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Abstract: The aim of this paper is to briefly present common procedures used 
for the atomic reconstruction of crystal structure affected by defects and its 
further atomistic–continuum modelling. From the theoretical point of view, the 
methodology  presented here applies the continuum theory of dislocations and  
linear or nonlinear theory of elasticity. To solve a boundary-value problem for the 
semiconductor crystals with defects the finite element analysis is used. Except 
classical analytical solution based on the linear theory of dislocations proposed 
by Love [21], a more recent numerical method based on iterative approach for 
reconstruction of the atomic structure is discussed. It allows to enhance the 
accuracy of the atomistic configuration of selected defects against the classical 
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solution. In this paper, the attention is focused on the mechanical aspects of 
crystal defects modelling.  This concerns the nonlinear effects of dislocation 
behaviour, as well as the configuration changes.  Additionally, an alternative 
strain measure effect on the residual stresses is considered. Except theoretical 
approach to the modelling, experimental measurements of crystals affected 
by dislocations are applied. Computer processing of HRTEM images is used 
to measure and simulate crystal defects. Finally, the combination of the elastic 
and electric fields in quantum dot grown at the edge of threading dislocation 
is presented as an example of the coupled fields problem in semiconducting 
heterostructure. The content of this paper does not completely cover a subject, 
but rather represents an introduction and discusses a selected part of the literature 
for further studies in the subject.
Keywords: elasticity, dislocation, dislocation core, semiconductors.

5.1.  Introduction

The very beginning of crystal plasticity based on dislocation concept can  be  found  
in  works  by Taylor  [1], Orowan [2], and Polanyi [3]. Dislocations and dislocation 
loops initially introduced to explain the mechanism of crystal plasticity [4] turned out to 
be not only a purely mechanical object. Various types of defects and their related short 
or long-range elastic and electric fields play now an important role in the prediction 
of various physical properties of the crystal structure. It became evident shortly after 
the invention of the first transistor by Shockley and coworkers in Bell Laboratories. 
Very soon, many researchers discovered that the dislocations significantly modify the 
electrical properties of semiconducting crystals used in electronics [5, 6]. This also 
concerns short-wavelength light emitting devices (LED,LD) [7, 8] which have attracted 
attention for many years due to adjustable direct band gap, which allows us to cover a 
wide wavelength range from ultraviolet to near infrared. Threading Dislocation (TD), 
which is a common defect of semiconducting heterostructures, unavoidably arises in 
the layers during the growth process. Such defects, except local lattice disturbance, 
also compose non-radiative recombination centers [9, 10], which affects the efficiency 
and lifetime of optoelectronic devices. Emission spectra, which is another important 
parameter of the optoelectronic device, depend on the formation energy of dislocation 
core related to the atomic configuration [11, 12, 13]. Generally, the presence of 
dislocations in semiconducting crystals has a detrimental effect on the device quality, 
but then again some optimists claim that dislocations in semiconductors might exhibit 
unusual electrical properties, e.g. superconductivity along dislocation lines. More 
comprehensive  history of the research related to dislocations in the semiconductors 
can be found in e.g. [14]

Despite intensive studies on semiconducting heterostructures, some interaction 
between the crystal defects and physical properties of semiconducting heterostructures 
is still subject of controversy. Furthermore, dislo- cations still are a technological 
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barrier for higher efficiency and durability of such materials in electronic and 
optoelectronic applications. Experimental measurements in this domain, based mainly 
on the Transmission Electron Microscopy (TEM) techniques, e.g. High Resolution 
TEM (HRTEM), Electron Energy Loss Spectroscopy (EELS), energy dispersive 
X-ray spectroscopy (EDS), etc. provide analytical and quantitative elucidation of 
nanostructural  properties  of  crystals at the atomic level [15, 16, 17]. TEM techniques 
provide the possibility for a quantitative measurement with a very high accuracy, 
e.g. HRTEM allows reaching 0.03Å accuracy in displacement measurements [18]. 
However, because  of the  TEM  measurements specific character, they  are  very  
toilsome. The TEM sample preparation, usually by ion milling, mechanically modifies 
the sample and many dislocations annihilate at the sample boundary, which  makes  
the  analysis  very  tricky.  Additionally,  during  TEM  observations the electron beam 
itself may be a source of compositional fluctuations and clustering [20]. Therefore, 
atomistic simulations have become a popular way to investigate the effect of crystal 
defects on the physical properties of heterostructures. It is well known that real 
crystals demonstrate an anisotropic behaviour, however, currently the most popular 
analytical approach to the dislocation core analysis is based on Love’s equations [21] 
and its various modifications [4, 22, 23] and covers only the isotropic continuum.  
Fully anisotropic solutions, e.g. [24], due to more complex formulae, are not very 
popular. Such situation leads to the simulation of inaccurate atomistic configurations 
of adefected structure and may make results interpretation difficult or even incorrect. 
Here, among others, a relatively simple iterative procedure within the framework of 
the finite deformation theory is presented to improve the quality of the dislocation 
core configuration. This approach, which has classical Love’s solution as a starting 
configuration, improves the accuracy of the reconstruction of the dislocation  core.

