47.7× 106 and
6.8× 106 MPaÅ3.

Core energies for dislocations in the basal plane of the 2H-SiC crystal ares reported in Blumenau et al. (2003). Energy
for 90◦ Shockley is reported to be in the range 0.46–0.54 eV/Å or 1.03–1.13 eV/̊A, depending on the terminating
atom. Our results for the edge TD suggest 2.28–2.39 eV/Å. To compare these values we have to take into account the
Burgers vector effect. If we assume that core energy is the quadratic function of the Burgers vector (Schoeck, 1995),
our results fit in directly with updated range of the energy, namely 1.38–1.62 eV/Å and 3.06–3.39 eV/̊A. In the case of
mixed dislocation (30◦ Shockley in (Blumenau et al., 2003) while 17◦ TD in our case), the core energy is reported in
the range 0.45–0.78 eV/Å. After conversion (Burgers vectors ratio gives the multiplier∼35), dislocation core energy
should be in the range 15.8–27.4 eV/Å, which corresponds with our predictions (18.53–19.48 eV/Å). Dislocation
core energy for the perfect screw TD in GaN crystal is reported in Belabbas et al. (2011). DFT calculations predict
core energy in the range 2.78–4.14 eV/Å. The energy calculated here is equal to 19.46 eV/Å. In the case of direct
comparison of dislocations in 4H-SiC and GaN crystals, except the Burgers vector (10.053Å against 5.185̊A), we
also have to take into account different stiffness of the crystals (Schoeck, 1995) (160 GPa against 105 GPa in the case
of C44). Hence, core energy calculated here should fit in with a 15.9–23.7 eV/Å range of energy. Energy interpolation
[Eq. (5.2)] around the dislocation core also shows good agreement with theoretical predictions. The error varies from
5% (9.74 eV/̊A against 9.09) in the case of screw TD to 15% (1.22 eV/Å against 1.06) in the case of edge TD.

7. CONCLUSIONS

Described in Section 4, the iterative algorithm of dislocation reconstruction allows us to put single dislocation or
dislocation network into the crystal structure. Symmetry of the lattice distortion field is preserved despite direct trans-
formation from the initial configuration (perfect crystal) to the actual (wanted) one. Energy of the 4H-SiC sample
reconstructed by means of the iterative algorithm is lower against the energy of the sample generated by the use of a
linear approach. Differences in potential energy of the sample are visible even after relaxation. Also, convergence of
the energy minimization algorithm is noticeably better in the iterative approach favor. Lower energy of the sample re-
sults in lower dislocation core energy, per-atom energy, as well per-atom stresses. The prelogarithmic factor is almost
the same for both the iterative and linear approach.
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