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Numerical simulation of atomic positions in quantum dot
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Deformation of a crystal structure is considered here in terms of constitutive
modelling based upon both the atomistic and continuum approaches. Atomistic cal-
culations are made by using the Stillinger–Weber potential for the GaAs and CdTe
structures. The stress-strain behaviour of the best-known anisotropic hyperelastic
models are compared with the behaviour of the atomistic one in the uniaxial defor-
mation test.
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1. Introduction

Recently many molecular models of crystal behaviour have been used in
modelling of the crystal lattice deformation. Many constitutive models based
on the continuum thermodynamics are also available. Hence the question arises
about the relation between the nonlinear behaviour of these two types of mod-
els. For instance, it is well known that the stress-strain behaviour of nonlinear
continuum elastic models depends very heavily on the strain measure applied,
[1, 4]. Namely, the linear stress-strain constitutive relation rewritten for the stress
conjugate to the Almansi strain makes the extension softer than compression,
while the analogical linear stress-strain constitutive relation for the second Piola–
Kirchhoff stress conjugate by work with the Green strain measure makes the
extension harder than compression. It is easy to show on the third order elas-
tic constants obtained by reducing these nonlinear constitutive equation to the
common strain measures, e.g. to the logarithmic strain [4].

Atomistic modelling of crystal deformation can be divided into the computa-
tional methods based upon the fundamental and empirical potentials. The fun-
damental potentials are based upon the quantum theory and Schrödinger wave
equation, while the empirical potentials predict the dependence of strain energy
directly on the basis of atomic positions. It can be shown that the quasi-classical
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treatment of atomic interaction in terms of interatomic potentials and the classi-
cal momentum equation are consistent in certain limits with the solution of the
Schrödinger wave equation [8, 3]. The analogy results from the decomposition
of the analytical solution into the time-dependent and time-independent parts.
The time-independent wave function corresponds to the spatial arrangement of
particles. Generally, the empirical potentials can be divided into two and more
modern many-body potentials. In the simple pair potentials (like the Morse,
Lennard–Jones, Madelung ones) only the direct interaction of two atoms is con-
sidered and added up for a certain sphere with the radius of about four atoms.
In the multi-atom potentials not only two-atoms but also the influence of the
neighbouring atoms is taken into account; for example, in the Stillinger–Weber
potentials applied here noncentral atomic interactions are taken into account by
adding three-atoms interaction terms.

Continuum models of elastic behaviour of crystal lattice can be divided gener-
ally into the linear models based on the linear theory of elasticity, and nonlinear
constitutive models where the differentiation of displacement field over the cur-
rent and initial configurations are distinguished. In the linear theory, by writing

εij =
1

2
(∇iuj +∇jui) we do not specify precisely over which configuration the

differentiation is made, i.e. over the current or the initial configuration. Gener-
ally, we assume then that it does not matter because the configuration changes
are very small. In the nonlinear theory, before the displacement gradient is writ-
ten, we have to answer precisely over which configuration the differentiation is
done.

Anisotropic hyperelastic models compose a very narrow group among numer-
ous continuum models describing elastic behaviour of materials. Let us empha-
size that the most familiar anisotropic hyperelastic models, like the St.-Venant–
Kirchhoff and Biot models, change heavily their instantaneous stiffness under
large strains. Moreover, the stiffness evolution often differs significantly from the
behaviour of real materials. Neglecting an anomalous behaviour we can expect
that with respect to molecular effects the instantaneous stiffness of crystalline

solids increases under compression and decreases under tension. This nonlin-
ear elastic effect is responsible for many phenomena observed experimentally.
For instance due to the different stress-strain response of the extension and com-
pression regions, a single edge dislocation causes the volume expansion of crystal
lattice [6, 11]. The asymmetry in the stress–strain response appears also in the
form of negative values of third-order elastic constants measured experimentally
for many real crystal structures [13, 15, 16]. Thus, applying elastic constitutive
models which behave just conversely (St.-Venant–Kirchhoff, Biot) to the real
material, can be the cause of many undesirable effects such as improper propor-
tion between stress values and sizes of extension and compression regions around
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a single edge dislocation which causes positive or negative volume expansion in-
duced by edge dislocations in elastic continuum. Therefore, the use of new elastic
and elastic-plastic constitutive models, whose behaviour could be more adapted
to the nonlinear behaviour of real crystal structures, is desired.

