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A continuum and atomistic approach to the modeling of dislocations observed by high-resolution transmission electron
microscopy (HRTEM) is discussed in terms of the continuum theory of dislocations. The atomistic models are obtained
by means of the use of a mathematical formula for discrete dislocations. A new analytical solution for a continuously
distributed dislocation core is presented. This solution is employed in the finite element modeling of residual stresses
induced by the net of dislocations visible on an HRTEM image of GaN structure. This paper terminates with some com-
ments on the atomistic/finite-element modeling of dislocation fields. Because of some confusion concerning notations
used in the literature, the mathematical foundations of the continuum theory of dislocations are revisited.
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1. INTRODUCTION

In the continuum theory of dislocations the antisymmet-
ric parts of tensor gradients take on an important role. In
tensor calculus a few different methods of tensor differ-
entiation are used. In result, some differential operators
written according to different conventions can take a dif-
ferent sign. At the origin of dislocation theory the clas-
sical convention was often based on the left-hand covari-
ant differentiation of tensors (see Kröner, 1958; de Wit,
1960, 1970; Teodosiu, 1970). It was closely related to
the use of the nabla operator, rewritten usually on the left-
hand side of tensors (see Table 1). Recently, in the finite
deformation approach based on the multiplicative (polar)
decomposition of the displacement deformation gradient
the right-hand differentiation has become the main con-
vention. This convention is based on the use of a comma
as a separator between the subscripts and components of
covariant derivatives of a tensor.

Unfortunately, over many years, in the continuum the-
ory of dislocations the finite deformations were identi-

fied with a very specific approach based on the use of a
convex coordinate system related to the deformation of
crystal lattice. In this approach, due to incompatibili-
ties induced by dislocations, the coordinate system leaves
a three-dimensional (3D) Euclidean space and, together
with the metric tensor generated by the scalar product of
the crystal lattice vectors, composes a 3D Riemannian
space on which the teleparallel connection generated by
the lattice vector differentiation can be determined [see
Kondo (1952, 1963), Bilby (1960), Gairola (1979)].

Another approach to finite deformation, based on the
use of the standard (immobile) coordinate systems, Eule-
rian and Lagrangian, was developed. In this case the ge-
ometry and deformation are considered in the Lagrangian
(reference) and Eulerian (actual, deformed) configura-
tions, respectively. Such an approach is employed in the
present paper. To admit the initial lattice incompatibilities
in the reference configuration an additional local configu-
ration has been introduced by Teodosiu (1970). He called
it a local isoclinic relaxed configuration. Recently, the
configuration has often been called the intermediate con-
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TABLE 1: Differential operators and fundamental tensors of dislocation theory rewritten in different conventions.

Differentiation based on Right–hand covariant
nabla convention Vs. differentiation

Tensor Index Index
notation notation Transition notation

gradt ∇t ∇itj1···jn
gradt ⇒ gradT t ti1···in,j

e.g., βij
df= ∇iuj βββ ⇒ βββ

T
βij

df= ui,j

curlt ∇× t eikj1∇ktj1···jn
curlt ⇒ −curlT t ti1···in,k ejink

e.g., αij
df= −eikl∇kβlj ααα ⇒ αααT αij

df= βik,l ejkl

bi =
∫

αji dsj b ⇒ b bi =
∫

αij dsj

li bj =
∫

αij dv l ⇒ −l bi lj =
∫

αij dv

inct ∇× t×∇ eikl1∇ktl1l2∇m ejl2m inct = −incT t tj1···jn,k1···knei1j1k1 · · · einjnkn

e.g., ηij
df= eikl∇kβlm∇n ejmn ηηη ⇒ ηηηT ηij

df= −βkl,mn eikm ejln

figuration. Contrary to the previous concept proposed by
Kondo and Bilby, in this case the local coordinate system
is used only for local manipulation of tensors in the so-
called tangent vector space, while all consideration on the
topology of crystal lattice is considered in a 3D-oriented
Euclidean space. As outlined above, in tensor calculus
two different conventions of the right- and left-hand co-
variant differentiations are used, resulting in a transposi-
tion and a different sign obtained for the representation
of some tensors. The most important differences for the
dislocation theory have been gathered in Table 1. In order
to limit discussion on various tensor representations and
focus our attention on computational aspects, we focus
our interest on the description of dislocation tensor fields
in the orthonormal coordinate systems in a 3D Euclidean
space.

In the present paper the right-hand covariant differen-
tiation is used, and the Stokes theorem takes the form

∮

o

t dx = −
∫

s

curlt ds, (1)

whereds denotes a surface element vector, the sense of
which is generated by the clockwise circulation according
to the right-hand rule (cf. Table 1). For comparison, the
traditional notation based on the nabla convention leads
to a positive sign on the right side of the last equation.