This paper is organised as follows. Sections 2-3 describe the theoretical background  
and  mathematical  foundations for atomistic  reconstruction of defected crystal 
structures. Next sections (4-5) describe an application of the methodology to the 
dislocations networks and the idea of an iterative algorithm based on the nonlinear 
approach. Section  6 describes  an  elastic  and  electric  interaction  of  the threading  
dislocation  and  quantum dot  (QD). Finally, in Section 7 a short discussion of the 
results is given and perspectives are presented.

5.2.  Continuum Theory of Dislocations

In the classical continuum theory of elasticity the gradient of displacement vector, 
which describes deformation of the body, can be decomposed additively into symmetric 
small strain tensor e and antisymmetric rotation tensor w,

 e∇ = + = βu w  (1)

In the continuum theory of dislocations, except elastic distortions β, some plastic 
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(also called source or initial) deformation arises, related to local lattice incompatibilities 
present in the crystal structure containing defects.  Similarly to previous equation, we 
may use the following decomposition of the total displacement gradient

 tot ple
β=∇

∇ = + = β
u

u w  (2)

where βpl denotes an asymmetric tensor of plastic distortion related to local and 
permanent rearrangement of the crystal configuration. In the continuum theory of 
dislocations, two complementary approaches to crystal defects with a slightly different 
notation are used, namely

• in the continuum theory of discrete dislocations it is assumed that the 
continuum composes a multiply connected region with discrete dislocations. 
After cutting off along slip planes such a region is treated as a single connected 
region for which the lattice displacement field reads u(x) ≠  utot(x), and the 
lattice distortion is defined in a similar way as in the classical theory of elasticity

 df
eβ=∇ = +u w  (3)

• in the continuum theory of continuously distributed dislocations the role of 
displacement gradient ∇u  is taken by a continuous field of dislocation density 
tensor determined as

 curl
df

α=− β  (4)

where in the index notation the differential operator curl reads αij = βik,l ejkl, the comma 
means here the so-called covariant differentiation, and ejkl is the alternating tensor 
(permutation symbol).

In both approaches, similar to Eq. (2), the total distortion field

 βtot = β + βpl (5)

has to satisfy the following compatibility condition

 curl βtot = 0 (6)

By substitution of (4) and (5) into (6) it can be shown that

 curl α + curl αpl = curl βtot = curl (∇u ) = 0 (7)

or simply curl β = −curl βpl, cf. (6) and (1). Thus, the dislocation density tensors α can 
be defined alternatively to (4) as

 α = curl βpl (8)

It is worth mentioning here that in the dislocation theory, another tensorial  measure  
of strain (and/or rotation) incompatibilities are applied

 
df

η=  inc β = −inc βpl (9)
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where η means incompatibility tensor related to the permanent rearrangement of the 
crystal structure related to discontinuity in the displacement field. In the index notation 
the differential operator inc reads

 ηij = βkl,mn ekmi elnj (10)

Unfortunately, large elastic deformation of the crystal lattice in the close vicinity 
of the defect makes classical elastic model based on Hooke’s law and linear strain 
measure no longer very accurate. Except that, deformation decomposition into elastic 
and plastic parts justifies the existence of an intermediate configuration also called 
the local lattice configuration of the body x̂ , see [26]. Thereupon only the use of a 
mathematical model which takes into account finite deformation allows a description 
of the crystal with defects in a proper way. Thereby, instead of displacement gradient 
we may use deformation gradient Ftot decomposed multiplicatively into lattice (elastic) 
deformation F and plastic deformation Fpl.