2. Nonlinear continuum elasticity

According to the polar decomposition theorem, the deformation gradient F

can be decomposed into the rotation tensor R and the left or right stretch tensor,
U or V, respectively, F = RU = VR.

Definition 1. By general Lagrangian and Eulerian strain tensors we mean

two tensor functions

ε̂
df
= Af(ui)ui ⊗ ui and ε

df
= f(vi) vi ⊗ vi,(2.1)

where ui,ui, vi,vi denote respectively i-th eigenvalues and eigenvectors of the right

and left stretch tensors, while f(x) : R+ 3 x → f ∈ R denotes an arbitrar-

ily chosen C1 monotonically increasing function which satisfies the conditions

f(x)|x=1 = 0 and
df(x)

dx

∣∣∣
x=1

= 1.

This definition includes the well-known family of strain measures noted first
in [10]

ε̂ =
1

m
(Um − 1) and ε =

1

m
(Vm − 1),(2.2)

and many others. It can be proved that to balance the energy for an arbitrar-
ily chosen deformation process, the Cauchy stress has to be governed by the
following equation:

(2.3) σ = R

(
ÂA : ρ̂

∂ψ

∂ε̂

)
RTdetF−1,

where the fourth-order tensor ÂA decomposed in the vector basis {uK} consisting
of the eigenvectors of right stretch tensor is represented by the following non-
vanishing components:

(2.4) ÂIJIJ = ÂIJJI =





δIJ uIf
′(uI) for uI = uJ,

uIuJ[f(uI)− f(uJ)]

u2
I
− u2

J

for uI 6= uJ,
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where ρ̂ = ρ detF, f ′(uI) =
df(u)

du

∣∣∣∣
u=uI

, [4]. Let us consider the hyperelastic

material governed by the following constitutive equation stated for the specific
strain energy

(2.5) ψ =
1

2ρ̂
ε̂ : ĉ : ε̂

where ĉ is the fourth-order tensor of elastic stiffness. Substitution into (2.3) leads
to

(2.6) σ = R(ÂA : ĉ : ε̂)RT detF−1.

This constitutive model based on the generalized strain measure takes into ac-
count the most of the well-known anisotropic elastic models. Obviously, the mod-
els which do not satisfy the energy conservation law, like hypoelastic models, are
out of our consideration.

3. Interatomic potentials

Recently a wide group of interatomic potentials are used in the computation
materials science. Below, we present in brief the mathematical foundation of a
few empirical potentials.

Embedded Atom Method. The Embedded Atom Method has been proposed
by M. I. Baskes and M. S. Daw in 1984 [3]. The EAM is using the density
functional theory. In this model, the energy required to place an atom in crystal
lattice is a function of electron density in the desired place. This method is using
two-body interactions so it is a central a forces method. This allows to calculate
lattice relaxation and many properties of large sets of atoms. The fundamental
equations for EAM are

Etot =
∑

i

Fi(ρh,i) +
1

2

∑

i,j

φi,j(Ri,j),(3.1)

ρh,i =
∑

j(6=i)

ρaj (Rij),(3.2)

where Etot is total internal energy, ρh,i is closely approximated by a sum of
atomic densities ρa of the constituents [i.e. ρh,i,], fi is electron density of atom j
as a function of distance from its center, Rij is distance between atoms i and j,
Fi(ρh,i) is energy of embedded atom i for electron density ρh,i and φi,j is the short
range (doubly screened) pair potential. This potential looks quite simple but the
results obtained using it are very close to those obtained experimentally [3, 5].
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All parameters are more precisely discussed by authors of this potential. The
numerical problem in applying this potential is that it requires to calculate the
interactions of all atoms with each other – that gives a huge number of equations
to process. Two other presented potentials have a cut-off parameter which allows
to limit the number of interacting atoms to those within cut-off range.