The paper is organized as follows: In Section 2 the
mathematical foundations of the continuum theory of dis-
locations are revisited in the convention based on the
right-hand covariant differentiation. In Section 3 a new
analytical solution for distribution of the dislocation core
is presented; this is followed by a short discussion of the

classical formula for discrete dislocations. In Section 4 a
numerical example of the finite element modeling of dis-
locations and residual stresses is discussed. The example
concerns dislocations visible on the high-resolution trans-
mission electron microscopy (HRTEM) image of a GaN
sample. The nonlinear finite element approach is based
on the anisotropic hyperelastic elements. The paper ends
with some comments on the role of the orientation field in
computer modeling and preprocessing the atomistic and
continuous models of dislocations.

2. CONTINUUM THEORY OF DISLOCATIONS

In the linear theory of dislocations the gradient of crystal
deformation is decomposed additively into the lattice and
plastic distortion tensors according to

gradutot = βββ + βββpl (2)

[cf. Kröner (1981)]. By assumption, the lattice distor-
tionβββ is composed of the antisymmetric tensor of crystal
lattice rotation,w = −wT , and the symmetric tensor of
elastic strainεεε = εεεT ,

βββ = w + εεε. (3)

The plastic distortionβββpl is identified with an asym-
metric strain tensor being isoclinic with the lattice rota-
tion. This nomenclature comes from the theory of elasto-
plastic Cosserat continua where the particle rotationχχχ and
elastic/plastic strains are identified byχχχ ≡ w, εεε ≡ εεε, and
εεεpl ≡ βββpl respectively, which gives

gradutot = χχχ + εεε + εεεpl, (4)
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whereεεε is no longer symmetric. Contrary to the Cosserat
continua, in the continuum theory of dislocations it is
assumed that the particle cannot rotate independently of
the displacement field and therefore, a simplified notation
combining the elastic strain and crystal lattice rotation
into a common lattice distortion tensorβββ became more
convenient.

2.1 Burgers Vector

The sense of the Burgers vector depends on the assumed
sense of dislocation line, as well as on the convention used
to determine the Burgers circuit. Our intention is that the
definitions used in this paper are to be in agreement with
those used in crystallography and in the textbook by Hirth
and Lothe (1982) devoted to the mathematical theory of
discrete dislocations. The orientation of the edge dislo-
cation vs. coordinate system assumed here is shown in
Fig. 1. According to this convention, the sense of the
Burgers vector coincides with the sense of thex axis,
while the sense of a dislocation line corresponds to dis-
location piercing the paper out to the sheet [cf. Figs. 3–10
in Hirth and Lothe (1982)]. Obviously, if the dislocation
line is oriented into paper, then according to this conven-
tion, the resultant sense of the Burgers vector is opposite
[cf. Figs. 1–21 and 1–22 in the textbook mentioned].

Before limiting our interest to the linear theory (in-
finitesimal strain approach) it is convenient to consider
the definition of the Burgers vector in terms of the finite
deformation theory. According to the state of the art of
this theory, the total deformation gradient can be decom-
posed multiplicatively into elastic and plastic deformation

sections. To be in agreement with the present notation,
the multiplicative decomposition should be rewritten in
the form

Ftot = FFpl. (5)

As shown in Fig. 1, the integration of lattice distortions
over Burgers circuits gives

b =
∮

c

dx =
∮

O

F dx̂ =
∮

c

(1 + β̂ββ) dx̂, (6a)

−b̂ =
∮

C

dx̂ =
∮

o

F−1dx =
∮

o

(1−βββ) dx, (6b)

whereb andb̂ are the the so-called spatial and true Burg-
ers vectors, respectively, andc, C, o, O denote the open
and closed Burgers circuits situated in the current (Eule-
rian) and reference (intermediate) configurations, respec-
tively. It is worth emphasizing here that the lattice dis-
tortionβββ is related to lattice spacings in the current con-
figuration. Alternatively, the distortions can be referred
back to the spacings in a perfect lattice, and in this case
the following transformation rule holds:

β̂ββ = (1−βββ)−1 − 1. (7)

Usually, in linear theory the differences between dif-
ferentiation over the current, reference, and interme-
diate configurations are neglected, i.e., by assumption
(∂u)/(∂x) ≈ ∂u/∂x̂, β̂ββ ≈ βββ, O ≡ o, etc. Given this
approach, a set of linear differential equations is obtained
and many very useful analytical formulas can been de-
rived.