 Ftot = F Fpl (11)

Lattice deformation F denotes here a thermodynamically reversible deformation of 
the crystal structure or heterostructure caused by a lattice mismatch and related elastic 
relaxation. In the chemically homogeneous structures lattice deformation is identified 
with the elastic one. In most cases it is assumed that chemical deformation tensor in the 
main  crystallographic  orientation  has only  on-diagonal components.  If the distortion  
is the spatial  gradient of the displacement vector

 1−∂
β = = −

∂
u I F
x

,   ˆ
ˆ

∂
β = = −

∂
u F I
x

 (12)

we may write that plastic (initial) distortions are equal

 ˆ
pl plβ = −F I  (13)

By integrating over the closed contour in a proper configuration (initial or actual) 

we can obtain spatial or true Burgers vectors, b or b̂ , respectively. We may write then

 ( )ˆˆ ˆ1
c O O
d d d= = = +β∫ ∫ ∫b x F X X


 (14)

 ( )1ˆ ˆ ˆ1
C O

d d d−− = = = +β∫ ∫ ∫b X F x x


 (15)

where o i O denote, respectively, open contours in an actual and  initial configuration, 
while c i C mean closed loops over the analogous configuration. Strict and mutually 
reversible formula for distortions measured in different configurations is as follows

 ( ) 1ˆ −β = −β −I I  (16)
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5.3.  Continuous and Atomistic Reconstruction of Dislocations

The displacement field around dislocation and its mathematical description has 
been a very popular problem of the continuum theory of dislocations for many years. 
The first complete solution for the displacement field was given by Love in 1927 [21] 
and later on it was modified by several authors, see [22, 23, 4]. The basic assumption  
of the solution is that the crystal is an isotropic elastic continuum and the edge and 
screw components of the Burgers vector coincide, respectively, with X and Z axes of 
the local coordinate system, and the dislocation line is coaxial with Z. In such a case 
we may use following formulae for the displacement field

 

( )( )

( ) ( )
( )( )

2 2

2 2
2 2

2 2

ˆ ˆ
arctan

2 22 1

ˆ 1 2 ln
2 4 1 4 1

ˆˆ
arctan

2 2

x x
x

x
y

xz
y

b by x yu
x x y

b x yu x y
x y

bb yu
x

 
 = + −
 π − ν + 
 − ν − = + +
 π − ν − ν + 

= −
π

 (17)

where ˆ
xb , ẑb , and ν mean the edge and screw components of the true Burgers vector, and 

Poisson ratio. x, y coordinates denote the position of the dislocation line perpendicular 
to the xy-plane. On the half-plane defined by coordinates equal (x < 0, y = 0) there 
is a discontinuity in the displacement field, corresponding to the Burgers vector b of 
the dislocation. In Fig. 1 there are shown different atomic configurations of the the 
aluminium nitride crystal — a common semiconductor with hexagonal symmetry. The 

first configuration corresponds to the perfect crystal and the next two  configurations 
present different types of  edge dislocation. Burgers vector of the edge dislocation is 
equal to the lattice parameter a = 3.112Å in main crystallographic orientation 1120
. These two dislocation cores differ in the position of the dislocation  line, which 
corresponds to the singularity in Love’s solution.  As we can see, the difference in 

  
Fig. 1. Atomic configuration in hexagonal crystal AlN along [0001] axis: a) ideal crystal,  
b) edge dislocation core for 5 : 7-ticked point, b) edge dislocation core for 8-ticked point
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the position taken by the same dislocation line makes a significant change in its core 
structure, while the continuous displacement field is the same, see Eqs. (17). Also, 
noticeable asymmetry of the atomic position in the sub-figures Fig. 1b and Fig. 1c is 
visible, see inter-atomic distances marked in the figures.

Another way to determine the source distortion field around dislocation is  computer  
analysis of the HRTEM images, see for example [18, 32]. In that case we have to deal 
with single spots in the diffraction pattern of the structure visible in the HRTEM image 
(the reciprocal space). Small enough aperture around single diffraction pick related to 
the strict crystallographic orientations allows us to extract the displacement field and 
phase along that orientation. Next, by applying Geometric Phase Method (GPM), we  
can calculate a discreet distribution of the source distortion field. The resolution of the 
resultant map of source distortions depends on the resolution of source HRTEM image 
and may reach a small fraction of Å - even two orders of magnitude less than a crystal  
lattice parameter. The experimentally measured displacement field around the edge 
dislocation, measured by HRTEM [18], has a significant asymmetry between the upper 
and lower parts of the displacement. Such asymmetry in the experimentally measured 
elastic deformation of the crystal can be explained by a nonlinear behaviour  of  the  
crystal structure, which is harder for compressive loadings and weaker for elongation. 
The same behaviour for atomic interactions is predicted by atomic potentials and is 
visible in the bonding force chart. The bonding force is the derivative of the bonding 
energy, so such behaviour is the effect of the form of bonding energy function, see 
Fig. 2.

