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Abstract

In this paper the field theory of dislocations is used in the finite element analysis of residual stresses in epitaxial layers.

By digital processing of the HRTEM image of a GaAs/ZnTe/CdTe system the tensor maps of dislocation distribution are

extracted. Such obtained maps are used as the input data to the finite element code. The mathematical foundations of this

code are based on the compatibility equations for lattice distortions. The surface tension induced by misfit dislocations is

considered here in terms of a 3D boundary-value problem for stress equilibrium in the interfacial zone. The numerical

results show how strongly the surface tension depends on the nonlinear elastic behaviour of the crystal structure.
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1. Introduction

High-resolution transmission electron micros-

copy (HRTEM) provides the possibility for

quantitative measurement of lattice displacements
within an accuracy of 0.03 �A, cf. [1]. On the other

hand the strains obtained by digital processing of

the HRTEM images reach considerably larger
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values than those measured at the micro- and

macro-levels. In the GaAs/ZnTe/CdTe system

analysed below the strains reach tens percent. In

such a case the elastic nonlinearity takes a crucial

role in the stress response of crystal structures. For
example, the linear elasticity predicts equal sizes of

the compression and extension regions around

edge dislocation while the experimental evidence

shows that the extension region, as being consid-

erably more flexible, occupies a larger volume than

the compressed one. In consequence, single dislo-

cations change the volume of a crystal lattice. Over

a few decades this volume effect was used by
investigators to measure the dislocation density [2].
ed.
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Fig. 1. HRTEM image of CdTe/ZnTe/GaAs structure.
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The observed elastic nonlinearity is closely

connected with the problem of the third-order

elastic constants quantifying the asymmetry in the

elastic compression/extension behaviour of real

crystals. The problem of measuring this constants
is more complicated than measuring of the classi-

cal (second-order) constants because their values

depend on the strain measure used [3]. Neverthe-

less, the constants have been determined for hun-

dreds of crystal structures [4–6].

The elastic nonlinearity is also responsible for

many other phenomena observed experimentally.

For instance the misfit dislocations expanding the
crystal lattice lead to a planar expansion of inter-

facial zones and in consequence, lead to the

bending of thin layers. In materials science this

expansion is quantified in terms of a negative

interfacial tension [7]. These nonlinear phenomena

are beyond the scope of the linear theory of dis-

locations. The linear theory is widely used thanks

to its efficiency in determining the analytical and
numerical solutions. Nevertheless, to hold a linear

character of differential equations, this theory by

definition ignores all differences between the

extension and compression behaviour of crystal

lattice as well as cuts all geometrical differences

between the actual and reference configurations.

Obviously, in order to apply a nonlinear theory,

the respective analytical or at least numerical tools
have to be available. The problem is that consti-

tutive models of nonlinear elastic behaviour of

anisotropic solids generally available in FE codes

are not suitable for solving the boundary-value

problems for large deformation of dislocated

crystals. For example, the most known anisotropic

hyperelastic models (i.e. based on energy func-

tion), like the Saint-Venant–Kirchhoff and Biot
models, behave just oppossed to real crystals.

Namely, these models become stiff during exten-

sion and soft during compression [3]. Therefore,

there exists a demand to use other nonlinear

models which could be more adapted to the real

elastic behaviour of crystal lattice.

In the last decade a whole spectrum of com-

putational methods based on the linear theory of
elasticity has been developed for the simulation of

the dislocation movement. Many of these methods

use analytical solutions for stresses and/or differ-
ential stress fields. In such a case two or more

independent solutions for elemental stresses are

used, e.g. the first solution concerns dislocations in

an infinitely large continuum while the second

concerns the proper boundary-value problem sta-
ted for a continuum free of dislocations. These two

solutions are linked together according to the

superposition rule which valid only in the linear

theory. This simplified approach, called a discrete

dislocation method, has achieved many interesting

results concerning the computer animation of

dislocation movement and formation of disloca-

tion walls, cf. [8–12].
In this paper quite a different computational

model is used. Contrary to the linear theory no

superposition of elemental fields of strains, stresses

nor differential stress functions are used here. The

additive decomposition of the displacement gra-

dient has been replaced by polar decomposition of

the deformation gradient.
2. Atomic mappings and lattice distortions

A typical high quality image of a GaAs/ZnTe/

CdTe interface is shown in Fig. 1. The image

contrast in GaAs and CdTe is homogeneous––

bright dots on dark background corresponding to
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the bi-atomic columns (Ga–As, Cd–Te). The

interface (substrate surface) is tilted about 2� rel-

atively to the crystallographic directions. Four

mono-atomic steps are visible in the image. CdTe

and GaAs have the same structure (sphalerite)
with a lattice mismatch of 14.6%. Crystallographic

misorientation of the CdTe film to the substrate

was less than 1�. This misorientation was very

small compared to the 6� disorientation reported

by Cheng et al. [13] for the growth of CdTe di-

rectly on a GaAs substrate. Nine of the ten misfit

dislocations situated on the interface are edge
1
2
½1�10�. Their lines are parallel to the interfacial

plane and perpendicular to the electron beam.

Only one 60� dislocation is visible on the interface,

see dislocation J . Its Burgers vector is 1
2
½0�1�1� or

1
2
½10�1�. The vector is deviated ±60� from the dis-

location line lying in the ð1�11Þ plane parallel to the

electron beam. The second 60� dislocation is situ-

ated 8 nm above the interface, see dislocation K.

By means of the geometric phase method, the
distribution of lattice distortions can be recon-

structed from the HRTEM image. This method is

based upon a centering of a small aperture around

the strong reflection in the Fourier transform of

the image, see [14]. The phase components give

information about the local displacements of

atomic planes. The geometric phase method is

suitable to analyse distortions in strongly dislo-
Fig. 2. Piecewise continuous lattice displacement field ûðxÞ obtained
cated heterostructures. Applying two noncollinear

Fourier components, a 2D piecewise continuous

lattice displacement field ûðxÞ is determined. The

lattice displacement field holds the same left- and

right-handed derivatives on the discontinuity lines.
Therefore, by computer processing of the

HRTEM image it is also possible to extract a

continuous distortion field bðxÞ. Outside of the

dislocation cores this field satisfies

b ¼ oû

ox
; ð1Þ

cf. Figs. 2 and 3. In our case, the lattice distortion

field has been determined in relation to a perfect

GaAs lattice. More details about such extracted

distortion field are given in [15].
3. The nonlinear continuum theory of dislocations

Contrary to the atomic mappings discussed

above the material mapping is assumed to be

continuous and invertible. This invertibility was

often ignored in the nonlinear continuum theory

of dislocations (NCTD), cf. [16–18]. In conse-

quence, NCTD was found as a theory closer more

to the theories based on non-Riemannian geome-

tries like cosmology and/or relativity than to a
theory describing the real problems of dislocations
by digital processing of the HRTEM image shown in Fig. 1.