-b

b

y

z x

A

b

lb

FIG. 1: An illustration of the true and spatial Burgers vectors and circuits.
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2.2 Dislocation Density Tensor

Our notation refers back to the works by Kröner (1958,
1981, 1995), Teodosiu (1970, 1982), and de Wit (1970,
1981). Nevertheless, with respect to another convention
used for the definition of the Burgers vector, cf. e.g., ours
(2000, 2004) with Kr̈oner’s (1981), we find an opposite
sign in some executive formulas. For instance, the use of
the Stokes theorem gives

b df=
∮

o

βββ dx =
∫

s

ααα ds, (8)

where, according to the present notation, the dislocation
density tensor is obtained as

ααα
df= −curlβββ. (9)

It can be shown that in the case of a straight-line disloca-
tion, integration over the dislocation line direction gives

b⊗ l =
∫

v

ααα dv, (10)

wherel =
∫

l
dx andv =

∫
s

∫
l
dx ·ds. Equation (10) is

very important for dislocation theory because it demon-
strates the geometric meaning of the dislocation density
tensor in relation to the Burgers vector and the disloca-
tion line sense assumed by a given author.

A linear continuum theory of discrete dislocations is
often found as a special case of a theory of residual
stresses and elastic strain induced by certain crystallo-
graphic dislocations. In fact, even in the theory of discrete
dislocations the displacement field still divides into elas-
tic and plastic distortions. For example, in the case of a
straight-line edge dislocation oriented as in Fig. 1 we find
the following nonvanishing components of the dislocation
density and plastic distortion tensors

αpl 13 = b δ(y) δ(−x), (11a)

βpl 12 = −b δ(y)H(−x), (11b)

whereδ andH denote the Dirac and Heaviside functions,
respectively. As a result, the integration of (2) along the
Burgers circuit leads to

∮

o

dutot = 0, (12a)

∮

o

βββ dx = b, (12b)

∮

o

βββpl dx = −b. (12c)

2.3 Crystal Lattice Curvature

Similar to the partition of lattice distortions into the lat-
tice rotation and elastic strain, the dislocation density ten-
sor can be divided into the effect of lattice curvature and
elastic strain gradient. Namely, application of the curl op-
erator to (3) and the use of (9) leads to the compatibility
condition

ααα = αααw −αααe, (13)

where
αααw

df= −curlw, (14a)

αααe
df= −curlεεε. (14b)

In Nye (1953) noted that if the lattice curvature tensor is
defined as a gradient of the vector of crystal lattice rota-

tion, κκκ
df= gradφφφ, andw is a multivectorwij

df= eijkφk,
then the following relationship holds:

(curlw)il = wij,mejml = φk,mekijejml

= φk,m(δkmδil − δklδim) = −φl,i + φk,kδil.
(15)

In view of (14b), this leads to the mutually invertible re-
lationship betweenκκκ andαααw

αααw = −κκκT + trκκκT , κκκ = −αααT
w +

1
2

trαααT
w, (16)

where tr means the trace of a given tensor, i.e.,[trααα] =[
trα · ·
· trα ·
· · trα

]
, andtrα = α11 + α22 + α33.

By analogy to (13) the total lattice curvature can be
divided uniquely into the elastic and plastic curvature

κκκ = κκκe + κκκpl, (17)

where

κκκe
df=−αααT

e +
1
2

trαααT
e , and κκκpl

df=−αααT+
1
2

trαααT . (18)

Unfortunately, with respect to possible nonzero axiators
of αααe andααα, the relationship is not invertible, and in gen-
eral, cf. (16)

αααe 6= −κκκT
e + trκκκT

e , and ααα 6= −κκκT
pl + trκκκT

pl. (19)

Summing up, among all families of theααα... andκκκ...

tensors discussed above, only two tensors,αααw and κκκ,
compose a pair of mutually equivalent tensor measures
in the sense suggested by Nye. It is worth emphasizing
that from a crystallographic point of view,αααw does not
represent any measure of dislocation density, and in the
extreme case, the lattice curvature tensor can even vanish
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in the presence of dislocation field (see Fig. 2c). The ge-
ometric meaning of the division of the lattice distortion
field into a few different elastic strains and lattice curva-
ture modes is shown schematically in Fig. 2. As is shown
in the Appendix, a simple-shear mode does not corre-
spond toαααw = 0 but to a mixed mode in whichαααe = 1

2ααα

andαααw = 1
2ααα. In the similar way it can be shown that

in a pure shearing mode, in which the lattice rotation field
vanishes, the slip plane considered is not flat but deviates
proportionally to the elastic strain, (cf. Fig. 2c). The rea-
son is that the lattice rotation tensor does not represent any
rotation of a given crystal slip plane but corresponds to a
mean rotation of all material directions crossing a given
material point.