Fig. 2. Bonding energy and bonding force calculated for the Morse atomic potential, see [27]

Unfortunately, the theoretical displacement field around the edge dislocation (uz 
= 0, see Eqn. (17)) based on Love’s solution, rewritten to the cylindrical coordinate 
system has the form
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( )
sin 2

2 4 1
x

x
bu

 θ
= θ + − π  π − ν 

 (18)

 
( ) ( )

21 2 cos 2ln
2 4 1 4 1

x
y

bu r
 − ν θ

= − +  π − ν − ν 
 (19)

and is fully symmetric, see comparison of the experimental and theoretical displacement 
fields in [18, 19].

Because crystal nonlinearity seems to be a very important factor in the case of crystal 
modelling, we have to take it into account. To do that, we may apply a mathematical 
model which deals with geometric (kinematic relation) and physical (constitutive 
equation) nonlinearity. The most popular nonlinear kinematic relation was proposed 
by Seth [28] and further by Hill [29] and it is known as a generalized strain measure

 ( )
( )

1 0
ˆ

ln 0

m m
m

m

 − ≠e = 
 =

U I

U
 (20)

where, U is the right stretch tensor obtained from the polar decomposition of elastic 
deformation tensor F = RU . Exponent m defines the strain measure and usually is an 
integer number.

To take into account the physical nonlinearity of the crystal let’s use the following 
constitutive equation for stress

 
1 ˆˆ ˆ ˆ ˆˆ : : :
2

σ = e + e e +c C   (21)

where ĉ, Ĉ mean stiffness tensors of the second and third order elasticity. We may now 
write the complete formula for the Cauchy stress σ,

 1

ˆ

1ˆ ˆˆ ˆ ˆ ˆ: : : : det
2

T −

σ

 
  σ = e + e e +  

  
 

R c C R F



A  (22)

where Â is some geometric function of strain, Â = Â ( ê ), taking a role of transformation 
tensor for stresses in different lattice configurations, see [30]. Taking into account the 
above constitutive relations we can write that the Cauchy stress is a nonlinear function 
of the displacement field, its gradient, and source distortions as follows

 ( )ˆ, , plσ = σ ∇ βu u  (23)
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A boundary-value problem for an elastic crystal with dislocations, discrete and/
or continuously distributed, can be stated in the form of coupled displacement and 
distortion fields. Contrary to the displacement-type degrees of freedom these distortion-
type degrees  corresponding to the input source distortions are fixed. So, our FE method 
algorithm has the following matrix form, see [31]

 [ ][ ] [ ]=P a f ,  T
v dv

 
= ∇ σ 
 
∫
0

P W ,  ˆ
 

=  
β 

u
a ,  

v
ds∂

 
= σ 
 
∫
0

f W  (24)

P means stiffness matrix, a - degrees of freedom vector, f - nodal loadings vector, and 
W - weighting function. As stated above, see Eq. (23), Cauchy stress σ is the nonlinear 

function of the displacement field u, its gradient ∇u , and source distortions β̂ .

Fig. 3. Circular plate with a hole: a) displacement field, b) residual stresses

The idea and the application of source distortions can be illustrated by the problem  
of a circular plate with a hole, as sketched in Fig. 3. The hole in the centre of the plate  
is to avoid the singularity appearing in Eqs. (17). The natural state (stress free) of 
the plate with acut is presented in Fig. 3a. The colour map in this figure corresponds 
to  the horizontal displacement field necessary to deform the initial plate to get the  
fully circular shape of the plate as shown in Fig. 3b. The iInitial plate with a cut after 
deformation became smooth and fully circular but residual stresses appear, see Fig. 3b.  
Such plate is just an analogue to Volterra’s edge dislocation, where the displacement of 
the plate edge ux corresponds to the Burgers vector of dislocation b.