Fig. 3. Continuous lattice distortion field bðxÞ obtained from the HRTEM image shown in Fig. 1.
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in crystal structures. Therefore, let us reconsider

the fundamental relations resulting from the

materials mapping applied in our paper. The total
deformation gradient F in a positively oriented

Euclidean space E3 has to satisfy the following

integrability conditions

curlF�1 ¼ 0; ð2Þ

and equivalently

CURLF ¼ 0; ð3Þ

where curl and CURL denote the curl operators

related to the current and reference configurations,

respectively. The conditions rewritten in the index

notation corresponding to curvilinear coordinate

sets fxkg and fXKg take the form
F
�1

K
l;melmn ¼ 0; ð4Þ

F k
L;MeLMN ¼ 0; ð5Þ

where the comma denotes the covariant derivative,

while ekmn and eKMN are representations of the

alternating tensor, see Appendix A.1.
Identities yielding from compatibility conditions

are obtained by substituting F ¼ FltFpl into (3),

giving

gradF�1
pl

_	F�1
lt þ F�1

pl curlF�1
lt ¼ 0; ð6Þ

GRADFlt _	Fpl þ Flt CURLFpl ¼ 0; ð7Þ
where _	 denotes a double product over two

neighboring indices––the scalar one over the firsts
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and the cross one over the second indices, cf.

Appendix A.2 where the operator _	 is used in the

index notation. Such decomposition is valid also in

any non-Euclidean (non-Riemannian) space, pro-
vided that the respective differential condition

establishing the distant parallelism is satisfied.

Note that the mentioned compatibility conditions

can also be rewritten in the form

curlF�1
lt þ Fpl gradF

�1
pl

_	F�1
lt ¼ 0; ð8Þ

CURLFpl þ F�1
lt GRADFlt _	Fpl ¼ 0: ð9Þ

Identities yielding from invertibility condi-

tions are obtained from differentiation of

FF�1 ¼ FltF
�1
lt ¼ FplF

�1
pl ¼ 1. Differentiation of the

mentioned identities over coordinates from the
current and reference configurations gives respec-

tively

gradFltF
�1
lt ¼ �Flt gradF

�1
lt ; ð10Þ

GRADFltF
�1
lt ¼ �Flt GRADF�1

lt ; ð11Þ

gradFplF
�1
pl ¼ �Fpl gradF

�1
pl ; ð12Þ

GRADFplF
�1
pl ¼ �Fpl GRADF�1

pl : ð13Þ

Additionally, pseudo-operators Grad and Curl are

introduced by expressing the differentiation over

the lattice reference configuration. Namely, for an

arbitrarily chosen tensor field, say t(x(X)), the

pseudo-operators denote the following differenti-

ation

Grad t¼df t;kFlt
k
K � EK ¼ t;K F

�1

pl
K
M � EM

¼ t;K F
�1

pl
K
m � em; ð14Þ

Curl t¼df t;kFlt
k
K 	 EK ¼ t;K F

�1

pl
K
M 	 EM

¼ t;K F
�1

pl
K
m 	 em; ð15Þ

where

t;k ¼
o

oxk
ðtijei � ejÞ

¼ otij

oxk

�
þ tljClk

i þ tilClk
j

�
ei � ej:
Geometrical relations between Ckl
m, CKL

M and F;K

are shown in Appendix A.1. These look quite

different than those used by Kondo [16,18] and

Bilby [17] because of the use of different metrics.
We use the Euclidean space metric and connection

rewritten in immobile curvilinear coordinate sets

fxkg and fXKg called the Eulerian and Lagrangian

coordinate sets. The authors mentioned used a set

convected or rather deformed together with an

imagined material space in which the distances

were determined by lattice metrics. Obviously,

these fundamental difference in geometrical tools
used makes no difference on constitutive model-

ling. Therefore, constitutive equations formulated

correctly by means of one tool can be successfully

rewritten in terms of the second tool.

True Burgers vector can be determined by

drawing a respective Burgers circuit in the current

or in the lattice reference configuration, cf. the FS/

RH and SF/RH methods described by Hirth and
Lothe [19]. The first method (finish-start/right-

handed) consists in drawing the enclosed circle in

the actual configuration to find the Burgers vector

in the lattice reference configuration, see Fig. 1.21

in the mentioned textbook. Obviously, the result

of this operation depends not only on the method

chosen (FS/RH or SF/RH) but also on the as-

sumed sense of dislocation line. In materials sci-
ence the unit vector of dislocation line n is taken

often to be ‘‘point into the paper’’, see Fig. 1.22 in

[19]. On the other hand, for RH coordinate sys-

tems, the sense of the oriented arc segment used in

the Stokes theorem is counter-clockwise, which

means that the infinitesimal vector of an area ele-

ment satisfies ds ¼ �nds. Therefore, for the FS/

RH method corresponding to the sense of dislo-
cation line directed ‘‘point into the paper’’ and to

the clockwise Burgers circuit Cx
x0
, see Fig. 1.20 in

[19], we find

b̂ ¼ �
I
Cx
x0

F�1
lt dx ¼

Z
S
curlF�1

lt ds ¼
Z
S
~ads

¼ �
Z
S
~ands; ð16Þ

where

~a¼df curlF�1
lt : ð17Þ
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Note that contrary to the Burgers vector, the dis-

location distribution (DD) tensor ~a is invariant

with respect to the assumed sense of dislocation

line, cf. (16). The true Burgers vector determines
components of dislocation with reference to

undeformed crystal lattice. Differential forms of

the Burgers vectors and the area elements satisfy

the well-known transformation rules

db ¼ Flt db̂; ð18Þ

ds ¼ F�T
lt dŝdetFlt: ð19Þ

Substitution into (16) gives the following differ-

ential relations

db ¼ ads; ð20Þ

db̂ ¼ âdŝ; ð21Þ

where

a¼df Flt curlF
�1
lt ; ð22Þ

â¼df curlF�1
lt F�T

lt detFlt; ð23Þ

cf. (17), a represents the spatial distribution of the

spatial Burgers vector, while â specifies the local

distribution of the true Burgers vector in the

lattice reference configuration. Summing up, the

DD tensors hold the following transformation
rule

a ¼ Flt~a ¼ FltâF
T
lt detF

�1
lt : ð24Þ

Note that the same transformation rule holds

for the Cauchy and Piola–Kirchhoff stress ten-

sors. Due to compatibility conditions, the DD

tensors can be determined uniquely by means

of mutually different derivatives. Using the iden-

tity transformations for deformation gradients,

we find the following formulae equivalent to
(22)