Tersoff potential is more advanced than two-body potentials. The Tersoff
potential depends not only on atomic distances but also on the angle between
three atoms (two bindings) [8]. That makes this potential more flexible and ac-
curate in calculations, but it makes it harder to adapt to numerical calculations.
The geometric term which contains information about the angle θ between two
bindings is very important. This angle limits the number of atomic positions –
without this term the number of possible positions is almost unlimited and does
not correlate with physical reality (the angle between e.g. Ga–As and As–Ga in
a crystal is known exactly). The energy function

E =
∑

i

1

2

∑

j 6=i

Vij ,(3.3)

where Vij is the energy of bindings between i-atom and j-atom in a crystal,

Vij = fC(rij)[fB(rij) + bijfA(rij)].(3.4)

Functions fA and fB are the attractive and repulsive parts of potentials for a
pair of atoms. The function fC is responsible for limiting the length of bond and
is a smooth cutoff function. The parameters R and D are chosen in order to
limit the interactions to first-neighbour shell only. The functions are described
below:

fA(r) = −Be
−λ2r,(3.5)

fB(r) = Ae−λ1r,(3.6)

fC(r) =





1 for r < R−D,

1

2
−

1

2
sin

π(r −R)

2D

)
for R−D < r < R+D,

0 for r > R+D,

(3.7)

bij = (1 + βnξij
n)−1/2n,(3.8)

ξij =
∑

k 6=(i,j)

fC(rik)g(θijk)e
λ3

3(rij−rik)3 .(3.9)

The bij term is responsible for the strength of bonds. In this case the bond
strength depends on local environment and is lower when the number of neigh-
bours is relatively high. This potential is based on the Morse interactions.
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The parameters should be chosen to fit the theoretical and experimental data
obtained for realistic and hypothetical crystal configurations, e.g. the cohesive
energy of several high-symmetry bulk structures, the lattice constant and bulk
modulus of the researched crystal lattice [14].

Stillinger–Weber potential [12], its energy function comprises both two- and
three-atom contributions which make it possible to describe complex deforma-
tions in crystals more accurately than in the case of potentials based only on
two-atomic interactions. Any interatomic energy function describing interactions
between N atoms can be simplified to one-body, two-body, three-body etc. in-
teractions as it is presented in the following equation:

(3.10) Ψ(1, . . . , N) =

∑

i

v1(i) +
∑

i,j
i<j

v2(i, j) +
∑

i,j,k
i<j<k

v3(i, j, k) + . . .+ vN (1, . . . , N).

The potential v1 stands for a single particle in the system. This part will be
neglected because it is not considered in our discussion. It is important that the
component functions vn should quickly tend to zero with increasing value of n.
To this end the Stillinger–Weber potential is approximated only by v2 and v3

functions, that is two-body and three-body interactions. The potential is based
on the well-known Lennard–Jones potential, which was assumed for noble gases
description; however, it is unusable for semiconductors due to the lack of fitting
parameters. The partial energy functions v2 and v3 are introduced as follows

v2(rij) = εf2(rij/σ) and v3(ri, rj , rk) = εf3(ri/σ, rj/σ, rk/σ),(3.11)

where ε is chosen to give f2 depth −1, and σ is chosen to make f2(2
1/6) van-

ish. The f2 is a function only of the scalar distance, but f3 must possess full
translational and rotational symmetry.

Finally the two-body part of Stillinger–Weber potential takes the following
form:

(3.12) f2(r) =




A(Br−p − r−q)e

1

r−a for r < a,

0 for r ≥ a,

where the constants A,B, p have to be positive. This potential is also automat-
ically cut off when r = a, without any discontinuities in any r derivative, which
makes it very useful in any molecular dynamics simulations.

The same cut-off condition has to be held in the three-body interactions

(3.13) f3(ri, rj , rk) = h(rij , rik, Θjik) + h(rji, rjk, Θijk) + h(rki, rkj , Θikj),
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where Θijk denotes the angle between ri and rk subtended at vertex i. The
function h has two parameters (λ, γ > 0), it takes the form

h(rij , rik, Θjik) =




λe

γ

rij−a
+ γ

rik−a

(
cosΘjik +

1

3

)
for rij , rik < a,

0 for r ≥ a.

For this part the Θ parameter is very important; it gives us information about the
crystal deformation. When Θ is such that cosΘ = −1/3, then the three-body po-
tential vanishes, which is because of the perfect tetrahedral angle cosΘ = −1/3.
This shows that in an undeformed state this potential is based only on two-body
interactions.