A similar deformation of the plate can be obtained by inelastic (plastic) deformation 
using source distortions, which allows us to avoid residual stresses and get stress free 
permanent deformation of the plate. Source distortions as derivatives of Eqs. (17) have 
the following form
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( ) ( )
( )( )

( ) ( )
( )( )

( ) ( )
( )( )

( ) ( )
( )( )

2 3 3 2

2 22 2 2 2

3 2 2 3

2 22 2 2 2

2 2 2 2

ˆ ˆ3 2 1 2 3 2 1 2
2 22 1 2 1

ˆ ˆ1 2 3 2 1 2 1 2
2 22 1 2 1

ˆ ˆ

2 2

x x
xx xy

x x
yx yy

z z
zx zy

v x y v y v x v xyb b

v x y v x y

v x v xy v x y v yb b

v x y v x y

b by x
x y x y

− + − − + −−
β = β =

π π− + − +

− + − + − −−
β = β =

π π− + − +

−
β = β =

π + π +

 (25)

Using this methodology we are able to reconstruct any type of dislocation in the 
crystal structure, e.g. in the silicon carbide 2H-SiC. The reconstructed atomic structure  
for the edge and screw dislocations are presented in Fig. 4.

In the case of analytical modelling of dislocations in the crystal using Eqs. (17), (25) 
we have to assume its crystallographic orientation and proper dislocation core radius. 
As mentioned above, the analytical equations allow modelling dislocation whose 
components of Burgers vector coincide with X and Z-axes of the local coordinate 
system. Therefore, to model any chosen dislocation it is necessary to transform the 
coordinate system to get its coincidence with Burgers vector (and simultaneously 
reset by component of Burgers vector). Then, Z-axis straight-line dislocation can be 
described by a dislocation density function as

 ( )
0 0
0 0 0
0 0

x

z

r
α 

 α = α =  
 α 

,  where b = [bx, 0, bz],  2 2r x y= +  (26)

The dislocation core radius is a very important parameter of the analytical modelling 
of dislocation. Within the core radius of the dislocation line the limit of the applicability 
of classical Love’s equations is assumed. Inside the core another set of equations, e.g. 
based on polynomial expansion, should be used, i.e. [25]. The proposed equations, except 
obvious compatibility with classical Love’s equation, should also satisfy the following 
compatibility condition for the displacement field on the dislocation core surface

  
Fig. 4. Ball and stick model of 2H-SiC crystal with defects: a) initial (ideal) crystal structure,  

b) edge dislocation, c) screw dislocation (side view)
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 cβ = ∇u ,   2grad cβ = ∇ u ,   inc 0cβ =  (27)

   
Fig. 5. GaAs/CdTe heterostructure with ZnTe wetting layer: a) HRTEM image with 

locations of dislocations highlighted by dashes showing missing crystalline half-planes,  
b) assumed FE mesh with material distribution marked by a colour map, see [31]

5.4.  Reconstruction of Dislocation Networks

In real structures, dislocations very often create specific spatial networks or 
complexes, e.g. low-angle grain bound- aries, misfit dislocations, etc. Misfit 
dislocations are typical of the mismatched heterostructure and they are present on the 
interface between layers. In the case of GaAs/ZnTe/CdTe heterostructure, presented in 
Fig. 5, the mismatch between the layer and substrate is about 14.6%, which is rather 
a high value. Therefore, an extra wetting layer (ZnTe crystal) with an average lattice 
parameter is used to reduce the problem of layer delamination.  Such  interface contains 
high density of crystal defects, which makes an analytical approach very toilsome, 
especially if the orientation of Burgers vectors differs from each other (the need of 
coordinate system transformation every time). So, instead of the analytical approach, 
an extraction of the source distortions directly form HRTEM images using the 
computer analysis is applied. The calculated displacement fields in the crystal structure 
for selected crystallographic orientations are shown in Fig. 6. The lower part of the 
structure (the substrate - GaAs) was used as a reference, and extra  atomic half-planes 
of the CdTe layer (smaller lattice parameter) are clearly visible in the displacement 
field of the upper part. The source distortions were extracted from the TEM image by 
differentiation of these displacement fields, see Fig. 6.

If we zoom in the dislocation cores present on the GaAs/CdTe interface (Fig. 5) it is 
possible to measure Burgers vectors of these dislocations and determine the dislocation 
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density distribution. In Fig. 7 a zoomed vicinity of a few dislocations on the interface 
is shown. The numbering of dislocations corresponds to the numbering in Fig. 5 [32]. 
The green frame indicates the dislocation core, while the white frame denotes Burgers 
contour with complementary orange Burgers vector. The lower panel shows the 
dislocation density analysis which allows determining the type of dislocation. Burgers 
vector, marked as an orange arrow, is determined according to the left-hand finish-start 
(LHFS) convention.