a ¼ gradFlt _	F�1
lt ð25Þ

¼ FltFpl gradF
�1
pl

_	F�1
lt ð26Þ

¼ � Flt gradFpl _	ðFltFplÞ�1
; ð27Þ
â ¼ �GradF�1
lt

_	Flt ð28Þ

¼ � F�1
lt CurlFlt ð29Þ

¼ � Fpl CurlF�1
pl ð30Þ

¼ �GradFpl _	F�1
pl ð31Þ

¼ CURLFplF
T
pl detF

�1
pl ; ð32Þ

see Appendix A.2. Most of the indentities were

derived in 1995/1996 by Dłu _zewski [20,21]. In the
numerical code presented in Section 5, the rela-

tions (29), (30) and (32) play the important role.

Contrary to ~aðXÞ, the field âðXÞ is invariant with

respect to any self-compatible elastic deformation,

i.e. replacing Flt by F0
lt ¼ Flt þGrad u0 in (23) we

find the same tensor field âðXÞ as that determined

for Flt.

Spatial Burgers vector (see Fig. 1.20 in [19]). In
this case, the closed Burgers circuit is drawn in the

lattice reference configuration. Its unclosed trace

from the actual configuration determines the spa-

tial Burgers vector. According to the NCTD, we

can determine the actual and lattice reference

configurations to be open sets in E3. For any curve

segment Cx
x0

connecting arbitrarily chosen points

x0 and x in the actual configuration, the function
F�1

lt ðxÞ determines uniquely a continuous and

invertible mapping

x̂ðxÞjCx
x0

¼
Z
Cx
x0

F�1
lt dx0; ð33Þ

which determines an oriented curve segment being

a trace of the Burgers circuit in the lattice reference

configuration, cf. Fig. 4(b). In the continuum

theory of dislocations this relation corresponds to

the following formula for the spatial Burgers vec-

tor

b ¼
I
bC x̂

x̂0

Flt dx̂ ¼ �
Z
bS CurlFlt dŝ

¼
Z
bS CurlFltn̂dŝ; ð34Þ

where bS denotes the surface bounded by a clock-

wise Burgers circuit bC x̂
x̂0

in the lattice reference

configuration.



Fig. 4. Coordinate systems versus reference configurations.
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4. Nonlinear elasticity

Let us assume that the specific free energy of a
crystal structure is governed by the following

constitutive relation:

w ¼ whðêh; âh; x1; . . . ; xn; T Þ; ð35Þ
where T denotes temperature, x1; . . . ; xn means the

mole fractions of elements, and êh is a hetero-
structural strain. The strain is a nonlinear function

of the lattice deformation measured in relation to a

fixed lattice reference structure (GaAs) and âh is a

nonlinear function of both Flt and gradFlt, i.e.

êh ¼ êhðFltÞ, âh ¼ âhðFlt; gradFltÞ. The structure

shown in Fig. 1 can be considered as a threefold

lattice dilute CdxZnyGa1�x�yTezAs1�z correspond-

ing to w ¼ wðêh; âh; x; y; z; T Þ. Nevertheless, assum-
ing that the system is composed of sequential

layers GaAs/ZnTe/CdTe it is convenient to intro-

duce a lattice reference structure for each of layers,

independently. This means that for a given layer

with a homogeneous chemical composition, (35)

can be replaced by

w ¼ wðê; âÞjx1;...;xn;T¼const; ð36Þ

where ê ¼ êðFlt0 Þ; â ¼ âðFlt0 ; gradFlt0 Þ and Flt0 ¼
FltF

�1
ch .

Summing up, we use the following decomposi-

tion of the total deformation gradient

F ¼ RU
z}|{Flt0

Fch|fflfflfflffl{zfflfflfflffl}
F

Fpl; ð37Þ

lt
where R and U denote the rotation and stretch

determined in relation to a stress-free configura-

tion of the crystal lattice with actual chemical
composition, while Fch denotes the chemical

deformation between two stress-free configura-

tions differing in chemical composition, i.e. corre-

sponding to the actual and reference compositions.

The reference composition was assumed to deter-

mine uniquely the lattice distortion maps for the

whole heterostructure, see Fig. 3.

4.1. Elasticity of perfect crystal lattice

The elastic nonlinearity of real crystals makes

the compression harder than extension. Therefore,

many attempts are made to predict this effect in

mathematical terms. For many crystal structures

the third-order elastic constants have been inves-

tigated, see tabulated constants by Hiki and
Granato [22], Drabble and Brammer [23], Vaidya

and Kennedy [4,5], Teodosiu [24] among others.

Most of the experimental results were obtained by

using the Green strain, also called the Lagrangian

strain. Unfortunately, it turns out that such

determined constants depend very strongly on the

strain measure used, see Table II in Dłu _zewski [3].

Therefore, it is convenient to use another, more
general definition of the Lagrangian strain.

Definition 1. By a Lagrangian strain we mean the

following tensor function

ê¼df f ðuIÞuI � uI; ð38Þ
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where uI and uI denote respectively the Ith eigen-

value and unit eigenvector of the stretch tensors,

while f ð�Þ denotes an arbitrarily chosen C1

monotonically increasing function f ðxÞ : Rþ 3 x !
f 2 R which satisfies the conditions f ðxÞjx¼1 ¼ 0

and df ðxÞ
dx jx¼1 ¼ 1.