Table 1. Parameters assumed for the Stillinger–Weber potential.

ε (eV) σ (nm) a A B λ υ

GaAs 1.409 0.210 1.794 8.513 0.782 27.0 1.0
CdTe 1.088 0.228 1.863 8.582 0.993 27.0 1.20

We have used parameters determined in [2] for GaAs. The parameters A,B, p,
q, a, λ, γ have been determined on the basis of many conditions. One of them
is crystal’s minimal energy in undeformed state. The second condition arises
from experimental values of the elastic constants and the third one from the
temperature of melting point and other similar constants. Some constants are
calculated using the ab initio methods for determining physical properties of
atomic bonds. In addition we compared the crystal’s energy, calculated with
the Stillinger–Weber potential, response on stretching with hyperelastic models
based on generalized strain models which is shown in Fig. 1.

To find the stress-strain response of atomic structure the energy of which is
governed by a given interatomic potential, we have applied the following relation
yielding from the strain energy balance:

(3.14) σ̂I = ρ̂
∂Ψ

∂F
,

where σ̂I denotes the first Piola–Kirchhoff stress tensor while Ψ means the crys-
tal’s specific free energy (per unit mass). The energy depends on distances and
positions between all the atoms in the crystal, i.e. Ψ = Ψ(r, . . . , rN ). Assuming
that the current position vector ri depends on the deformation gradient F and
on the reference position vector Ri, we find

∂Ψ

∂F
=
∑

i

(
∂Ψ

∂ri

∂(FRi)

∂F

)
=
∑

i

(
∂Ψ

∂ri
⊗Ri

)
,(3.15)
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where ri = FRi. Substituting (3.15) into ( 3.14) we find the Cauchy stress tensor
corresponding to the Stillinger–Weber potential

(3.16) σ = ρ̂
∂Ψ

∂F
FTdetF−1.

Fig. 1. Energy of hyperelastic models based on generalized strain models versus discrete
Stillinger–Weber potential model in uniaxial stretch test.

The method described above is very similar to the method used by [17]. Be-
cause the calculation of stress on the basis of numerical differentiation of all
two- and three-atomic terms over the deformation process turned out to be very
time-consuming, the Stillinger–Weber potential model was replaced by a nonlin-
ear hyperelastic constitutive model based upon a non-monotonic (pseudo-strain)
functions. Finally, the functions below will describe the continuized Stillinger–
Weber model.

ε̂ =
3∑

i=1

lnui e
−n

2
(u2

i
−1) ui ⊗ ui,(3.17)

ε =

3∑

i=1

ln vi e
−n

2
(v2

i
−1) vi ⊗ vi,(3.18)

where n is a strain parameter. In our research we have found parameter n by
fitting the above functions to discrete Stillinger–Weber potential. The fitting
procedure shows that the parameter n should be 0.57 for GaAs crystal lattice.
We didn’t fit the n parameter for CdTe or ZnTe. The results of using such a
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continuized potential function for GaAs are presented in Fig. 2. This fitted model
differs from the discrete Stillinger–Weber potential, the difference is about 3%.
The stretching test was performed with atoms able to reorganize themselves.

Fig. 2. Stress of hyperelastic models based on generalized strain models versus continuized
Stillinger–Weber potential model in uniaxial stretch test.

Fig. 3. Stress-strain comparison of the considered constrained and non-constrained model
for the simple shear test.

We made also a shearing test for the Stillinger–Weber potential model. The
shear test plot is a comparison between a model with atoms allowed to reorganize
and find their local energy minima and another one where atoms are placed with
no possibility to move.
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4. Quantum dot calculations example

We have applied the discrete Stillinger–Weber potential with special subrou-
tines to FEM solver, namely FEAP [18]. Here we must explain that although
the algorithm is using a FEM solver, it is not the Finite Element Method – there
are no finite elements.