Similarly toααα, the Burgers vector can also be divided
into the effect of the lattice curvature and elastic strain
according to

b = bw + be, (20)

where

bw
df=

∮

o

w d l =
∫

s

αααw ds,

be
df=

∮

o

εεε d l =
∫

s

αααe ds.
(21)

2.4 Compatibility Conditions and Residual
Stresses

Application of the curl operator to (2) gives a very impor-
tant compatibility condition between the lattice and plas-
tic distortions,

−curlβββ = curlβββpl, (22)

The dislocation density tensor fieldααα(x) induced by plas-
tic deformationβββpl(x) can be treated as a source field for
residual stresses. Then the use of (35) allows the compat-
ibility condition to be rewritten in the form

curlβββ = ααα(x), (23)

The condition is composed of nine mutually independent
differential equations. Contrary to discrete dislocations,
the residual stresses are not an inherent part of the con-
tinuous field of dislocationsααα(x). For example, it can
be shown that in a plastic bending mode shown schemat-
ically in Fig. 2a, the elastic continuum is in a residual-
stress-free configuration. Fortunately, it appears that a
tensor measure being sufficient to state a residual stress
problem in the form of a differential equation set is gradααα.
Moreover, it can be shown that some of its components
do not affect residual stress, e.g., a continuous disloca-
tion field composing a tilt grain boundary is found to be a
stress-free configuration. Such properties of the gradient
became the reason to introduce another group of tensor
measures of lattice distortion incompatibility, namely,

ηηη
df= incβββ, ηηηe

df= incεεε, ηηηw
df= incw. (24)

A linear operator of the incompatibility holds the symme-
try of the input tensor field, and according to (3)

ηηη = ηηηe + ηηηw. (25)

The incompatibility tensor was introduced for the elas-
tic strain in its original form by Kr̈oner (1955). In the
present notation the measure introduced by Kröner corre-
sponds toηηηe. His intention was to introduce a strain com-
patibility condition in the analogical form as it is found in
the classical theory of elasticity, incεεε = 0. Unfortunately,
in the continuum theory of dislocations, the vanishing of
residual stresses does not mean yet the material is free of
dislocations. For example, in the case of a lattice bending
mode shown in Fig. 2, the elastic strain vanishes while
the lattice rotation field corresponds to the axisymmetric
curved lattice. In such a case, it is easy to show that for
an arbitrary chosen Burgers circuit, the resultant Burgers
vector does not vanish according to (3), (6), and (7).

In this paper we discuss only the first-grade (classical)
continuum with the symmetric Cauchy stress tensor and

FIG. 2: Dislocations in different lattice distortion modes. From left-to-right: lattice bending, simple shearing, and
pure shearing.
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none of the momentum stresses. Limiting our considera-
tion to elastostatics, the stress balance equation together
with the compatibility condition and Hooke’s law state a
closed3 + 6 + 6 equations set

divσσσ = 0, (26a)

incεεε = ηηηe, (26b)

σσσ = c :εεε, (26c)

for fifteen wanted variables:3× ui + 6× εij + 6× σij .
The middle equation comprises a subset of six differen-
tial equations for six components ofεεε. Therefore, ignor-
ing the remaining upper/lower equations one can solve
the subset independently. Nevertheless, strain fields ob-
tained in this way do not compose a total strain but only
its incompatible part,εεεinc. Note that the mentioned strain
compatibility equation is second order, and therefore its
general integral can be appended by an arbitrarily chosen,
self-compatible strain field, according to

εεε = εεεinc +
1
2
(
gradu + gradT u

)
. (27)

In other words, to find a total strain one still needs to solve
the stress equilibrium equation, and the same situation is
true of the lattice rotation. Namely, in solving (26), only
the compatible part of the rotation tensor yield from the
displacement field can be obtained, whereas the Burgers
vector remains undetermined as long as the lattice orien-
tation incompatibility tensor field is fixed. Therefore, to
find the total lattice rotation

w = winc +
1
2
(
gradu− gradT u

)
, (28)

one also needs to solve three independent differential
equations for the source fieldηηηw(x) . Thus, as a mini-
mal equation set to determine a set of variablesσσσ,εεε, w,
andu, we have

divσσσ = 0, (29a)

inc(εεε + w) = ηηη, (29b)

σσσ = c :εεε. (29c)

whereηηη = −(curlαααT )T . Otherwise, in solving only
(26), the lattice distortions will remain undetermined. An
advantage of (29) over (26) is the possibility to state
more flexible boundary conditions, namely, the Neumann
boundary conditions for (29b), which corresponds to the
dislocation tractiontα = −n × αααT , wheren is the unit
normal to the boundary. In the first case, in solving only
(26) two mutually independent boundary conditions for
traction must be imposed subsequently: in the first step
for the elastic strain, and in the second step for the lattice
curvature.