This definition includes the well-known family

of strains [25,26]

ê¼df
1
m ðU

m � 1Þ for m 6¼ 0;

lnU for m ¼ 0:

�
ð39Þ

In a similar way a family of Eulerian strain mea-

sures dependent on the left Cauchy–Green stretch

tensor can be defined. Supposing that the specific

free energy depends on the Lagrangian strain and

temperature,

w ¼ wðê; T Þ; ð40Þ

it can be proven [3] that the Cauchy stress is

governed by the following equation

r ¼ R cA : q̂
ow
oê

� �
RT detF�1; ð41Þ

where q̂ denotes the mass density in the reference

configuration. The fourth-order tensor cA,

decomposed in the eigenvector basis fuIg, has the

following nonvanishing components

cAIJIJ ¼ cAIJJI ¼
dIJuIf 0ðuIÞ for uI ¼ uJ;
uIuJ½f ðuIÞ�f ðuJÞ�

u2
I
�u2

J

for uI 6¼ uJ;

(
ð42Þ

where f 0ðuIÞ ¼ df ðuÞ
du ju¼uI

. For example, in the case

of logarithmic strain, see (39), we find

cA IJIJ ¼
dIJ for êI ¼ êJ;

ð̂eI�êJÞ
eêI�êJ�eêI�êJ

for êI 6¼ êJ:

(
ð43Þ

Let us assume here that an elastic crystal satis-

fies the following specific strain energy function

wðêÞ ¼ 1

q̂
1

2!
ĉijklêijêkl

�
þ 1

3!
ĉijklmnêijêklêmn

�
; ð44Þ

where ĉ and bC are the second- and third-order

elastic tensors determined in relation to a given
strain measure. Substituting (44) into (41) the
following stress–strain relation for the elastic

behaviour of a crystal lattice is found

r ¼ R cA : ĉ : ê

��
þ 1

2
ê : bC : ê

��
RT detF�1: ð45Þ

Contrary to the second-order constants the values

of third-order ones are strongly dependent on the
strain measure used, see Dłu _zewski [3]. Moreover,

the constants can be recalculated mutually

reversible for any other strain measure. In practice,

most third-order constants were determined

experimentally in relation to the Green strain, see

[22,27–29]. Assuming two different strain mea-

sures, say dependent on two different strain

parameters m and m0 (39) we find a mutually
reversible tensor function ê0 ¼ ê0ðêÞ. In other

words, if we have components of strain referred to

the Green strain measure then we can recalculate

them uniquely for the logarithmic strain. Using the

transformation rule derived by Dłu _zewski [3] we

find for cubic systemsbC 0
111 ¼ bC111 þ ðm� m0Þ3ĉ11;bC 0
112 ¼ bC112 þ ðm� m0Þĉ12;bC 0
123 ¼ bC123;bC 0
144 ¼ bC144 þ ðm� m0Þ1

2
ĉ12;bC 0

155 ¼ bC155 þ ðm� m0Þ ĉ44
h

þ 1
4
ĉ12 þ 1

4
ĉ11

i
;

bC 0
456 ¼ bC456 þ ðm� m0Þ3

4
ĉ44:

ð46Þ

In the above equation the Voight notation reduc-

ing the number of subscripts has been used:

11fi 1, 22fi 2, 33fi 3, 23fi 4, 13fi 5, 12fi 6, e.g.bC111231 ! bC165. Applying (46) to the elastic con-

stants for GaAs, ZnTe and CdTe we can recalcu-

late the constants referred to the Green strain
(m ¼ 2) to those corresponding to the logarithmic

strain (m ¼ 0), see Table 1. Note that, if third-

order constants related to a given strain measure

vanishes, then after recalculation, nonzero values

for other measures are obtained, cf. (46) and

Table 1.

4.2. Elasticity of dislocated crystal lattice

The real stiffness of disordered regions is lower

than that of a perfect lattice in which all molecules



Table 1

Second and third-order elastic constants [GPa] related to the Green and logarithmic strain measures

m c11 c12 c44 C111 C112 C123 C144 C155 C456 Expl.

CdTe

2 54 37 16 )213 )210 )42 14 )65 5 [29]

0 54 37 16 111 )136 )42 51 13 29

ZnTe

2 71 41 31 )779 )649 )267 )132 )473 )34 [34]

0 71 41 31 )352 )568 )267 )91 )355 13

GaAs

2 119 54 60 )675 )402 )4 )70 )320 )69 [23]

0 119 54 60 39 )294 )4 )16 )113 21
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tend consistently to the same configuration. To

take into account the stiffness reduction in the

lattice disordered regions the following constitu-
tive equation is assumed

r ¼ R cA : e�râĉ : ê
�h

þ 1
2
e�2râê : bC : ê

�i
RT detF�1;

ð47Þ

where â is the second invariant of the true DD

tensor. In our approach r denotes a coefficient
responsible for the assumed reduction of elastic

stiffness in lattice disordered regions, see Figs. 5

and 6. The DD tensor field extracted from the

HRTEM image has strongly localised peaks in

these regions. Outside the peaks the field âðxÞ
vanishes.
Fig. 5. Schematic diagram of stress distribution about edge

dislocation: (a) discrete dislocation in the linear elastic contin-

uum, (b) FE distributed core in nonlinear elastic continuum.
5. Finite element analysis

Let the lattice configuration visible in Fig. 1 be
the material reference configuration. On the other

hand, by the lattice reference configuration we

assume a perfect lattice GaAs, ZnTe or CdTe

depending on the layer. The total deformation

gradient decomposes into

F ¼ Flt0FchF
�1
o ; ð48Þ

where F�1
o is the source deformation transforming

locally the initial (HRTEM) configuration to the

reference lattice (GaAs) assumed to determine the

lattice distortion field for the entire heterostruc-

ture, see Fig. 3. Flt0 includes the lattice rotation and
stretch measured in relation to the stress-free

configuration of the lattice with actual chemical

composition, GaAs, ZnTe or CdTe depending on

the layer.

Chemical deformation tensor describes the dif-

ference between two stress-free configurations

corresponding respectively: to the actual chemical

composition of layer (e.g. CdTe) and to the ref-
erence chemical composition (GaAs) chosen to

measure the lattice distortion distribution in the

entire heterostructure as shown in Fig. 3. Due to

the cubic symmetry of the lattice, this tensor takes

the isotropic form

FchðxÞ ¼
âðxÞ
âRef

1; ð49Þ

where â and âRef denote the lattice parameters of a

perfect lattice corresponding to the actual and

reference chemical compositions, respectively. By
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a lattice reference parameter is meant here

âRef � âGaAs while the function âðxÞ takes the val-

ues âGaAs, âZnTe, âCdTe depending of the layer. For

instance in the CdTe layer the actual lattice vector

a satisfies the transformation rule

a ¼ Flt0 âCdTe ¼ FltâGaAs; ð50Þ
where âGaAs and âCdTe denote the same crystallo-

graphic vector determined respectively in relation

to different stress-free configurations correspond-

ing to GaAs and CdTe, respectively.