In our approach we have used subroutines describing two- and three-body
interaction terms. The fundamental difference between our method and FEM is
that our, let’s say, pseudo-elements do not contain continuous distributions of
mass and stress/forces within elements, but they are based on the energy balance
of discrete atoms situated in the mesh nodes, which satisfy the motion equation

(4.1) mnr̈n = fn,

where the nodal forces fn are determined as a superposition of elemental forces

f2
n =

∂v2
∂rn

and f3
n =

∂v3
∂rn

(4.2)

corresponding directly to the two- and three-body terms of energy, v2 and v3,
according to (17). In other words, in the classical FEM the energy, mass and
forces are continuously distributed within elements, while in our approach there
are no continuous distributions over the two- and three-body pseudo-elements.
Such approach allows us to link these pseudo-elements with the classical solver
of FEM. Such attempt doesn’t require any changes in the FEAP solver.

The mesh, similar to the FE mesh, is only a graphic representation of all pos-
sible connections and data needed to calculate the interaction between atoms.
The algorithm is capable of calculating dynamic (time-dependent) or static prob-
lems. The material distribution is assumed for quantum dot structures observed
on HRTEM experimental images [7]. In this example we applied CdTe in ZnTe
quantum dot atoms positions to the prepared program which generates mesh
of pseudo-elements. The generator produces a block of sphallerite structure of
desired size and shape or uses an input file where the atoms position were stored
(e.g. Zn, Te or Cd). The Stillinger–Weber potential which is applied in our
pseudo-elements recognizes the bond type and the atoms by recognizing the
material number (e.g. Cd–Te material has the number “1” and Zn–Te has the
number “2”). The quantum dot was composed of 40 300 atoms – to limit the cal-
culation time and conserve the computer memory we applied the so-called mul-
tipoint displacement boundary conditions on each boundary plane of our block
chosen for calculation. These conditions correspond to the assumption that the
quantum dot is not alone in the bulk material but is surrounded by other quan-
tum dots of the same shape and size what also required setting the boundary
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conditions on external walls of our material. Finally the problem was limited to
only 10 075 atoms. In the presented example we have calculated the static prob-
lem – time-independent. The assumed quantum dot material decomposition is
shown in Fig. 4.

Fig. 4. Assumed material decomposition in quantum dot quarter.

The obtained atom displacements, Fig. 5, were compared with similar quan-
tum dot calculated with FEM, and they were very similar both in the shape and
the displacements. In initial state of the performed simulation both structures
of quantum dot and the surrounding region have the same lattice constant –
ZnTe lattice constant. Because CdTe has a larger lattice constant than ZnTe,
we expected that the quantum dot region will extend to reach the CdTe lat-
tice constant. Such extension can be noticed in Fig. 5 presenting the directions
of extension X,Y and Z. We can notice that the largest displacements are in
pictures presenting X plane (almost 0.22 nm) and Z plane (0.28 nm), what is
caused by periodic boundary conditions. The block of crystal presented here
is a simulation of an infinite line of quantum dots in Y direction, so the last
row of atoms in Y direction has been disabled to move along the Y axis – in
real structure just behind the last row of atoms begins the next similar quan-
tum dot which interacts in opposite direction [7]. These results can be later
easily applied to the HRTEM image simulation program allowing to verify and
reconstruct the quantum structures observed in laboratory conditions. Parame-
ters for the Stillinger–Weber potential used in these calculation were taken from
[9, 2].
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Fig. 5. Displacements resulting from the performed calculations.

5. Conclusion

In the hyperelasticity based upon general strain measure, the fundamental
question arises: which of the finite strain measures is the best one? The choice
of the given measure is responsible for the higher order elastic effects. For exam-
ple, the third-order elastic constants depend very strongly on the strain measure
choice, see [4]. In this paper, we have shown that the nonlinear elastic behaviour
of one of the most popular interatomic potentials used in MD simulations, namely
the behaviour of the Stillinger–Weber potential, is closest to the behaviour of
the first-order hyperelastic models based upon the strains corresponding to the
strain parameter between –1 and 0. This means that the first-order anisotropic
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hyperelasticity based upon the strain ε = lnU or ε = −U−1 + 1 gives approxi-
mately the same extension/compression asymmetry in elastic behaviour as that
obtained by physicists with the use of interatomic potential like the Stillinger–
Weber one. Recently, it has been used in the majority of MD simulations carried
out for semiconductor nanostructures. Obviously, our comparison concerned only
the elastic behaviour in the uniaxial deformation range in which the interatomic
potential was able to hold a stable GaAs atomic structure in the approximately
uniform deformation state.
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