Most dislocations on the interface are of the edge type (Burgers vector is 1
2 110    and 

Fig. 6. Components of the displacement and distortion fields extracted  
form the experimental HRTEM images [32]

Fig. 7. Analysis of the dislocation cores present on the GaAs/CdTe heterostructure interface
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lies in the figure plane - perpendicularly to the electron beam direction). Dislocations 

J and K are of mixed type and their Burgers vector ( 1
2 101    or 1

2 011   ) makes a 60° 
angle with the dislocation line parallel to the electron beam. However, detailed analysis  
of edge dislocations (see Fig. 7) reveals that each edge dislocation is composed of  two 
60°-type mixed dislocations with a consistent edge and opposite screw components. 
It is evident for C, D, and G ddislocations and hardly visible for E dislocation. Such 
dislocations are called a Lomer dislocation and in our case we may write the following 
dissociation formula

 
1 1 1
2 2 2

110 101 011     = +        or  [ ]1 1
2 2

101 011 +    (28)

   
Fig. 8. Residual stresses calculated on the basis of computer analysis of HRTEM images, see [32]

In the case of computer analysis of HRTEM images we are able to determine only 
a 2D information on dislocations, while they are real 3D objects. The data concerning the 
direction perpendicular to TEM image were lost already at TEM image creation stage. 
Therefore, we have to find another way to complete the obtained distortion field, and get 
a full 3D description of the dislocation. To do that we may assume that the ratio between 
components of the distortion field is the same as the ratio between components of Burgers 
vector (in our case thelost screw and visible edge components). Let’s write decomposition 
of Lomer dislocation composed by a pair of two 60° dislocations in the local coordinate 
frame related to HRTEM image, see crystallographic orientation in Fig. 5

 
[ ]

[ ]

1 1 1 1
2 4 2 4

1 1 1 1
2 4 2 4

101 110 001 110

and 011 110 001 110

     = + +     

     = − −     

 (29)
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The ratio between the lengths of Burgers vector components gives the following 
relation

 
[ ]110 00 12

2ˆ ˆb b  
=  (30)

So, for the image extracted from TEM the in-plane components of the distortion 
field βxx, βxy, βyx, βyy (ssee, Fig. 6), and the assumed relation for the revealed Lomer 
dislocations we may write the following formula for the complete tensor o source 
distortions

 

ˆ ˆ 0
ˆ ˆ ˆ 0

2 2ˆ ˆ 0
2 2

xx xy

yx yy

yx yy

 
 β β
 

β = β β 
 
 β β  

 (31)

Such relation results also in a similar relation for the dislocation density components 

[ ]110 00 1
ˆ ˆ2 2   
α = α . Let’s apply such distortion field to the boundary value problem  

of the misfit dislocations network at the GaAs/ZnTe/CdTe heterostructure interface. By 
solving the boundary-value problem we get residual stresses in the heterostructure and 
the spatial distribution is presented in Fig. 8.

5.5.  Finite Deformations

The analytical approach to the dislocation reconstruction described in Section 3 is 
based on the linear elasticity theory and has a limited application and accuracy in 
the dislocation core. There is no doubt it is fast, simple and quite accurate but their 
limits follow the initial assumption (push forward transformation) and used material 
description (linear theory of elasticity). To improve this solution we have to use pull 
back transformation and take into account the finite deformation of the crystal structure 
definitely arising around the core. The problem with pull back transformation concerns 
the unknown configuration from which we have to go back to the ideal crystal. 
Therefore, instead of the existing formulae [21, 22]

 u(x) = f(x) (32)

we should use the following relation

 u(X) = f (x(X)) = f(X + u(X)) (33)
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Classical solution

  
Iterative solution

  
Fig. 9. Dislocation configurations of deformed GaN crystal in the case of edge dislocation.  