The source and total deformation tensors can be

related respectively to the distortion field
bHRTEMðxHRTEMÞ observed under HRTEM and to

the material displacement vector field uðxÞ by the

following relations

F�1
o ¼ 1� bHRTEM; ð51Þ

F�1 ¼ 1�ru ¼ oðx� uÞ
ox

¼ oxHRTEM

ox
: ð52Þ

The source deformation tensor Fo can also be re-

lated to the following lattice distortion tensor

b̂¼df ð1� bHRTEMÞ�1 � 1; ð53Þ
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which satisfies

Fo ¼ 1þ b̂: ð54Þ
Lattice rebuilding tensor––a dilemma whether

the source deformation tensor Fo should be treated

as an initial elastic deformation Flto or as an in-

verse of a certain lattice rebuilding plastic defor-

mation tensor, say F�1
plo

, comprises a long-standing

problem. In practice, both interpretations reduce

themselves to the same multiplicative decomposi-

tion, in which Fplo or F�1
lto

takes quite the same role

of a complementary deformation to Flt. Note that
independently of the interpretation assumed, all

relations previously derived for compatibility

conditions between Flt and Fpl hold true. The use

of Fplo
or F�1

lto
depends on the preferences of a given

author. We assume here that F�1
o � Fplo ¼ Fpl.

Substitution of (54) into (30) gives the following

equation for the true DD tensor determined in

relation to the GaAs reference structure,

âGaAs ¼ �ð1þ b̂Þ�1
Curl
GaAs

½ð1þ b̂Þ�; ð55Þ

where Curl
GaAs

denotes a pseudo-operator, cf. (15),

concerning the local differentiation over a perfect

lattice with the reference chemical composition. In

terms of spatial gradients, cf. (15), this equation

reads

âGaAs ¼ ð1þ b̂Þ�1rð1þ b̂Þ �	½ð1þ b̂Þ�1ð1�ruÞ��T
:

ð56Þ

Substitution of Fpl0 ¼ FchF
�1
o into (30) gives a

DD tensor referred to the local relaxed lattice with

the real chemical composition of sequential layers

â ¼ �Fchð1þ bbÞ�1
Curl½ð1þ b̂ÞF�1

ch �: ð57Þ

In terms of the gradients in the current configu-

ration, this equation reads

â ¼ �Fchð1þ bbÞ�1r½ð1þ b̂ÞF�1
ch �

�	½Fchð1þ b̂Þ�1ð1�ruÞ��T
: ð58Þ

FE algorithm proposed here is based on the
integration of the equilibrium equation in the

current configuration [30,31], i.e.

divr ¼ 0; ð59Þ
where the Cauchy stress tensor governed by the

constitutive equation (47) is a nonlinear function

of u, ru, b̂ and rb̂. Note that, according to (54)

and (52) both total, lattice and plastic (rebuilding)
deformation tensors, F, Flt and Fpl can be deter-

mined at any stage of the FE deformations. Using

the virtual work principle the following nonlinear

matrix equation is found

PðaÞ ¼ f; ð60Þ

where

P ¼
R
v rTWrdv

0

� �
;

a ¼
u

b̂

� �
;

f ¼
R
ov Wrds

0

� �
:

ð61Þ

W denotes the weighting function determined in

relation to the current (iterated) configuration.

Fixing deformation freedom degrees correspond-

ing to the lower row part of the matrix equation its
upper part was solved only! Such a technique (with
an undetermined lower equation for b̂i) has been

applied in order to obtain continuous, differentia-

ble and mutually compatible fields uðxÞ, FltðxÞ and
âðxÞ. This is possible if the function uðxÞ is

biquadratic, FðxÞ, FltðxÞ, FplðxÞ and b̂ðxÞ are

bilinear, and FchðxÞ is constant within elements.

The spatial distribution of âðxÞ was shaped mainly

by rN bðxÞ. For an arbitrarily chosen tensor field,
say t̂ðxÞ, the Curl pseudo-operator can be com-

puted in the current configuration by using the

global orthonormal coordinate set (laboratory

system), i.e. Curl t̂ij ¼ t̂ik;lFlt0 lmekmj, see (15) and (37).

In the computational process an orthonormal

(laboratory) system was used, cf. mathematical

forms of local and global shape gradient functions

determined for the Gauss points in curvilinear fi-
nite elements, see [32].

Our FE algorithm is based upon the implicit

method in which the differentiations are performed

on the wanted configuration. The whole hetero-

structure has been divided into finite elements with

a homogeneous chemical composition, see e.g. Fig.

9. In such a case, using the identity F�1
ch 	

F�T
ch detFch ¼ Fch	, Eq. (58) reduces to
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â ¼ �Fchð1þ b̂Þ�1rb̂ �	 ð1
h

þ b̂Þ�1ð1�ruÞ
i�T

FT
ch detF

�1
ch ; ð62Þ

cf. the details of analogical transition (A.3) and

(A.4) shown in Appendix A.

The upper part of the nonsymmetric equation

set (60) was solved by using the Newton–Raphson

method in which the tangent stiffness matrix takes
form K ¼ oP

oa
. In practice the following matrix was

used

Kij ¼
Z
v
rNi

oðrdetFÞ
oaj

detF�1 dv: ð63Þ

More details on the determination of the tangent

matrix for nonlinear anisotropic elasticity elements

are given in [30,31].

5.1. Interfacial stresses induced by elastic nonlin-

earity

According to the experimental data, the inter-

facial tension between thin layers takes often

negative values from the domain )4 to 0 N/m [7].

On the other hand, according to classical ther-
modynamics, the surface energy and interfacial

tension should be positive. The reason for negative

surface tension lies in the elastic nonlinearity

which make the compression region harder than

extension. Therefore, the instantaneous stiffness of

the extension and compression regions formed

around an edge dislocation are mutually different.