3. ANALYTICAL EQUATIONS FOR MIXED
STRAIGHT DISLOCATION

The displacement field around a mixed straight-line dis-
location in an elastic material is defined by the classical
formulas which refer back to the works of Love (1927)
and Read, Jr. (1953):

ux =
bx

2π

(
arctan

y

x
+

xy

2(1− ν)(x2 + y2)

)
− bx

2
, (30a)

uy = − bx

2π

(
1− 2ν

4(1− ν)
ln (x2 + y2)

+
x2 − y2

4(1− ν)(x2 + y2)

)
,

(30b)

uz =
bz

2π
arctan

y

x
− bz

2
. (30c)

where the edge and screw components of the Burgers vec-
tor, bx andbz, are parallel to thex andz axes, respectively
(see Fig. 1). Nonvanishing components of lattice distor-
tions are

βxx = − bx

2π

(3− 2ν)x2y + (1− 2ν)y3

2(1− ν)(x2 + y2)2
, (31a)

βxy =
bx

2π

(3− 2ν)x3 + (1− 2ν)xy2

2(1− ν)(x2 + y2)2
, (31b)

βyx = − bx

2π

(1− 2ν)x3 + (3− 2ν)xy2

2(1− ν)(x2 + y2)2
, (31c)

βyy =
bx

2π

(1 + 2ν)x2y − (1− 2ν)y3

2(1− ν)(x2 + y2)2
, (31d)

βzx = − bz

2π

y

x2 + y2
, (31e)

βzy =
bz

2π

x

x2 + y2
, (31f)

3.1 Atomistic Reconstruction of Dislocations

In many cases the analytical solutions obtained by means
of the linear theory of dislocations are used to generate the
input files for atomistic modeling of the physical proper-
ties of dislocation cores. In the case of the wurtzite struc-
ture of GaN, such a method has been used in many pa-
pers starting from B́eŕe and Serra (2002). The structure
of such obtained cores depends on which coordinates the
dislocation center takes in the unit crystal cell, as shown
in Fig. 3.

The dislocation cores generated by the use of (30) do
not hold symmetry of atomic bonds distribution. To avoid
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FIG. 3: Dislocation core structures generated by means of Eq. (30) forb = 1
3 〈21̄1̄0〉 in GaN.

the asymmetry, some modification into (30) was consid-
ered by de Wit (1973), cf. Lymperakis (2005). Nev-
ertheless, to obtain a symmetric distribution we should
apply finite deformation theory in which the differences
between the differentiation over the reference and spatial
configurations are taken into account. The problem is that
strict analytical solutions based on the nonlinear theory
have not been obtained for most of the typical problems
for dislocations, as yet.

3.2 Distortion Distribution Inside the Core

In the origin of the coordinate system{x, y, z} the an-
alytical functions (31) are singular. This causes many
problems in the numerical modeling of dislocation prop-
erties. In order to remove this singularity, let us replace
β(x, y, z) by a second set of smooth functionsβc(x, y, z),
which by assumption should satisfy some geometrical
conditions. For this aim let us assume that the core occu-
pies a conventional regionx2 + y2 < r2

◦ , wherer◦ is the
dislocation core radius. Usually, in practical applications
it is assumed12b ≥ r◦ ≥ 100b. Let the wanted function
βc(x, y, z) hold the following conditions:

Inside the core:

1. The distortion field substituted into Hooke’s law
holds the stress equilibrium condition

divσσσ = 0, (32a)

2. The dislocation field obtained asααα = −curlβββc is
axisymmetric

ααα = ααα(r), (32b)

wherer
df=

√
x2 + y2.

3. Similar to the integral condition[be] = [bx, 0, bz]T ,
the dislocation tensor field satisfies the analogical
strict condition

[ααα] = αxz




0 0 1
0 0 0
0 0 bx

bz


 . (32c)

4. The distortion functionsβββc(x, y, z) are polynomials
of the lowest possible order as needed to fulfill all
the conditions above.

On the border of the dislocation core:

5. The distortion tensor field and its gradient are con-
tinuous,

βββ
c
∣∣
x2+y2=r2◦

= gradu, (32d)

gradβββc
∣∣
x2+y2=r2◦

= grad2u, (32e)

6. The distortion incompatibility tensor vanishes,

incβββ
c
∣∣
x2+y2=r2◦

= 0. (32f)

A result arising from the last condition is that the
wanted distortion function is not onlyC1 class, but also,
some linear combination of its second gradient must van-
ish on the border of the dislocation core. It can be shown
that (32b) and (32c) lead to the following form of the in-
compatibility tensor:

[ηηη] = αxz,r



− bx

bz
y 0 0

bx

bz
x 0 0
y 0 0


 , (33)

whereαxz,r means the covariant derivative ofαxz over
its radial coordinate. It can be demonstrated that the sub-
stitution of (33) into (29) under (32) gives the following
distortion functions inside the core:
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βc
xx =

bx

4π(1−ν)r6◦

[(−3r4
◦ y+3r2

◦ y3−y5
)
(1−2ν)