Upper panel shows classical solution, lower panel presents iterative solution.  
Insertion point for dislocations is marked as a red dot. Additionally,  

inter-atomic distances are shown for informative purposes

The nonlinear equation above can be solved using an iterative method

 ui+1 = ui +Dui+1 (34)

In the case of Newton-Raphson method the (i + 1)-step adjustment of the 
displacement Du is

 ( ) ( )
1

1 ,

i

i i
−

+

=

 ∂Ψ 
D = − Ψ ∂ u u

X u
u u

u
 (35)

where correction factor Ψ is

 Ψ(X,u) = u − f(X + u) (36)

If we assume that locally β equals ∇u  we obtain

 ( ),∂Ψ
=

∂
X u
u

 = 1 − β(x) (37)

Finally, we may write an iterative formula for the displacement which describes the 
jump from the initial configuration (as a classical solution) and take into account the 
change of the actual configuration

 ( ) ( ) ( )11 1i i i i−
+    D = − −β + − +   u X X u u f X u  (38)
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By taking into account the configuration change, it is possible to reduce the 
asymmetry arising in the displacement field, see Fig. 1b,c. Due to the specific nature 
of the equations used in our iterative methodology, see Eqs. (17), an improvement 
is observed only for the edge and mixed type of the dislocation. Screw dislocation 
configuration can not be attuned the iterative methodology presented above due to  
the fact that displacement components ux, uy do not depend on xz position nor does bz 
component of Burgers vector affect ux, uy displacements. The improved dislocation 
configurations obtained using the iterative procedure are shown and compared with 
the classical solution in Fig. 9.

 
Fig. 10. Left: Zoom in on the finite element grid used to model polar QD nucleated near TD of edge 
type. Upper part of AlN matrix has been removed for simplicity. Also, crystallographic orientations 
and location of dislocation line are indicated. Right: electrostatic potential distribution around edge 

type of TD. In both cases, wire-frame corresponds to QD edges

5.6.  GaN Quantum Dot Nucleated near Threading Dislocation

Wurtzite III-nitrides (binary, ternary and quaternary compounds of GaN/AlN/
InN) are considered as promising optically active structures for the application 
in the future  optoelectronic devices due to their large and tunable band gap, and 
high tolerance to work in a harsh environment [33]. Wurtzite type of crystals, apart 
from other commonly used semiconductors, has a unique spontaneous polarisation 
related to the growth direction. This feature, together with piezoelectric polarisation, 
induces a strong built-in electric field in these structures. The built-in electric field 
has been shown to strongly affect the optoelectronic properties of light emitting 
devices [34, 35]. Initially, to develop the first blue light emitting devices multiple 
InGaN/GaN quantum wells were used [8]. Unfortunately, the lack of suitable 
substrates and high lattice mismatch introduce defects into the heterostructure in 
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the form of TD. The typical density of TDs in III-nitrides is in the range of 109−1011 
cm−2 [33, 36] and through advanced growth techniques can be decreased to 107 
cm−2. Because TD affects the quantum efficiency of light emitting devices based 
on QWs and can be detrimental for their lifetime, several approaches have been 
developed to mitigate this problem, e.g. improvements in the growth process 
and advanced dislocation reducing techniques as, for example, epitaxial lateral 
overgrowth. Quite a different approach to improve the quality of optically active 
structures is to use QD as radiative recombination centres, e.g. self-assembled  GaN/
AlN  QDs grown in polar, nonpolar or semipolar directions [36, 37, 38]. The zero–
dimensional nature of QDs permits three–dimensional particle–hole localization 
and from that the design of interesting (and useful)  optoelectronic devices, i.e. 
light emitters/detectors. The explicit correlation between dislocation arrangement 
and QD formation [36] suggests that TD in such heterostructures may facilitate 
seed processing and growth of QD. Unfortunately, their presence still promote non-
radiative recombination centres which reduce the optical output, heat-up the device, 
and reduce the operational lifetime.

Progress in experimental techniques based on electron holography enables the 
measurement of the electrostatic potential in a defective heterostructure, e.g. potential  
related to free charges trapped by dangling  bonds in a dislocation core. The potential 
distribution reported for the edge–type dislocation in GaN crystals has the peak value 
in the range of −0.2 ÷ −3.0V with the axisymmetric range of about 15 ÷ 50 nm [39, 
40]. The corresponding electron density of the dislocation line is between 0.3 ÷ 2.0 
electrons per GaN lattice parameter. 