To balance the stresses, the extension region, as
being more flexible, carries out most of the elastic

incompatibility. Consequently, the overall lattice
Fig. 7. Boundary-value problem for dislocation zone in CdTe: contou

configurations, respectively.
distortion around an edge dislocation is positive

which manifests in the form of a positive volume

expansion. In the first example a set of edge dis-

locations with mutually opposite Burgers vectors

b̂ ¼ � 1
2
½1�10� in CdTe are assumed, see axz field

Fig. 7. The assumed distance between dislocations

was similar to that visible in Fig. 1. The disloca-

tions were introduced into the FE mesh by the

initial plastic deformation Fplo
ðXÞ ¼ 1þ b̂. To

avoid incompatibilities between the displacement

and distortion fields within FEs the nine-node

shape function Nu
i ðxÞ for displacements and four-

node (bilinear) shape function Nb
i ðxÞ for lattice

distortions were applied which gives

uðxÞ ¼
X
i¼1;9

Nu
i ðxÞui; ð64Þ

b̂ðxÞ ¼
X
i¼1;4

Nb
i ðxÞb̂i; ð65Þ

where ui, and b̂i are nodal variables. This implies
that the source distortions were input only to four

corner nodes while the displacements were wanted

for all nine nodes. In the 2D boundary-value

problem, the lattice disordered regions were rec-

ognized by using the following formula â ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â2
xz þ â2

yz

q
, see (47). The dislocation core parame-

ter assumed here was r ¼ 20. Solving the bound-

ary-value problem the equilibrium configurations

of mesh were determined for several values of the
strain parameter m for bC ¼ 0. This parameter is

responsible for the asymmetry in elastic hardening

between the extension and compression behaviour

and takes a similar role as the third-order elastic

constants, see transformation rule for the third-
r maps of b̂xx and axz shown in the initial and stress-equilibrium
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order elastic constants (39), (46) and Table 1.

Therefore, the resulting curvature of the FE mesh

depended on the assumed value of m, see Fig. 7. To

express this curvature in terms of interfacial stress
resolved in the dislocation zone the analogical

formula as that applied by experimenters is used to

measure interfacial tension, i.e. f � Eh3

6ð1�mÞtR, where

E, m are elastic constants, R, t and h determine the

geometry of the FE mesh. Such determined

dependency f versus m is shown in Fig. 8. To be in

agreement with the experimental data reported by

Spaepen the strain parameter to be assumed must
be in the domain )2 to )4, see Fig. 8. But in the

real interfacial regions, the total number of dislo-

cations can significantly overcome the number of

geometrically necessary dislocations. Therefore,

the significantly smaller elastic asymmetry may

induce the curvature observed experimentally.

Comparing the curvature obtained in this example

with the experimentally determined third-order
elastic constants, cf. Table 1, it is expected that the

strain parameter should be chosen rather from the

domain �1 < m < 0.

5.2. 2D stress problem for misfit dislocations

In this example the lattice distortion field

b̂ðxHRTEMÞ extracted from the HRTEM image (see
Figs. 1 and 3) was used as the input data to the FE

analysis. The image was recorded in the form of a
Fig. 8. Surface tension obtained by solving a FE problem, Fig.

7, in which the elastic hardenning was controlled only by the

strain parameter m, cf. (47) and (39).
1024 · 1024 bitmap, see Figs. 1 and 3. After

rejecting a boundary zone, the central region of the

image was taken as input data to FE analysis, 964

px · 964 px. The whole region was divided into

10 000 nine-node square elements, see Fig. 9. The
source distortions were applied only in the corner

nodes, cf. (65). The nodal values b̂i were deter-

mined by averaging the distortions bHRTEM over all

pixels situated near a given node, and then trans-

forming bHRTEM
i into b̂i, see (53). In the initial

configuration, each of FEs occupied a square re-

gion 9 px · 9 px, i.e. 3
8
âGaAs 	 3

8
âGaAs. The assumed

mesh is shown in Fig. 9. A free boundary condi-
tion was assumed. The left-lower corner of the

mesh was fixed and the right-lower corner was

constrained in the y-direction. This implies that the

solution obtained relates to the residual stresses

stored in the interior of the considered region. This

FE analysis corresponds to the cutting of the

examined crystal region out from a larger sample

and relaxing it according to the assumed free
boundary condition. The following material con-

stants were assumed: âCdTe ¼ 6:48 �A, âZnTe ¼
6:1034 �A, âGaAs ¼ 5:6530 �A, r ¼ 20, the second

and third-order elastic constants for logarithmic

strain are given in Table 1. The solution process

was not as stable as that for the regular distortion

field considered in Example 1. Taking only the

traditional elastic constants into account a good
convergence (10�10) was obtained in the domain

�4 < m < þ1:5. This means that for outside val-

ues (including Green strain) the possible stress-

equilibrium configuration was too far from the

initial (HRTEM) configuration and it was not

reachable by using the modified Newton–Raphson

method. For this reason the final calculations were

carried out by using the logarithmic strain. The
resulting residual stresses are shown in Fig. 9.

5.3. 3D problem for 60� dislocations

The computational technique proposed here

gives some possibilities to solve a 3D boundary-

value problem with screw components. 3D FE

problems are considerably more memory intensive
than 2D. With respect to the limited computer

capabilities and to maintain a good resolution of

stress and displacement, maps only a fragment of
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Fig. 9. Assumed mesh and residual stresses obtained by solving nonlinear 2D FE problem.

392 P. Dłu_zewski et al. / Computational Materials Science 29 (2004) 379–395
the HRTEM image was taken into a 3D analysis.

A new region of the HRTEM image chosen for the

3D calculation was located outside the image

shown in Fig. 1. It contained a single 60� misfit

dislocation and a single edge dislocation 1
2
½1�10�

which had parted into two elemental 60� disloca-
tions, see the DD tensor field in Fig. 10. Their

Burgers vectors were 1
2
½10�1� and 1

2
½0�11�, or 1

2
½101�

and 1
2
½0�1�1�, respectively. In this example the first

case was considered. The assumed Burgers vectors

decompose into the following x; y; z-components

1
2
½10�1� ¼ 1

4
½1�10� þ 1

2
½00�1� þ 1

4
½110�;

1
2
½0�11� ¼ 1

4
½1�10� � 1

2
½00�1� � 1

4
½110�:

ð66Þ
Note, that z- and y-components satisfy a linear

dependence b̂3 ¼
ffiffi
2

p

2
b̂2. Therefore, in this example

the source distortions have been assumed to be

½b̂� ¼
b̂11 b̂12 0

b̂21 b̂22 0ffiffi
2

p

2
b̂21

ffiffi
2

p

2
b̂22 0

264
375; ð67Þ

where

b̂11 b̂12

b̂21 b̂22

" #
¼ 1� bHRTEM

11 �bHRTEM
12

�bHRTEM
21 1� bHRTEM

22

" #�1

� ½1�;



Fig. 10. 3D FE problem for 60� dislocations extracted from HRTEM image: assumed mesh, screw DD component azz and residual

stresses, ryz and ryz, shown in cross-sections.
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cf. (53). It is easy to note that such chosen dis-

tortions lead to the following nonvanishing com-

ponents of the DD tensor: â13; â23 and â33, where

â33 ¼
ffiffi
2

p

2
â23, cf. (30). In this example, the tensor

invariant â used in the constitutive equation (47)

was determined as â ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â2
xz þ â2

yz þ â2
zz

q
. Solving

the FE problem for free boundary conditions, the

residual stresses shown in Fig. 10 were obtained.