+x2
(−3r2

◦ y+2y3
)
(1+2ν)+x4y (3+2ν)

]
,

(34a)

βc
xy =

bx

4π(1−ν)r6◦

{
x
[
(9−6ν) r4

◦ −(15−6ν) r2
◦ y2

+(7−2ν) y4
]
+x3

[
(−9+6ν)r2

◦ +(10−4ν)

× y2
]

+ x5 (3− 2ν)
}

,

(34b)

βc
yx =

bx

4π(1−ν)r6◦

{
x
[
(18ν−15)r4

◦ +(21−30ν)

× r2
◦ y2+(14ν− 9)y4

]
+x3

[
(27− 30ν)r2

◦

+ (28ν− 22)y2
]

+ x5(14ν− 13)
}

,

(34c)

βc
yy =

bx

4π(1−ν)r6◦

{[
(18ν−9)r4

◦ y+(15−30ν)

× r2
◦ y3+(14ν−7)y5

]
+ x2

[
(21− 30ν)r2

◦ y

+ (28ν− 18)y3
]

+ x4(14ν− 11)y
}

,

(34d)

βc
zx =

bz

2πr6◦

[
− 3r4

◦ y + 3r2
◦ y3 − y5

+ x2
(
3r2
◦ y − 2y3

)− x4y
]
,

(34e)

βc
zy =

bz

2πr6◦

[
x

(
3r4
◦ − 3r2

◦ y2 + y4
)

+ x3
(−3r2

◦ + 2y2
)

+ x5
]
.

(34f)

This corresponds to the following distribution of the dis-
location field in the core:

αxz =
3bx

πr6◦
(r2
◦ − x2 − y2)2, (35a)

αzz =
3bz

πr6◦
(r2
◦ − x2 − y2)2, (35b)

and the following residual stresses:

σc
xx =

bxµ

2π(1− ν)r6◦

{
− 3yr4

◦ (1 + 2ν) + 3y3r2
◦

× (1+4ν)−y5(1+6ν)−x2
[
3yr2

◦ (1−4ν)

− 2y3(1− 6ν)
]

+ 3x4y(1− 2ν)
}

,

(36a)

σc
yy =

bxµ

2π(1− ν)r6◦

{
− 3yr4

◦ (3− 2ν) + 3y3r2
◦

× (5−4ν)−y5(7−6ν)+x2
[
3yr2

◦ (7−4ν)

− 6y3(3− 2ν)
]
− x4y(11− 6ν)

}
,

(36b)

σc
zz =

bxµν

π(1− ν)r6◦

[
− 6yr4

◦ + 9y3r2
◦ − 4y5

+ x2(9yr2
◦ − 8y3)− 4yx4

]
,

(36c)

σc
yz =

bzµ

2πr6◦

[
x(3r4

◦ − 3r2
◦ y2 + y4)− x3

× (
3r2
◦ − 2y2

)
+ x5

]
,

(36d)

σc
zx =

bzµ

2πr6◦

[
− 3r4

◦ y + 3r2
◦ y3 − y5 + x2

× (
3r2
◦ y − 2y3

)− x4y
]
,

(36e)

σc
xy =

bxµ

2π(1−ν)r6◦

{
x
[
− 3(1−2ν)r4

◦ +3(1−4ν)

× r2
◦ y2 − (1− 6ν)y4

]
+ x3

[
3(3− 4ν)r2

◦

− 6(1− 2ν)y2
]
− x5(5− 6ν)

}
.

(36f)

whereµ andν are the shear modulus and Poisson’s ratio,
respectively.

The integration of the strain energy density gives the
following formula for the energy stored per unit lengthL
of the dislocation core:

Wc

L
= µb2

[
73(1− ν)2 cos2β +

(
97− 199ν

+ 72ν2
)
sin2β

]
/480π(1− ν2).

(37)

It is worth emphasizing that such obtained dislocation
core energy is independent of the size of the core as-
sumed. Obviously, this surprising mathematical result
does not yet mean that the total strain energy introduced
by the continuously distributed dislocation core is inde-
pendent of its size. As a matter of fact, by increasing
the radius of the dislocation core we decrease the energy
stored outside the dislocation core, and this means that the
resultant total elastic strain energy is sensitive to the core
radius assumed, according to

W

L
=

µb2

4π

[(
cos2β +

sin2β

1− ν

)
ln

R

r◦

+
73(1−ν)2 cos2β+(97−199ν+72ν2) sin2β

120(1− ν2)

]
,

(38)
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whereR is the external radius corresponding to the size
of the crystal region considered [cf. Eq. (3.87) in Hirth
and Lothe (1982)].