In this discussion we consider a Wurtzite heterostructure, consisting of the polar 
GaN quantum dot in the AlN matrix, as if it was a three–dimensional coherent 
inclusion. The QD morphology can be reliably obtained from TEM observations, 
see [36]. Fig. 10a gives an illustration of the hexagon-based truncated pyramid 
geometry of the polar QD nucleated near perfect edge type TD with Burgers vector 

1 3 2110 =  b . Local source distortions around the TD line localized at the corner of 
the bottom facet of QD were modelled using the analytical approach, see Eqs. (25). 
The size of QD is 17 × 4.1 nm respectively for bottom and top facets while the height 
is 3.6 nm. A cuboidal AlN matrix is assumed to be ~10 times larger, so the GaN/
AlN volume ratio is about 10−3. That allows us to assume that our heterostructure  is 
mechanically and electrically isolated. In the specific case, mutual diffusion between 
GaN and AlN is limited, so the edges are satisfyingly clear and sharp. The finite 
element grid is constructed of non–affine hexahedral elements whose geometry 
are locally attuned to accommodate the real–space geometry of the buried QD and 
material identification is assigned to each element. The dislocation charge density 
was assumed to be 0.3e/c which corresponds to the potential peak value −0.42V. The 
radius of the axisymmetric extent of the potential, following [40], was truncated to 
35 nm, see Fig. 10b.
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To calculate the coupled elastic-electric problem the following coupled equilibrium 
equation set must be solved: div [σ] = [0] and div [D] = 0. Cauchy stress σ and electric 
displacement D satisfy the following constitutive relations

 
e

ij ijkl kl kij kC e Eσ = e −  (39)

 e sp
k kij ij ki i kK e e E P= e + +  (40)

The elastic strain εe is related to lattice strain and chemical strain by εe = ε − εch, 
while the electric field is E = −grad f. The lattice strain is calculated from the lattice 
deformation tensor after the decomposition of the deformation gradient, see Eq. (11). 
Tensors of physical moduli C, e, e, and supplement spontaneous polarisation Psp define 
the elastic and electric properties of crystals [41]. The fully coupled piezoelectric pair 
of constitutive equations is solved for the boundary conditions in which the loading 
forces and charges on surfaces vanish for the vector n normal to the AlN matrix 
surfaces. The system of equations is solved using a direct solver based on a sparse 
Gauss elimination algorithm in FEAP program [42].

 
Fig. 11. Elastic strain εxx ([0001] cross-section) and electrostatic potential ([ 2110 ] cross-section) 

distribution around polar QD nucleated near the TD of the edge type. dditional small windows  
show the strain and electrostatic potential maps for stand-alone QD.  

The wire-frame corresponds to QD edges

The resultant strain field and potential is presented in Fig. 11. QD is strained in 
(0001)–plane and slightly elongated  along the [0001]–axis. The compression in the 
QD area is an effect of the elastic relaxation driven by lattice mismatch between QD 
and matrix crystals. The compression peak values correspond to lattice mismatch 
values, which in given crystallographic orientation are (−2.47%,−2.47%,−4.07%). 
The spatial distribution of the strain components are locally affected by the lattice 
distortion around the dislocation line. Because of the differences between AlN lattice 
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and GaN inclusion, QD preferentially nucleate in the vicinity of TD, where AlN matrix 
is locally attuned to GaN crystal. This promotes QD growth and slightly reduce its 
energy. The presence of the charged dislocation near QD and potential interaction 
causes a nonlinear shift of the built-in electrostatic potential along z-direction. The 
negative shift of the electrostatic potential causes a small shift in the band energies. 
Calculations show a small decrease in the effective band-to-band transition energy 
calculated in the centre of QD, see Ref. [43]. Together, with carrier localisation it may 
have a measurable effect on the optical spectrum of such QDs.

5.7.  Summary

The procedures for reconstruction of discrete crystal structure affected by a set 
of dislocations as well as the modelling of coupled fields effect in semiconducting 
heterostructures presented here set an example of a deterministic method based on the 
nonlinear field theory of dislocations and elasticity or piezoelectricity. The problem of 
dislocation modelling is located on the border of continuum mechanics and discrete 
(atomistic) modelling of crystal lattice periodicity. In computer modelling (molecular 
statics/dynamics, finite element analysis) the crucial problem is to create an accurate 
spatial structure of the crystal with incorporated defects. There are two complementary 
approaches: theoretical and experimental. The choice depends on the problem 
considered and of course on the availability of high accuracy data, e.g. experimental 
measurements by TEM techniques.

The methodology presented above can be used to create a new advanced and 
comfortable tool or just extend existing pre-processors, e.g. PATRAN, GiD in order 
to create an accurate initial atomic configuration used in modelling of the crystal 
structure (Abaqus, FEAP, LAMMPS). The iterative solver has been programmed in 
Visual Editor of Crystal Defects (VECDs, see [44]) and can be used as a pre-processor 
or viewer during atomistic modelling.
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