The field ryz is induced mainly by the screw com-

ponents of the dislocations. Nevertheless some

additional shear effects appeared in the boundary

zone. They resulted from the width changes be-

cause in the transit region between the GaAs and
CdTe layers the free surfaces of the sample were

not exactly perpendicular to the z-axis which

means that the shear stress ryz had not to vanish at

the slant surfaces.
6. Summary

The aim of this paper was to show the theo-

retical and numerical foundations of a new meth-

od for computer analysis of residual stresses in

nanostructures examined under microscope. From

the theoretical point of view, the computational

method proposed can be used on-line during

HRTEM examination. Using the tensor field ex-

tracted directly from the experimental image many
questions arise, e.g. concerning the reality of

experimental results, assumed nonlinearity of the

constitutive model, boundary conditions, etc. The

problem of nonlinearity can be divided into two

subproblems: (a) the geometric nonlinearity relat-

ing to the unique description of sequential con-
figurations in space and (b) to the constitutive

nonlinearity. In our case, both subproblems were

taken into account in a fully nonlinear FE code.

The surface tension was considered in terms of

a 3D stress equilibrium of a misfit dislocation

zone. As was shown, due to asymmetry in the

stress–strain response of compression and exten-

sion regions, the volume expansion and interfacial
tension depended strongly on the elastic nonlin-

earity.

The computer method applied here can be used

not only to HRTEM but also to any other

experimental method allowing the extraction of

nano/pico-continuous distortion maps from

examined atomic structures. The important

advantage of the nonlinear description is the pos-
sibility of recovering a deformed atomic structure

from distortion maps. Contrary to the linear the-

ory, it is possible to reconstruct the lattice by

departing from any atomic position and integrat-

ing the 3D distortion field step-by-step according

to the state-of-the-art of nonlinear theory of

crystal deformations, cf. (16) and (34).
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Appendix A

A.1. Discussion of (3)

Let us consider the proof of (3) in terms of

curvilinear coordinate sets.

F;L ¼
o

oXL

oxk

oXK
ek

�
� EK

�
¼ o2xk

oXK oXL
ek � EK þ oxk

oXK

oek

oXL
� EK

þ oxk

oXK
ek �

oEK

oXL

¼ o2xk

oXK oXL
ek � EK þ oxk

oXK

oxl

oXL

oek

oxl
� EK

þ oxk

oXK
ek �

oEK

oXL

¼ o2xk

oXK oXL

�
þ oxm

oXK

oxl

oXL
Ck

ml

þ oxk

oXM
ð � CK

MLÞ
�
ek � EK ; ðA:1Þ

where Ck
ml¼

df oem
oxl � ek ¼ �em � oek

oxl and CK
ML¼

df oEM
oXL � EK ¼

�EK � oEM

oXL . The connection coefficients satisfy the

well-known conditions Ck
mlek ¼ oem

oxl , Ck
mle

m ¼ � oek

oxl,

CK
MLEK ¼ oEM

oXL and CK
MLE

M ¼ � oEK

oXL. This means that

F;L 	 EL ¼ o2xk

oXK oXL

�
þ oxm

oXK

oxl

oXL
Ck

ml

� oxk

oXM
CK

ML

�
ek � EK 	 EL

¼ o2xk

oXK oXL

�
þ oxm

oXK

oxl

oXL
Ck

ml

� oxk

oXM
CK

ML

�
eKLM ek � EM ; ðA:2Þ
where eKLM denotes the respective representation of

the alternating tensor of E3 [20,33]. Contrary to

non-Riemannian spaces, in E3 the vector basis

tangent to fxkg is holonomic, i.e. there exist a
position vector, say r, such that each element of a

vector basis has to satisfy the condition ek ¼ or
oxk. In

view of the definition of CK
ML following (A.1), the

holonomy implies the symmetry of connection

coefficients. Thus, because of o2xk

oXK oXL ¼ o2xk

oXL oXK ,

Ck
ml ¼ Ck

lm and CK
ML ¼ CK

LM , (3b) is obtained.

A.2. Comments to (23), (30) and (32)

Substitution of (8) into (23) gives

âKN ¼ F
�1

lt
K
k;mekmnF

�1

lt
N
n detFlt

¼ �Fpl
K
AF
�1

pl
A
B;mF

�1

lt
B
kemknF

�1

lt
N
n detFlt: ðA:3Þ

Note, that F
�1

lt
B
k F
�1

lt
N
nemkneBNM is the adjoint of F�1

lt .

Since the inverse of a given second-order tensor is

determined as t�1 ¼ adjt

det t
, thus F

�1

lt
B
kemkn F

�1

lt
N
n

detFlt ¼ Flt
m
KeKBN . Substituting this relation into

(A.3) we find

�Fpl
K
AF
�1

pl
A
B;mF

�1

lt
B
kemkn F

�1

lt
N
n detFlt

¼ �Fpl
K
AF
�1

pl
A
B;mF m

C F
�1

pl
C
DeDBN

¼ Fpl
K
A;mF

�1

pl
A
BF m

C F
�1

pl
C
DeDBN

¼ Fpl
K
A;mF m

C F
�1

pl
A
BF
�1

pl
C
DeDBN

¼ Fpl
K
A;mF m

LFpl
N
EeEAL detF

�1
pl

¼ Fpl
K
A;LeALEFpl

N
E detF

�1
pl : ðA:4Þ

The two last terms are just the index representa-

tions of (30) and (32), respectively.
References

[1] M.J. H€ytch, J.-L. Putaux, J.-M. P�enisson, Measurement of

the displacement field of dislocations to 0.03 �A by electron

microscopy, Nature 423 (15) (2003) 270–273.

[2] M.J. Horodon, B.L. Averbach, Acta Metall. 9 (1961) 247.

[3] P. Dłu _zewski, Anisotropic hyperelasticity based upon

general strain measures, J. Elasticity 60 (2) (2000) 119–129.

[4] S.N. Vaidya, G.C. Kenne _dy, Compressibility of 18 metals

to 45 kb, J. Phys. Chem. Solids 31 (1970) 2329–2345.