4. NUMERICAL EXAMPLE

As was shown in Section 3.1, the analytical equations
obtained in the theory of discrete dislocations are very
useful for the generation of input files for the atomistic
modeling of dislocations. Nevertheless, in the numeri-
cal methods based on continuum mechanics, such as the
finite element (FE) and finite difference methods, seri-
ous numerical problems arise from the the singularity of
the stress/strain fields resulting from the discrete charac-
ter of dislocations assumed. To overcome this a mixed
analytical-FE formulation oriented on modeling of singu-
larities has been developed by preparing special FEs with
singular shape functions in the center of the dislocation
core [see Stigh (1993)].

In the present paper another method based on the finite
deformation approach is used (Dłuzewski et al., 2004). To
use the method authors needed to extract the lattice dis-

tortion map by means of the computer image processing
of the HRTEM image of the investigated sample (Hÿtch,
1998; Kret et al., 2003). Unfortunately, such an approach
can be used only if the quality of the image is relatively
good. In Fig. 4 an HRTEM image of the GaN sample
is shown. Its quality is sufficiently good to identify the
dislocations on the image, but in some regions the bright
dots have insufficient contrast to extract the distortion ten-
sor maps by means of computer processing of the image.
Therefore, in the present paper the role of tensor fields
obtained from HRTEM image processing has be taken by
analytical Eq. (34). The fields (31) outside and (34) inside
of dislocation cores have to be superposed for sequential
dislocations to obtain a resultant distortion field,

βββ(x) =
∑

i

{
βββ

c(x− xi) for (x− xi)2 < r◦,
βββ(x− xi) for (x− xi)2 ≥ r◦,

(39)

wherexi andr◦ denote the position of the theith dislo-
cation core and assumed dislocation core radius, respec-
tively. It was assumed that three among the dislocations
visible on the HRTEM image are edge1

3 〈21̄1̄0〉 and one is

α xz

−2.72E+08
−2.46E+08
−2.21E+08
−1.95E+08
−1.69E+08
−1.43E+08
−1.17E+08
−9.12E+07
−6.54E+07
−3.95E+07
−1.36E+07

−2.98E+08

 1.22E+07

α zz

−4.40E+08
−4.00E+08
−3.59E+08
−3.18E+08
−2.78E+08
−2.37E+08
−1.97E+08
−1.56E+08
−1.16E+08
−7.51E+07
−3.46E+07

−4.81E+08

 5.95E+06

FIG. 4: HRTEM image of GaN sample, viewed along [0001], on which four dislocations are marked, and the
edge and screw components of the dislocation tensor field,α̂xz andα̂zz, preprocessed by means of Eq. (39) for FE
calculations.
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mixed 1
3 〈21̄1̄3〉, which corresponds tobx = a andbz = c,

wherea and c denote the lattice constants of the trigo-
nal crystal symmetry system (see Table 2). According to
the derived Eq. (34) the magnitude of the dislocation core
radius can be chosen arbitrarily. In other words, an ar-
bitrarily chosen cylindrical region with a singularity can
be cutout and replaced by a continuous stress/distortion
tensor field which satisfies the six conditions discussed
in Section 3.2. In the case considered here,r◦ was cho-
sen to be equal to the length of two cubic finite elements.
From a crystallographic point of view this corresponds to
r◦ = 1.5 a.

The constitutive model used is in the nonlinear FE
code based on the anisotropic hyperelasticity and Hencky
strain measure (Dłuzewski, 2000). The FE code used is
dedicated to the modeling of dislocations in semiconduc-
tor heterostructures [see Dłuzewski et al. (2004)]. The
lattice distortion field (39) has been translated to the local
relaxed configuration, according to (7). The material pa-
rameters for dislocations in GaN were assumed to be the
same as those used by Young et al. (2007) (see Table 2).
A stress-free boundary condition was used to demonstrate
the residual stresses induced by dislocations (see Fig. 5).

5. CONCLUSIONS

In this paper a new analytical solution was derived and
presented within the framework of the continuum theory
of dislocations [see Eqs. (34–38)]. The equations concern
the linear theory of a continuously distributed dislocation
core. In order to solve the nonlinear boundary-value prob-
lem for dislocations the distortion field (39) was used as
the input data to solve an FE problem stated for disloca-
tions in an anisotropic hyperelastic continuum. As an ex-
ample, the residual stress/distortion fields corresponding
to dislocations visible on the HRTEM image of a GaN
sample were solved. Independently of this fully contin-
uous approach, the linear continuum theory of discrete
dislocations was discussed in terms of artifacts in the re-
construction of dislocation cores.

In the literature many analytical solutions for the elas-
tic strain/stress fields induced by dislocations are pub-
lished. In the present paper a complete solution has been
given, not only for the strain and stress but also for lattice
rotation. Both parts of the lattice distortions, the sym-
metric and antisymmetric, take the same important role
in reconstruction of atomistic models of dislocations, and

TABLE 2: Empirical constants used in this work. Units are in nanometers, gigapascals, or are dimensionless.

ν µ a c C11 C12 C13 C33 C44

0.35 124 0.31466 0.519 396 137 108 373 116

σxx −1.13E+09
−8.99E+08
−6.62E+08
−4.26E+08
−1.89E+08
 4.72E+07
 2.84E+08
 5.20E+08
 7.56E+08
 9.93E+08
 1.23E+09

−1.37E+09

 1.47E+09

σyy −5.93E+08
−4.71E+08
−3.49E+08
−2.26E+08
−1.04E+08
 1.84E+07
 1.41E+08
 2.63E+08
 3.85E+08
 5.08E+08
 6.30E+08

−7.16E+08

 7.53E+08

σxy −9.17E+08
−7.53E+08
−5.88E+08
−4.24E+08
−2.59E+08
−9.46E+07
 6.99E+07
 2.34E+08
 3.99E+08
 5.64E+08
 7.28E+08

−1.08E+09

 8.93E+08

σzy −5.54E+08
−4.49E+08
−3.43E+08
−2.38E+08
−1.33E+08
−2.73E+07
 7.81E+07
 1.83E+08
 2.89E+08
 3.94E+08
 5.00E+08

−6.59E+08

 6.05E+08

FIG. 5: The Cauchy stress field obtained in the nonlinear FEM based on the use of the continuum theory of disloca-
tions.
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only both together give the unique transition to the finite
deformation approach. It is easy to show that if the lattice
distortion is given then the elastic stretch as well as the
orthogonal tensor of lattice rotation can be reconstructed
uniquely. Contrary to that, if only the infinitesimal strain
fieldεεε(x) is given, no unique atomistic reconstruction nor
any transition to the finite deformation theory is possible.

The main disadvantage of the new analytical solution
is it is composed of two different analytical functions co-
inciding on the Burgers circuit. Its radius can be fit arbi-
trarily as the core radius. Such like methods are widely
used [see, for example, the review in Cai et al. (2006)].
The present approach, as in many others from the group
based on the cutoff technique, allows all the advantages
of a discrete character of dislocations to be saved and ex-
tends its application to some practical solutions only for
the dislocation core. For example, the important advan-
tage of the classical solution is a discrete character of dis-
location resulting from the localization of plastic distor-
tions to a jump on a slip or climb plane [cf. Eq. (30a)].
As shown in Fig. 3, thanks to such a discrete jump, the
core structure can be reconstructed in atomistic manner.
The resultant form of dislocation core obtained depends
on the reference position of the dislocation center taken
in a perfect unit cell. Use of the present continuum model
of dislocation still allows unique reconstruction of the lat-
tice structure outside the core, while inside, the atomic
positions are no longer unique as the lattice displacement
field is not unique in the case of a continuously distributed
dislocation tensor field. In these terms the continuum field
theory can be treated as a theory in which the dislocation
tensor field takes a role of distribution of a probability
were the dislocation center is at a given moment.

Contrary to the continuum theory of discrete disloca-
tions, the residual stresses are not an inherent part of a
continuously distributed dislocation tensor field. There-
fore, appending the elastic strain field by a different ro-
tation field such as that obtained in the lattice distortion
field can correspond to quite different dislocations under-
stood in the crystallographic sense of integration over the
Burgers circuit. In other words, contrary to discrete dis-
locations, any analytical solution given only for elastic
strain/stress fields is undetermined as long as the rotation
field is not uniquely fixed.
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APPENDIX: SIMPLE SHEAR MODE

Consider a distortion tensor̂βββ = α̂◦x̂ ŝ⊗ m̂, whereα̂◦ is
a constant,̂x is one of the coordinates of an orthonormal
system{x̂, ŷ, ẑ}, and [̂s] = [1, 0, 0]T is a slip vector lo-
cated on slip plane[m̂] = [0, 1, 0]T . The mentioned unit
vectors rotate according to the well-known geometrical
relations

m =
F−T

e m̂∣∣F−T
e m̂

∣∣ and s =
Feŝ∣∣Feŝ

∣∣ . (40)

In our caseFe =
[

1 β̂ ·
· 1 ·
· · 1

]
, which givesm = m̂ and

s = ŝ. In the linear theory, the differentiation of dis-
tortions over the current and reference positions are not
distinguished and, according to relations (3) and (14), the
additive decomposition ofβββ(x) = β(x) s ⊗m leads di-
rectly to the wanted relationαααe = 1/2ααα = αααw.
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