P. Dłu_zewski et al. / Computational Materials Science 29 (2004) 379–395 395
[5] S.N. Vaidya, G.C. Kennedy, Compressibility of 22 ele-

mental solids to 45 kb, J. Phys. Chem. Solids 33 (1972)

1377–1389.

[6] M.W. Guinan, D.J. Steinberg, Pressure and temperature

derivatives of the isotropic polycrystalline shear modulus

for 65 elements, J. Phys. Chem. Solids 35 (1974) 1501–1512.

[7] F. Spaepen, Interfaces and stresses in thin films, Acta

Mater. 48 (2000) 31–42.

[8] G.R. Canova, Y. Brechet, L.D. Kubin, B. Devincre, V.

Pontikis, 3D simulation of dislocation motion on a lattice:

application to the yield surface of single crystals, Solid

State Phenom. 35–36 (1994) 101–106.

[9] C. Lemarchand, B. Devincre, L.P. Kubin, Homogenization

method for a discrete-continuum simulation of dislocation

dynamics, J. Mech. Phys. Solids 49 (9) (2001) 1969–1982.

[10] H.M. Zbib, M. Rhee, J.P. Hirth, On plastic deformation

and the dynamics of 3D dislocations, Int. J. Eng. Sci. 2–3

(1998) 113–127.

[11] K.W. Schwarz, D. Chidambarrao, Dislocation dynamics

near film and corners in silicon, J. Appl. Phys. 85 (10)

(1999) 7198–7208.

[12] S. Kolling, R. Mueller, D. Gross, A computational concept

of the kinetics of defects in anisotropic materials, Comput.

Mater. Sci. 26 (2003) 87–94.

[13] T.T. Cheng, M. Aindow, I.P. Jones, J.E. Hails, D.J.

Williams, The role of the initial nucleation stage in micro-

structural development for CdTe grown on heat-cleaned 2

degrees-off (0 0 1)GaAs by metalorganic chemical vapour

deposition, J. Cryst. Growth 154 (3–4) (1995) 251–261.

[14] M.J. H€ytch, E. Snoeck, R. Kilaas, Quantitative measure-

ment of displacement and strain fields from HTEM

micrographs, Ultramicroscopy 74 (1998) 131–146.

[15] S. Kret, P. Dłu_zewski, P. Dłu_zewski, J.-Y. Laval, On the

measurement of dislocation cores distribution in GaAs/

ZnTe/CdTe heterostructure by transmission electron

microscopy, Philos. Mag. A 83 (2003) 231.

[16] K. Kondo, On geometrical and physical foundations of the

theory of yielding, in: Proc. 2nd Japan Nat. Congr. Appl.

Mech, vol. 2, 1952, pp. 41–47.

[17] B.A. Bilby, Continuous distribution of dislocations, in:

I.N. Sneddon, R. Hill (Eds.), Progress in Solid Mechanics,

vol. 1, North-Holland, Amsterdam, 1960, pp. 331–398.

[18] K. Kondo, Non-Riemannian and Finslerian approaches to

the theory of yielding, Int. J. Eng. Sci. 1 (1963) 71–88.

[19] J.P. Hirth, J. Lothe, Theory of Dislocations, Wiley, New

York, 1982.
[20] P. Dłu _zewski, Continuum theory of dislocations as a

theory of constitutive modelling of finite elastic–plastic

deformations, Habilitation Thesis, IFTR Reports 13/1996,

Warsaw, 1996.

[21] P. Dłu_zewski, On geometry and continuum thermodynam-

ics of movement of structural defects, Mech. Mater. 22 (1)

(1996) 23–41.

[22] Y. Hiki, A.V. Granato, Anharmonicity in noble metals;

higher order elastic constants, Phys. Rev. 144 (2) (1966)

411–419.

[23] J.R. Drabble, A.J. Brammer, Third-order elastic constants

of gallium arsenide, Solid State Commun. 4 (9) (1966) 467–

469.

[24] C. Teodosiu, Elastic Models of Crystal Defects, Springer-

Verlag and Editura Academiei, Berlin and Bucures�ti, 1982.
[25] B.R. Seth, Generalized strain measure with applications to

physical problems, in: M. Reiner, D. Abir (Eds.), Second-

Order Effects in Elasticity, Plasticity and Fluid Dynamics,

Pergamon Press, Oxford, 1964, Proc. Int. Sympos., Haifa,

April 23–27, 1962.

[26] R. Hill, Constitutive inequalities for isotropic solids under

finite strain, Proc. R. Soc. London A 314 (1970) 457–472.

[27] K. Brugger, Thermodynamic definition of higher order

elastic coefficients, Phys. Rev. 133 (6A) (1964) 1611–1612.

[28] R.N. Thurston, K. Brugger, Third-order elastic constants

and the velocity of small amplitude elastic waves in

homogeneously stressed media, Phys. Rev. 133 (6A)

(1964) 1604–1610.

[29] N.J. Walker, G.A. Saunders, J.E. Hawkey, Soft TA models

and anharmonicity in cadmium telluride, Phys. Rev. B 52

(5) (1985) 1005–1018.

[30] P. Dłu_zewski, P. Rodzik, Elastic eigenstates in finite

element modelling of large hyper-elastic deformations,

Comput. Methods Appl. Mech. Eng. 160 (3–4) (1998) 325–

335.

[31] P. Dłu_zewski, G. Jurczak, H. Ant�unez, Logarithmic

measure of strains in finite element modelling of aniso-

tropic deformations of elastic solids, Comput. Assisted

Mech. Eng. Sci. 10 (2003).

[32] O.C. Zienkiewicz, R.J. Taylor, in: The Finite Element

Method, fourth ed., vol. 1, McGraw-Hill, London, 1989.

[33] C. Eringen (Ed.), Continuum Physics, vol. II, Academic

Press, 1975.

[34] R.K. Singh, S. Singh, Study of elastic properties and their

pressure dependence of zincblende structure semiconduc-

tors, Phys. Stat. Sol. (b) 140 (1987) 407–412.


	Nonlinear FE analysis of residual stresses induced by dislocations in heterostructures
	Introduction
	Atomic mappings and lattice distortions
	The nonlinear continuum theory of dislocations
	Nonlinear elasticity
	Elasticity of perfect crystal lattice
	Elasticity of dislocated crystal lattice

	Finite element analysis
	Interfacial stresses induced by elastic nonlinearity
	2D stress problem for misfit dislocations
	3D problem for 60deg dislocations

	Summary
	Acknowledgements
	Appendix A
	Discussion of (3)
	Comments to (23), (30) and (32)

	References


